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Coded Modulation Schemes
for Voronoi Constellations

Shen Li, Ali Mirani, Magnus Karlsson, Fellow, IEEE, Fellow, Optica, and Erik Agrell, Fellow, IEEE

Abstract—Multidimensional Voronoi constellations (VCs) have
been shown to be more power-efficient than quadrature ampli-
tude modulation (QAM) formats given the same uncoded bit
error rate, and also have higher achievable information rates.
However, a coded modulation scheme that sustains these gains
after forward error correction (FEC) coding is still lacking.
This paper designs coded modulation schemes with soft-decision
FEC codes for VCs, including bit-interleaved coded modulation
(BICM) and multilevel coded modulation (MLCM), together with
three bit-to-integer mapping algorithms and log-likelihood ratio
calculation algorithms. Simulation results show that VCs can
achieve up to 1.84 dB signal-to-noise ratio (SNR) gains over QAM
with BICM, and up to 0.99 dB SNR gains over QAM with MLCM
for the additive white Gaussian noise channel at the bit error
rate of 1.81× 10−3, with a low decoding complexity.

Index Terms—Bit-interleaved coded modulation, constellation
labeling, forward error correction coding, geometric shaping,
information rates, lattices, multilevel coding, multidimensional
modulation formats, Ungerboeck SP, Voronoi constellations.

I. INTRODUCTION

ADVANCED multidimensional (MD) modulation formats
are designed to have larger minimum Euclidean distance

at the same average symbol energy than traditional two-
dimensional (2D) quadrature amplitude modulation (QAM)
formats. MD Voronoi constellations (VCs) are such a struc-
tured modulation format, comprising a coding lattice and a
shaping lattice, the latter being a sublattice of the coding lattice
[1], [2]. The coding lattice determines how constellation points
are packed, resulting in a coding gain over the cubic packing.
The shaping lattice of VCs determines the boundary shape of
the constellation, achieving a shaping gain over a hypercubic
boundary. When applying soft-decision (SD) forward error
correction (FEC) codes to VCs, the much larger coding gain
of FEC coding might fully or partially cover the coding gain
of VCs. On the other hand, the shaping gain cannot be realized
by FEC coding. It is asymptotically 1.53 dB over QAM
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for the average-power-constrained additive white Gaussian
noise (AWGN) channel and can be achieved using geometric
or probabilistic shaping [3]. Geometric shaping (GS) can
be achieved through multidimensional constellations, where
a multidimensional geometrically shaped constellation with
equally likely multidimensional symbols results in unequally
likely 2D symbols when projected. In contrast, probabilistic
shaping does not require multidimensional structures and
achieves unequally likely 2D symbols by using a distribution
matcher. While the implementation methods differ, the goal
remains the same: to transmit approximately Gaussian dis-
tributed 2D symbols. This paper focuses on geometric shaping.

As the spectral efficiency increases (by either increasing
the dimension or the constellation size), the shaping gain
of unconstrained1 GS increases until converging to 1.53 dB,
whereas the complexity increases exponentially [4]. This
makes unconstrained GS intractable at high spectral efficien-
cies. Those GS methods achieving high shaping gains are
usually very complex due to high-cardinality lookup tables
for encoding and decoding [4]–[6].

VCs as a structured GS method offer a compromise, as they
provide significant shaping gain over QAM, and their com-
plexity does not increase as dramatically as unconstrained GS
with dimension. More precisely, VCs can have low-complexity
encoding and decoding algorithms, i.e., mapping integers to
constellation points and vice versa [1], [7]–[10], which entirely
avoids the need to store and process all constellation points
individually in the transmitter and receiver. VCs have shown
better BER performance than Gray-labeled QAM in uncoded
systems [11]–[16]. MI and GMI have also been studied for
VCs in [12], [17], showing high gains over QAM.

In modern communication systems, SD FEC codes are
usually used to provide significant coding gains over un-
coded systems. The joint design of the modulation format,
labeling rule, and FEC codes is called a coded modulation
(CM) scheme. The most widely used CM scheme is Gray-
labeled QAM with bit-interleaved coded modulation (BICM),
and serves as a benchmark for other CM schemes. In [18],
a multilevel coded modulation (MLCM) scheme with SD
FEC codes was proposed for the Hurwitz constellation, in
which constellation points are a finite set of lattice points
from the 4D checkerboard lattice D4, and the boundary is
hypercubic. The performance gains over QAM comes from
the coding gain of D4. In [19], [20], CM schemes with non-
binary SD codes are designed for the 4D Welti constellation,

1“Unconstrained" refers to that there are no specific structural constraints
on the positions of constellation points.
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TABLE I: The motivation of this work: CM schemes preserving the
high shaping gains of VCs observed in uncoded systems are missing
in previous literature.

Uncoded CM

QAM trivial
large coding gain
no shaping gain
low complexity

VCs
some coding gain

shaping gain
low complexity

?

which has constellation points from the D4 lattice and uses
a hypersphere boundary. The performance gains over QAM
with BICM comes from the shaping and coding gains of the
Welti constellation itself, and the FEC codes (nonbinary codes
or multilevel codes) as well.

As illustrated in Table I, channel coding has been widely
applied to QAM constellations, offering substantial coding
gains. However, CM schemes with QAM do not provide
shaping gains. In contrast, VCs can provide high shaping
gains and some coding gains (but relatively little compared to
what CM schemes can potentially achieve). However, no CM
scheme has yet been proposed for VCs, which motivates this
work. Designing CM schemes for MD VCs that outperforms
QAM with BICM is challenging, due to that no Gray labeling
exists for MD VCs, and the resulting penalty from a non-
Gray labeling might cancel out the shaping and coding gains
of VCs.

In this paper, we focus on MD VCs with a cubic coding
lattice, i.e., VCs having high shaping gains but no coding gain.
The absent coding gain is instead achieved by FEC codes. In
order to achieve high shaping gains, the considered VCs need
to be very large with up to 24 dimensions and up to 5× 1027

constellation points at high spectral efficiencies. Applying FEC
codes to such large constellations and designing a CM scheme
that outperforms QAM with BICM is challenging due to the
following reasons. First, the huge constellation sizes of VCs
makes the design of the labeling and log-likelihood ratios
(LLRs) hard. Second, Gray labelings do not exist for VCs. An
effective labeling rule is needed, otherwise the shaping gains
of VCs might be canceled out by the labeling penalty. For
instance, traditional set partitioning algorithms with lookup
tables storing all constellation coordinates cannot be directly
applied to such large VCs. Instead, the lattice should be
partitioned, not a finite signal set. The traditional max-log
LLR approximation cannot be applied to very large VCs,
because all constellation coordinates cannot be enumerated.
Third, which CM scheme with what structure is suitable for
VCs is unknown.

In this paper, we design several CM schemes with SD
FEC codes for VCs for the first time, including BICM and
MLCM. Also, not only for VCs, it is the first time, to our
best of knowledge, to design CM schemes for such large
constellations. However, the proposed labeling rule and LLR
calculation algorithm have a very low complexity. Moreover,
the FEC overhead of the proposed schemes (11%) is lower
than the commonly used overheads (15%–25%) of high-
performance SD FEC codes for optical communications. Thus,

the application scenario of the proposed CM scheme would be
ultra high-rate transmission systems, such as the upcoming 800
Gbps and 1.25 Tbps standards for fiber communications.

The structure of the rest of the paper is as follows. Section
II introduces lattices and VCs. Section III first introduces
the encoding and decoding algorithms (mapping between
integers and constellation coordinates) of VCs, among which
the mapping between integers and binary labels is the key
design procedure. One mapping method from [11] is first
reviewed and then two new mapping methods are proposed
for VCs. In Section IV, three CM schemes corresponding to
the three mapping methods in Section III are designed for
VCs for the first time, including the coding structure and LLR
calculation for both BICM and MLCM. Section V analyzes
the performance of MD VCs with the proposed CM schemes,
in terms of the BER after low-density parity check (LDPC)
decoding and achievable information rates (AIRs). Finally,
Section VI discusses the complexity of the proposed CM
schemes.

Notation: Bold lowercase symbols denote row vectors and
bold uppercase symbols denote random vectors or matrices.
All-zero and all-one vectors are denoted by 0 and 1, re-
spectively. Vector inequalities are performed element-wise,
e.g., for vectors x,y ∈ Rn, the inequality x ≤ y refers
to xi ≤ yi for i = 1, . . . , n. The sets of integer, positive
integer, real, complex, and natural numbers are denoted by
Z, Z+, R, C, and N, respectively. Other sets are denoted by
calligraphic symbols. Rounding a vector to its nearest integer
vector is denoted by ⌊·⌉, in which ties are broken arbitrarily.
The cardinality of a set or the order of a lattice partition is
denoted by | · |.

II. LATTICES AND VCS

An n-dimensional lattice Λ is an infinite set of points
generated by all integer combinations of the rows of its n×n
generator matrix GΛ, i.e.,

Λ ≜ {uGΛ : u ∈ Zn}. (1)

The closest lattice point quantizer of a lattice Λ, denoted by
QΛ(·), finds the closest lattice point in Λ of an arbitrary point
x ∈ Rn, i.e.,

QΛ(x) = argmin
λ∈Λ

∥x− λ∥2. (2)

A sublattice Λ′ of Λ, denoted by Λ′ ⊆ Λ, contains a subset
of the lattice points2 of Λ, which is spanned by the generator
matrix GΛ′ satisfying

GΛ′ = JGΛ, (3)

with an J ∈ Zn×n. The lattice partition Λ/Λ′ partitions Λ
into |Λ/Λ′| = |detGΛ′ |/|detGΛ| = |detJ | disjoint cosets
of Λ′ [21], and |Λ/Λ′| is called the partition order. If one
arbitrary lattice point is selected from each of these cosets, a

2Arbitrary points in Rn are referred to as “points” in this paper. To avoid
ambiguity, “lattice point” is used when a point also belongs to a lattice. Later
throughout the paper, “constellation points” refers to the points in VCs.
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set of coset representatives (not unique) is formed, denoted by
[Λ/Λ′]. Then every lattice point λ ∈ Λ can be written as

λ = c+ λ′, (4)

where λ′ ∈ Λ′ and c ∈ [Λ/Λ′] can be uniquely labeled by
k = log2(|Λ/Λ′|) bits if |Λ/Λ′| is a power of 2. The whole
lattice Λ is decomposed as

Λ = [Λ/Λ′] + Λ′. (5)

A partition chain, formed by a sequence of lat-
tices Λ0 ⊇ Λ1 ⊇ · · · ⊇ Λq with q ∈ Z+, is denoted by
Λ0/Λ1/ . . . /Λq [22]. Every lattice point λ0 ∈ Λ0 can be
written as

λ0 =

q∑
i=1

ci + λq, (6)

where ci ∈ [Λi−1/Λi] for i = 1, . . . , q and λq ∈ Λq . If the
partition orders |Λi−1/Λi| for i = 1, . . . , q are powers of 2,
λ0 can be uniquely labeled by the binary tuple

b = (b1, b2, . . . , bq), (7)

where bi is the vector of bit labels of ci with the length
of ki for i = 1, . . . , q and the total length of b is∑q

i=1 ki = log2(|Λ0/Λq|). The lattice Λ0 can be decomposed
as

Λ0 = [Λ0/Λ1] + · · ·+ [Λq−1/Λq] + Λq. (8)

An n-dimensional VC is a set of coset representatives of a
lattice partition Λc/Λs, where Λc is called the coding lattice,
Λs is called the shaping lattice, and the partition order is M =
|Λc/Λs|, which is a power of 2 to enable binary labeling with
m = log2(M) bits. The VC points Γ are defined as all lattice
points in a translated version of Λc having the all-zero point
0 as their closest lattice point in Λs, i.e. [2],

Γ ≜ {x ∈ (Λc − a) : QΛs
(x) = 0}, (9)

where the offset vector a ∈ Rn is usually optimized to
minimize the average symbol energy [1]

Es =
1

M

∑
x∈Γ

∥x∥2. (10)

The spectral efficiency [22]–[24] in bits per 2D symbol for the
uncoded system is defined as

β =
2m

n
[bits/2D-symbol]. (11)

III. LABELING OF VCS

A. Encoding and decoding

A labeling function is a map from binary labels of length
m to constellation points. For the considered VCs based on
the lattice partition Zn/Λs, we divide the labeling algorithm
into two steps: first from binary labels to integers and then
from integers to VC points, i.e., {0, 1}m → U → Γ. The
integer set U is formed by first writing the generator matrix

of the shaping lattice Λs as a lower-triangular form Gs with
diagonal elements h = (h1, . . . , hn), and then letting

U = {u ∈ Zn : 0 ≤ u ≤ h− 1}. (12)

Encoding: The function that maps binary labels to integers
is denoted by f : {0, 1}m → U , which we call mapping
through out this paper to distinguish from labeling and will
be discussed in Sections III-B, III-C, and III-D. The algorithm
that maps integers U to constellation points Γ was proposed
in [10] and summarized in [17, Alg. 1], which is denoted by
g : U → Γ in this paper.

Decoding: After receiving a noisy version of a VC point, the
algorithm that maps it back to an estimate of the transmitted
VC point was proposed in [10] and summarized in [17, Alg. 2],
which is denoted by a function w : Rn → U in this paper.
Then the binary labels are obtained by the inverse of f , i.e.,
f−1 : U → {0, 1}m.

The rest of this section introduces three different mapping
functions f for the considered VCs based on the lattice parti-
tion Zn/Λs. Section III-B reviews the Gray mapping proposed
in [11]. Section III-C adapts Ungerboeck’s set partitioning (SP)
mapping based on lattice partition chains to VCs. Another
new hybrid mapping function combining the SP mapping and
Gray mapping is then proposed in Section III-D. The design
criteria for the two new mapping functions involve addressing
the following questions: 1) How many partitioning steps are
needed? 2) How should the coset representatives be labeled at
each partitioning step? 3) Does the labeling have a sufficiently
low penalty to preserve the shaping gains of VCs over QAM
with Gray labeling?

B. Gray mapping

In [11], a mapping method between binary labels and
integers is proposed in order to minimize the uncoded BER
of VCs, which works in the following way.

First, the binary label b ∈ {0, 1}m is divided into n blocks
according to h,

b = (b1, b2, . . . , bn),

each of which has log2(hi) bits for i = 1, . . . , n, and∑n
i=1 log2(hi) = m. Then bi is converted to an integer

ui using the binary reflected Gray code (BRGC) [25] for
i = 1, . . . , n, yielding

u = (u1, . . . , un). (13)

The above procedures converting b to u according to the
BRGC is denoted by fBRGC(b,h), and the inverse process
of converting an integer vector u to a binary vector b is
denoted by f−1

BRGC(u,h) in this paper. After mapping integers
to VC points using the function g defined in Section III-A, the
labeling is not true Gray, but close to Gray, which is called
“pseudo-Gray” labeling3.

3Gray means that all Euclidean neighbors are Hamming neighbors and
pseudo-Gray means that almost all Euclidean neighbors are Hamming neigh-
bors. Rectangular QAM constellations have Gray labelings, VCs with cubic
coding lattices and Gray mapping have pseudo-Gray labelings [11, Table
I], and VCs with advanced coding lattices do not even have pseudo-Gray
labelings [13].
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Fig. 1: Illustration of the labeling of a partition chain
Λ0/Λ1/ . . . /Λq−1/Λq/Λs.

TABLE II: Example partition chains in the SP mapping for MD VCs
with a cubic coding lattice Zn.

n = 2 Z2/D2/2Z2/2D2/4Z2/4D2/ . . .

Step i 1 2 3 4 5
ki 1 1 1 1 1
d2i 2 4 8 16 32
n = 4 Z4/D4/2Z4/2D4/4Z4/4D4/ . . .

Step i 1 2 3 4 5
ki 1 1 1 1 1
d2i 2 4 8 16 32
n = 8 Z8/D8/E8R8/2E8/2E8R8/4E8/ . . .

Step i 1 2 3 4 5
ki 1 3 4 4 4
d2i 2 4 8 16 32
n = 16 Z16/D16/D16R16/Λ16/Λ16R16/2Λ16/ . . .

Step i 1 2 3 4 5
ki 1 8 3 8 8
d2i 2 4 8 16 32

C. SP mapping

Ungerboeck’s SP concept [26] maps binary labels to 1D
or 2D constellation points by successively partitioning the
constellation into two subsets at each bit level in order to
maximize the intra-set minimum squared Euclidean distance
(MSED) at each level, so that unequal error protection can be
implemented on different bit levels. Since all partition orders
are 2, Ungerboeck’s SP is also called binary SP. Binary SP
has been applied to 1D, 2D [27]–[29], and 4D [18]–[20],
[30] signal constellations. When binary SP is applied in larger
than 2 dimensions, the MSED might not increase at every
bit level. Binary SP requires one encoder and one decoder at
each bit level, which has a high complexity in FEC for large
constellations. Generalized from the binary SP, signal sets
can be partitioned into multiple subsets based on the concept
of cosets [2], [21], [31], [32], which enables SP in higher
dimensions [2], [31], [32] and increasing MSED at every

TABLE III: An example look-up table for the coset representatives
of the lattice partition D8/E8R8 and their bit labels.

[D8/E8R8] labels

(00000000) (000)
(01010000) (001)
(00011000) (010)
(01001000) (011)
(11000000) (100)
(10010000) (101)
(11011000) (110)
(10001000) (111)

partition level. However, how the coset representatives are
labeled at each partition level is not specified. Since binary SP
is not suitable for high-dimensional VCs, to solve the question
of how MD VCs should be partitioned and labeled, we propose
a systematic algorithm for mapping bits b ∈ {0, 1}m to
integers u ∈ U based on the concept of SP such that the
MSED doubles at every partition level for very large MD VCs
based on the lattice partition Zn/Λs.

For large constellations, after getting a sufficiently large
intra-set MSED, it is reasonable to not partition the remaining
subsets and leave the corresponding bit levels uncoded. One
convenient way is to stop partitioning when a scaled integer
lattice 2pZn is obtained, where p ∈ N. Then we map the last
m − np bits to integers according to BRGC to minimize the
BER for the uncoded bits.

The preprocessing of the proposed SP mapping works as
follows. First, q intermediate lattices Λ1, . . . ,Λq are found to
form the partition chain

Λ0/Λ1/ . . . /Λq/Λs, (14)

where Λ0 = Zn and Λq = 2pZn is where to stop the partition.
The partition chain should satisfy Λ0 ⊃ Λ1 ⊃ · · · ⊃ Λq ⊇ Λs

and have increasing MSEDs of d2i = 2i for i = 1, . . . , q.
The order of each partition step is |Λi−1/Λi| = 2ki for
i = 1, . . . , q and

∑q
i=1 ki = log2(|Λ0/Λq|) = np. At every

partition step i, all coset representatives [Λi−1/Λi] are labeled
by ki bits and the mapping rules are stored in a look-up table
Ci. Conventionally, the set of coset representatives contains
the all-zero lattice point labeled by the all-zero binary tuple.
Fig. 1 illustrates the mapping for the partition chain in general.
Table II lists some example partition chains and their intra-
set MSEDs for MD VCs with a cubic coding lattice. These
partition chains contain commonly used lattices as intermedi-
ate lattices including the n-dimensional checkerboard lattice
Dn, 8-dimensional (8D) Gosset lattice E8, 16-dimensional
(16D) Barnes–Wall lattice Λ16 [33], and the 24-dimensional
(24D) Leech lattice Λ24 [34, Ch. 4]. The n × n matrix Rn

is an integer orthonormal rotation matrix with a determinant
of detRn = 2n/2 [2], [31]. When multiplied with a lattice
generator matrix on the right, it rotates every two dimensions
of the lattice by 45◦ and rescales it by

√
2. The size of the

look-up table Ci is 2ki , which is not more than 28 in Table II
and much smaller than a table for the whole VC.

As an example, a set of coset representatives of the partition
D8/E8R8 and one set of possible bit labels are listed in
Table III. Note that neither the choice of the set of coset
representatives nor the mapping within the look-up table is
unique, and both of them are arbitrarily selected. The effects of
different choices on the performance are not studied. However,
we conjecture that there would be no big difference since the
intra-set MSED cannot be increased by further partitioning the
set of coset representatives.

The SP demapping f−1
SP from an integer vector u to its bit

labels b works as follows. Given an integer vector u ∈ U ,
starting from the first partition step Λ0/Λ1, we know that u
belongs to one coset of this partition since u ∈ Λ0 = Zn.
By full search among a certain set of coset representatives
[Λ0/Λ1], there must be only one c1 ∈ [Λ0/Λ1] such that (u−
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c1) ·G−1
Λ1 yields an integer vector, where GΛ1 is the generator

matrix of Λ1. The bit labels b1 corresponding to c1 is found
in the look-up table C1. Then u − c1 is a lattice point of
Λ1, which must belong to a certain coset of Λ1/Λ2. A vector
c2 ∈ [Λ1/Λ2] is found such that (u−c1−c2) ·G−1

Λ2 yields an
integer vector, where GΛ2 is the generator matrix of Λ2 and
the bit labels b2 corresponding to c2 is found in the look-up
table C2. The procedure is repeated until all ci and bi are
obtained for i = 1, . . . , q.

Next, the remaining m − np bit labels for the partition
2pZn/Λs are found as follows. First, the coset representatives
of the partition Zn/2pZn are set as

S = [Zn/2pZn] = {s ∈ Zn : 0 ≤ s ≤ (2p − 1) · 1}. (15)

There must be a unique s ∈ S such that u − s ∈ 2pZn, and
s can be easily found by

s = u mod 2p, (16)

where mod is the modulo operator that takes the remainder
of a vector element-wise and returns a vector. The purpose of
choosing such a set of coset representatives is to make sure that
u−s still falls within the range of U , i.e., u−s ∈ U ∩2pZn.
Then we know that

u− s

2p
∈ Zn (17)

with the range

0 ≤ u− s

2p
≤ h

2p
− 1. (18)

The bit labels of (u − s)/2p can be obtained by converting
each decimal element to bits according to BRGC, i.e.,

(bnp+1, . . . , bm) = f−1
BRGC

(
u− s

2p
,
h

2p

)
. (19)

Now we describe the SP mapping fSP from the bit labels
b to the integer vector u. Given bit labels b ∈ {0, 1}m, the
first np bits are divided into q blocks bi for i = 1, . . . , q,
each of which has ki bits and indicates a coset representative
ci according to the look-up Ci. Then c =

∑q
i=1 ci indicates

a coset representative of the lattice partition Zn/2pZn, but c
might not belong to S, which can be converted to s ∈ S by

s = c mod 2p. (20)

Now we know that u−s ∈ 2pZn. The remaining m−np bits
of b indicate an integer vector

t = fBRGC

(
(bnp+1, . . . , bm),

h

2p

)
. (21)

Finally, u is obtained by

u = s+ 2pt. (22)

Algorithms 1 and 2 summarize the SP mapping process
between u and b for VCs with a cubic coding lattice.

Algorithm 1 SP mapping fSP

Input: b. Output: u.
Preprocessing: The partition chain Λ0/Λ1/ . . . /Λq/Λs is
given, where all partition orders |Λi−1/Λi| for i = 1, . . . , q
are powers of 2. Set up the look-up tables Ci between all
coset representatives and their corresponding bit labels for all
partition steps. Divide the first np bits of b into q blocks bi for
i = 1, . . . , q, each of which has ki bits. Find a lower-triangular
generator matrix Gs of Λs and denote the diagonal elements
of Gs as h.

1: Find the corresponding ci of bi according to Ci for
i = 1, . . . , q.

2: Let c←
∑q

i=1 ci
3: Let s← c− ⌊c/2p⌋ · 2p
4: Let t← fBRGC((bnp+1, . . . , bm),h/2p)
5: Let u← s+ 2pt

Algorithm 2 SP demapping f−1
SP

Input: u. Output: b.
The partition chain Λ0/Λ1/ . . . /Λq/Λs is given, where all
partition orders |Λi−1/Λi| are powers of 2. Set the look-
up tables Ci between all coset representatives and their
corresponding bit labels for all steps i = 1, . . . , q. Set the set
of coset representatives of the partition Λ0/Λq as S defined in
(15). Find a lower-triangular generator matrix Gs of Λs and
denote the diagonal elements of Gs as h.

1: Let v ← u
2: for i = 1, . . . , q do
3: Find the only ci ∈ [Λi−1/Λi] such that u− ci ∈ Λi

4: Let bi be the bit labels of ci according to Ci

5: Let u← u− ci
6: end for
7: Let s← v mod 2p

8: Let (bnp+1, . . . , bm) = f−1
BRGC ((v − s)/2p,h/2p)

9: Let b← (b1, . . . , bq, bnp+1, . . . , bm)

D. Hybrid mapping

This mapping is a special case of the SP mapping, which is
carefully designed for the considered VCs based on the lattice
partition Zn/Λs to tackle the problem of high Gray penalty
in the SP mapping, which will be discussed in Section V. The
idea is to only consider q intermediate lattices which are a mul-
tiple of the cubic lattice, i.e., Λi = 2piZn for i = 0, . . . , q with
positive integers p1 < p2 < . . . < pq = p and p0 = 0. This
yields a partition chain 2p0Zn/2p1Zn/2p2Zn/ . . . /2pqZn/Λs.
Thus, the order of each partition step is |Λi−1/Λi| = 2ki =
2n(pi−pi−1) for i = 1, . . . , q and

∑q
i=1 ki = log2(|Λ0/Λq|) =

np. The intra-set MSED is d2i = 2pi at the ith partition step.
The coset representatives in each partition step is simply set
as

Ci = [2pi−1Zn/2piZn] = {c : 0 ≤ c ≤ (2pi−pi−1 − 1) · 1},
(23)

for i = 1, . . . , q, which is labeled by ki = n(pi − pi−1) bits
for i = 1, . . . , q. Thanks to that these intermediate lattices are
a multiple of Zn, no full search from Ci is needed to find
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Algorithm 3 Hybrid mapping fH

Input: b. Output: u.
Preprocessing: Given the partition chain
2p0Zn/2p1Zn/2p2Zn/ . . . /2pqZn/Λs with positive integers
p1 < p2 < . . . < pq = p and p0 = 0, set q sets of coset
representatives Ci as in (23) for i = 1, . . . , q. Divide the
first np bits of b into q blocks bi for i = 1, . . . , q, each of
which has n(pi−pi−1) bits. Find a lower-triangular generator
matrix Gs and denote the diagonal elements of Gs as h.

1: Let ci ← fBRGC(bi, 2
pi−pi−1 · 1) for i = 1, . . . , q

2: Let s←
∑q

i=1 ci
3: Let t← fBRGC ((bnp+1, . . . , bm),h/2p)
4: Let u← s+ 2pt

the unique coset representative ci ∈ Ci as in the SP mapping.
The coset representative ci can be mapped to n(pi − pi−1)
bits by directly converting each element of ci to pi − pi−1

bits according to BRGC, i.e.,

bi = f−1
BRGC(ci, 2

pi−pi−1 · 1), (24)

for i = 1, . . . , q.
The hybrid demapping f−1

H from an integer vector u to its
bit labels b works as follows. Given an integer vector u ∈
U , starting from the first partition step Zn/2p1Zn, the unique
c1 ∈ C1 can be easily found by

c1 = u mod 2p1 . (25)

Then u−c1 is a lattice point of 2p1Zn, which must belong to a
certain coset of 2p1Zn/2p2Zn. Then the unique c2 is obtained
by

c2 = (u− c1) mod 2p2 . (26)

Repeating this procedure, ci is found successively by

ci =

(
u−

i−1∑
j=1

cj

)
mod 2pi (27)

for i = 1, . . . , q. Then the first np bit labels of u can be
obtained by (24). Similar to the SP mapping, the remaining
m− np bits are obtained by (19), where s =

∑p
i=1 ci in this

case.
The hybrid mapping fH finding the corresponding integer

vector u of bit labels b works as follows. Given bit labels
b ∈ {0, 1}m, ci ∈ Ci can be directly obtained by

ci = fBRGC(bi, 2
pi−pi−1 · 1). (28)

The integer vector s =
∑p

i=1 ci must belong to the set S
defined in (15) due to the definition of Ci in (23). Then u is
obtained combining (22) and (21).

Algorithms 3 and 4 summarize the hybrid mapping process
between u and b for VCs with a cubic coding lattice.

Example 1: A simple example is a 2D VC based on
the lattice partition Zn/4D2, where 4D2 is the scaled 2D
checkerboard lattice with the generator matrix

Gs =

(
8 0
4 4

)
.

Algorithm 4 Hybrid demapping f−1
H

Input: u. Output: b.
Preprocessing: Given the partition chain
2p0Zn/2p1Zn/2p2Zn/ . . . /2pqZn/Λs with positive integers
p1 < p2 < . . . < pq = p and p0 = 0, set q sets of coset
representatives Ci as in (23) for i = 1, . . . , q. Find a
lower-triangular generator matrix Gs and denote the diagonal
elements of Gs as h.

1: for i = 1, . . . , q do
2: Let ci = u mod 2pi

3: Let bi ← f−1
BRGC(ci, 2

pi−pi−1 · 1)
4: Let u← u− ci
5: end for
6: Let (bnp+1, . . . , bm)← f−1

BRGC(u/2
p,h/2p)

7: Let b = (b1, . . . , bq, bnp+1, . . . , bm)

This VC does not provide any shaping gain, which is just for
simplicity of illustration. Fig. 2 illustrates the three different
mapping rules f for this example VC. It can be observed
that all integer points have only 1-bit difference from their
nearest neighbors in the Gray mapping. The SP mapping
is based on the lattice partition chain Z2/D2/2Z2/4D2

(q = 2, p = 1). The hybrid mapping is based on the lat-
tice partition chain Z2/2Z2/4D2 (q = p = 1), and
[Zn/2Zn] = {(0, 0), (1, 0), (0, 1), (1, 1)}. For both SP and hy-
brid mapping, within each coset of 2Z2/4D2, the points have
only 1-bit difference among the last three bits from their
closest neighbors.

IV. CM SCHEMES

The joint design of FEC coding and modulation formats is
called coded modulation, which plays a vital part in modern
communication systems. Designing a CM scheme involves a
trade-off among the spectral efficiency, power, and complexity.
In this section, we propose three SD CM schemes for VCs
based on the lattice partition Zn/Λs, adopting the three label-
ing schemes introduced in Section III, and the computation of
the LLRs for SD decoding is discussed.

The proposed CM schemes are designed to be combined
with an outer hard-decision (HD) code, known as concate-
nated coding [35], [36]. Concatenated codes are widely used
in many communication standards nowadays, such as the
DVB-S2 standards [37] for satellite communications and
the 400ZR [38] and upcoming 800G standards for fiber-
optical communications [20]. The inner CM scheme brings
the uncoded BER down to a certain target BER (e.g., around
10−3 for fiber-optic communications). Then the outer code
can further eliminate the error floor and achieve a very
low BER as needed. Commonly used outer codes include
Reed–Solomon codes [39], turbo product codes [40], Bose–
Chaudhuri–Hocquenghem codes [41], staircase codes [42],
and zipper codes [43].

A. BICM for VCs with Gray mapping

For a memoryless discrete channel with the conditional
probability fY |X(y|x), the MI between the n-dimensional
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(a) Gray mapping

(b) SP mapping

(c) Hybrid mapping

Fig. 2: Example 1: Different mapping rules f between integer vectors
and bit labels for the VC based on the lattice partition Z2/4D2.
Integer points having the same first two bits are filled with the same
color for better visualization and comparison.

equally likely random transmitted symbols X and received
symbols Y is defined as

I(X;Y ) ≜
1

M

∑
x∈Γ

∫
Rn

fY |X(y|x) log
fY |X(y|x)
fY (y)

dy.

(29)

If the transmitted symbols X are labeled by m bits
(B1, . . . ,Bm), (29) can be written as

I(X;Y ) = I(Y ;B1, . . . ,Bm)

= I(Y ;B1) + I(Y ;B2|B1) + . . .

+ I(Y ;Bm|B1, . . . ,Bm−1) (30)

according to the chain rule. If all bit levels B1, . . . ,Bm are
mutually independent of each other and the conditions in all
conditional MIs of (30) are neglected, the GMI is obtained
[45, Eq. (14)]

IGMI ≜
m∑

k=1

I(Y ;Bk) ≤ I(Y ;X). (31)

The channel is regarded as m independent bit subchannels,
which can be encoded and decoded independently. BICM
utilizes this concept and contains only one binary component
code to protect all bit subchannels. An interleaver is added
between the encoder and symbol mapper to distribute the
coded bits evenly to all bit subchannels.

The Gray mapping in Section III-B maps each bit level
independently, and is suitable to be combined with BICM.
Fig. 3a illustrates the BICM scheme for VCs. The total rate
of BICM for VCs is βRc [bits/2D-symbol], where Rc is the
code rate of the inner code. Decoding is based on bit LLRs,
which is described below.

Consider an n-dimensional AWGN channel Y = X + Z,
where X is the transmitted symbol from Γ, Y is the channel
output, and Z ∈ Rn is a zero-mean Gaussian random vari-
able with variance nσ2/2. The signal-to-noise ratio (SNR) is
defined as Es/(nσ

2/2). The max-log approximation [46] of
the kth bit after receiving a yj ∈ Rn for j = 1, . . . , N/m is
defined as

LLRmax-log(bk|yj) =

− 1

σ2

(
min

x∈Γ(k,0)
∥yj − x∥2 − min

x∈Γ(k,1)
∥yj − x∥2

)
, (32)

where Γ(k,0) and Γ(k,1) are the sets of constellation points with
0 and 1 at bit position k, respectively, and Γ(k,0)∪Γ(k,1) = Γ.
Computing (32) needs a full search in Γ, which is infeasible
for very large constellations. In [17], an LLR approximation
method based on importance sampling is proposed and exem-
plified for very large VCs based on the lattice partition Zn/Λs

for the AWGN channel. The idea is to only search from a small
portion of the whole constellation, which is called “importance
set”. Following this idea, we further approximate the max-log
LLR by replacing the Γ in (32) by a “Euclidean ball” centered
at ⌊yj + a⌉

B(yj , R2) ≜ {e : ∥e+ a−
⌊
yj + a

⌉
∥2 ≤ R2, e+ a ∈ Zn},

(33)

where a is the same offset vector when generating the VC as
in (9), ⌊·⌉ represents rounding a vector to its nearest integer
vector, and R2 ≥ 0 is the squared radius of the Euclidean ball.
The Euclidean ball B(yj , R2) is much smaller than the whole
VC Γ. Then the LLR approximation for VCs with BICM is

LLRBICM(bk|yj) = − 1

σ2(
min

x∈B(yj ,R2)(k,0)
∥yj − x∥2 − min

x∈B(yj ,R2)(k,1)
∥yj − x∥2

)
,

(34)

where B(yj , R2)(k,0) and B(yj , R2)(k,1) are the sets of points
in B(yj , R2) with 0 and 1 at bit position k, respectively,
and B(yj , R2)(k,0) ∪B(yj , R2)(k,1) = B(yj , R2). Optionally,
B(yj , R2) in (34) can be replaced by B(yj , R2) ∩ Γ, as in
[17, Eq. (33)], which might improve the decoding performance
at the cost of a much higher complexity because the closest
lattice point quantizer needs to be applied to all points in
B(yj , R2) in order to determine the intersection with Γ.
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(a) BICM: A block of NRc information bits v are encoded into N bits by the encoder and then permuted by the interleaver to avoid burst errors [44]. The
serial bits after interleaving are converted to m parallel bit streams b1, . . . , bm of length N/m. At the time slot j = 1, . . . , N/m, a VC mapper first maps
m bits bj = (bj1, . . . , b

j
m) to an integer uj by uj = fBRGC

(
bj ,h

)
, and then maps uj to a VC point xj ∈ Γ by xj = g(uj). The receiver deinterleaves

N independent LLRs of the bits and then uses them to decode v̂.

(b) MLCM: A block of serial information bits v are partitioned into q parallel bit streams vi with kiNRi
c bits for i = 1, . . . , q and m−np parallel uncoded

bit streams bnp+1, . . . , bm with length N . Then vi is encoded into kiN bits bi by encoder (ENC) i for i = 1, . . . , q. The VC mapper first maps bits to N
integer vectors by the SP or hybrid mapping, and then encode these integer vectors into N VC points x. Multistage decoding is performed at the receiver after
receiving N noisy symbols y. Decoder (DEC) 1 first decodes k1NR1

c bits v̂1 back based on y and k1N LLRs l1. Then v̂1 is encoded into b̂1 by encoder
1. Decoder i = 2, . . . , q successively decodes v̂i and reencodes it into b̂i based on y and LLRs li, given all previous bits b̂1, . . . , b̂i−1. The estimation of
the uncoded bits b̂np+1, . . . , b̂m is obtained after getting b̂1, . . . , b̂q .

Fig. 3: Block diagrams of BICM and MLCM for VCs.

The bit labels of the points in the Euclidean ball
e ∈ B(yj , R2) can be obtained by

f−1
BRGC (w(e),h)) . (35)

Then for each bit position k, B(yj , R2) can be divided into
two subsets B(yj , R2) = B(k,0)(yj , R2) ∪ B(k,1)(yj , R2),
containing points within B(yj , R2) with 0 and 1 at bit position
k, respectively. Thus, the approximated max-log LLRs lj of
the jth channel realization yj contain m independent values
ljk for k = 1, . . . ,m. The LLR of the kth bit is computed as

ljk =− 1

σ2

(
min

e∈B(k,0)(yj ,R2)
∥yj + a− e∥2

− min
e∈B(k,1)(yj ,R2)

∥yj + a− e∥2
)
. (36)

If either B(k,0)(yj , R2) or B(k,1)(yj , R2) is empty, then the
corresponding minimum in (36) is set to a large default value
r > R2. Here only integer values of R2 are considered,
because the ∥e+ a− ⌊yj + a⌉∥2 in (33) is always an integer.
The choice of R2 involves a trade-off between computation
complexity and decoding performance. For high-dimensional
VCs, the LLR approximation can have high complexity when
the Euclidean ball contains a larger number of points. Given
R2, r can be roughly optimized by testing which value gives
the best decoding performance.

B. MLCM for VCs with SP mapping

Denoting the terms of (30) as I1, . . . , Im, a channel can be
regarded as m virtual independent “equivalent subchannels”
with MIs

Ik = I(Y ;Bk|B1, . . . ,Bk−1) (37)

for k = 1, . . . ,m. This concept directly implies an MLCM
scheme proposed by Imai and Hirakawa in [47], where the bit
subchannels are protected unequally with different component
channel codes and a multistage decoder decodes the bits
successively from B1 to Bm provided that the previous bits
are given. Practical design rules of the code rates can be found
in [27]. The suitable labeling for MLCM is Ungerboeck’s SP
labeling.

Fig. 3b shows an MLCM scheme for VCs, which contains
q component codes with code rates Ri

c for i = 1, . . . , q and
the same codeword length N to protect the first np bit levels
of the VC symbols, and the last m − np bit levels remain
uncoded. Thus, the MLCM for VCs has a total rate of

Rtot =

∑q
i=1 kiR

i
c + (m− np)

n/2
[bits/2D-symbol]. (38)

The transmitter forms m bits bj = (bj1, . . . , b
j
q, b

j
np+1, . . . , b

j
m)

for j = 1, . . . , N , where bji = (b
ki(j−1)+1
i , . . . , bkij

i ) are the
(ki(j − 1) + 1)th to kijth bits of bi for i = 1, . . . , q. The bi
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is illustrated in Fig. 3b with length kiN for i = 1, . . . , q. For
the SP mapping, the VC mapper first maps bj to an integer
by uj = fSP(b

j) and then encodes the integer into a VC point
by xj = g(uj).

At the receiver side, after getting (b̂
j

1, . . . , b̂
j

q), the coset
representative ĉji is obtained according to Ci for i = 1, . . . , q,
and the ĉj ∈ [Zn/2pZn] is found by ĉj =

∑q
i=1 ĉ

j
i . Then

the estimation of the transmitted point should be found by
searching a point within the subset 2pZn + ĉj that is closest
to yj + a. This is equivalent to

x̂j = Q2pZn+ĉj (yj + a)

= 2p

⌊
yj + a− ĉj

2p

⌉
+ ĉj − a. (39)

Finally, the bit labels of x̂j are obtained by

b̂
j
= (b̂

j

1, . . . , b̂
j

q, b̂
j
np+1, . . . , b̂

j
m) = f−1

SP (w(x̂j)), (40)

where the last m−np bits (b̂jnp+1, . . . , b̂
j
m) are the estimation

of the uncoded bits mapped to x̂j .
The approximated max-log LLRs of bji contains ki LLR val-

ues independent of each other, denoted by lji = (lji,1, . . . , l
j
i,ki

),
which is computed by the following procedure. Given
b̂
j

1, . . . , b̂
j

i−1, the coset representatives ĉj1, . . . , ĉ
j
i−1 are di-

rectly obtained according to look-up tables C1, . . . ,Ci−1.
Then we know that the corresponding integer belongs to
the lattice Λi−1 +

∑i−1
t=1 ĉ

j
t . In the ith partition step, the

coset representatives [Λi−1/Λi] have been labeled by the
look-up table Ci. Then we can divide Ci into two subsets
Ci = C

(e,0)
i ∪ C

(e,1)
i , representing coset representatives

having a bit 0 and 1 at the eth bit of bi, respectively. For
all ĉji ∈ C

(e,0)
i , we find the closest point to yj + a from the

lattice Λi +
∑i−1

t=1 ĉ
j
t + ĉji , and denote all such closest points

as the set

Z(e,0)
i = {z = QΛi+

∑i
t=1 ĉj

t
(yj + a) : ĉji ∈ C

(e,0)
i }. (41)

The set Z(k,1)
i is defined analogously. Then the max-log LLR

of the eth bit of bji can be approximated as

LLRMLCM

(
bji |y

j , b̂
j

1, . . . , b̂
j

i−1

)
= lji,e

= − 1

σ2

(
min

z∈Z(e,0)
i

∥yj + a− z∥2 − min
z∈Z(e,1)

i

∥yj + a− z∥2
)
.

(42)

This expression is not the exact max-log LLR but an approx-
imation, because the point z ∈ Z(e,0)

i or z ∈ Z(e,1)
i that is

closest to yj + a might fall outside of the VC. Replacing
Z(e,0)

i and Z(e,1)
i with Γ∩Z(e,0)

i and Γ∩Z(e,1)
i , respectively,

gives the expression of the exact max-log LLR with additional
complexity coming from applying the closest lattice point
quantizer to the sets Z(e,0)

i and Z(e,1)
i . The computation

complexity (42) depends on the partition orders ki, which is
much lower than the complexity of (36) in BICM. However,
MLCM uses q component codes, which adds complexity and
delay compared with BICM.

TABLE IV: The considered VCs and TDHQ formats in the simula-
tion.

Name n Λ/Λs M m β

E24
8 8 Z8/8E8 16, 777, 216 24 6

Λ72
24 24 Z24/2Λ24R24 ≈ 4.7× 1021 72 6

E32
8 8 Z8/16E8 ≈ 4.3× 109 32 8

Λ96
24 24 Z24/4Λ24R24 ≈ 7.9× 1028 96 8

E40
8 8 Z8/32E8 ≈ 1.1× 1012 40 10

Λ120
24 24 Z24/8Λ24R24 ≈ 1.3× 1036 120 10

E48
8 8 Z8/64E8 ≈ 2.8× 1014 48 12

Λ144
24 24 16Z24/4Λ24R24 ≈ 2.2× 1043 144 12

Λ76
16 16 Z16/16Λ16 ≈ 7.9× 1022 76 9.5

Λ92
16 16 Z16/32Λ16 ≈ 5.0× 1027 92 11.5

Name t1, t2 M1,M2 mQAM βQAM

TDHQ1 4, 4 512,1024 76 9.5
TDHQ1 4, 4 2048,4096 92 11.5

C. MLCM for VCs with hybrid mapping

The MLCM scheme for VCs with the hybrid mapping in
Section III-D is a special case of Fig. 3b with p = pq and
ki = n(pi − pi−1). At time step j = 1, . . . , N , the VC
mapper maps m bits bj = (bj1, . . . , b

j
q, b

j
np+1, . . . , b

j
m) to

an integer uj = fH(b
j) and then maps uj to a VC point

xj = g(uj). At the receiver side, successive decoding is
performed based on yj and all previous bits (b̂

j

1, . . . , b̂
j

i−1) for
decoder i. After decoding (b̂

j

1, . . . , b̂
j

q), the coset representative
ĉji is obtained by (28) for i = 1, . . . , q. The estimation of the
coset representative of the partition Zn/2pZn is calculated as
ŝj =

∑q
i=1 ĉ

j
i . The estimation of the transmitted VC point x̂j

is decoded by (39), where ĉj is replaced by ŝj . Finally, the
estimation of bit labels of x̂j is obtained by

b̂
j
= (b̂

j

1, . . . , b̂
j

q, b̂
j
np+1, . . . , b̂

j
m) = f−1

H (w(x̂j)), (43)

where the last m−np bits (b̂jnp+1, . . . , b̂
j
m) are the estimation

of the uncoded bits mapped to xj . The hybrid CM scheme for
VCs has a total rate of

Rtot =

∑q
i=1 n(pi − pi−1)R

i
c + (m− np)

n/2
[bits/2D-symbol].

(44)

The approximation of the max-log LLRs of bji =
(bji,1, . . . , b

j
i,n(pi−pi−1)

) contain n(pi − pi−1) independent
LLR values for i = 1, . . . , q, denoted by lji =
(lji,1, . . . , l

j
i,n(pi−pi−1)

) and calculated as follows. Given the
previous estimated bits b̂1, . . . , b̂i−1, the coset representatives
ct for t = 1, . . . , i−1 are obtained by (28). If |2pi−1Zn/2piZn|
is not a very large number, the approximated max-log LLR of
the eth bit of bji , denoted by lji,e, can be calculated using (42)
with Λi−1 = 2pi−1Zn and Λi = 2piZn. If |2pi−1Zn/2piZn|
is large, then lji,e can be calculated by enumerating a scaled
Euclidean ball centered at the closest lattice point of 2pi−1Zn

to yj , i.e.,

D(yj , R2) ≜

{
e : ∥e+ a−

⌊
yj + a

2pi−1

⌉
· 2pi−1∥2 ≤ 22pi−1R2,

e+ a ∈ 2pi−1Zn

}
, (45)
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TABLE V: The parameters of the considered CM schemes in simulation.

Constellation Mapping β CM Partition chain #LDPC codes Code rates #Coded bit levels/m Rtot [2D-symbol]

E24
8 Gray 6 BICM - 1 Rc = 8/9 24/24 5.33

64-QAM Gray 6 BICM - 1 Rc = 8/9 6/6 5.33
E24

8 hybrid 6 MLCM Z8/2Z8/E24
8 1 R1

c = 2/3 8/24 5.33
Λ72
24 hybrid 6 MLCM Z24/2Z24/Λ72

24 1 R1
c = 2/3 24/72 5.33

64-QAM hybrid 6 MLCM - 1 R1
c = 2/3 2/6 5.33

E32
8 Gray 8 BICM - 1 Rc = 9/10 32/32 7.2

256-QAM Gray 8 BICM - 1 Rc = 9/10 8/8 7.2
512-QAM quasi-Gray 9 BICM - 1 Rc = 4/5 9/9 7.2

E32
8 hybrid 8 MLCM Z8/2Z8/E32

8 1 R1
c = 3/5 8/32 7.2

Λ96
24 hybrid 8 MLCM Z24/2Z24/Λ96

24 1 R1
c = 3/5 24/96 7.2

256-QAM hybrid 8 MLCM - 1 R1
c = 3/5 2/8 7.2

256-QAM SP 8 MLCM - 2 R1
c = 1/3, R2

c = 8/9 2/8 7.22

E40
8 Gray 10 BICM - 1 Rc = 9/10 40/40 9

1024-QAM Gray 10 BICM - 1 Rc = 9/10 10/10 9
E40

8 hybrid 10 MLCM Z8/2Z8/E40
8 1 R1

c = 1/2 8/40 9
Λ120
24 hybrid 10 MLCM Z24/2Z24/Λ120

24 1 R1
c = 1/2 24/120 9

1024-QAM hybrid 10 MLCM - 1 R1
c = 1/2 2/10 9

E48
8 Gray 12 BICM - 1 Rc = 9/10 48/48 10.8

4096-QAM Gray 12 BICM - 1 Rc = 9/10 12/12 10.8
E48

8 hybrid 12 MLCM Z8/2Z8/E48
8 1 R1

c = 2/5 8/48 10.8
Λ144
24 hybrid 12 MLCM Z24/2Z24/Λ144

24 1 R1
c = 2/5 24/144 10.8

4096-QAM hybrid 12 MLCM - 1 R1
c = 2/5 2/12 10.8

E48
8 SP 12 MLCM Z8/D8/E8R8/2Z8/E48

8 1 R1
c = 0, R2

c = 0, R3
c = 4/5 8/48 10.8

Λ92
16 Gray 11.5 BICM - 1 Rc = 9/10 92/92 10.35

TDHQ2 Gray 11.5 BICM - 1 Rc = 9/10 92/92 10.35
Λ92
16 hybrid 11.5 MLCM Z16/2Z16/Λ92

16 1 R1
c = 2/5 16/92 10.3

TDHQ2 hybrid 11.5 MLCM - 1 R1
c = 2/5 16/92 10.3

which consists of two subsets D(yj , R2) = D(yj , R2)(e,0) ∪
D(yj , R2)(e,1), representing points with 0 and 1 at the eth bit
of bi, respectively. Then lji,e is computed as

lji,e =−
1

σ2

(
min

e∈D(e,0)(yj ,R2)
∥yj + a− e∥2

− min
e∈D(e,1)(yj ,R2)

∥yj + a− e∥2
)
. (46)

Again, the set D(yj , R2) might not fully fall into the VC
region, making (46) an approximation of the exact max-log
LLRs.

It is worth noting that, when pi = i for i = 1, . . . , q
(i.e., the partition chain Zn/2Zn/ . . . /2qZn/Λs is considered),
setting R2 = 1 in (46) is sufficient, thanks to (23) and
(24) in the hybrid labeling. The computational complexity
of the approximated LLR in (46) will be very low since
D(yj , 1) contains only 2n + 1 points. Also, D(e,0)(yj , 1) or
D(e,1)(yj , 1) can never be an empty set for i = 1, . . . , n, due
to (23) and (24) again.

V. PERFORMANCE ANALYSIS
In this section, we present the coded BER performance in

the AWGN channel for VCs with the three proposed CM
schemes introduced in Section IV, and compare them with
the most commonly used benchmark at the same rate: Gray-
labeled QAM with BICM [19], [20], [44], [48]. In order to
see how much gain is actually from shaping, we also apply

the proposed hybrid mapping in Section III-D to QAM and
combine it with MLCM. This scheme is new, but other types
of hybrid mapping for QAM with MLCM exist in the literature
[28], [29]. However, optimizing the design of MLCM for
QAM in concatenated CM schemes is not the focus of this
paper.

For fairness of comparison, n/2 2D QAM formats are
multiplexed in the time domain to fill the same number of
dimensions and to achieve the same uncoded spectral effi-
ciencies as VCs. The traditional way of realizing non-integer
spectral efficiencies for QAM formats is through time-domain
hybrid QAM (TDHQ) [49]–[52]. To form an n-dimensional
TDHQ format, t1 and t2 2D QAM formats with cardinalities
M1 and M2, respectively, are used, satisfying

t1 + t2 =
n

2

βQAM = β =
t1 log2(M1) + t2 log2(M2)

t1 + t2
.

For example, one TDHQ symbol x having the same spectral
efficiency as Λ92

16 (β = 11.5 [bits/2D-symbol]) consists of t1 =
4 4096-QAM and t2 = 4 2048-QAM symbols:

x = (x1,x2,x3,x4︸ ︷︷ ︸
∈4096-QAM

,x5,x6,x7,x8︸ ︷︷ ︸
∈2048-QAM

).

The two constituent QAM constellations are scaled to the same
minimum distance, which maximizes the minimum distance
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Fig. 4: Uncoded BER performance of 8D VCs compared with QAM at the same spectral efficiency.
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Fig. 5: Coded BER performance of 8D and 24D VCs compared with QAM at the same total rate. Solid lines represent BICM performance
and dashed lines represent MLCM performance with hybrid mapping. The LLRs of VCs with BICM are calculated using (36) with R2 = 6
and r = 20; the LLRs of VCs with MLCM and hybrid mapping are calculated using (46) with R2 = 1; the LLRs of VCs with MLCM and
SP mapping are calculated using (42).
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TABLE VI: Estimated Gray penalties of 8D VCs with different
labeling schemes.

VC Gray SP Hybrid

E24
8 1.63 4.57 2.12

E32
8 1.31 4.24 1.81

E40
8 1.56 4.10 1.66

E48
8 1.08 4.01 1.58

of the resulting hybrid QAM constellation for a given n-
dimensional symbol energy Es [53, Ch. 4.3].

VCs show high uncoded BER gains at high dimensions
and spectral efficiencies [12, Fig. 5]. Thus, we investigate the
performance of 8D, 16D, and 24D VCs with high spectral
efficiencies of up to 12 bits/2D-symbol. The parameters of the
considered VCs and the benchmark QAM formats are listed
in Table IV.

A. Uncoded BER

Fig. 4 shows the uncoded BER for 8D VCs with three
different mapping rules, compared with Gray-labeled QAM.
For VCs in uncoded systems, the Gray mapping has the
lowest uncoded BER among the three mappings and achieves
an increasing SNR gain over QAM as β increases, which
implies that VCs with Gray mapping can outperform QAM in
systems with a single HD FEC code [12, Fig. 5]. The hybrid
mapping has marginal SNR gains over QAM at high SNRs,
since the penalty of a non-Gray mapping for the VC almost
counteracts its shaping gains. The SP mapping yields the worst
performance and shows no gain over Gray-labeled QAM due
to not efficient labeling.

To evaluate the efficiency of different labeling schemes for
VCs, one could estimate the Gray penalty defined as the
average number of different bits per pair of adjacent symbols
[54], [55] by [11, Alg. 5]. Table VI lists the estimated Gray
penalties Gp of the considered 8D VCs. By definition, the
Gray penalty cannot be smaller than 1, and higher values
indicate greater penalties, corresponding to worse uncoded
BER performance at asymptotically high SNRs. The hybrid
mapping reduces the high Gp of the SP mapping. The Gray
penalties of the Gray and hybrid mapping decreases as the
spectral efficiency increases, which explains why the SNR
gains observed in Fig. 4 increase with the spectral efficiency.

B. BER after SD FEC decoding

Apart from the uncoded BER discussed in Section V-A, the
MI and GMI defined in Section IV-A serve as fundamental
limits of a CM scheme, thus are the other two commonly used
metrics to evaluate different GS methods. The performance
gain of a geometrically shaped constellation over QAM is
usually described by the reduced required SNR to achieve a
certain uncoded BER, MI, or GMI. For example, in [56, Table
I], some published GS methods in optical fiber communication
literature are listed and their SNR gains over QAM are com-
pared under these performance metrics. Among these metrics,
the MI does not consider any labeling, thus not predicting
the SNR gain after SD FEC decoding by itself. The uncoded

BER, known as the hard-decision FEC threshold, is shown not
accurate enough to predict the BER after SD FEC decoding,
which should be replaced by GMI [57]. However, the GMI
assumes independent labeling and its predicting accuracy of
SNR gains after SD FEC decoding is not guaranteed when
Gray labeling is absent or, to the best of our knowledge, has
not been investigated. Less work has shown the BER after
SD FEC decoding of various proposed GS schemes. In [58],
a 0.51 dB SNR gain achieved by GS over 256-QAM has
been reported at 6.22 bits/2D-symbol for the AWGN channel.
Below, we present the BER after SD FEC decoding of 8D,
16D, and 24D VCs at rates between 5.33 and 10.80 bits/2D-
symbol.

The performance of 8D and 24D VCs compared with QAM
constellations with both BICM and MLCM in coded systems
is shown in Fig. 5. A set of LDPC codes from the digital
video broadcasting (DVB-S2) standard [37] with multiple code
rates4 is considered as the inner code. The codeword length
is N = 64800 and 50 decoding iterations are used. Table V
lists the parameters of the considered CM schemes in this
paper. For all the VCs with hybrid mapping listed in Table V,
p = q = 1 and k1 = n. If we target a BER of 1.81 × 10−3

when a zipper code [43] is used as the outer code, 8D VCs
with MLCM and hybrid mapping yield an increasing SNR gain
over QAM with MLCM and hybrid mapping from 0.22 to 0.59
dB as β increases. These gains mainly come from shaping.
For Gray-labeled QAM with BICM, different combinations of
QAM orders and code rates are explored to achieve optimal
performance at a specific Rtot. For instance, in Fig. 5b, 512-
QAM5 with a 4/5 code rate outperforms 256-QAM with a
9/10 code rate. Comparing to QAM with BICM, the most
commonly used benchmark, 0.22+0.18 = 0.4 to 0.59+0.27+
0.40 = 1.26 dB SNR gains are achieved by 8D VCs with
MLCM and hybrid mapping. The MLCM achieves SNR gains
over BICM due to its effective utilization of FEC overheads to
protect the most significant bit levels. However, MLCM has a
high error floor at a BER around 10−3 due to the uncoded bit
levels, whereas the BICM scheme does not, as all bit levels
are protected by FEC codes.

Fig. 5 also shows that 8D VCs with BICM do not outper-
form QAM with BICM at β = 6 and β = 8, and start to
achieve 0.19 and 0.40 dB SNR gains at β = 10 and β = 12,
respectively. This observation is consistent with [12, Fig. 6,
Fig. 9] that the GMI performance of VCs outperform QAM
only at high spectral efficiencies.

For 256-QAM with MLCM and SP mapping, the rate
allocation affects the performance significantly. As the first 2
bit levels are protected and the other 6 bit levels are uncoded,

4The set of all possible code rates in the standard [37] is
{1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 4/5, 5/6, 8/9, 9/10}.

5No Gray labeling exists for cross-QAM constellations such as 512-QAM.
Here we adopt the “impure” Gray labeling in [54], which is implemented
in the MATLAB qammod function and has a Gray penalty of 63/61. The
best known cross-QAM labeling is the one proposed for 32-QAM in [59,
Fig. 7.53], which generalizes to a 512-QAM labeling with a Gray penalty of
62/61 using labeling expansion [25, Sec. IV-B].
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the MIs of the 8 equivalent subchannels are lower-bounded as

I(Y ;X) = I(Y ;B1, . . . ,B8)

≥I(Y ;B1) + I(Y ;B2|B1) +

8∑
k=3

I(Y ;Bk|B1,B2). (47)

We define the eight conditional MI values of each bit level Ik
for k = 1, . . . , 8 as the eight terms in (47) and Fig. 6 shows Ik
for k = 1, . . . , 8. From Fig. 6, I3 to I8 have a conditional MI
of close to 1 bit/2D-symbol, which means it is reasonable to
let these bit levels stay uncoded. Targeting a total rate of 7.2
bits/2D-symbol and given the limited availability of code rates
in the DVB-S2 standard, Fig. 7 shows the BER performance of
256-QAM with MLCM and SP mapping under all possible rate
allocations for the first two bit levels. Among them, choosing
R1

c = 2/5 and R2
c = 4/5 yields the best performance. This

allocation is closest to the “capacity rule” from [27, Sec. IV-
A], i.e., choosing the code rates as the MIs of the equivalent
subchannels Ii defined in (37). If we look back from the MIs
in Fig. 6 at SNR = 24.3 dB, it suggests R1

c = 2/5 and
R2

c = 4/5 approximately according to the capacity rule. The
BER of 256-QAM with MLCM and SP mapping and this
rate allocation is also presented in Fig. 5b as the black dotted
curve, which does not outperform 256-QAM with MLCM and
hybrid mapping, although two component codes are used. This
is due to the worse uncoded BER performance than the hybrid
mapping and possibly not optimal rate allocation under the
limited availability of code rates in the DVB-S2 standard.

In Fig. 5d, we show the BER performance of E48
8

with MLCM and SP mapping. The partition chain is
Z8/D8/E8R8/2Z8/E48

8 with parameters p = 1, q = 3, k1 =
1, k2 = 3 and k3 = 4. A bit different from (30) and [27], since
we can have multiple bits per partition level, the bits at the
same partition level are considered independent of each other,
and protected by the same code. Thus, the MIs of the first 8
equivalent subchannels are lower-bounded as

I(Y ;B1, . . . ,B8) ≥ I(Y ;B1) + I(Y ;B2,B3,B4|B1)

+ I(Y ;B5,B6,B7,B8|B1,B2,B3,B4) (48)

≥ I(Y ;B1) +

4∑
k=2

I(Y ;Bk|B1) +

8∑
k=5

I(Y ;Bk|B1, . . . ,B4)

(49)

The eight conditional MI values of each bit level Ik for
k = 1, . . . , 8 are defined as the eight terms in (49). Fig. 8
shows the estimated Ii for i = 1, . . . , 8 using the method
based on importance sampling proposed in [12], [17]. Bits
at the same partition level are protected by the same code.
Thus, three different code rates should be used for the lattice
partition Z8/D8/E8R8/2Z8. For a bit level with an estimated
conditional MI lower than 0.2 bits/2D-symbol, we do not use
that subchannel to carry information, and set the code rate to 0.
This is equivalent to mapping bits to a subset of constellation
points, inherently enabling a larger MSED than using all bit
levels at the cost of a lower total rate. If we look at the MIs
at SNR =34.8 dB in Fig. 8, the first four bit channels have
an MI lower than 1/4 (the lowest LDPC code rate in the
standard [37]). Thus, the first four bits are not used to transmit
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Fig. 6: The MIs of all 8 bit levels for 256-QAM with the SP mapping.
The Ik for k = 3, . . . , 8 overlap at approximately 1 bit/2D-symbol
for all SNRs.
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Fig. 7: The BER of 256-QAM with MLCM and SP mapping at
different rate allocations for the first two bit levels.

information with R1
c = R2

c = 0, and R3
c = 4/5 according to

the capacity rule6, yielding a total rate of Rtot = 10.8 bits/2D-
symbol. From Fig. 5d, a 0.78 dB SNR loss is observed for E48

8

with MLCM and SP mapping compared with 4096-QAM with
BICM. This is due to the bad uncoded BER performance for
VCs with SP mapping resulting from the high penalty of non-
Gray labeling, and the FEC code cannot sufficiently reduce
such a high uncoded BER. In addition, the rate allocation
might not be globally optimal with the limited choices of code
rates. Thus, we do not consider SP mapping for 16D VCs in
the following results.

Among the 8D results, VCs with MLCM and hybrid map-
ping always yield the best performance. In Fig. 5, we also
illustrate the performance of 24D VCs with MLCM and hybrid
mapping. It shows that 24D VCs can achieve 0.57 to 0.99 dB
gains over QAM with MLCM and hybrid mapping at different
β. When compared with QAM with BICM, up to 0.75–1.66
dB gains are achieved by 24D VCs. Larger SNR gains over
QAM formats are observed than in the 8D case, since 24D
VCs inherently have a higher asymptotic shaping gain than
8D VCs [17, Table I].

For 16D VCs, which have noninteger spectral efficiencies,
Fig. 9 presents the uncoded and coded BER performance
compared with TDHQ formats. In Fig. 9b, Λ92

16 with MLCM

6In order to make sure this is the optimal rate allocation under the limited
choices of DVB-S2 code rates, the BER performance with R1

c = 0, R2
c =

1/4, and R3
c = 3/5 yielding Rtot = 10.79 bits/2D-symbol was also checked

and found to be worse than the considered rate allocation.
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Fig. 8: The MIs of the first 8 bit levels for E48
8 with the SP mapping.

and hybrid mapping achieves 0.99 dB SNR gain over TDHQ2
with MLCM and hybrid mapping. In total, it achieves up to
0.99 + 0.19 + 0.66 = 1.84 dB SNR gain over TDHQ2 with
BICM.

The SNR gains of the proposed CM schemes over QAM
with BICM come at the cost of unprotected bit levels, resulting
in high error floors at around 10−3. However, with the outer
code, these high error floors have no impact on system
performance. This comparison is fair when QAM with BICM
also requires an outer code to achieve low BER targets. For
instance, an outer code is indispensable in high-speed fiber-
optic communications to meet the stringent BER target of
10−15. On the other hand, in application scenarios where an
outer code is not used and higher error floors are acceptable,
BICM could be adapted to compare more favorably with the
proposed coding schemes.

C. Achievable information rates (AIRs)

The amount of information per symbol that a given channel
can transmit reliably, using a specific modulation format and
an encoder/decoder pair, is referred to as an AIR [45]. In [17],
the MI of VCs is well investigated, showing large shaping
gains at finite SNRs. Fig. 10 illustrates the AIRs of VCs with
hybrid mapping calculated as

Ĩ(Y ;X) =

n∑
i=1

I(Y ;Bi) +

m∑
i=n+1

I(Y ;Bi|B1, . . . ,Bn).

(50)

Compared with the MIs, the AIRs of the VCs with hybrid
mapping almost have no rate loss when they are higher than
0.85β and start to deviate from the MIs when they are lower
than 0.85β. The rates of the VCs and QAM constellations
achieved after LDPC decoding at the BER of 1.81 × 10−3

from Fig. 5 are shown close to the AIRs.

VI. COMPLEXITY ANALYSIS

The complexity of a CM scheme depends on almost every
aspect: the number of channel codes used, the FEC overhead,
the number of encoded bit levels for each symbol, the LLR
calculation complexity, and the complexity of the labeling al-
gorithm. The total complexity of a CM scheme is cumbersome
to measure. However, the complexity of each above-mentioned

factor can be discussed and the complexity of the dominating
factor, the LLR computation, can be quantified. Among the
three proposed CM schemes, VCs with MLCM and hybrid
mapping have the lowest complexity, as the scheme needs only
one FEC code and only some of the bit levels are encoded.
Most importantly, the computation of LLRs, which dominates
the decoding complexity, is the fastest. In general, VCs with
MLCM and SP mapping use more than one component code,
which increases the complexity, and estimating the MIs of
equivalent subchannels in order to allocate the rates to different
bit levels has a high complexity. VCs with BICM also use just
one component code and have good performance gains at high
β thanks to the small loss in the LLR approximation. However,
the complexity of the LLR approximation in (34) is higher for
VCs with BICM than (42) for the two MLCM schemes for
VCs.

The computational complexity of LDPC decoding is dom-
inated by the max-log LLR calculation. Within the max-log
LLR calculation, the most computationally demanding aspect
is the evaluation of the numerous squared terms. Now we make
a comparison in terms of the number of squares required to
calculate the max-log LLR between 1) VCs with MLCM and
hybrid mapping and 2) QAM constellations with BICM, whose
performances were compared in Fig. 5. For an n-dimensional
VC symbol, the number of required squares per 2D symbol is

Nsquares = NCB × lookup table size× n× 2

n
, (51)

where NCB is the number of coded bit levels, the lookup
table size for finding the minimum Euclidean distance is
|D(yj , 1)| = n + 1 by (46), the third factor n represents
the number of scalar squares for calculating an n-dimensional
Euclidean distance, and 2/n is to normalize Nsquares to two
dimensions. For QAM, it is well-known that any Gray-labeled
square QAM constellation is a Cartesian product of two Gray-
labeled PAM constellations. The max-log LLR implementa-
tion for square M -QAM can be simplified leveraging this
property, allowing the minimizations over 2D points in (32)
to be replaced with two separate minimizations over one-
dimensional points, resulting

√
M squares. Thus, the total

number of squares required for a QAM symbol is NCB
√
M .

Table VII lists the Nsquares values for comparison. The decod-
ing complexity of VCs does not increase with higher spectral
efficiency, and 8D VCs with MLCM and hybrid mapping offer
lower decoding complexity compared to 1024-QAM and 4096-
QAM with BICM.

Theoretically, high-cardinality geometrically shaped con-
stellations can provide more shaping gains than VCs [4].
However, usually large-size look-up tables introduce a signif-
icant complexity increase in decoding. The Nsquares for high-
cardinality GS methods can be calculated as in (51). VCs can
provide high shaping gains with much lower implementation
complexity than unconstrained GS methods.

VII. CONCLUSION

In this paper, we propose three CM schemes for very large
MD VCs, including bit-to-integer mapping algorithms and
LLR computation algorithms. This makes very large VCs
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Fig. 9: Uncoded and coded BER performance of 16D VCs compared with TDHQ formats. Solid lines represent BICM performance and
dashed lines represent MLCM performance. The LLRs of VCs with BICM are calculated using (36) with R2 = 2 and r = 20; the LLRs of
VCs with MLCM and hybrid mapping are calculated using (46) with R2 = 1.
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Fig. 10: The AIRs and MIs of the considered 8D VCs with hybrid mapping compared with the GMIs of QAM constellations at the same
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TABLE VII: The number of required squares per 2D symbol in cal-
culating/approximating the max-log LLR between VCs with MLCM
and hybrid mapping and QAM with BICM presented in Fig. 5.

.

Constellation Rtotal NCB (n+ 1) or
√
M Nsquares

E24
8 5.33 8 72 144

Λ72
24 5.33 24 25 1200

64-QAM 5.33 6 8 48

E32
8 7.2 8 9 144

Λ96
24 7.2 24 25 1200

256-QAM 7.2 8 16 128

E40
8 9 8 9 144

Λ120
24 9 24 25 1200

1024-QAM 9 10 32 320

E48
8 10.8 8 9 144

Λ120
24 10.8 24 25 1200

4096-QAM 10.8 12 64 768

adoptable in practical communication systems with SD FEC
codes. Among them, one MLCM scheme for VCs with hybrid
mapping has even lower decoding complexity than very high-
order QAM with BICM. The simulation results for the AWGN
channel show that even with some penalty from the non-
Gray labeling, VCs achieve high shaping gains over QAM
with both BICM and MLCM, especially at high spectral

efficiencies. Very recently, the proposed MLCM scheme with
hybrid mapping for VCs in this paper has been applied to
multi-core fiber transmission to increase the maximum reach
[60]. An experimental demonstration in [61] has shown an
up to 6 dB launch power gain for the nonlinear four-core
fiber channel. In [62], the present shaping gains in this
paper have been validated in wideband wavelength-division
multiplexing transmission experiments. In [63], a comparison
is presented for the first time between the proposed scheme and
probabilistic shaping with varying distribution matcher block
lengths. The results demonstrate that VCs exhibit notable gains
over probabilistic shaping, particularly for short block lengths.

For future works, more applications of the proposed CM
schemes can be investigated, e.g., applying other existing
channel codes or designing a tailored code. It might be
worthwhile to explore code rate adaptation techniques, such
as puncturing and shortening, to better demonstrate the adapt-
ability of the proposed schemes.
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