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Phase crystals are a class of nonuniform superconducting ground states characterized by spontaneous phase
gradients of the superconducting order parameter. These phase gradients nonlocally drive periodic currents and
magnetic fields, thus breaking both time-reversal symmetry and continuous translational symmetry. The phase
crystal instability is generally triggered by negative and inhomogeneous superfluid stiffness. Several scenarios
have been identified that can realize phase crystals, especially flat bands at specific edges of unconventional nodal
superconductors. Motivated by omnipresent disorder in all materials, we employ the t-matrix approach within the
quasiclassical theory of superconductivity to study the emergence of phase crystals at edges of a nodal d-wave
superconductor. We quantify the full phase diagram as a function of the impurity scattering energy and the
temperature, with full self-consistency in the impurity self energies, the superconducting order parameter, and
the vector potential. We find that the phase crystal survives even up to ∼40–50% of the superconducting critical
impurity strength in both the Born and unitary scattering limits. Finally, we show how mesoscopic finite-size
effects induce a competition with a state still breaking time-reversal symmetry but with translationally invariant
edge currents.

DOI: 10.1103/PhysRevB.111.094513

I. INTRODUCTION

Superconductivity is characterized by the phase χ of the
electron pair condensate, which breaks the U (1)-symmetry,
and quantified by the superconducting order parameter � =
|�|eiχ . Gradients in this phase generate a superflow, which
couples to the kinetic energy via the superfluid stiffness,
where a positive stiffness yields a uniform and rigid phase
in order to minimize the kinetic energy. However, external
fields can favor nonuniform superconducting states such as
the Abrikosov-vortex state [1,2] or the amplitude instabilities
of Fulde-Ferrell �(R) ∝ �qeiq·R [3] or Larkin-Ovchinnikov
�(R) ∝ �q cos(q · R) [4] type.

Recently, it has been shown [5] that even in the absence of
external fields, and deep below the superconducting transition
temperature Tc where � is already well-established, there can
exist another nonuniform superconducting state. This state
occurs at a spontaneous phase transition at T ∗ ∼ 0.2Tc and
is a phase instability χ (R) ∝ Cq cos(q · R), referred to as a
“phase crystal” [6]. Here, q is the instability wave vector of
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this nonuniform, but still equilibrium, ground state. Phase
crystals are thus an emergent superconducting phenomenon,
a priori not requiring any additional interactions or fields
besides superconductivity itself. Specifically, it is a negative
superfluid stiffness that yields the spontaneous phase gradi-
ents and furthermore drives nonlocal equilibrium currents and
magnetic fields. The phase crystal state is thus associated with
both time-reversal symmetry breaking (TRSB) and continu-
ous translational symmetry breaking (TSB) [7].

Phase crystals have been predicted to emerge, e.g., due
to flat bands at zero energy associated with Andreev bound
states (ABS) appearing at pair-breaking edges of unconven-
tional nodal superconductors [5], but also in conventional
superconductor-ferromagnet heterostructures [6]. In this work
we consider edges of nodal dx2−y2 -wave superconductors
which are fully misaligned with respect to the crystal ab-axes,
e.g., [110] edges as visualized in Fig. 1, as they represent
an easily accessible experimental system. Here, quasiparti-
cles accumulate a π -phase factor as they scatter between
order parameter lobes of different sign, consequently induc-
ing resonant Andreev reflection that break superconducting
pairs and form flat band ABS at zero energy [8,9]. Such
zero-energy ABS have been experimentally observed as a
zero-bias conductance peak [10–12]. These ABS are further
topological [13–16] but at the same time thermodynami-
cally unstable due to their large ground-state degeneracy,
where any shift to finite energy has been shown to lower
the free energy [17]. Such an energy shift is consistent
with an experimentally observed temperature-independent
broadening of the flat bands [18–20]. Several mechanisms,
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FIG. 1. Sketch of the two different dx2−y2 -wave superconductor
geometries considered in this work. (a) Square grain with edges
rotated 45◦ degrees with respect to the crystal ab-axes, each of which
is pair-breaking due to resonant Andreev reflection. (b) Grain with
only one pair-breaking edge, while all other edges are aligned with
the ab-axes. Heatmaps show the magnitude of the spontaneous loop
currents [arrows at bottom edge in (a)] produced by the phase crystal
instability and computed self-consistently at temperature T = 0.11Tc

in the absence of impurities. Inset illustrates the nodal dx2−y2 -wave
gap symmetry (colors) on the Fermi surface (gray), with vectors
indicating the Fermi velocity vF at Fermi momentum pF and angle ϕF

relative to the crystal ab-axes. Here, j0 is a natural unit (see Sec. II).

in additional to phase crystal formation, have been pro-
posed to explain this spontaneous broadening, including
a subdominant superconducting order [21–23], ferromag-
netism [24,25], and spontaneous currents [26–28]. Notably,
all these scenarios are related to spontaneous TRSB and leads
to currents and net magnetic signatures observable with scan-
ning probes [29]. However, experimental detection remains
controversial [30–34]. Phase crystals can resolve this contro-
versy [5,35]; it is typically the most energetically favorable
scenario [5,36], has zero net magnetic signature beyond the
superconducting coherence length ξ0 and is thus consistent
with previous experiments [7,37], and results in an ABS peak
broadening fully consistent with experiments [35].

Multiple different theoretical frameworks have been used
to demonstrate the spontaneous appearance of phase crys-
tals including for nodal superconductors, from quasiclassical
theory [5–7,38], phenomenological Ginzburg-Landau the-
ory [6], to fully microscopic theories [37], also including
strong electron-electron correlations as appropriate for the
high-temperature cuprate superconductors [35]. Furthermore,
phase crystals have been studied in the presence of exter-
nal magnetic fields [7,39], various geometric [40,41] and
Fermi-surface effects [37], competing superconducting [5]
and magnetic orders [36], topological superconductivity [42],
and nonmagnetic impurities [35,38]. In particular, nonmag-
netic impurities are omnipresent in all materials and phase
crystals have so far only been predicted to be robust against
such impurities when including the additional effects of strong
electron-electron interactions [35].

In order to aid experimental efforts to realize and detect
phase crystals, we here set out to explicitly quantify the ro-
bustness of phase crystals in the presence of impurities also
in the weak coupling regime. We achieve this by quanti-
fying the full ground-state phase diagram as a function of
temperature T and impurity scattering energy �, considering

general scattering phase shifts δ0 between the Born (δ0 =
0) and the unitary (|δ0| = π/2) scattering limits, with full
self-consistency simultaneously in the impurity self-energies
himp, superconducting order parameter � and vector poten-
tial A. We accomplish this by using the well-established
t-matrix approach [43–45] within the quasiclassical theory of
superconductivity [46–48].

We begin our study by establishing how nonmagnetic im-
purities by themselves broaden the surface ABS in nodal
dx2−y2 -wave superconductors as a function of both � and
δ0, finding the strongest (weakest) broadening in the Born
(unitary) scattering limit, which is consistent with analytic
calculations [49,50]. We then take these results and study
the influence of nonmagnetic impurities on the phase crys-
tal and its emergent current loops, the latter also visualized
in Fig. 1. Since ABS at different pair-breaking edges may
also hybridize in mesoscopic systems [51–53], we choose to
study systems whose geometries host either multiple or single
pair-breaking edges, i.e., where the hybridization between
pair-breaking edges is either significant as in Fig. 1(a) or
completely absent as in Fig. 1(b). We find find that the ABS
impurity-broadening reduce both the magnitude and number
of current loops, and that these effects can be further enhanced
by edge-edge hybridization. In particular, nonmagnetic impu-
rities cause the effective system size D/ξ (�) to shrink due
to the coherence length ξ (�) increasing with �. In fact, for
sufficiently small D/ξ (�), we find that the hybridization can
become so strong that the phase crystal evolves into another
competing TRSB phase which has translationally invariant
edge currents, originally proposed by Vorontsov [54] but then
in a clean system within a slab geometry. We directly quantify
the size effects and the competition between different states
within the full ground-state phase diagram, where we compute
both the TRSB transition temperature T ∗ and the supercon-
ducting critical temperature Tc as functions of �, for different
scattering phase shifts δ0 and the two geometries in Fig. 1.
In particular, we find that the phase crystal is remarkably
robust, surviving up until ∼40–50% of the bulk critical im-
purity strength, from the Born to the unitary scattering limits,
respectively. Furthermore, we find that the superconducting
transition temperature Tc can be strongly suppressed by finite-
size effects in the presence of impurities, while the transition
temperature T ∗ instead increases by these finite-size effects.
Our results thus imply that phase crystals should be robust
enough to be present under experimental conditions in generic
nodal d-wave superconductors.

The rest of the work is outlined as follows. In Sec. II, we
present our theoretical formalism. In Sec. III we study the
impurity broadening of the surface ABS. In Sec. IV we study
the influence of impurities on the phase crystal. In Sec. V
we present the ground-state phase diagram. In Sec. VI, we
summarize our work and give an outlook of interesting future
research directions.

II. THEORY AND MODELING

In this section we introduce the theory and modeling used
in this work.
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A. Quasiclassical theory of superconductivity

To study phase crystals and impurities, we use the qua-
siclassical theory of superconductivity [46–48], solving the
time-independent and equilibrium form of the Eilenberger
equation [46]

ih̄vF · ∇ĝM(R, pF, εn)

+ [iεnτ̂3 − ĥM(R, pF, εn), ĝM(R, pF, εn)] = 0, (1)

for the quasiclassical Green’s function ĝM that depends on
spatial coordinate R, the momentum direction on the Fermi
surface pF, and the Matsubara (M) frequency εn. Here, h̄ is the
reduced Planck constant. Assuming a circular Fermi surface,
all momenta pF can be parametrized in terms of a single angle
ϕF ∈ [0, 2π ). Additionally, Eq. (1) contains the Fermi veloc-
ity vF(ϕF) and the self-energy matrix ĥM. By [A, B] we denote
the commutator between matrices A and B, the hat-symbol
“ˆ” indicates a matrix in particle-hole (Nambu) space, while
τ̂3 is the third Pauli matrix. In addition to satisfying Eq. (1),
the Green’s function ĝM also has to obey the normalization
condition [46]

ĝM(R, pF, ε)ĝM(R, pF, ε) = −π2. (2)

As a 2 × 2 matrix in particle-hole space, the Green’s function
ĝM can be written as

ĝM =
(

gM f M

f̃ M g̃M

)
. (3)

The diagonal elements are the single-quasiparticle Green’s
function, while the off-diagonal elements describe anomalous
superconducting correlations. Quantities with and without a
tilde are related via particle-hole conjugation,

Ã(R, pF, ε) = A∗(R,−pF,−ε∗). (4)

For clarity, we assume spin-degeneracy in this work
such that all four elements of ĝM, which in general are
2 × 2-spin matrices, reduce to scalar functions. The matrix
elements in Eq. (3) can thus be parametrized in terms of
two scalar coherence functions γ and γ̃ , the so-called Riccati
parametrization [55–57]. This parametrization greatly simpli-
fies the numerical solution of Eq. (1).

The self-energy matrix ĥM is also a 2 × 2 matrix in Nambu
space. Here, the self-energy captures all the interactions in the
system, which in our work consists of a mean-field super-
conducting order parameter (MF), scalar impurity scattering
(imp), and electromagnetic (EM) interactions

ĥM = ĥM
MF + ĥM

imp + ĥM
EM. (5)

We start by describing ĥM
MF, while ĥM

imp and ĥM
EM are described

in Sec. II C and Sec. II D, respectively.
We are interested in an order parameter �(R, pF) with

spin-singlet dx2−y2 -wave pairing symmetry,

ĥM
MF =

(
0 �

−�̃ 0

)
, (6)

with scalar matrix elements

�(R, pF) = �(R)ηd (ϕF ) = �(R) cos (2ϕF − 2α). (7)

Here, α is the misalignment angle between surface normals
and the crystal axis, and �(R) is a (generally complex) scalar
number. The scalar value �(R) is determined from the self-
consistency equation

�(R) = λdNFkBT
∑

|εn|<εc

〈ηd (pF) f M(R, εn, pF)〉FS, (8)

with d-wave coupling constant λd , normal-state density of
states NF (per spin), Boltzmann constant kB, temperature T ,
Matsubara sum cutoff εc, and the Fermi-surface average [58]

〈. . . 〉FS =
∫ 2π

0

dϕF

2π
(. . . ). (9)

We eliminate the coupling constant λd and cutoff εc in favor
of the critical temperature Tc [59].

B. Clean systems

In a uniform environment, such as bulk or at an edge
aligned with the order parameter lobes (e.g., a [100] edge for
dx2−y2 -wave), the spin-degenerate propagator takes the bulk
form

ĝM,R
bulk (pF, ε) = π

�(ε)

( −ε �(pF)
−�̃(pF) ε∗

)
, (10)

here in 2 × 2 particle-hole space where �(ε) ≡
√

|�|2 − ε2.
Using the clean-limit critical temperature Tc,0 we define the
bulk superconducting coherence length ξ0 ≡ h̄vF/(2πkBTc,0)
which is the characteristic length scale of superconductivity.

Assuming a uniform order parameter amplitude �0, the
propagators can also be derived for other interface orienta-
tions, qualitatively capturing interesting surface effects [52].
For instance, in a semi-infinite system with an interface
aligning with the order parameter nodes, i.e., a maximally
pair-breaking interface such as [110] (as in Fig. 1), reso-
nant ABS [8,9,44] yields an additional surface term in the
propagator [60]

ĝM,R(R, pF, ε) = ĝM,R
bulk (pF, ε)(1 − e−y/ξy )

+ ĝM,R
surface(pF, ε)e−y/ξy , (11)

ĝM,R
surface(pF, ε) = π

ε

(
�(ε) −is�(pF)

s�̃(pF) −�(ε)

)
, (12)

with surface normal ŷ, effective coherence length ξy ≡
h̄|vF,y|/2�(ε), where vF,y ≡ vF sin(ϕF) and s ≡ sgn(vF,y). We
note that for the equilibrium Matsubara propagator (ε →
iεn), the pre-factor in Eq. (12) is inversely proportional to
the temperature, ε−1

n ∝ T −1, thus highly important at low
temperature.

C. Impurity self-energies

Nonmagnetic impurities are introduced into our approach
through the self-energy ĥM

imp in Eq. (5). Specifically, we use
the well-established t-matrix approach [43,44], which im-
portantly includes a proper treatment of the averaging over
impurity realizations [61]. The impurity self-energy in Eq. (5)
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generally has both diagonal and off-diagonal elements

ĥM
imp =

(
�imp �imp

−�̃imp �̃imp

)
. (13)

We consider an impurity self-energy that describes
momentum-isotropic (s-wave) scattering on a dilute impurity
concentration ni with scattering potential u0, and with an
averaging over impurity position. Under these assumptions,
the t-matrix equation for the Matsubara self-energy

ĥM
imp = nit̂

M, (14)

can be solved in the noncrossing approximation yielding [61]

t̂M = u01̂ + u2
0NF〈ĝM〉FS

1̂ − [u0NF〈ĝM〉FS]
2 . (15)

As a re-parametrization of the two scattering model parame-
ters ni and u0, we use the scattering energy �u and scattering
phase shift δ0 [45]

�u ≡ ni

πNF
, (16)

δ0 ≡ arctan(πu0NF). (17)

For a d-wave order parameter, scalar impurity scattering is
pair-breaking and suppresses the order parameter [44,45]. The
pair-breaking strength can be defined in terms of the energy

� ≡ �u sin2 δ0, (18)

where the superconducting order parameter vanishes at a
critical impurity scattering energy �c(T ), or conversely at
a critical temperature Tc(�). We compute these quanti-
ties fully self-consistently, and compare our results with
the corresponding expressions obtained via the well-known
Abrikosov-Gorkov formula [45,62] for a bulk d-wave
superconductor

ln
Tc,0

Tc
= ψ

(
1

2
+ �

2πkBTc

)
− ψ

(
1

2

)
, (19)

with the digamma function ψ (x). Introducing the bulk def-
initions Tc,0 ≡ Tc(� = 0) and �c,0 ≡ �(T = 0), we obtain
�c,0/(2πkBTc,0) = e−γE/4 ≈ 0.14, where γE is the Euler-
Mascheroni constant. For comparison, the bulk d-wave
gap at T → 0 and in the clean limit is �0/(2πkBTc,0) =
e−γE−1/2/

√
2 ≈ 0.24 (the corresponding maximal gap in the

DOS is
√

2 times this value).
In addition to self-consistently solving the impurity self-

energies from Eqs. (13)–(15) with general scattering phase
shifts δ0, we in this work also focus on two important limiting
cases for the scattering self-energy. First, the Born scattering
limit of weak impurity scattering, described by δ0 → 0 and
�u → ∞ while � is kept constant. In this case, the impurity
self-energy is simply

ĥM
Born = �

π
〈ĝM〉FS. (20)

Second, we consider the unitary scattering limit of strong
scattering where |δ0| → π/2 such that � → �u. Then, the
impurity self energy reads

ĥM
uni = −π�u

〈ĝM〉FS

〈ĝM〉2
FS

. (21)

We note that the influence of impurities on ABS has previ-
ously been studied in both the Born and unitary scattering
limits, where the impurities were shown to broaden the
ABS [49]. Generally speaking, Born-limit scattering leads
to a larger broadening of the surface states with impurity
concentration, which we reproduce for finite-sized systems in
Sec. III. In the above two cases impurity scattering does not
induce any electron-hole asymmetry. However, for any value
of the scattering phase shift δ0 between these two limits there
is indeed such an asymmetry which alters the physics [63–68].

D. Electromagnetic interactions

We are interested in studying TRSB phases, usually
hosting spontaneous charge-current density j(R), which we
compute via the Matsubara pole expansion

j(R) ≡ 2kBTNF|e|
∑
εn>0

〈vFgM(R, εn, pF)〉FS, (22)

which we quantify in natural units j0 ≡ h̄|e|v2
FNF/ξ0, with

elementary charge e = −|e|. The charge-current density in-
duces a magnetic flux density B(R) and vector potential A(R)
through Ampère’s law

∇ × B(R) = ∇ × ∇ × A(R) = 4π

c
j(R), (23)

with speed of light c, where A couples to the momentum of
the quasiparticles through the self-energy term

ĥM
EM = −e

c
vF(pF) · A(R)τ̂3. (24)

We assume the Coulomb gauge such that Eq. (23) reduces
to Poisson’s equation −∇2A(R) = (4π/c) j(R), where we
use standard Green’s function techniques to self-consistently
solve A(R) generated by the currents in Eq. (22), see Ref. [39]
for further details. We note that the magnetic flux density
B(R) has been studied in detail for the phase crystal state
before [5,7,40,69].

E. Density of states and free energy

In order to analyze our self-consistent solutions, we com-
pute the local density of states (LDOS)

N (R, ε) = 2NF〈N (pF, R, ε)〉FS, (25)

where

N (pF, R, ε) = − 1

4π
Im Tr[τ̂3ĝR(pF, R, ε)] (26)

is the momentum-resolved density of states. Note that this re-
quires the retarded (R) Green’s function ĝR which is obtained
by solving Eq. (1) with the replacement iεn → ε + iη where
η is a small positive number.

In order to obtain the ground state phase diagram, we
compute the free energy of different self-consistent supercon-
ducting (S) solutions with respect to the normal state (N ),
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� ≡ �S − �N. To this end, we use the functional

� ≡ NF

∫
dR

{
|�(pF, R)|2

(
ln

T

Tc,0
+ πkBT

∑
n

1

|εn|

)

− πkBT
∑

n

〈I (pF, εn, R)〉FS

}
, (27)

with the functional kernel

I (pF, εn, R) ≡ �̃(pF) f M(pF, εn) + �(pF) f̃ M(pF, εn)

π + igM(pF, εn)
. (28)

In the latter expression it is implied that all quantities on the
right-hand side depend on the spatial position. Here, Eq. (27)
is the Eilenberger form of the free energy [46], which has
been shown to be applicable to the scenario considered in our
work. Specifically, the impurity self-energy in the t-matrix
approximation vanishes in the more general Luttinger-Ward
functional [70–74], which reduces to the above Eilenberger
form in the limit considered here [60,74].

F. Model and numerical details

For clarity, we in this work assume equilibrium, spin de-
generacy, weak coupling superconductivity, a circular Fermi
surface [58], and specular reflection boundary conditions
at any superconductor-vacuum interfaces. The influence of
noncircular Fermi surfaces [37] or mesoscopic surface rough-
ness [41] have previously been investigated on phase crystals.
Furthermore, we solve for full self-consistency in the vec-
tor potential via finite penetration depth λ0 [75], but find
negligible influence on the phase crystal and therefore fo-
cus on extreme type-II superconductivity for simplicity, via
λ0 → ∞.

For our numerical calculations, we use the open-source
software SUPERCONGA that enables studies on a wide variety
of phenomena using the quasiclassical theory of superconduc-
tivity [39]. Specifically, SUPERCONGA uses the numerically
stable Riccati formalism [55–57] to solve the Eilenberger
equation (1) along ballistic trajectories defined by the Fermi
velocity vF, with full self-consistency simultaneously in the
order parameter � via Eqs. (6)–(8), vector potential A via
Eqs. (22)–(24), and impurity self-energies via Eqs. (13)–(15).
With appropriate initial guesses for all self-energies, this is
done iteratively until the global relative error fulfills εG =
‖Oi − Oi−1‖/‖Oi−1‖ < εtol at iteration i in each relevant ob-
servable O ∈ {�,�, j, . . .}, where εtol = 10−7 is our tolerance
for self-consistency. See Ref. [39] for further details. We find
it sufficient to use a spatial resolution of 20 discrete points per
coherence length, an energy cutoff εc = 16 × 2πkBTc,0, and
250 points to discretize the Fermi-surface averages (except
when calculating the LDOS for which we use 720 points).
We use an energy broadening η = 0.005 × 2πkBTc,0 when
computing the LDOS.

III. IMPURITY BROADENING OF ABS

The phase crystal realization studied in this work relies on
the presence of low-energy ABS. In order to better understand
the results in the rest of the work, we first in this section briefly
explain the origin of surface ABS, before investigating their

FIG. 2. LDOS as a function of energy in the low-energy regime
and at a maximally pair-breaking [110] edge of a dx2−y2 -wave su-
perconductor with the same geometry as in Fig. 1(b) at T = 0.5Tc,
illustrating the broadening of midgap ABS by impurities in the
(a) Born (δ0 = 0) and (b) unitary (|δ0| = π/2) scattering limits. Col-
ors denote the scattering energy �. (c),(d) Peak height and full width
at half maximum (FWHM), respectively, as functions of � for several
different scattering phase shifts δ0. The calculations were performed
with a small phenomenological broadening η = 0.005 × 2πkBTc,0 to
ensure numerical stability. This yields a finite peak height and width
even as � → 0, while without broadening the ABS peak is a delta
distribution [9].

broadening by impurities in the absence of the phase crystal
instability in Fig. 2.

Surfaces of unconventional superconductors are known
to host interesting phenomena such as bound states [17,22–
25,76–82]. In particular, at a [110] edge of a dx2−y2 -wave su-
perconductor, quasiparticle scattering between d-wave lobes
of opposite sign (see Fig. 1) leads effectively to an accumu-
lation of a phase factor relative to the condensate. This phase
factor leads to resonant Andreev reflection and consequently
surface pair-breaking, resulting in highly degenerate zero-
energy ABS [8,9,14,83,84]. We illustrate these zero-energy
ABS in Fig. 2 by plotting the low-energy LDOS at the [110]
edge, where line colors correspond to different values of the
scattering energy � in the (a) Born scattering limit and (b)
unitary scattering limit. Here, impurity scattering connects all
momentum directions such that surface scattering no longer
only connects order parameter lobes of opposite sign, but also
of the same sign. Consequently, the phase factor is reduced
on average, thus also reducing the density of zero-energy
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ABS. We therefore observe a suppression of the ABS peak
in Fig. 2(c) and a broadening in Fig. 2(d) as a function of
increasing �, where we plot results for several different scat-
tering phase shifts δ0. We find that the broadening generally
increases monotonically with smaller |δ0| (see arrows), being
the largest (smallest) in the Born (unitary) scattering limit,
which is consistent with analytical results from earlier studies
on the ABS broadening [49,50]. However, the broadening
saturates at sufficiently large � in the Born limit, which breaks
the monotonic behavior and has consequences for the emer-
gent TRSB phases (Sec. V). Specifically, the energy range of
� in Fig. 2 is the relevant range for the phase crystal state
as we show in the subsequent sections, whereas beyond this
range the system becomes increasingly disordered with fully
broadened states, where it thus makes less sense to talk about
distributions and widths.

IV. PHASE CRYSTALS AND IMPURITIES

Having understood the impurity effect on the low-energy
ABS, we next turn to how impurities influence the phase
crystal occurring due to the low-energy ABS. In order to better
understand the phase crystal state itself, we start this sec-
tion by briefly discussing the phase crystal instability. Based
on this discussion, we then proceed to investigate and explain
how impurities influence the phase crystal.

A. Phase crystal instability

We here briefly summarize the energetics that drive the
phase crystal instability and determine its emergent prop-
erties, specifically its finite periodicity and spontaneous
currents.

The zero-energy ABS studied in Sec. III are associated
with broken superconducting pairs and thus an energy cost
δ�ABS ∝ �0. Consequently, these states become thermody-
namically unstable as T → 0, and any shift δε to finite
energies lowers the free energy by δ�shift ∝ −δε [17]. For
instance, any superflow ps(R) = (h̄/2)∇χ (R) − (e/c)A(R)
leads to a Doppler shift δε ∝ vF · ps [17,85], and is fur-
thermore associated with currents and magnetic fields (see
further below). This implies that the system becomes un-
stable towards spontaneous TRSB with spontaneous super-
flow [26–28]. The transition temperature T ∗ of such an
instability is essentially determined by the energy gain of the
Doppler shift close to the surface, δ�shift ∝ −|vF · pS|, vs the
kinetic energy cost of the condensate backflow further from
the surface, δ�kin ∝ +|vF · pS|2 [17]. The phase crystal in-
stability optimizes this trade-off by minimizing the backflow
to the same short decay length y0 ∝ ξ0 as the surface ABS
(surface normal ŷ), and is thus typically the most energetically
favorable TRSB scenario with a high T ∗ (e.g., T ∗ ≈ 0.2Tc,0

in a clean nodal d-wave system [5–7,35]). This finite decay
length y0 is achieved through translational symmetry breaking
(TSB) along the surface via the inhomogeneous ground-state
solution χ (x, y) ∝ −(1 − y/y0)e−y/y0 cos(qxx) [6], with order
parameter phase χ . This solution emerges from the minimiza-
tion of the kinetic energy Fkin = ∫

dRdR′ ps(R) · Ds(R, R′) ·
ps(R

′) + O(p4
s ), where spontaneous TSB is related to how

the nonlocal superfluid stiffness tensor Ds(R, R′) [45] couples

a finite superflow decay length y0 to a finite wave number
qx along the interface, via qx ∝ y−1

0 [6]. Additionally, we
note that shorter periods q−1

x � ξ0 with rapid oscillations are
penalized via the off-diagonal tensor components, and also
lead to smaller superflow on average due to the frequent
sign changes. Consequently, the ground state corresponds to
a phase crystal state with optimal period vs decay length [6].
Finally, the superflow of the phase crystal drives equilib-
rium current loops through the nonlocal response j(R) =∫

dR′ ps(R
′) · Ds(R, R′) + O(p2

s ) [6], see Fig. 1, which is re-
lated to a spontaneous magnetic field via Eq. (23). We clarify
that the current loops have the same periodicity as the inho-
mogeneous phase χ (x, y).

B. Impurity effects on phase crystals

Having described the phase crystal instability above in this
subsection we establish how impurities influence the phase
crystal, focusing in particular on the magnitude and periodic-
ity of the spontaneous current as that gives a clear fingerprint
of the overall behavior.

In a finite-sized system, the periodicity of the phase crystal
gives rise to a finite number of current loops, each with size
∼5ξ0, see Fig. 3. Here, more loops imply on average a smaller
current, and thus small superflow, since they have to change
sign more often, but also with smaller backflow into the bulk
as described in Sec. IV A. Furthermore, the maximum current
flow is found in a clean system at zero temperature, because
the energy cost and density of zero-energy ABS is then the
largest. The phase crystal is thus suppressed by any broaden-
ing or reduction of the zero-energy ABS, which has already
been shown to be the case for, e.g., higher temperature [5],
external flux [7], geometric effects [41], Fermi surface
effects [37], and nonmagnetic impurities [35,38].

We show in Figs. 3(a)–3(f) that as the scattering energy �

increases, there is a gradual weakening of the current density
j(R), directly caused by the impurity broadening of zero-
energy ABS. This is explained by that the reduced amount
of zero-energy ABS leads to less possible energy gain by
Doppler shift, vs essentially the same cost of the backflow
response. We also find that increased � (or reduced T ) leads
to a reduced number of current loops as depicted in Fig. 3, and
thus an increased phase crystal period. This reduction of the
number of current loops is more subtle; to directly quantify
and explain it, we establish different self-consistent solutions
with different number of loops and compare their free energy,
as a function of both temperature and impurity scattering
energy. To summarize this involved analysis (see Appendix
for further details), we find that the reduction is mainly related
to two effects. First, the impurity suppression of the d-wave
order parameter �(�) leads to an increased coherence length
ξ (T )/ξ0 ≈ �0/�(�) [49,62], such that the phase crystal has
to change to longer (i.e., fewer) current loops to maintain the
same effective periodicity. Second, the reduction in magnitude
as described above can be compensated by less current loops
since this changes sign less often (i.e., an average stronger
Doppler shift). Additionally, we find that the total number of
current loops generally change in multiples of two, but note
that certain geometric effects can lead to a change by, e.g.,
single loops at a time [40]. This is related to the minimization
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FIG. 3. Magnitude of the spontaneous current density j as a function of coordinate R for different scattering energies �, in a d-wave
superconducting square with sidelength D = 40ξ0 [same as Fig. 1(a)] in the unitary limit (|δ0| = π/2) at low temperature T = 0.02Tc,0. As �

increases from (a) to (f), there is a monotonic reduction in the current magnitude (see changing color scales) and number of current loops [see
graphics in (a) and (f)]. The average number of loops per edge are (a) 5, (b) 4, (c) 3.5, (d) 3, (e) 2, and (f) 1. Here, (a)–(e) correspond to the
phase crystal state [6], while (f) corresponds to the Vorontsov phase [54].

of net current and net orbital magnetization, which both cancel
to zero for an equal number of loops with negative and positive
circulation direction (thus an even number of loops in total).
However, they can also cancel on average for odd number of
loops if the loop sizes differ [40,41].

While the above behavior of reduced magnitude and
number of current loops occurs for both the square and
triangle-like geometries, there are unique finite-size effects
in a mesoscopic system such as the square. In particular,
ABS at different pair-breaking edges may hybridize in the
mesoscopic square, while the triangular system hosts no such
hybridization due to having only a single pair-breaking edge,
see Fig. 1. Here, the hybridization in the square becomes
stronger with higher scattering energy since it increases the
effective coherence length ξ (�), thus reducing the effective
system size D/ξ (�) (we also verify this by changing D at
fixed �). Thus, as D/ξ (�) decreases we find that the hy-
bridization can eventually become so strong that there is
effectively no bulk superconductivity established in the square
system [41], consequently changing the energy balancing
such that the phase crystal period vs decay length is eventually
no longer relevant. At this point, the phase crystal competes
with another TRSB phase with spatially uniform superflow
and currents along each pair-breaking edge, see Fig. 3(f). This
latter phase was originally proposed by Vorontsov [54] and is
triggered by the hybridization between different pair-breaking
edges, and has previously been studied mainly in a slab

geometry [86–91]. Our results therefore highlight that it is
possible for the Vorontsov phase to emerge in a fully con-
fined system such as the mesoscopic square, due to impurities
reducing D/ξ (T ) (see also Ref. [5] for a clean system). In
contrast, we find that this phase does not emerge in the
triangle-like geometry since it has only a single pair-breaking
edge.

Finally, we note that a generalized Poincaré-Hopf theorem
relates the number topological defects in the superfluid mo-
mentum ps(R) (and thus number of current loops) to the Euler
characteristic of the superconductor [7], such that a variation
of the number of loops or geometry leads to compensating
topological defects in ps(R). Thus, our results here imply
that tuning the impurity concentration can be used to directly
control the topological defect structure in ps(R).

V. GROUND-STATE PHASE DIAGRAM

In Sec. IV B we established how impurities reduce
the magnitude and periodicity of the phase crystal cur-
rents, increase mesoscopic finite-size effects, and induce the
competing Vorontsov phase [54] which instead hosts homoge-
neous currents along the edges. To fully quantify these effects,
we finally here present the full ground-state phase diagram as
a function of temperature T and impurity scattering energy
�, for different scattering phase shifts δ0. We do this for
both the square and triangle-like geometries shown in Fig. 1,
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FIG. 4. (a)–(b) Ground-state phase diagram as a function of tem-
perature T and impurity scattering energy � in the unitary scattering
limit (|δ0| = 0.5π ), for the triangle and square geometries in Fig. 1,
respectively. Here, Tc(�) is the transition temperature between the
normal state (gray) and the superconducting state with preserved
time-reversal and translational symmetries (blue) in the finite-sized
system (thin solid line) and in the Abrikosov-Gor’kov bulk limit
(thick dashes). T ∗(�) (thick solid line) is the transition between the
superconducting state and the phase crystal (yellow) or the Vorontsov
phase [54] (red). (c) Comparison of Tc(�) in the square geometry
for different scattering phase shifts δ0. (d) Comparison of T ∗(�) in
the triangle and square geometries for different δ0. Here, the circle
indicates relative enhancement of T ∗(�) at large � in the square
compared to the triangle system due to the onset of the Vorontsov
phase, which is absent in the triangle geometry. As a reference for
the energy scales, the clean bulk d-wave order parameter at T = 0 is
�0/(2πkBTc,0) ≈ 0.24.

i.e., with and without significant mesoscopic finite-size effects
acting on the ABS, respectively. We begin by focusing on
the transition temperature Tc(�) between the normal state into
a superconducting state with preserved translational symme-
try and time-reversal symmetry (TRS), i.e., without phase
crystals. We then focus on the transition temperature T ∗(�)
into the TRSB phases. Finally, we investigate the competition
between the phase crystal and the Vorontsov phase.

Figures 4(a) and 4(b) show the ground-state phase diagram
in the triangle-like and square geometries, respectively, as a
function of temperature T and impurity scattering energy �

in the unitary scattering limit (see further below for other

δ0). We first discuss the triangle-like system followed by
the square system. In Fig. 4(a), we find an excellent agree-
ment in Tc(�) between the triangular system and the bulk
Abrikosov-Gor’kov result, Eq. (19). This Tc(�) thus shows
a bulk-like behavior, which we find for other δ0 and relate
to the minimal influence of the single pair-breaking edge at
higher temperatures. This can be understood by studying the
propagator ĝ in Eqs. (11)–(12) in Sec. II B, which is bulk-like
at all edges except at the single pair-breaking edge where there
is an additional bound-state term but which is significantly
suppressed at elevated temperatures. In contrast, all edges are
pair-breaking in the square-shaped system in Fig. 4(b), such
that there is finite edge-edge hybridization between ABS at
different edges and a faster suppression of the order parame-
ter [54]. Consequently, we find a stronger suppression of Tc(�)
in the square-shaped system due to these mesoscopic finite-
size effects, which we investigate in greater detail for different
scattering phase shifts δ0 in Fig. 4(c). Here, the edge-edge
hybridization increases with � since this effectively reduces
the system size D/ξ (�), eventually leading to a loss of bulk
superconductivity at the system center, thus with subgap states
in the entire system [41]. Furthermore, since the broadening
of these subgap states depends on the scattering phase shift
δ0 (see Sec. III), the hybridization and suppression of Tc(�)
therefore also depend on δ0, as clearly seen in Fig. 4(c).
Interestingly, we find that Tc(�) has a local minimum ap-
proaching |δ0| = π/4 and is symmetric around this point,
e.g., the Born and unitary limits have the same Tc(�). Addi-
tionally, the impurity suppression of Tc(�) naturally becomes
more pronounced with smaller system size D as described
above, such that Tc(�) tends towards zero for decreasing D.
In the opposite limit of increasing D, the results of the square
system also approach the bulk limit as in the triangle-like
system.

Next, we focus on the transition temperature T ∗(�) into the
TRSB states, which depends on the scattering phase shift δ0

in both the triangle-like and square geometries, see Fig. 4(d).
This stems from how δ0 influences the ABS energy broad-
ening at a given � [Fig. 2(d)], which in turn influences the
energy gain by the superflow-mediated Doppler shifts. Specif-
ically, comparing the Born (black dashed) and unitary (black
solid) scattering limits, the transition temperature starts at
T ∗(� = 0) ≈ 0.179Tc,0 in the clean limit [5,7], with a roughly
linear T ∗(�) over the entire phase diagram in both systems.
However, the phase crystal is more robust in the unitary
scattering limit due to a smaller broadening of zero-energy
ABS compared to the Born limit as established in Sec. III,
such that there is more energy to gain by the Doppler shifts.
Importantly, in terms of the critical impurity strength �∗(T )
we find that at low temperatures the phase crystal survives
up until roughly 50% (40%) of the superconducting criti-
cal impurity strength in the unitary (Born) scattering limit.
Results for other scattering phase shifts (colors) fall monoton-
ically between these two limits, see arrow in Fig. 4(d), which
directly follows how the ABS broadening changes monoton-
ically with |δ0| [see Fig. 2(d)]. The only exception to this
behavior is the saturation in ABS broadening in the Born limit
at large � as discussed in Sec. III, i.e., see the kink in the
thin dashed black line at � ≈ 0.03 × 2πkBTc,0 in Fig. 4(d).
Regardless, our results demonstrate a disorder-robust phase

094513-8



IMPURITY STRENGTH–TEMPERATURE PHASE … PHYSICAL REVIEW B 111, 094513 (2025)

crystal in weak-coupling superconductors, for all scattering
phase shifts.

Finally, we note that there is minimal difference in T ∗(�)
between the square and triangular systems except at large �,
where the TRSB state survives for larger values in the square,
see the deviation of the black curves at small T in Fig. 4(d)
marked by a circle for |δ0| = π/2 (no circle is shown for
δ0 = 0 because of visibility reasons). We find that this
enhancement of T ∗(�) in the square system relative to the tri-
angle is associated with the emergence of the phase proposed
by Vorontsov [54], i.e., induced by mesoscopic finite-size
effects present in the square system [see Fig. 3(f)] but com-
pletely absent in the triangle-like system. Furthermore, we
find that the Vorontsov phase only appears for smaller T
and larger �, e.g., in the unitary limit it appears below T ≈
0.02Tc,0 and above � ≈ 0.05 × 2πkBTc,0 for the system size
D = 40ξ0 studied here, see Fig. 4(b). Here, the transition
between the phase crystal and the Vorontsov phase is not
distinct [5], as indicated by the color gradient. Specifically, the
yellow region hosts the periodic phase crystal, the dark orange
region is the Vorontsov phase with uniform currents, while in
the gradient color region in-between both states can coexist
along different portions of the system edge due to having very
similar free energy, and are therefore difficult to numerically
separate, see also discussion in Sec. IV A. We find that the
Vorontsov phase covers a larger portion of the phase diagram
at smaller system sizes D [5,54] as fully explained by the
effective shrinking of the system size D/ξ (�) and consequent
enhancement of the finite-size effects.

VI. SUMMARY AND OUTLOOK

Phase crystals [5–7] are a class of inhomogeneous super-
conducting ground states characterized by spontaneous phase
gradients, which nonlocally drive inhomogeneous currents
and magnetic fields, distinctly different from, e.g., Abrikosov
vortices and the Fulde-Ferrell-Larkin-Ovchinnikov states. The
phase crystal instability is generally induced by an inhomoge-
neous and negative superfluid stiffness [6], which can occur,
e.g., due to flat band ABS at zero energy along edges of nodal
d-wave superconductors. In order to aid experimental efforts
to realize and detect phase crystals, we explicitly quantify
their robustness against nonmagnetic impurities, omnipresent
in all materials. Specifically, we establish the ground-state
phase diagram as a function of temperature T and impurity
strength �, for general scattering phase shifts δ0 between the
Born and unitary scattering limits. This is done by employing
the t-matrix approach within the quasiclassical theory of su-
perconductivity, with full self-consistency simultaneously in
the impurity self-energies himp, superconducting order param-
eter �, and magnetic vector potential A.

We demonstrate that impurities cause an energy broad-
ening of the flat band zero-energy ABS appearing at
pair-breaking edges of nodal d-wave superconductors, which
is consistent with early analytic calculations [49,50]. Specif-
ically, we show that the broadening generally increases with
� and decreases with δ0. The phase crystal instability relies
on the energy gain by Doppler shifting zero-energy ABS to
finite energies, vs the energy cost of the condensate backflow
away from the surface. Here, the backflow decay length is

nonlocally coupled to the phase crystal periodicity along the
surface via the superfluid stiffness tensor [6]. Consequently,
we find that the ABS broadening reduces the possible energy
gained by forming the phase crystal, which subsequently re-
duces the magnitude, periodicity, and transition temperature
T ∗(�) of the phase crystal. However, in terms of the critical
impurity strength �∗(T ), we find that the phase crystal is
remarkably robust, surviving up until ∼40–50% of the super-
conducting critical impurity strength from the Born to unitary
scattering limit, respectively. Our results therefore imply that
it should be possible to observe phase crystals in the pres-
ence of impurities also in weak-coupling superconductors,
not just for strong electron-electron correlations as previously
established [35,38].

We further show that in mesoscopic systems, hybridization
between different pair-breaking edges can become detrimental
enough to altogether suppress the superconducting transition
temperature Tc(�), while it instead enhances the TRSB transi-
tion temperature T ∗(�). This enhancement of T ∗(�) is related
to a competition with another spontaneous TRSB phase pro-
posed by Vorontsov [54], which is directly induced by the
edge-edge hybridization, and is characterized by translation-
ally invariant superflow and currents along each edge. We
find that the transition between the phase crystal instability
and the Vorontsov phase is smooth, and that the competition
occurs mainly for large impurity scattering energies since this
enhances the edge-edge hybridization by reducing effective
system size D/ξ (�), where ξ (�) is the coherence length.
In other words, reducing the system size D or increasing �

increases the competition.
Many open questions still remain regarding phase crystals

and pose as interesting topics for further studies. The “holy
grail” is experimentally observing phase crystals. Direct de-
tection has been proposed [5,7,35,41] based on, e.g., scanning
tunneling spectroscopy, nano scanning quantum interference
devices, and nitrogen-vacancy centers. Indirect detection has
been proposed based on tunneling experiments and zero-bias
conductance measurements [5,35], as well as the associated
jump in heat capacity [7,41], magnetic moment [39], and
orbital magnetization [7]. Our work aids such experimental
efforts by explicitly quantifying the robustness against non-
magnetic impurities, via the full ground-state phase diagram
as a function of temperature and impurity strength, with
and without mesoscopic finite-size effects, and for general
scattering phase shifts. To further establish the realizability
of phase crystals in experimental systems, additional stud-
ies of robustness and observability are still important. For
instance, while we compute the phase diagram with full
self-consistency in the impurity self-energies, we assume the
noncrossing approximation for the t-matrix. The influence of
such contributions together with full self-consistent impurity
energies is therefore an interesting future outlook. Further-
more, Nagato et al. [92–95] have used generalized boundary
conditions for surface roughness to study the influence on
other edge modes and symmetry-broken phases, while Suzuki
et al. [96–98] have considered a local impurity concentration.
Our results imply that phase crystals should be stable against
such surface roughness but only until some critical roughness
where the broadening of surface ABS is too large. Quantifying
this transition becomes important to understand the robustness
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of phase crystals. Similarly, interface transparency towards
other materials leads to surface ABS broadening which is
thus expected to weaken the phase crystal [60], but also
poses as an interesting approach for experimental measure-
ment by tunneling through the phase crystal state. We note
that spontaneous current loops have also been studied in the
context of s + id or d + is superconductivity [99–104], chiral
p-wave superconductors [105], and topological superconduct-
ing nanowires [106,107]. An interesting outlook is therefore
to study these states in a similar approach as the phase crystal,
namely via the nonlocal superfluid stiffness tensor and the
superflow [6]. Other highly interesting questions involve iden-
tifying entirely different systems where phase crystals may
appear.
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APPENDIX: FREE ENERGY ANALYSIS OF PHASE
CRYSTAL PERIODICITY

In this Appendix we analyze how the temperature T and
impurity scattering energy � influence the number of current
loops n of the phase crystal, thus complementing the discus-
sion in Sec. IV B. Specifically, we compare the free energy �

[Eq. (27)] as a function of T and � for different self-consistent
solutions with different n. In general, we find that these energy
differences are quite small compared to other energy scales
(e.g., �0), but still large enough to make some configurations
metastable or even unstable. We note that the smallness of
energy comes partly from that we normalize by system size,
such that the phase crystal energy here is suppressed by the
edge-to-area ratio.
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FIG. 5. (a) Difference in free energy � between phase crystals
with different number of current loops n in the triangle-like system
[Fig. 1(b)], as a function of temperature T at fixed impurity scattering
energy � = 0 (i.e., the clean limit). The inset is a zoom of the same
figure. (b),(c) Same as (a) but as a function of � at fixed T = 0.1Tc in
the Born and unitary limits, respectively. Here, we use natural units
�0 ≡ ANF(kBTc,0)2. Straight diagonal lines that merge two solutions
correspond to a phase transition into the solution with the lowest free
energy.

Figure 5(a) shows the free energy difference between
configurations with different number of current loops n =
11, 9, 7, as a function of T in the clean limit (� = 0).
Per definition, the ground state solution has the lowest free
energy, while all other solutions are either metastable or un-
stable. Specifically, at certain parameter ranges the metastable
solutions become unstable, such that the system sponta-
neously transitions to a more stable solution, see for instance
n = 7 becoming unstable for T > 0.14Tc,0. In general, we
find that when decreasing the temperature at fixed impurity
strength, it is energetically favorable to decrease the number
of current loops, specifically from n = 11 to n = 9 loops at
T ≈ 0.15Tc,0, see inset in Fig. 5(a). The reason is that the
reduced number of loops leads to less sign changes in both
the current and the superflow, thus with larger Doppler shifts
which counteract the increased energy cost of zero-energy
ABS at lower temperatures (see also discussion in Sec. IV B).

Figures 5(b) and 5(c) show the same as Fig. 5(a) but as
a function of � at fixed T = 0.1Tc,0 in the Born and unitary
limits, respectively. Similar to above, we find that varying �

changes the ground state solution and can also make certain
solutions unstable. We find that as � increases, it becomes
energetically favorable with fewer current loops which we
explain by mainly two effects. First, the increased influence of
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impurities leads to an effectively larger coherence length and
thus an effectively smaller system size, such that the system
has to change to less current loops to maintain the same
effective periodicity. Second, the broadening of ABS (Sec. III)
and consequent reduction in current magnitude (Sec. IV B)
means that maintaining the same level of Doppler shift has
to be achieved by more homogeneous superflow and thus less

current loops. We find that these effects are more pronounced
for the unitary scattering limit compared to the Born scattering
limit, i.e., the system transitions to fewer loops at a lower
impurity scattering energy for the unitary limit. Finally, we
note that when varying both T and �, there are some less triv-
ial effects that are for instance related to the slightly nonlinear
behavior in the phase diagram in Fig. 4 in Sec. V.
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