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Abstract

Accurate anomaly detection and localization in sheet metal glue line applications is crucial for
quality assurance in automotive manufacturing. Most current vision-based inspection systems
that rely on geometric deviations from a predefined shape often suffer from high false-positive
rates, leading to unnecessary interventions and operational inefficiencies. This research investi-
gates the potential of unsupervised deep learning models to significantly reduce false positives in
the analysis of sheet metal glue line images, even with limited datasets. We conducted a compar-
ative evaluation of 17 unsupervised deep learning models covering different categories with 28
backbones on datasets of approximately 300 industrial glue line images per part from a Swedish
vehicle manufacturer. A data synthesis method was applied to balance the glue line dataset, fur-
ther enhancing the reliability of the models. To address the challenge of limited training data and
improve model generalization, we incorporated data augmentation techniques and performed ro-
bustness experiments to ensure applicability to real-world industrial conditions. Our findings
demonstrate that deep learning approaches can effectively detect and localize anomalies, signifi-
cantly reducing false positives and gluing machine downtimes compared to the existing system.
Moreover, we propose a multi-criteria decision-making based approach for model selection, en-
abling decision-makers to achieve optimal trade-offs between accuracy and inference time, thus
improving operational efficiency. These advancements highlight that even with limited training
data, unsupervised deep learning models can enhance anomaly detection reliability, streamline
the automotive production process, and reduce unnecessary resource expenditures.
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1. Introduction

Glued joints are widely used in the automotive industry as they offer several advantages over
traditional methods. For instance, adhesives can join different material types and do not influence
the material properties as traditional methods such as riveting or welding do (Maláková et al.,
2019). Adhesives need to be dispensed on the material before joining, for which robots are
frequently employed (Prezas et al., 2022). However, dispensing the viscous fluid can sometimes
lead to fluctuating quality. Quality assurance in automotive manufacturing is crucial. Most
companies know that effective geometry assurance processes enable smooth and uninterrupted
production, leading to lower costs (Söderberg et al., 2016).

Traditional quality assurance methods such as manual inspection can be laborious and sus-
ceptible to human errors. There are also researchers or industries that use image detection meth-
ods such as OpenCV (Bradski, 2000) for image detection. However, these require a large amount
of various types of image data, and in practice, there is often a lack of images representing
anomalies or defects. In such cases, traditional vision-based systems that rely on the detection of
deviations from a predefined geometry do not perform well. In this regard, data-driven methods
such as deep learning-based image anomaly detection are promising approaches to automatically
supervise quality. Anomaly detection has already been widely applied in many industries rang-
ing from automotive to lace production (Zipfel et al., 2023; Jiang et al., 2019; Tang et al., 2020;
Lu et al., 2022). In this domain, the advent of deep learning has enabled a general increase in
performance compared to traditional image processing approaches (Pang et al., 2021; Luo et al.,
2022; Liu et al., 2024b).

Sheet metal glue line defects in the automotive context often manifest as wavelike irregu-
larities along the adhesive line. These defects can appear as inconsistent thickness, gaps, or
uneven dispersion, which can compromise the joint’s structural integrity. Images capturing these
glue line defects are typically gray-scale, with variations in intensity highlighting the anomalies.
These characteristics pose challenges for detection and segmentation, as the subtle differences
can be easily missed by traditional approaches.

Deep learning based anomaly detection algorithms can be trained in a supervised , semi-
supervised or unsupervised fashion (Pang et al., 2021; Liu et al., 2024b). As with many Artificial
Intelligence (AI) use cases, data collection and annotation is a problem as it can be costly and
time consuming. This problem can be mitigated or circumvented using semi-supervised or unsu-
pervised methods (Pang et al., 2021). In this regard, this study analyses a specific industrial case
from an unsupervised perspective.

The primary objective of this research is to investigate the use of unsupervised deep learning
models to reduce the incidence of false positives in the automated inspection system for detecting
small and large anomalies in images captured by industrial cameras. Specifically, this study aims
to compare various unsupervised deep learning models to identify the most effective methods for
anomaly detection and segmentation in an industrial context.

This study aims to address the following research questions:

• Which unsupervised deep learning models provide the optimal accuracy and efficiency in
detecting and segmenting anomalies in glue-line images from industrial cameras?
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• How can the lack of defect class datasets in industry be addressed to improve model per-
formance and reliability?

This research aims to address the current gap by offering a detailed comparison of unsu-
pervised deep learning models, helping manufacturers choose the most suitable techniques to
improve the accuracy, reliability and efficiency of their inspection processes. By reducing false
positives with unsupervised deep learning techniques, this study seeks to pave the way for in-
creased accuracy and operational efficiency in anomaly detection, then help the glue line system
to avoid frequent downtime, inspection by maintenance workers and greatly improve overall
equipment effectiveness of the whole process system.

The paper is organized into several sections: following this introduction, we review the rele-
vant literature and categorize the unsupervised deep learning models, then describe the method-
ology and experimental setup, and present the results of the comparative analysis, discuss the
implications of the findings, and conclude with recommendations for future research and imple-
mentation.

2. Related Work

In manufacturing, maintaining high-quality standards is essential to ensure product reliability
and customer satisfaction, making anomaly detection techniques crucial.

2.1. Anomaly Detection in Manufacturing

Industrial anomaly detection is widely applied across various industrial data problems, in-
cluding image anomaly detection and IoT time series anomalies. Anomaly detection in IoT fo-
cuses on identifying irregularities in time series data to prevent equipment failures and optimize
maintenance such as for instance the work of (Weihan, 2020) or (Jeong et al., 2022). However, in
this section we concentrates on image anomaly detection. The goal of image anomaly detection
is to detect defects on the appearance of various types of industrial products (Luo et al., 2022).
Some of these defects are small and difficult to detect, but they can be harmful for functionality
of the product.

In the manufacturing industry, defects tend to appear in small regions of the image with low
significance, and in turn, industrial defect detection focuses more on detecting anomalous pixels
in the image (Luo et al., 2022). We review and compare selected works that evaluated models
on industrial image datasets. Table 1 compares the datasets used, application domains, models
employed, and training mechanisms, highlighting advancements in industrial surface inspection
methodologies. It shows that image anomaly detection and quality check are widely applied in
various domains.

The MVTec (Bergmann et al., 2021) dataset is a popular benchmark dataset in the industrial
domain; however, people are also applying their own dataset to test their models’ accuracy. For
example, the study by Haselmann et al. (2018) employs decorated plastic parts on their Con-
volutional Neural Networks (CNN) approach, and Jiang et al. (2019) applied semi-supervised
training techniques using GAN and You Only Look Once (YOLO) v3 models on their cigarette
production dataset. Staar et al. (2019) and Tayeh et al. (2020) use unsupervised training with
custom datasets and the MVTec AD dataset, respectively. They both employ Triplet Networks
and CNNs, which demonstrates the versatility of these models in various industrial applications.
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Table 1: Comparison of approaches for anomaly detection in industrial surface inspection.

Reference Dataset Domain Models Used Training

(Zipfel et al., 2023) VIN labels Automotive GANomaly,
PaDiM, Patch-
core

Unsupervised

(Jiang et al., 2019) Cigarette pro-
duction dataset

Industrial pro-
duction

GAN, YOLOv3 Semi-supervised

(Haselmann et al., 2018) Decorated plas-
tic parts

Manufacturing CNN Unsupervised

(Staar et al., 2019) DAGM dataset Automotive &
Medical

Triplet Net-
works, CNN

Unsupervised

(Lu et al., 2022) Lace video Lace production RNN Unsupervised

(Posilović et al., 2022) Ultrasonic non-
destructive test-
ing dataset

Mechanical GANomaly,
PaDiM, Differ-
Net

Unsupervised

(Tang et al., 2020) Mobile
phone screen
glass/wood
surface

Manufacturing DAGAN Unsupervised

This comparison underscores the importance of selecting appropriate datasets and training
mechanisms tailored to specific industrial needs. It also illustrates the ongoing trend of lever-
aging advanced neural network architectures to improve the accuracy and reliability of anomaly
detection systems in manufacturing.

2.2. Deep Learning Based Image Anomaly detection

Deep learning methods for image anomaly detection can be trained in supervised, semi-
supervised, weakly-supervised and unsupervised. Supervised learning requires labeled datasets,
semi-supervised learning combines a small amount of labeled data with a large amount of unla-
beled data, and unsupervised learning identifies patterns in entirely unlabeled data, making these
methods versatile and adaptable to various industrial scenarios.

2.2.1. Supervised Deep Learning Method
Supervised deep learning methods have a wide and mature application to industrial vision

tasks, and are often used for industrial defect detection when the defect types are known and
have sufficient labeled samples, or to solve the problem of classifying defect types. Li et al.
(2018) improve YOLO network and made it all convolutional to provide an end-to-end solution
for surface defects detection of steel strip. Chen and Tsai (2021) develop a defect detector on
the basis of YOLOv3 and used densely connected convolutional networks (DenseNet) to inspect
the chips of surface-mounted device light-emitting diodes (SMD LED). Božič et al. (2021) pro-
pose a deep learning architecture for surface-defect detection that reduces the need for detailed
annotations by utilizing a range of supervision levels, from weak image-level labels to full pixel-
level annotations, resulting in effective defect segmentation and classification. And to cope with
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the problems of texture offset and partial visual confusion, Zeng et al. (2021) propose Reference-
based Defect Detection Network, which introduces template references and contextual references
to solve the problems respectively. Qiu et al. (2019) propose a three stages supervised deep
learning method, which uses a lightweight fully convolutional network for pixel-wise defect pre-
diction, detection to correct improper segmentation, and matting to refine defect contours using
a guided filter. To balance efficiency and accuracy, the method replaces standard convolution,
pooling, and deconvolution layers with depthwise & pointwise, strided depthwise, and upsample
depthwise convolution layers, respectively. However, supervised deep learning methods often
face the problem of not having sufficient and balanced labeling-containing datasets, and the cost
of labeling is relatively high, and the problem cannot be completely solved even by using data
augmentation (Luo et al., 2022).

2.2.2. Semi-supervised and Weakly-supervised Deep Learning Method
To address the challenge of limited defective samples and unbalanced data, semi-supervised

deep learning methods leverage both labeled and unlabeled data to enhance anomaly detection
performance. By combining the strengths of supervised learning with the abundance of unla-
beled data, these models can achieve high accuracy with fewer labeled examples, making them
particularly effective in scenarios where acquiring labeled data is costly or time-consuming. Chu
and Kitani (2020) propose a novel semi-supervised learning algorithm for anomaly detection and
segmentation that uses an anomaly classifier based on the loss profile of data processed through
an autoencoder. Class activation map guided UNet used sufficient normal training images and
limited annotated anomalous images to train a defect segmentation model with a feedback re-
finement mechanism (Lin et al., 2020).

Weakly-supervised image anomaly detection methods leverage small amounts of annotated
abnormal data to enhance detection performance, providing valuable guidance even when abnor-
mal samples are limited compared to normal ones. Methods like DevNet (Zhou et al., 2022) and
approaches using Logit Inducing Loss (LIS) and Abnormality Capturing Module (ACM) demon-
strate that even with coarse-grained annotations, models can achieve fine-grained detection re-
sults, comparable to fully supervised models (Wan et al., 2022). Methods for neural network
interpretability are also applied in weakly supervised settings. These approaches typically train
classification models using image-level annotations and then use techniques like Class Activation
Mapping (CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM) to identify the
regions in the feature maps that contribute the most to the classification result (Zhou et al., 2016)
(Selvaraju et al., 2017), thereby achieving defect localization. By focusing on these key regions,
the models can effectively pinpoint anomalies even with limited annotated data, enhancing the
overall performance of anomaly detection tasks in scenarios where fine-grained annotations are
scarce.

2.2.3. Unsupervised Deep Learning Method
Unsupervised deep learning methods require only easily accessible normal samples for model

training, eliminating the need for real defective samples. This approach not only addresses the
limitation of supervised deep learning methods in identifying unknown defects but also offers a
stronger representation of image features compared to traditional methods. The core idea behind
these methods is to construct a ”template” that closely resembles the sample being tested. By
comparing this template to the sample, defects can be detected and localized based on pixel or
feature differences. Depending on the comparison dimensions, unsupervised deep learning meth-
ods are generally categorized into feature-embedding based and reconstruction-based approaches
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as shown at Figure 1 (Liu et al., 2024b). We will discuss the state of the art unsupervised models
and compare some of them in our study and dataset.

Figure 1: Unsupervised Deep Learning Models for Image Anomaly Detection Category

Feature Embedding Based Methods. Feature embedding based models aim to learn compact
and informative representations of normal data. These models transform input images into a
lower-dimensional feature space, capturing essential characteristics while discarding redundant
information. Anomalies are identified by measuring deviations from these learned embeddings
(Liu et al., 2024b). By focusing on feature embeddings, these models leverage powerful deep
learning techniques to detect subtle discrepancies that signify defects.

Deep One-class classification methods use deep neural networks to extract high-quality fea-
tures from normal images, ensuring these features are compactly distributed in the feature space.
This compact distribution allows for the construction of precise boundaries to distinguish normal
features from anomalies. Deep support vector data description (Deep SVDD) is an important
method in one-class classification, and it trains a neural network to map normal sample features
into the hypersphere to distinguish whether the test sample is abnormal or not (Ruff et al., 2018).
Different researchers have continously based and optimized SVDD methods to enhance the effec-
tiveness of image anomaly detection and localization, such as PatchSVDD (Yi and Yoon, 2020),
Fully Convolutional Data Description (FCDD) (Liznerski et al., 2020), etc.

Student-teacher networks employ a dual-network system where a student network learns to
replicate the feature representations of a pre-trained teacher network. The network structure is
shown at Figure 2. The difference between the two networks helps in identifying anomalies.
Bergmann et al. (2020) firstly apply this network into anomaly detection. The representational
power of a large pre-trained network is transferred to a lightweight teacher network through
knowledge distillation. Then, multiple randomly initialized student networks are trained on stan-
dard datasets to ensure they represent normal samples similarly to the teacher network. This
method relies on regression errors in defect representation between the student and teacher net-
works, as well as high uncertainty in defect representation among multiple student networks, to
achieve pixel-level defect segmentation. Wang et al. (2021) use a pre-trained image classification
model as a teacher to distill knowledge into a single student network, which learns the distribution
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of anomaly-free images while preserving key cues. By integrating a multi-scale feature matching
strategy, the student network can detect anomalies of various scales, with the difference between
the feature pyramids of the two networks serving as a scoring function for anomaly probability.
While using similar architectures to build the student and teacher models hinders the diversity of
anomalous representations, Deng and Li (2022) propose a novel teacher-student model and an
effective reverse distillation paradigm where the student restores the teacher’s multi-scale repre-
sentations from its one-class embedding to tackle this problem.

Figure 2: Student-teacher network

Distribution map models aim to model the probability distribution of the features of normal
samples, thus eliminating the need to build a large library of normal samples. After capturing
the underlying distribution of normal data, anomalies are detected by identifying data points
that deviate from that distribution (Liu et al., 2024b). Rippel et al. (2021) first extract multi-
scale features of normal samples using a pre-trained network and modeled each feature map as
a multivariate Gaussian distribution separately, and they applied the Mahalanobis distance as the
anomaly score. Normalizing Flows (NF)-based methods now are dominant (Liu et al., 2024b),
where NF is a technique for constructing complex distributions by transforming probability den-
sities through a series of invertible mappings (Rezende and Mohamed, 2015). DifferNet first
applied NF-based models to increase the flexibility (Rudolph et al., 2021). CFlow-AD enhances
the conditional NF framework by introducing positional encoding, thereby improving anomaly
detection performance and thoroughly analyzing the rationale behind the multivariate Gaussain
assumption in earlier models (Gudovskiy et al., 2022). CSFlow incorporates cross-convolutional
blocks within the NF, leveraging contextual information from multi-scale feature mappings to
increase the accuracy of anomaly detection (Rudolph et al., 2022). Meanwhile, FastFlow alter-
nates between large and small convolutional kernels to effectively model both global and local
distributions (Yu et al., 2021).

Memory bank approach maintains a repository of normal feature representations. The pri-
mary idea is to store features of normal data during training, which can then be used during
inference to compare and detect anomalies. Spatially-Adaptive Denormalization (SPADE) uses
a pre-trained CNN model to extract the feature vectors of the training set to construct a database
of normal samples, and then uses the K-Nearest neighbors method to obtain anomaly segmen-
tation results using a multi-resolution feature pyramid matching method (Cohen and Hoshen,
2020). PaDiM uses a pretrained CNN for patch embedding and employed multivariate Gaussian
distributions to obtain a probabilistic representation of the normal class (Defard et al., 2021). It
leverages correlations between different semantic levels of the CNN to improve anomaly local-
ization. PatchCore uses a maximally representative memory bank of nominal patch-features, and
it can detect minute defects that might be missed by other methods by storing and comparing
patch-level features (Roth et al., 2022).
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Reconstruction Based Methods. The core idea of reconstruction-based methods is to train a
model using normal samples to learn the distribution characteristics of normal data. Anomalies
are then detected based on the reconstruction error (Luo et al., 2022). It is assumed that normal
data can be reconstructed accurately, while abnormal data will have a larger reconstruction error
due to its deviation from the normal data distribution. Therefore, by analyzing the difference
between the input image and the reconstructed image, anomalies can be effectively identified.
This method includes autoencoder (AE), variational autoencoder (VAE), Generative Adversarial
Network (GAN), transformer, diffusion, etc.

AE consists of two main parts: an encoder and a decoder. The encoder compresses the input
image data into a lower-dimensional latent space, capturing the essential features of the input.
The decoder then attempts to reconstruct the original data from this compact representation.
Defect localization can then be achieved based on the reconstruction error between the input
image and the reconstructed image. While in VAE, a variant of AE, it maps the input to a
distribution, typically a Gaussian distribution, instead of mapping the input image data to a single
point in the latent space (Kingma et al., 2019). The framework of AE and VAE is shown at Figure
3.

Figure 3: Framework of AE and VAE

In order to solve the blurring phenomenon of AE in reconstructed images, Discriminative
Feature Refinement (DFR) improves the quality of reconstructed images by choosing to imple-
ment the multi-scale fusion of information in the hidden space (Yang et al., 2020), while another
method simulates the blurring effect of AE by introducing a stylized distillation branch, which
stylizes the input image and reduces the misdetection of the normal pixel points when calculating
reconstruction errors (Chung et al., 2020). DRAEM combines both reconstructive and discrim-
inative approaches by learning a joint representation of an anomalous image and its anomaly-
free reconstruction, while simultaneously establishing a decision boundary between normal and
anomalous examples without the need for additional post-processing (Zavrtanik et al., 2021).
DSR, based on a quantized feature space representation with dual decoders, avoids the need for
image-level anomaly synthesis by generating anomalies at the feature level through sampling
the learned quantized feature space, allowing for controlled generation of near-in-distribution
anomalies (Zavrtanik et al., 2022).

VAE can construct structured latent space manifolds that are more controllable than AE, and
thus the main common features of normal samples can be learned from the perspective of latent
space distribution (Luo et al., 2022). To cope with the difficulty of obtaining clear and consistent
reconstructed images due to random sampling, (Dehaene et al., 2020) uses the idea of iterative
approximation, while FAVAE models the feature distributions extracted by the pre-trained model
to enhance the generalization of the model (Dehaene and Eline, 2020), and in another approach,
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VQ-VAE is used as a reconstruction model to obtain the discrete latent space of the normal
samples and to estimate the discrete latent space of the probabilistic model. In the detection
phase, the autoregressive model will determine the portion of the input latent space that deviates
from the normal distribution. The deviant code is then resampled and decoded from the normal
distribution to obtain a restored image that is closest to the anomalous input (Wang et al., 2020).

GAN has a powerful ability to model distributions and generate high-quality images. A
GAN consists of two components: a generator (G) that creates images and a discriminator (D)
that evaluates their realism (Creswell et al., 2018). The adversarial training mechanism between
the generator and discriminator is key to producing clear images, as the generator improves by
trying to fool the discriminator, which in turn becomes better at distinguishing real images from
generated ones. There are different models that have used GAN for image anomaly detection,
such as AnoGAN which uses the idea of iterative optimisation, although the model inference
time is long and the practicality is poor (Schlegl et al., 2017). While f-AnoGAN adds additional
encoders to extract image features and uses a multi-stage training approach to guide the genera-
tor to produce the best matching image (Schlegl et al., 2019). OCR-GAN proposes a frequency
decoupling module to separate the input image into different frequency components, model-
ing reconstruction as parallel omni-frequency restorations. Additionally, it introduces a channel
selection module that enhances frequency interaction among different encoders by adaptively
selecting channels (Liang et al., 2023).

Transformers leverage self-attention mechanisms to capture long-range dependencies in data,
making them highly effective for anomaly detection (Han et al., 2022). By modeling complex re-
lationships within the data, transformers can accurately reconstruct normal patterns and identify
anomalies based on deviations from these patterns. (Mishra et al., 2021) present a transformer-
based image anomaly detection and localization network that combines reconstruction and patch
embedding, using a Gaussian mixture density network to localize anomalies. A masked Swin
Transformer Unet (MSTUnet) is proposed for anomaly detection, using the Swin Transformer’s
global learning ability to inpaint masked areas created by an anomaly simulation and mask strat-
egy, followed by a convolution-based Unet for end-to-end detection (Jiang et al., 2022).

Diffusion models are deep generative models based on two stages: a forward diffusion stage
and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually per-
turbed over several steps by adding Gaussian noise, while in the reverse stage, a model learns
to recover the original input data by gradually reversing the diffusion process (Croitoru et al.,
2023). For anomaly detection, these models leverage their ability to produce high-quality and
diverse normal data patterns, identifying anomalies based on deviations from these patterns dur-
ing the reverse diffusion process, despite their computational burdens due to the high number
of steps involved. There are three generic diffusion modeling frameworks which are denois-
ing diffusion probabilistic models, noise conditioned score networks, and stochastic differential
equations (Croitoru et al., 2023). Denoising Diffusion Probability Models (DDPM) perform well
on anomaly detection benchmarks, but are computationally expensive (Sasaki et al., 2021). By
simplifying DDPM for anomaly detection, (Livernoche et al., 2023) propose Diffusion Time Es-
timation (DTE), which estimates the distribution over diffusion time for a given input and uses
the mode or mean as the anomaly score. Also in medical imaging anomaly detection, diffusion
model has a wide range of applications. Iqbal et al. (2023) use masked-DDPM which introduces
masking-based regularization, specifically Masked Image Modeling (MIM) and Masked Fre-
quency Modeling (MFM), to enhance the generation task of diffusion models for brain medical
applications.

Many of the current state-of-the-art methods are also use a blend of methods, rather than
9



being limited to using only one approach. Masked Multi-scale Reconstruction (MMR) integrates
both feature embedding and reconstruction-based methods (Zhang et al., 2023). Functioning as
a student-teacher network, the frozen pre-trained encoder serves as the teacher while the student
network learns from it. By employing a masked AE strategy, MMR enhances the model’s abil-
ity to understand spatial dependencies and causality in normal samples, preventing information
leakage from visible to masked parts of the image.

2.3. Data Augmentation and Synthesis

Since there is often a lack of defective samples with precision labeling in industry today,
which is not enough to support the training of neural networks, data augmentation and synthe-
sis are often required to improve model performance. Rippel et al. (2020) address lack of large
amounts of annotated training data by leveraging the consistency of defect appearance across
fabrics to transfer knowledge about anomalies from one fabric to another. While Defect-GAN
approach can automated generate realistic and diverse defect samples for training inspection net-
work (Zhang et al., 2021). It uses a compositional layer-based architecture to generate and restore
defects on normal surface images, offering realistic defect generation with flexible control over
their location, category, and appearance. Liu et al. (2024a) propose SyNet, a novel unsupervised
learning method based on noisy anomaly synthesis for medical image anomaly detection and
Tayeh et al. (2020) use random erasing techniques to synthesize defective training samples by
introducing artificial defects into non-defective samples.

Cutpaste is commonly used for data augmentation by cutting an image patch and pasting it at
a random location on a larger image (Li et al., 2021). Building on this, Natural Synthetic Anoma-
lies (NSA) integrates Poisson image editing to create more naturally appearing sub-image irreg-
ularities (Schlüter et al., 2021). Similarly, AnoSeg enhances the diversity of synthetic defects by
applying data augmentations like random rotation, positional disruption, and color dithering be-
fore cropping, and it incorporates coordinate channels representing pixel positional information
into AnoSeg’s inputs to account for the positional relationships within the image (Song et al.,
2021).

3. Methodology

3.1. Use Case Background

This research was conducted in collaboration with a prominent Nordic automobile manufac-
turer known for its extensive global production footprint, with facilities spread across various
international locations. The study specifically focused on one of the manufacturer’s key pro-
duction plants in Sweden. At this plant, the maintenance department faced a critical challenge:
verifying glue lines against stringent industry standards. Ensuring the quality of glue lines is
important, as any deviation from the established standards could significantly impact the vehicle
assembly line and compromise the overall manufacturing process.

Historically, the quality control process for glue lines at this prominent Swedish automobile
manufacturer relied on an automated system utilizing industrial-grade cameras. Specifically, the
SICK Pim60 Vision robot (illustrated in Figure 4), mounted above the production line at a fixed
height and angle to capture optimal views of the glue lines (SICK AG, 2024), captured images at
set intervals (details on the cycle interval are omitted for confidentiality). Ten images were cap-
tured for each control point, and the system analyzed them using embedded optical techniques.
This analysis produced a binary output (”OK” or ”NOT OK”) for each image, indicating whether
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the glue line met quality standards. Despite this automation, the approach still required manual
review to ensure the accuracy and reliability of defect detection.

Figure 4: Industry Process Description: Cycle Based Vision Controls

During the company’s operations, a high rate of false detections has been noted when in-
specting glue lines. Data shows that about majority of glue lines meet the required standards, yet
they are still flagged as defective by the imaging system. This misclassification is mostly due
to external factors, especially inconsistent lighting conditions during image capture. These false
detections have several consequences. When the automated system identifies a supposed defect,
it can trigger a shutdown, requiring manual checks. Maintenance staff must then verify the glue
lines and restart the equipment, which reduces productivity and increases the workload. Given
that true instances of non-compliance are rare, this highlights the gap between what the system
detects and the actual quality of the glue lines.

3.2. Dataset

To conduct our research and assist the company in addressing the aforementioned issues,
we collaborated with the maintenance department to collect glue lines’ image data and form a
dataset. This dataset consists of multiple sets of grayscale images of different sections of glue
lines, systematically captured by stationary industrial cameras. The dataset includes 20 distinct
components, each containing approximately 300 images, with a resolution of 480 pixels high
by 640 pixels wide. These images, consisting of a single channel, contain no color data and
emphasize contrast variations important for the analysis, and show segments of glue lines across
various machinery, providing a representative cross-section of the production line’s conditions.

To provide visual context for the following analyses, Figure 5 shows some sample images
from this collection. In the image, the glue line appears in the middle, adjacent to various sheet
metal structures of the car. The glue line is not particularly prominent in the image. Displayed
sequentially from left to right are representative images from one part: a standard glue line
indicative of proper application and a glue line meeting the required standards but erroneously
classified as defective. The glue lines with errors not detected by the system constitute a very
small sample and are not shown here. Additionally, due to confidentiality reasons, the real fault
images and the percentage of faulty images are not disclosed. The majority of this paper will
focus on the most representative section (Part 1), which presents a moderate level of difficulty
but reflects the majority of cases.
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(a) Normal glue line for part1 sheet metal, True
positive image

(b) False positive image which is normal while
detected as anomaly by vision robot

Figure 5: Example glue line images from part1 sheet metal.

Due to the imbalanced dataset exhibiting a high false-positive rate and a low false-negative
rate, we employed a data augmentation strategy to improve the training set. Along with consult-
ing industry professionals, we used relevant image editing software, GIMP, to modify specific
regions within acceptable glue line images. These edited regions were altered to closely resemble
true industrial defects, effectively generating synthetic false images to supplement the training
set.

We selected a representative industrial image and divided the depicted glue line into five
distinct segments, labeled A through E (see Figure 6). The primary glue line is segmented into
four distinct areas, each with unique characteristics affecting their inspection:

• Area A is situated in the middle of the left side of the image and features a darker back-
ground underneath, which can influence detection accuracy.

• Area B, located centrally within the image, is very close to the parts below it, creating
potential challenges in distinguishing the glue line from adjacent components.

• Area C is near a small hole above it and influenced by a similarly long sheet metal below
it, complicating accurate detection.

• Area D, near the right side of the image, is also affected by the sheet metal below it and
the proximity to the edge of the image, complicating segmentation.

• Area E, in the upper right corner, has a curvature where the glue line detaches from the
main glue line, making it the most error-prone during inspection.

By categorizing the glue line into specific areas, we tailored the inspection process to address
the unique challenges presented by each region, thereby improving the overall accuracy and re-
liability of defect detection. To augment our dataset with a comprehensive range of false cases,
we employed GIMP’s Warp transform tool (GIMPDoc, 2020) to simulate realistic glue appli-
cation errors within each image segment (A through E). These simulations replicate potential
defects caused by instability or jitter during the robotic application process, ranging from subtle
localized distortions to extensive application anomalies.
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Figure 6: Part1 glue line segmentation from Area A to E.

In Figure 7, we present examples of both normal and anomalous glue line segments, with the
anomalies explicitly marked by red circles for improved clarity. The first example illustrates a lo-
calized distortion within Segment A, where the anomaly is clearly annotated. The corresponding
binary mask image further delineates the anomalous region, enabling precise pixel-wise compar-
ison. Similarly, the second example demonstrates a small localized distortion within Segment A,
marked with a red circle, and its corresponding binary mask image. These annotated and masked
images enhance the interpretability of the data, ensuring that both large and small anomalies are
effectively represented.

(a) Localized distortion
at segment A

(b) Mask image for
segment A distortion

(c) Small localized
distortion at segment A

(d) Mask image for small
localized distortion

Figure 7: Examples of normal and anomalous glue line segments, with corresponding mask images.
Anomalies are marked by red circles and further segmented in binary mask images for precise evalua-
tion of defect localization.

3.3. Selection of Anomaly Detection Models
Given the unknown and irregular nature of our industrial image defects, the high cost of man-

ual annotation, the stringent requirements for detection accuracy and speed, and the imbalance in
our sampled dataset, we adopt unsupervised deep learning approaches to determine whether sam-
ples contain defects and to localize them. While Zipfel et al. (2023) compared three unsupervised
deep learning anomaly detection models (PatchCore, Skip-GANomaly, and PaDiM) for vehicle
identification numbers (VIN labels), our work extends these efforts by including a broader range
of models and backbones, as listed in Table 2. This approach enables us to encompass a wider
spectrum of mainstream detection methods in unsupervised deep learning, including both feature
embedding–based and reconstruction-based techniques. Because diffusion-based reconstruction
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approaches are predominantly applied to medical images rather than manufacturing scenarios,
and because transformer-based models generally require substantial training data which is of-
ten unavailable in industrial defect detection (Luo et al., 2022), we exclude these models. To
keep our experiments and evaluations consistent, we primarily use models from the Anoma-
lib library (Akcay et al., 2022), supplemented by additional representative models not included
in Anomalib (e.g., SimpleNet, MMR). Table 2 presents each model’s trainable parameters and
the original datasets used in their respective publications. Their accuracy on the public image
anomaly dataset MVTec AD is provided in Appendix A.7. The overall framework of our meth-
ods is shown in Figure 8, where we compare and evaluate these state-of-the-art unsupervised
models on our sheet metal glue line image dataset.

Figure 8: Framework of our methods. Including training and robustness experiment.
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Table 2: Comparison of Anomaly Detection Models

Sub-category Model Name Backbone Model Parameters Datasets

Fe
at

ur
e

E
m

be
dd

in
g

ba
se

d Student-Teacher Networks

Efficient AD. (Batzner et al., 2024) EfficientAd 8.1M Trainable MVTec AD, VisA
(Kagawade and
Angadi, 2021)

stfpm. (Wang et al., 2021) ResNet18 2.8M Trainable MVTec AD

Reverse Distillation. (Deng and Li, 2022) ResNet18 18.7M Trainable
MVTec AD, MNIST,
Cifar10, F-MNIST
(Xiao et al., 2017)

MMR. (Zhang et al., 2023) WideResNet50 MVTec AD,
AeBAD (Zhang
et al., 2023)

Distribution Map

CFlow. (Gudovskiy et al., 2022) WideResNet50 81.6M Trainable; 154M Non-trainable MVTec AD, STC
(Liu et al., 2018)

CSFlow. (Rudolph et al., 2022) EfficientNet-B5 275M Trainable; 17.5M Non-trainable MVTec AD, MTC
(Huang et al.,
2020)

FastFlow. (Yu et al., 2021) ResNet18 5.6M Trainable; 4.2M Trainable
MVTec AD,
Cifar10, BTAD
(Ma et al., 2023)

WideResNet50 78.0M Trainable; 46.9M Non-Trainale
Cait 31.9M Trainable; 365M Non-Trainable
Deit 7.1M Trainable; 111M Non-Trainable

DFM. (Ahuja et al., 2019) ResNet50 2.8M Trainable

MNIST (Xiao
et al., 2017),
Cifar10(Alex,
2009)

Memory Bank

PatchCore. (Roth et al., 2022) WideResNet50 24.9M Trainable MVTec AD, STC,
MTC

PaDiM. (Defard et al., 2021) ResNet18 2.8M Trainable
MVTec AD, STC

WideResNet50 24.9M Trainable

Continued on next page
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Table 2 – Continued

Sub-category Model Name Backbone Model Parameters Datasets

CFA. (Lee et al., 2022) ResNet18 3.2 M Trainable MVTec AD
(Bergmann et al.,
2021)

WideResNet50 31.3 M Trainable

SimpleNet. (Liu et al., 2023) WideResNet50 MVTec AD,
Cifar10

OCC UFlow. (Tailanian et al., 2022) mCaiT 12.2M Trainable; 409M Non-Trainable MVTecAD, STC,
BT (Mishra et al.,
2021), MRI (Buda
et al., 2019)

ResNet18 4.3M Trainable; 3.6M Non-Trainable
WideResNet50 34.8M Trainable; 37.4M Non-Trainable

R
ec

on
st

ru
ct

io
n

B
as

ed AutoEncoder
DRAEM. (Zavrtanik et al., 2021) 97.4M Trainable DTD (Cimpoi

et al., 2014)

DSR. (Zavrtanik et al., 2022) 36.3M Trainable; 4.0M Non-Trainable MVTec AD,
KSDD2 (Božič
et al., 2021)

GAN GANomaly. (Akcay et al., 2019)* GAN 188M Trainable

MNIST, Cifar10,
UBA (Rogers et al.,
2017),
FFOB (UK Home
Office Centre for
Applied Science
and Technology
(CAST), 2016)

* Indicates image level, otherwise are pixel level
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3.4. Experimental Setup

We executed a series of experiments applying selected models on our glue line dataset. For
baseline comparisons, we employed deep feature kernel density estimation. The hyperparame-
ters for selected models for comparison are shown in Appendix B.8. Initially, we adopted the
default hyperparameters as provided by their respective implementations, as these are generally
optimized for a broad range of scenarios. To ensure suitability for our specific dataset and objec-
tives, we conducted preliminary evaluations to verify their effectiveness. This approach allowed
us to maintain consistency and reliability across comparisons while focusing on the broader
objectives of the study. To ensure experimental fairness and consistency, we integrated all imple-
mentations within a shared environment. Our computational environment consisted of Python
(version 3.10.13) as the programming language, PyTorch (version 1.13.1) as the deep learn-
ing framework, a Linux system with CPU: i9-13900K, RAM: 128GB, GPU: RTX4090 (24GB
VRAM), and CUDA (version 11.6) for GPU acceleration.

3.5. Robustness Experiment

We conducted an additional experiment utilizing a data augmentation strategy during model
training to assess and compare the model’s robustness in our plant environment. This approach
aims to improve model generalization by exposing it to a wider range of variations, thereby
promoting the learning of robust feature representations applicable to unseen data. By simulat-
ing diverse scenarios, data augmentation also enhances the model’s ability to handle potential
real-world image imperfections and helped prevent over-fitting by increasing the diversity of the
training dataset. Additionally, our experiments sought to address common issues such as cam-
era shake and other potential artifacts caused by the motion performance of the vision robot.
This experiment provided valuable insights into the model’s performance and robustness under
augmented conditions.

Informed by expert interviews and common photographic challenges in industrial robotics,
we selected the following data augmentation modes: Defocus, simulating potential blurring due
to focus errors; Random Brightness Contrast, addressing variations in lighting conditions; and
ISO Noise, emulating image noise artifacts that may arise from camera sensor limitations (Albu-
mentationsAI, 2024). Table 3 details the specific parameter settings for each technique. Exam-
ples of applying this data augmentation are shown in Figure 9, which illustrate the application of
each data augmentation individually and the use of all data augmentations at the same time.

Table 3: Data Augmentation Parameter Settings

Mode Parameters
Defocus p = 0.5, radius = [3, 10], alias blur = [0.1, 0.5]

RandomBrightnessContrast p = 0.5, brightness limit = [-0.2, 0.2],
contrast limit = [-0.2, 0.2], brightness by max = True

ISO Noise p = 0.5, color shift = [0.01, 0.05], intensity = [0.1, 0.5]

3.6. Evaluation Metrics

In this research, we evaluated the performance of our deep learning models for glue line
anomaly detection using a combination of image-level and pixel-level metrics.

17



(a) Defocus (b) Random Brightness (c) ISO Noise (d) All Applied

Figure 9: Data Augmentations Application Example.

3.6.1. Image-Level Metrics
Image-Level AUROC (Area Under the Receiver Operating Characteristic Curve): The AU-

ROC metric provides an aggregate measure of a model’s ability to discriminate between normal
and anomalous glue line images. It is calculated across all possible classification thresholds, rep-
resenting the trade-off between the true positive rate (TPR) and false positive rate (FPR). These
are defined as:

TPR (also known as recall): The proportion of actual anomalies (positive samples) that are
correctly identified by the model:

T PR =
T P

T P + FN
where TP represents true positives and FN represents false negatives.

FPR: The proportion of normal images (negative samples) that are incorrectly identified as
anomalous:

FPR =
FP

FP + T N
where FP represents false positives and TN represents true negatives.

The AUROC summarizes the model’s performance over various decision thresholds by plot-
ting TPR against FPR and measuring the area under this curve:

AUROC =
∫ 1

0
T PR(FPR−1(x))dx

A model with perfect discrimination will have an AUROC of 1, while a random classifier will
have an AUROC of 0.5.

Image-Level F1 Score: The F1 score balances precision (the proportion of true positives
out of predicted positives) and recall (the proportion of true positives correctly identified). It is
particularly useful when the dataset exhibits class imbalance, as is often the case with anomaly
detection. Precision is the proportion of images predicted as anomalous that are actually anoma-
lous while recall is shown as TPR.

Precision =
T P

T P + FP

Then F1 score is calculated as:

F1 = 2 ·
precision · recall
precision + recall
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3.6.2. Pixel-Level Metrics
Pixel-Level AUROC: Similar to the image-level AUROC, this metric assesses a model’s dis-

crimination ability at the individual pixel level. It is particularly relevant for tasks involving
localization, such as pinpointing the exact areas within a glue line that exhibit anomalies.

Pixel-Level F1 Score: The pixel-level F1 score provides a granular evaluation of how well the
model correctly identifies anomalous pixels. This metric is valuable when precise localization of
defects is crucial.

3.6.3. Image-Level vs. Pixel-Level Evaluation
Image-level metrics provide a global assessment of whether an image contains an anomaly

or not (classification focus). Pixel-level metrics offer a more detailed analysis, pinpointing the
specific regions within an image that are considered anomalous (segmentation focus). By using
both image-level and pixel-level metrics, we gain a comprehensive understanding of our models’
ability to both detect and localize glue line defects.

4. Results

This section presents the results of our experiments. To ensure the reliability of our findings,
we conducted experiments using five different random seeds for each model configuration.

4.1. Performance

4.1.1. Run Time Performance
The average training time, inference time, and throughput per second for part1 are presented

in Table 4. DSR has the longest training time at approximately 2.5 hours, whereas dfkde requires
only 2.4 seconds, making it the fastest among the models. It is evident that feature-embedding
based methods generally require less training time compared to reconstruction-based models.
Efficient AD exhibits a higher training time due to its use of the AE method. Among feature-
embedding based models, those from the memory bank category are relatively quick, with train-
ing times of about 1 minute. Models utilizing the ResNet18 backbone train faster than those with
WideResNet50. This is primarily because ResNet18 has fewer layers and parameters, result-
ing in lower computational complexity and faster processing. Additionally, ResNet18’s smaller
memory footprint allows for more efficient batch processing. In contrast, WideResNet50, with
its increased depth and width, demands more computation and memory, leading to longer train-
ing times. However, an exception is observed with Uflow, where the training times for ResNet18
and WideResNet50 backbones are quite similar. When the backbone is changed to mcait, the
training time increases by about 14 times compared to ResNet18.

Inference time, a critical factor for productivity and efficiency, is analyzed in Figure 10.
Lower inference times are preferred, while higher throughput—measuring the number of images
processed per second—is advantageous. The models’ inference times per image range from
91.29 ms to 302.41 ms, with less variation compared to training times. Throughput depends on
batch size, which is typically set to 32 for most models. While inference speeds between feature-
embedding and reconstruction-based methods are similar, variations occur due to batch size and
backbone architecture. Notably, WideResNet50 and ResNet18 backbones exhibit comparable
inference times within the same models.

The inference time and throughput of the models evaluated in this work are well-suited for
real-time detection requirements on industrial production lines. For example, even the slowest
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model achieves a throughput exceeding 3 images per second, which meets the general demands
of industrial scenarios. These performance metrics ensure efficient and timely detection capabil-
ities, making the models practical for real-world deployment in production lines.

Table 4: Runtime Comparison of Models

Category Model BackBone Train(min) Inference(ms) Throughput(fps)

dfkde
ResNet18 0.04 91.29 10.95

WideResNet50 0.06 93.22 10.73

Student-Teacher

Efficient AD 50.99 173.07 5.78

STFPM
ResNet18 0.97 193.22 5.18

WideResNet50 3.13 195.41 5.12

Reverse Distill.
WideResNet50 7.57 199.25 5.02

ResNet18 2.53 194.05 5.15

MMR WideResNet50 6.83 253.57 3.94

Distribution Map

CFlow-AD WideResNet50 13.85 281.38 3.55

CSFlow EfficientNet-B5 6.78 302.41 3.31

FastFlow

ResNet18 0.51 194.80 5.13

WideResNet50 1.37 194.37 5.14

cait 4.36 281.95 3.55

deit 0.86 210.99 4.74

DFM
ResNet50 0.06 192.12 5.21

ResNet18 0.05 186.21 5.37

Memory Bank

PatchCore WideResNet50 1.57 198.18 5.05

PaDiM
ResNet18 0.13 214.10 4.67

WideResNet50 0.39 192.60 5.19

CFA
ResNet18 0.30 256.61 3.90

WideResNet50 0.90 261.64 3.82

SimpleNet WideResNet50 0.85 225.00 4.44

OCC Uflow

mcait 37.77 292.11 3.42

ResNet18 2.62 212.06 4.72

WideResNet50 2.61 213.84 4.68

AE
DRAEM 16.93 216.40 4.62

DSR 151.11 222.26 4.50

GAN GANomaly 1.08 96.17 10.40

4.1.2. Predictive Performance
For model performance, we report the mean and standard deviation across these runs, provid-

ing a comprehensive assessment of model performance. Evaluation focuses on both image-level
(Image AUROC, Image F1 Score) and pixel-level (Pixel AUROC, Pixel F1 Score) metrics to
capture both the detection and localization capabilities of the models. The overall performance
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Figure 10: Inference time and throughput comparison

for each model is shown at Table 5. In the table, the best performance for different performance is
shown in bold. The false positive reduction rate can be presented from the image level AUROC.

Regarding image level AUROC, the best performer is STFPM, which achieved an AUROC
of 0.985. While the false positive rate of Part 1 from the company remains confidential, the
accuracy of the optimal model significantly surpasses that of the company’s current solution.
Furthermore, STFPM successfully resolved all false positive images in Part 1. This indicates
that STFPM excels in distinguishing between normal and anomalous images, showcasing ex-
ceptional reliability and accuracy. Among the top four models, namely STFPM, SimpleNet,
FastFlow and Efficient AD, SimpleNet emerges as the most stable model due to its low variance,
which indicates consistent performance across different runs. The models with the worst per-
formance are the DFM and baseline model DFKDE. An AUROC lower than 0.5 indicates poor
performance, essentially worse than random guessing. Therefore, DFKDE and DFM are consid-
ered highly ineffective for anomaly detection tasks due to their extremely low AUROC values,
which highlight their inability to distinguish between normal and anomalous images effectively.
The segmentation image that shown in Figure 11 for DFM illustrates DFM has a rougher split
area compared to stfpm.

The performance comparison of different backbones with the same model reveals insight-
ful patterns. For instance, the CFA model shows a significant improvement when using the
WideResNet50 backbone compared to ResNet18. Similarly, PaDiM with ResNet18 achieves
an AUROC of 0.901, while with WideResNet50, it improves to 0.962, indicating a clear en-
hancement with the more complex backbone. FastFlow exhibits variability depending on the
backbone used, with WideResNet50 showing the best performance, followed by deit and cait.
These comparisons suggest that models generally perform better with the WideResNet50 back-
bone compared to ResNet18, while the training time is longer, indicating that a more complex
backbone architecture tends to enhance the model’s anomaly detection capabilities. However,
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Table 5: Prediction performance metrics of Part1 for various unsupervised DL models and corresponding
backbones.

Model Backbone Image AUROC Image F1 Score Pixel AUROC Pixel F1 Score

CFA ResNet18 0.810 ± 0.015 0.950 ± 0.007 0.984 ± 0.001 0.453 ± 0.020
WideResNet50 0.889 ± 0.026 0.960 ± 0.008 0.993 ± 0.000 0.544 ± 0.002

CFlow-AD WideResNet50 0.871 ± 0.042 0.950 ± 0.007 0.993 ± 0.000 0.539 ± 0.008

CSFlow EfficientNet-B5 0.822 ± 0.015 0.943 ± 0.000 0.955 ± 0.002 0.224 ± 0.006

DFKDE ResNet18 0.130 ± 0.000 0.943 ± 0.000
WideResNet50 0.120 ± 0.000 0.943 ± 0.000

DFM ResNet50 0.320 ± 0.000 0.943 ± 0.000 0.986 ± 0.000 0.342 ± 0.000
ResNet18 0.280 ± 0.000 0.943 ± 0.000 0.983 ± 0.000 0.316 ± 0.000

DRAEM 0.934 ± 0.037 0.970 ± 0.016 0.982 ± 0.006 0.635 ± 0.079

DSR 0.968 ± 0.026 0.966 ± 0.016 0.971 ± 0.016 0.683 ± 0.051

Efficient AD 0.981 ± 0.007 0.978 ± 0.004 0.954 ± 0.000 0.674 ± 0.004

FastFlow

ResNet18 0.935 ± 0.022 0.967 ± 0.008 0.994 ± 0.001 0.560 ± 0.028
WideResNet50 0.982 ± 0.010 0.982 ± 0.004 0.997 ± 0.000 0.638 ± 0.009
cait 0.837 ± 0.040 0.969 ± 0.008 0.996 ± 0.000 0.662 ± 0.014
deit 0.948 ± 0.024 0.977 ± 0.011 0.992 ± 0.002 0.597 ± 0.033

GANomaly 0.737 ± 0.251 0.948 ± 0.007

MMR WideResNet50 0.980 ± 0.004 0.997 ± 0.002 0.997 ± 0.000 0.597 ± 0.012

PaDiM ResNet18 0.901 ± 0.040 0.969 ± 0.004 0.997 ± 0.000 0.660 ± 0.013
WideResNet50 0.962 ± 0.012 0.973 ± 0.008 0.997 ± 0.000 0.614 ± 0.012

PatchCore WideResNet50 0.944 ± 0.006 0.975 ± 0.005 0.996 ± 0.000 0.571 ± 0.002

Reverse Distill. WideResNet50 0.943 ± 0.036 0.969 ± 0.008 0.998 ± 0.000 0.662 ± 0.016
ResNet18 0.871 ± 0.026 0.965 ± 0.005 0.997 ± 0.000 0.656 ± 0.006

SimpleNet WideResNet50 0.983 ± 0.000 0.969 ± 0.011 0.967 ± 0.000 0.538 ± 0.006

stfpm ResNet18 0.985 ± 0.009 0.982 ± 0.011 0.997 ± 0.000 0.673 ± 0.008
WideResNet50 0.981 ± 0.004 0.976 ± 0.005 0.998 ± 0.000 0.696 ± 0.003

UFlow
mcait 0.951 ± 0.010 0.986 ± 0.006 0.996 ± 0.000 0.578 ± 0.015
ResNet18 0.935 ± 0.019 0.967 ± 0.005 0.993 ± 0.000 0.538 ± 0.030
WideResNet50 0.941 ± 0.033 0.967 ± 0.011 0.993 ± 0.001 0.475 ± 0.039

*No pixel level result for DFKDE and GANomaly because they only do classification.
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the choice of backbone can significantly impact performance, and should therefore be selected
based on the specific requirements of the application.

However, for image level F1score, all the models perform well and all the values are higher
than 0.9. Even for those models that don’t have good performance in image AUROC, DFKDE
and DFM, the image F1 Scores are 0.943. This exceptional performance suggests that the mod-
els achieve a strong balance between precision and recall, meaning they are adept at correctly
identifying anomalies while minimizing false positives and false negatives.

Only models specifically designed for segmentation exhibit pixel-level values. It is notewor-
thy that all the models achieve high pixel-level AUROC scores, with the lowest values observed
in CSFlow and Efficient-AD, which are 0.955 and 0.954, respectively. These high pixel-level
AUROC indicate that the models are proficient at localizing anomalies on a granular level, which
is essential for applications requiring precise detection of defects within an image. The consis-
tently high scores across different models suggest that the algorithms are well-tuned for detailed
anomaly detection tasks. Notably, models such as MMR, stfpm, Reverse Distillation, and Patch-
Core exhibit near-perfect pixel-level AUROC values, highlighting their reliability in accurately
identifying anomalies at a fine-grained level. This performance trend underscores the effective-
ness of these models in practical scenarios where pinpoint accuracy is crucial.

For the pixel-level F1 score, we observe varying performance across the different models.
The best-performing models are stfpm and DSR, with pixel-level F1 scores of 0.696 and 0.683.
While these scores are higher than 0.5, indicating some capability in identifying and segmenting
anomalies at a fine-grained level, they are not exceptionally high. This suggests that even the best
models have room for improvement in achieving precise pixel-level anomaly detection. Overall,
the pixel-level F1 scores are generally lower than the image-level F1 scores across all models.
This disparity highlights the increased challenge of precise anomaly localization at the pixel level
compared to broader image-level anomaly detection. While models exhibit high performance in
identifying anomalies at the image level, achieving the same precision and recall at the pixel
level is more demanding, as evidenced by the lower F1 scores. This trend imply the complexity
and higher granularity required for effective pixel-level anomaly segmentation.

4.1.3. Segmentation Performance
The representative example segmentation results for part1 anomalies are shown at Figure 11.

In this figure, we present eight images that illustrate the results of image anomaly segmenta-
tion. The selection and sequence of these images are based on the Image AUROC performance
metrics. Specifically, the first four images represent the models with the top four performances,
while the last four images represent the models with the lowest performances. To ensure con-
sistency and ease of comparison, all models shown are from Anomalib, as they follow the same
format. The regions depicted in the images are A, C, D, and E. Region B, although analyzed, is
not included because its characteristics are quite similar to Region A. The first four images cor-
respond to the top-performing models in regions A, C, D, and E, respectively, while the last four
images correspond to the worst-performing models, also in regions A, C, D, and E, respectively,
and include their segmentation results.

As shwon in Figure 11, there is a clear relationship between model performance and segmen-
tation precision. A more accurate model yields finer segmentation, which more precisely isolates
the regions of glue line anomalies. For instance, in Region A, the area segmented by STFPM is
significantly smaller and more accurately represents the actual deformation compared to DFM.
While the pixel level performance of these two models is quite similar.
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Figure 11: Segmentation Result, from the top to bottom: stfpm, DSR, fastflow, Efficient Ad, DFM, CFA,
CSFlow, CFlow-AD
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4.2. Robustness

Robustness is essential for anomaly detection models, particularly when deployed in envi-
ronments with varying data quality. In this study, robustness was evaluated by analyzing the
impact of data augmentation on key metrics such as Image AUROC. The complete set of results
are presented in Appendix C.9 and these are summarized in Figure 12.

Models like DFKDE show strong robustness, with both ResNet18 and WideResNet50 archi-
tectures improving in performance after augmentation. This indicates that DFKDE is well-suited
to handle noisy and distorted data. On the other hand, models like PaDiM experienced noticeable
decreases in Image AUROC, especially with the WideResNet50 architecture, suggesting a higher
sensitivity to data variability.

Other models, such as DFM, showed slight improvements, while PatchCore, which had previ-
ously demonstrated strong robustness, exhibited a more noticeable decline in performance under
the new augmentations. These findings underscore the varying levels of robustness across differ-
ent models and architectures, highlighting the need to carefully select models that can maintain
performance under diverse data conditions.

Figure 12: Robustness Performance Results

The image level F1 score differences highlight that most models retain a decent balance
between precision and recall even after data augmentation. While some models like FastFlow
show a more noticeable drop, the overall impact remains relatively modest, suggesting that these
models are fairly robust in maintaining detection accuracy under varying data conditions.

The Pixel Level AUROC plot demonstrates how various anomaly detection models respond
to pixel-level classification challenges after data augmentation. Generally, most models showed
a decline in Pixel AUROC, indicating that data augmentation complicates the task of distinguish-
ing between normal and anomalous pixels. Models like DRAEM and DSR experienced signifi-
cant drops in performance, reflecting their struggle with pixel-wise accuracy under these altered
conditions. In contrast, models such as PatchCore showed a more moderate decline, suggesting
relatively better resilience at the pixel level. These results highlight that while data robustness ex-
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periment tends to reduce pixel-level AUROC across models, some architectures are better suited
to maintain their ability to accurately detect anomalies at finer, pixel-level granularity.

The pixel level F1 score plot indicates that most anomaly detection models experienced a
decline in precision and recall balance at the pixel level after data robustness experiment, with
models like DRAEM and DSR showing the most significant decreases. Despite the general
downward trend, some models like PatchCore managed to limit the impact, suggesting a degree
of resilience in maintaining pixel-level detection accuracy.

5. Discussion

We compared 17 different models with 28 backbones on our glue line image datasets, focus-
ing on moderately challenging areas (part 1). Although the selected models have been exten-
sively evaluated on public benchmarking datasets like MVTec AD, it remains crucial to assess
their performance on our industrial datasets. Some models may perform exceptionally well on
public datasets but have yet to be deployed in real industrial manufacturing environments, where
conditions can be significantly different.

5.1. Multi Criteria Decision Making

Selecting the optimal model for our use case is challenging due to the wide range of perfor-
mance metrics available, making it a multi-criteria decision-making (MCDM) problem. Among
these metrics, inference time, classification accuracy, and segmentation accuracy are prioritized,
as they directly align with the manufacturer’s requirements. To address the inherent trade-offs
in these criteria, we use knee solutions, where the models offer balanced performance across
metrics without a strong preference for any specific criterion. Such knee solutions are consid-
ered “no preference” options in MCDM literature, providing a compromise that meets all major
requirements without overly emphasizing one metric over others. Figure 13 illustrates the rela-
tionship between model inference time and overall performance, with models in the lower-right
corner – closer to knee points –representing our top preferences. Note that the x-axis scale differs
between plots, and not all x-axes start at zero.

Based on the model performance depicted in the graphs, our top choice is Efficient AD,
which consistently appears in the lower right corner of both the image-level and inference-time
plots. This highlights its strong categorization capabilities combined with high operational effi-
ciency. While Efficient AD appears in the bottom left corner of the Pixel AUROC plot, this place-
ment is due to the scale of the X-axis; its actual segmentation performance is well-demonstrated
by the Pixel F1 Score plot. Our second choice is STFPM, which performs effectively with both
backbones and is similarly located in the lower right corner of each plot, indicating its fast exe-
cution while maintaining accuracy.

To focus on model’s performance metrics, we also compare the image level performance
versus pixel level performance at Figure 14. The upper-right corner represents the optimal per-
formance model. The presence of STFPM and MMR in the upper right corner of both graphs
indicates that the MMR model is a viable option if operational efficiency is not a primary concern.

From Table 2, we can see that models based on student-teacher networks from feature-
embedding based approach, such as STFPM, Efficient AD, and MMR, generally perform bet-
ter. Notably, both Efficient AD and MMR also incorporate the autoencoder method which is
reconstruction based, enhancing their performance in defect detection and localization.
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Figure 13: Model Inference Time vs Performance

Figure 14: Image vs. Pixel Performance
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5.2. Application to Other Components
For glue line detection in other components, certain representative sets of components require

special attention. For instance, in part16, the significant variations in lightness and darkness make
it challenging to accurately localize defects during image detection. The false positive rate for
this part is really high, which is 5 times comparing to part1. This variability also complicates the
use of unsupervised deep learning methods. The representative images are shown at Figure 15.
From left to right images are normal image, image that is overexposed but pass the machine’s
inspection, and image that is misdetected. In this part, we will only apply the models that perform
well for our previous part.

Figure 15: Part16 Representative Images

The results for part16 are shown at Table 6 and the results for other representative parts
are shown in Appendix D. As shown in the table, the performance of individual models varies
significantly for parts with pronounced variations in brightness. When considering the models’
ability to differentiate between defects, only a few perform well. Notably, the Fastflow model
with the cait backbone achieves the highest image-level AUROC of 0.927. The Uflow model with
the WideResNet50 backbone also distinguishes defects effectively, with an AUROC of 0.884.
However, many of the remaining models have image-level AUROCs below 0.5, and some are
even lower than 0.15, such as the DRAEM and DSR model. This suggests that the DRAEM and
DSR models are more sensitive to variations in brightness than the other models. For pixel level
AUROC, the performance is better than image level. The significant difference between pixel and
image-level performance could indicate that while the models are sensitive to small, localized
anomalies, these anomalies may not be pronounced enough to influence the classification of the
entire image. This could result in missed detections at the image level, potentially leading to
lower overall performance in applications where image-level classification is critical. The F1
score at the image level remains relatively stable, hovering around 0.83. In contrast, the F1
scores at the pixel level for individual models are less impressive, with none exceeding 0.5.

The performance of models across different regions, including both well-performing and
underperforming ones, is shown in Figure 16. The top-performing models are Fastflow, Uflow,
Reverse Distill, and PatchCore, which accurately localize areas of glue line distortion. Their
segmentation results are precise, effectively pinpointing the deformed regions.

In contrast, the underperforming models are DRAEM, CFA, CSFlow, and Efficient AD.
These models appear to be sensitive to brightness variations, which significantly impacts their
classification performance, often falling below 0.5. The segmentation results are also subopti-
mal. For instance, DRAEM mistakenly segments many of the light and shadow changes on the
parts as defective areas. The CFA model misidentifies variations at the ends of the glue lines as
defects, while the CSFlow model’s segmentation tends to be more random and inconsistent. Al-
though Efficient AD performs reasonably well in segmentation, it only captures a small portion

28



Table 6: Prediction performance metrics of Part16 for various unsupervised DL models and corresponding
backbones.

Model Backbone Image AUROC Image F1 Score Pixel AUROC Pixel F1 Score

CFA ResNet18 0.165 ± 0.003 0.828 ± 0.000 0.715 ± 0.009 0.015 ± 0.002
WideResNet50 0.128 ± 0.021 0.828 ± 0.000 0.790 ± 0.004 0.040 ± 0.008

CFlow WideResNet50 0.576 ± 0.054 0.828 ± 0.000 0.966 ± 0.006 0.350 ± 0.050

CSFlow EfficientNet-B5 0.148 ± 0.001 0.842 ± 0.000 0.491 ± 0.000 0.008 ± 0.000

DFM ResNet50 0.313 ± 0.000 0.828 ± 0.000 0.929 ± 0.000 0.050 ± 0.000

DRAEM 0.093 ± 0.079 0.830 ± 0.006 0.877 ± 0.019 0.040 ± 0.010

DSR 0.143 ± 0.064 0.821 ± 0.015 0.661 ± 0.072 0.017 ± 0.005

Efficient AD 0.296 ± 0.037 0.842 ± 0.000 0.848 ± 0.003 0.105 ± 0.006

FastFlow ResNet18 0.352 ± 0.072 0.828 ± 0.000 0.810 ± 0.048 0.065 ± 0.049
WideResNet50 0.822 ± 0.085 0.878 ± 0.031 0.983 ± 0.006 0.443 ± 0.027
cait 0.927 ± 0.061 0.941 ± 0.019 0.977 ± 0.004 0.492 ± 0.031
deit 0.832 ± 0.047 0.890 ± 0.035 0.965 ± 0.003 0.381 ± 0.026

GANomaly 0.791 ± 0.100 0.899 ± 0.074

PaDiM ResNet18 0.258 ± 0.039 0.828 ± 0.000 0.928 ± 0.008 0.148 ± 0.022
WideResNet50 0.485 ± 0.082 0.830 ± 0.006 0.961 ± 0.003 0.177 ± 0.033

PatchCore WideResNet50 0.601 ± 0.009 0.842 ± 0.000 0.975 ± 0.000 0.227 ± 0.003

Reverse Distill. ResNet18 0.218 ± 0.023 0.828 ± 0.000 0.946 ± 0.003 0.101 ± 0.009
WideResNet50 0.630 ± 0.029 0.833 ± 0.013 0.984 ± 0.001 0.320 ± 0.020

stfpm ResNet18 0.508 ± 0.156 0.833 ± 0.008 0.660 ± 0.133 0.017 ± 0.012
WideResNet50 0.288 ± 0.288 0.833 ± 0.013 0.577 ± 0.038 0.010 ± 0.001

Uflow mcait 0.632 ± 0.113 0.848 ± 0.031 0.968 ± 0.018 0.223 ± 0.069
ResNet18 0.381 ± 0.061 0.828 ± 0.000 0.913 ± 0.025 0.086 ± 0.013
WideResNet50 0.884 ± 0.028 0.896 ± 0.009 0.986 ± 0.001 0.302 ± 0.010
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of the glue line deformation, failing to cover the full extent of the defect, which shows that this
model is sensitive to brightness.

(a) Optimal Results, Fastflow, Uflow, Reverse distill., PatchCore

(b) Bad Results, DRAEM, CFA, CSFlow, Efficient AD

Figure 16: Segmentation and Heatmap for Part16

5.3. Contribution and Limitation

The main contribution of this study is the comprehensive comparison of a wide variety of ex-
isting anomaly detection models applied to a real industrial use case involving multiple scenarios.
Unlike most empirical studies in the literature that rely on benchmark anomaly detection image
datasets, which often fail to capture the variability of real-world industrial conditions (Wilmet
et al., 2021; Cui et al., 2023), this study uniquely evaluates models on a dataset derived from
a production environment. A thorough comparison of existing models on images from actual
manufacturing settings has not been comprehensively addressed in previous research. Our eval-
uation spans multiple dimensions, including image-level accuracy, pixel-level accuracy, training
and inference times, and the robustness of models to variations in image quality.

Additionally, this study introduces a MCDM-based approach for model selection, enabling
decision-makers to achieve optimal trade-offs between accuracy and inference time. This dual
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contribution—comprehensive evaluation and actionable model selection framework—addresses
key challenges in deploying image anomaly detection systems in industrial contexts.

In this work, we assessed models from two major categories: reconstruction-based and
feature-embedding-based approaches. Specifically, our analysis focused on temporal perfor-
mance, segmentation precision, and robustness in industrial environments. These evaluations
directly address RQ1, identifying models that deliver optimal accuracy and efficiency for detect-
ing and segmenting anomalies in glue-line images.

Among the models evaluated, Efficient AD and STFPM demonstrated superior segmentation
precision, accuracy and efficiency, particularly in localizing small and subtle anomalies, which is
critical in minimizing false positives. While Fastflow is robust and performs very well on most
difficult component that has extreme brightness contrast, part16. By reducing the rate of false
positives, we were able to significantly enhance the overall reliability of the automated inspection
system. This finding aligns with our primary objective of improving anomaly detection accuracy
and operational efficiency. The reduction of false positives not only decreases unnecessary main-
tenance checks and system downtimes, but also boosts the overall equipment effectiveness (OEE)
of the glue system, a key performance indicator in industrial settings.

To address RQ2, we addressed the challenge of limited defect class datasets in industrial ap-
plications by incorporating data augmentation and synthetic data generation techniques. These
methods enriched the diversity of training data, improving model generalization to unseen anoma-
lies. Such strategies are especially valuable in unsupervised settings, where labeled data is
scarce or expensive to acquire. Additionally, our data augmentation experiments ensured that
the models’ robustness extended beyond mere accuracy metrics, proving their practical appli-
cability. These findings underscore the effectiveness of data augmentation in mitigating dataset
imbalances, providing a viable solution for enhancing model performance despite limited defect-
specific datasets.

This comparative study provides a roadmap for selecting the most suitable unsupervised deep
learning model tailored to specific industrial needs. It also demonstrates a clear reduction in false
positives, minimizing glue machine downtimes and further enhancing the OEE of the entire glue-
line system.

Despite these contributions, the study has certain limitations. For instance, the dataset used
is single-channel, potentially limiting the approach’s applicability to other industrial datasets,
where models may behave differently with three-channel images. Future research could explore
the integration of thermal imaging to introduce an additional channel, further optimizing model
performance.

Moreover, uncertainties introduced by our data synthesis methods may limit generalizability,
and not all types of unsupervised deep learning models were evaluated. Future studies could
investigate diffusion models and transformer-based architectures. Comparing supervised, semi-
supervised, and weakly supervised models on the glue-line dataset could also provide deeper
insights and potentially enhance performance further.

6. Conclusions

In this study, we conducted a comprehensive comparison of various unsupervised deep learn-
ing models for anomaly detection in industrial glue lines. We assessed the models’ accuracy,
segmentation precision, and robustness to identify the most stable and effective model for our
specific industrial environment. The models successfully detected and localized defects in glue
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lines, significantly reducing the high false-positive rate. Additionally, through the application of
data sythesis techniques, we addressed the challenge of limited datasets, enhancing the models’
performance and reliability. These findings demonstrate the potential for real-world application
in industrial image anomaly detection, improving both the accuracy of defect detection and the
overall efficiency of the glue line system.
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Appendix A. Selected unsupervised deep learning models’ accuracy performance

Table A.7: Selected unsupervised deep learning models’ accuracy performance on MVTec AD benchmark-
ing dataset

Model Backbone Image AUROC

CFA ResNet18 0.930
WideResNet50 0.956

CFlow WideResNet50 0.962
CSFlow EfficientNet-B5 0.987
DFKDE ResNet18 0.762

WideResNet50 0.774
DFM ResNet50 0.936

DRAEM 0.980
DSR 0.982

Efficient AD 0.982
FastFlow ResNet18 0.907

WideResNet50 0.963
CaiT 0.925
DeiT 0.944

GANomaly 0.421
PaDiM ResNet18 0.891

WideResNet50 0.950
PatchCore WideResNet50 0.980

Reverse Distillation WideResNet50 0.985
ResNet18 0.978

stfpm ResNet18 0.893
WideResNet50 0.876

Uflow mcait 0.987
ResNet18 0.942

WideResNet50 0.968
MMR WideResNet50 0.984

SimpleNet WideResNet50 0.996

Appendix B. Choice of the Hyperparameters

Table B.8: Hyperparameters Used for Deep Learning Models

Model Tuning Parameters Implemented Values in this Study

PaDiM

Backbone ResNet18, WideResNet50 2
Layers (layer1 + layer2 + layer3)
Image Resolution 256 * 256
Train Batch Size 32
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Eval Batch Size 32
Normalization Imagenet
Normalization Method min max
Max Epochs 1

CFA

Backbone ResNet18, WideResNet50 2
Image Resolution 224 * 224
Train Batch Size 4
Eval Batch Size 4
Inference Batch Size 4
Normalization imagenet
Normalization Method min max
Max Epochs 30
Learning Rate 1.00E-03
Weight Decay 5.00E-04
gamma c 1.00E+00
gamma d 1.00E+00
num nearest neighbors 3.00E+00

Cflow

Backbone WideResNet50 2
Layers (layer2 + layer3 + layer4)
Decoder freia-cflow
Image Resolution 256 * 256
condition vector 128
coupling blocks 8
clamp alpha 1.9
fiber batch size 64
Train Batch Size 16
Eval Batch Size 16
Inference Batch Size 16
Normalization imagenet
Normalization Method min max
Max Epochs 50
Learning Rate 0.0001

Csflow

Backbone EfficientNet-B5
Layers 6.8
Image Resolution 768 * 768
Train Batch Size 16
Eval Batch Size 16
Normalization imagenet
Normalization Method min max
Max Epochs 240
Learning Rate 2.00E-04
Weight Decay 1.00E-05
eps 1.00E-04

dfkde

Backbone ResNet18, WideResNet50 2
Layers layer4
Image Resolution 256 * 256
Train Batch Size 32
Eval Batch Size 32
n pca components 16
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max training points 40000
feature scaling method (scale,
norm)

scale

Normalization imagenet
Normalization Method min max
Max Epochs 1

dfm

Backbone Resnet18, Resnet50
Layers layer3
pooling Kernel Size 2
PCA Level 0.97
Score Type pca feature reconstruction error
Image Resolution 256 * 256
Train Batch Size 32
Eval Batch Size 32
Normalization imagenet
Normalization Method min max
Max Epochs 1

draem

Image Resolution 256 * 256
Train Batch Size 8
Eval Batch Size 32
Normalization none
Normalization Method min max
Max Epochs 700
Learning Rate 0.0001
beta [0.1, 1.0]
sspcab lambda 0.1

dsr

Image Resolution 256 * 256
Train Batch Size 8
Eval Batch Size 16
Normalization none
Normalization Method none
Max Epochs 700
Learning Rate 0.0002
latent anomaly strength 0.2
upsampling train ratio 0.7

efficient ad

Image Resolution 256 * 256
Train Batch Size 1
Eval Batch Size 16
Normalization none
teacher out channels 384
Normalization Method min max
Max Epochs 200
Learning Rate 0.0001
weight decay 0.00001

GANomaly

Image Resolution 256 * 256
Train Batch Size 32
Eval Batch Size 32
Inference Batch Size 32
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Normalization imagenet
Normalization Method none
Max Epochs 100
Learning Rate 0.0002
beta1 0.5
beta2 0.999
wadv 1
wcon 50
wenc 1

patchcore

Backbone wide50 resnet50 2
Layers (layer2 + layer3)
Image Resolution 256 * 256
Train Batch Size 32
Eval Batch Size 32
Normalization imagenet
Normalization Method min max
Max Epochs 1
coreset sampling ratio 0.1
num neighbors 9

reverse distill.

Backbone ResNet18, WideResNet50 2
Layers (layer1 + layer2 + layer3)
Image Resolution 256 * 256
Train Batch Size 16
Eval Batch Size 32
Inference Batch Size 32
Normalization imagenet
Normalization Method min max
Max Epochs 200
Learning Rate 0.005
beta1 0.5
beta2 0.999

stfpm

Backbone ResNet18, WideResNet50 2
Layers (layer1 + layer2 + layer3)
Image Resolution 256 * 256
Train Batch Size 32
Eval Batch Size 32
Inference Batch Size 32
Normalization imagenet
Normalization Method min max
Max Epochs 100
Learning Rate 0.4
Weight Decay 0.0001
momentum 0.9

fastflow

Backbone ResNet181, WideResNet50 22, cait m48 4483,
deit base distilled patch16 3844

Image Resolution 256 * 2561, 2, 448 * 4483, 384 * 3844

Train Batch Size 32
Eval Batch Size 32
Normalization Imagenet
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Normalization Method min max
max epochs 500
Learning rate 0.001
weight decay 0.00001
flow steps 81, 2, 203, 4

hidden ratio 11, 2, 0.163, 4

conv3x3 only TRUE1, 2, FALSE3, 4

Uflow

Backbone mcait1, ResNet182, WideResNet50 23

Image Resolution 448 * 4481, 256 * 2562, 3

Train Batch Size 14
Eval Batch Size 16
Inference Batch Size 16
Normalization Imagenet
Normalization Method min max
max epochs 200
Learning Rate 0.001
Weight Decay 0.00001
Flow Steps 4
Affine Clamp 2
affine subnet channels ratio 1

SimpleNet

Backbone WideResNet50
layers layer2 + layer3
Batch Size 8
Image Resolution 288 * 288

MMR

Backbone WideResNet50
layers layer1 + layer2 + layer3
Image Resolution 256 * 256
epochs 200
warmup epochs 50
Learning Rate 0.001
Weight Decay 0.05
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Appendix C. Experimental Results for Robustness Study

Table C.9: Robustness Anomaly Detection Results

Model Backbone Image AUROC Image F1 Score Pixel AUROC Pixel F1 Score

CFA ResNet18 0.599 ± 0.118 0.937 ± 0.011 0.735 ± 0.012 0.034 ± 0.003
WideResNet50 0.639 ± 0.137 0.935 ± 0.005 0.758 ± 0.025 0.087 ± 0.026

CFlow WideResNet50 0.755 ± 0.146 0.938 ± 0.023 0.689 ± 0.025 0.140 ± 0.048

CSFlow EfficientNet-B5 0.584 ± 0.134 0.931 ± 0.017 0.536 ± 0.025 0.014 ± 0.002

CutPaste 0.603 ± 0.173 0.931 ± 0.020 0.647 ± 0.026 0.237 ± 0.083

DFKDE ResNet18 0.610 ± 0.060 0.919 ± 0.025 - -
WideResNet50 0.719 ± 0.078 0.920 ± 0.026 - -

DFM ResNet50 0.482 ± 0.016 0.941 ± 0.005 0.739 ± 0.041 0.113 ± 0.008

DRAEM 0.448 ± 0.155 0.931 ± 0.017 0.644 ± 0.018 0.025 ± 0.007

DSR 0.551 ± 0.111 0.929 ± 0.009 0.494 ± 0.056 0.043 ± 0.020

FastFlow

ResNet18 0.669 ± 0.091 0.943 ± 0.000 0.691 ± 0.047 0.133 ± 0.030
WideResNet50 0.735 ± 0.086 0.913 ± 0.039 0.674 ± 0.055 0.203 ± 0.104
cait m48 448 0.627 ± 0.118 0.935 ± 0.005 0.758 ± 0.051 0.236 ± 0.096
deit384 0.770 ± 0.063 0.932 ± 0.023 0.695 ± 0.019 0.152 ± 0.078

GANomaly 0.567 ± 0.080 0.943 ± 0.000 - -

MMR WideResNet50 0.824 ± 0.023 0.942 ± 0.005 0.953 ± 0.032 0.207 ± 0.004

PaDiM ResNet18 0.634 ± 0.134 0.939 ± 0.009 0.773 ± 0.021 0.218 ± 0.073
WideResNet50 0.682 ± 0.122 0.935 ± 0.014 0.806 ± 0.049 0.233 ± 0.075

PatchCore WideResNet50 0.717 ± 0.082 0.923 ± 0.020 0.830 ± 0.023 0.279 ± 0.048

Reverse Distill. WideResNet50 0.572 ± 0.062 0.935 ± 0.008 0.766 ± 0.066 0.261 ± 0.101
ResNet-18 0.575 ± 0.153 0.937 ± 0.009 0.762 ± 0.068 0.334 ± 0.027

stfpm ResNet18 0.573 ± 0.121 0.937 ± 0.009 0.700 ± 0.058 0.197 ± 0.046
WideResNet50 0.595 ± 0.141 0.933 ± 0.013 0.649 ± 0.028 0.132 ± 0.048

SimpleNet WideResNet50 0.869 ± 0.026 0.943 ± 0.012 0.899 ± 0.014 0.152 ± 0.008

UFlow
mcait 0.753 ± 0.088 0.931 ± 0.021 0.752 ± 0.017 0.292 ± 0.042
ResNet18 0.645 ± 0.070 0.939 ± 0.006 0.705 ± 0.030 0.185 ± 0.041
WideResNet50 0.585 ± 0.121 0.933 ± 0.010 0.734 ± 0.030 0.237 ± 0.017
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Appendix D. Experimental Results for Additional Parts

Table D.10: Anomaly Detection Results on Part6 Dataset (Default Random Seed: 42)

Model Name Backbone Image AUROC Image F1Score Pixel AUROC Pixel F1Score

CFA ResNet18 0.595 0.667 0.935 0.295
WideResNet50 0.648 0.640 0.966 0.358

CFlow WideResNet50 0.991 0.968 0.997 0.599

CSFlow EfficientNet-B5 0.287 0.542 0.430 0.013

DFKDE ResNet18 0.081 0.542 - -
WideResNet50 0.107 0.542 - -

DFM ResNet50 0.375 0.542 0.992 0.463

DRAEM - 0.639 0.629 0.955 0.378

DSR - 0.646 0.600 0.933 0.308

Efficient AD - 0.900 0.875 0.957 0.561

FastFlow

ResNet18 0.940 0.968 0.990 0.579
WideResNet50 0.998 0.970 0.997 0.679
cait 0.940 0.968 0.997 0.654
deit 0.940 0.968 0.995 0.700

GANomaly - 0.169 0.542 - -

MMR WideResNet50 0.958 0.968 0.995 0.681

PaDiM ResNet18 0.968 0.938 0.997 0.668
WideResNet50 0.970 0.968 0.997 0.622

PatchCore WideResNet50 0.951 0.968 0.994 0.603

Reverse Distillation ResNet18 0.900 0.815 0.995 0.616
WideResNet50 0.991 0.968 0.997 0.681

stfpm ResNet18 0.875 0.897 0.992 0.596
WideResNet50 0.938 0.968 0.996 0.693

SimpleNet WideResNet50 1.000 0.970 0.996 0.700

UFlow
mcait 0.995 0.968 0.998 0.655
ResNet18 0.988 0.933 0.993 0.558
WideResNet50 0.979 0.933 0.994 0.554
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Figure D.17: Part6 Segmentation Result, from the top to bottom: Uflow, Fastflow, Reverse Dis.,Cflow,
DFM, CFA, CSFlow, DRAEM. 43



Figure D.18: Optimal Part 4 Segmentation Result, from the top to bottom: Fastflow, CFlow, stfpm, UFlow,
Reverse Distill, PaDiM, Patchcore, Efficient AD 44
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