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Abstract—This article presents a deep-learning-based
approach for designing Class F power amplifiers (PAs). We use
convolutional neural networks (CNNs) to predict the scattering
parameters of pixelated electromagnetic (EM) layouts. Using
a CNN-based surrogate model and an evolutionary algorithm,
we synthesize complex Class F output networks. As a proof
of concept, we implement a gallium nitride (GaN) HEMT
Class F PA, achieving a measured output power of 41.6 dBm
and a drain efficiency of 74% at 2.9 GHz. The prototype
also linearly reproduces a 20-MHz modulated signal with
an 8.5-dB peak-to-average power ratio (PAPR), achieving an
adjacent channel leakage ratio (ACLR) of −50.7 dBc with digital
predistortion (DPD). To the best of our knowledge, this is the
first deep-learning-based Class F PA design using pixelated
layout structures.

Index Terms—Artificial intelligence (AI), Class F, deep learn-
ing, energy efficiency, gallium nitride (GaN), harmonic tuning,
machine learning, power amplifier (PA), waveform engineering.

I. INTRODUCTION

THE increasing demand for higher data rates in wireless
communication systems has posed significant challenges,

particularly in energy efficiency. Among various components,
the power amplifier (PA) is the most power-intensive element
in base stations. Consequently, the development of highly
efficient, waveform-engineered PAs has been a key research
focus for decades [1].

The output network of a waveform-engineered PA typically
consists of a matching network, a harmonic-tuning network,
and a bias network. Traditional designs rely on predefined
electromagnetic (EM) topologies based on prior physical
insights, using lumped or distributed elements. However, these
fixed topologies inherently constrain the design space, limiting
the potential for globally optimal performance. Inspired by
advances in integrated photonics [2], [3] and metalens anten-
nas [4], a recent trend in microwave circuit design involves
pixelating layout geometries into binary matrices [5], [6].
While previous works have explored this approach using
traditional optimization and machine learning techniques, they
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often require manual feature engineering, restricting their
adaptability and scalability.

Deep learning has recently emerged as a powerful frame-
work for solving complex EM and circuit design problems,
with applications spanning photonics [2], transistor modeling
[7], scattering theory [8], and antenna design [9]. Unlike
conventional machine learning methods, deep learning can
automatically learn hierarchical representations directly from
raw data, eliminating the need for manual feature extraction.
In PA design, deep-learning-based surrogate models with
pixelated layouts have been proposed for design of a wideband
class B PA [10]. However, their application to the synthesis
of output networks for highly efficient waveform-engineered
PAs, such as Class F PAs, remains unexplored.

This letter presents a deep-learning-based approach using
convolutional neural networks (CNNs) with pixelated layouts
for synthesizing the output network of a Class F PA. The
fabricated prototype circuit demonstrates a drain efficiency of
74% and an output power of 41.6 dBm at 2.9 GHz, validating
the effectiveness of the proposed methodology.

II. THEORY

Harmonic-tuned PAs maximize efficiency and output power
by minimizing the overlap between drain current and volt-
age waveforms through precise harmonic impedance control.
Among these, the Class F PA offers excellent performance
with a relatively straightforward implementation. Its optimal
loading conditions at the fundamental, second, and third
harmonics are as follows: Z f0 = Ropt, Z2 f0 = 0, and Z3 f0 = ∞.

The proposed deep learning approach discretizes a planar
circuit layout into a binary grid, where “1” represents metal
and “0” represents nonmetal. A deep CNN model, trained
on a large dataset of pixelated circuit structures and their
scattering parameters (S-parameters), serves as a surrogate for
time-consuming EM simulations. The trained model efficiently
evaluates candidate solutions with an evolutionary algorithm,
specifically a genetic algorithm (GA), generating pixelated
circuit layouts to achieve the target S-parameters [10].

A. Dataset Generation and Augmentation

Our dataset comprises 957728 two-port circuits with the
S-parameters simulated at 21 discrete frequencies: seven
evenly spaced points within 2.4–3 GHz, 4.8–6 GHz, and
7.2–9 GHz. To accelerate training, we generate eight two-
port structures from a single four-port EM simulation. Using
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Fig. 1. (a) Trained deep CNN architecture takes a binary matrix input representing the pixelated EM layout and outputs S-parameters across the designed
frequencies. Once trained, the CNN-based surrogate model accurately predicts the S-parameters for any given pixelated EM structure. The forward emulator,
derived from the deep CNN architecture, facilitates the inverse synthesis of arbitrary EM structures with desired S-parameters. (b) Equivalent output parasitic
and package model of the CG2H40010F transistor used in the GA and the simulated results at the transistor’s intrinsic plane.

ADS Momentum and Python automation, we simulate around
119716 pixelated four-port layouts, with ports centrally placed
on each side of a 15×15 grid. The circuit density follows
a normal distribution with a mean of 50% and a standard
deviation of 15%. Postprocessing in Python expands each
four-port structure into eight two-port circuits by first con-
verting one port into an open circuit, yielding four three-port
variations, and then shorting the opposite port to represent
the bias network. Finally, mirroring generates four additional
circuits per configuration. To ensure reliable direct connections
between pixels, we enforce a 10% overlap on each side of the
metal pixels. In addition, during data generation, we ensure
that 80% of the circuits include a direct connection between
ports. This condition is verified using a depth-first search
(DFS) algorithm implemented in Python.

B. Deep CNN Model

As shown in Fig. 1(a), the input of the deep CNN architec-
ture is a 15×15 binary matrix and the output is the predicted
S-parameters. Since we evaluate S-parameters at 21 discrete
frequencies, each frequency point includes the real and imag-
inary components of S 11, S 21, and S 22, resulting in a total of
126 values that fully characterize the S-parameters.

The deep CNN architecture comprises 14 convolutional
layers and five fully connected (FC) layers. To address the
vanishing gradient problem and enhance the model’s stability
and convergence speed, we incorporate a residual network
structure [11]. Each convolutional layer uses 32 filters, with
specific filter sizes and the corresponding residual connec-
tions detailed in Table I. The feature maps generated by the
convolutional layers are formatted into a 1-D vector using
a flattening layer, enabling the FC layers to process the
extracted information. Each of the five FC layers contains
2048 neurons and use the leaky rectified linear unit (ReLU)
activation function to introduce nonlinearity [12]. To prevent
overfitting, we apply a 30% dropout rate and L2 regularization,
followed by batch normalization [13].

We trained the deep CNN using Python’s TensorFlow
library on an Nvidia RTX 3090 GPU for eight hours.
The final trained model is 375 MB. Once trained, the
CNN-based surrogate model rapidly predicts various pixe-
lated circuit topologies, significantly accelerating the design
process.

TABLE I
DETAILS OF THE DEEP CNN ARCHITECTURE

Fig. 2. Circuit schematic of the proposed deep-learning-aided class F PA.

C. Class F PA Output Network Synthesis

After training, the deep CNN-based surrogate model is
integrated with a population-based GA [14], using the Python
library pyGAD. To maintain population diversity, we use tour-
nament selection and an injection-based mutation mechanism,
introducing entirely new matrices to enhance variation. As
shown in Fig. 1(b), the equivalent output parasitic and package
model of the used CG2H40010F transistor is cascaded with the
pixelated layout structure to form a new two-port network [15].
The optimization goal is to achieve Class F loading conditions
at fundamental and harmonic frequencies at the transistor’s
intrinsic plane.

III. PROTOTYPE DESIGN

The complete schematic of the proposed deep-learning-
aided Class F PA prototype circuit is shown in Fig. 2. The
circuit is implemented on a 20-mil Rogers 4350B substrate,
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Fig. 3. Photograph of the fabricated deep-learning-aided Class F
PA prototype.

Fig. 4. (a) Measured and simulated small-signal performance, (b) measured
large-signal performance at 2.9 GHz, and (c) measured and simulated large-
signal performance across frequencies for the fabricated Class F PA prototype.

using a 10-W packaged gallium nitride (GaN) HEMT tran-
sistor from Macom as the active device. The output network,
designed with the proposed method, features a compact 15×15
pixelated structure, with each pixel having dimensions of
1.2×1.2 mm to balance pixel coupling considerations and
training resource constraints. Integrated with the transistor’s
parasitic and package network, this layout provides the neces-
sary fundamental and higher order harmonic impedances for
Class F operation. At the saturated power level, the prototype
demonstrates a distinct Class F PA waveform at the intrinsic
plane, as illustrated in Fig. 1(b).

IV. MEASUREMENT RESULTS

Fig. 3 presents a photograph of the fabricated Class F PA.
During the measurements, the drain bias voltage of the PA is

Fig. 5. Normalized spectrum of the prototype circuit with a 20-MHz, 8.5-dB
PAPR OFDM signal at 2.9 GHz before and after applying DPD.

TABLE II
SUMMARY OF STATE-OF-THE-ART HIGH-EFFICIENCY PAS

set to VDD = 28 V, and the gate bias voltage is fixed at VGG =

−2.85 V. Fig. 4 illustrates the simulated and measured small-
signal and large-signal performance of the fabricated prototype
circuit. The results show excellent agreement between the
measured and simulated data across the design frequencies. At
2.9 GHz, the prototype achieves a measured drain efficiency
of 74% and an output power of 41.6 dBm. The performance
of the prototype is also assessed using a 20-MHz orthogo-
nal frequency division multiplexing (OFDM) signal, with an
8.5-dB peak-to-average power ratio (PAPR). As shown in
Fig. 5, the adjacent channel leakage ratio (ACLR) of the proto-
type improves from −32.6 to −50.7 dBc after applying digital
predistortion (DPD) [22]. The performance of the prototype
PA is benchmarked against state-of-the-art high-efficiency PAs
in Table II, which exhibits its excellent efficiency compared
with previously published designs.

V. CONCLUSION

In this article, we present a deep-learning-based approach
for designing high-efficiency Class F PAs. The design process
combines a deep CNN architecture as a forward model to
predict the behavior of pixelated EM structures with an evo-
lutionary algorithm for inverse design. As a proof of concept,
we design and fabricate a GaN HEMT Class F PA prototype
using the proposed approach. When used in combination with
a standard DPD, the prototype achieves excellent efficiency
and linearity, satisfying the stringent requirements of modern
wireless communication standards.
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