
Creating Python-Style Domain Specific Languages: A Semi-Automated
Approach and Intermediate Results

Downloaded from: https://research.chalmers.se, 2025-04-22 14:48 UTC

Citation for the original published paper (version of record):
Zhang, W., Hebig, R., Steghöfer, J. et al (2023). Creating Python-Style Domain Specific Languages:
A Semi-Automated Approach and Intermediate
Results. International Conference on Model-Driven Engineering and Software Development, 1:
210-217. http://dx.doi.org/10.5220/0011744900003402

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Creating Python-Style Domain Specific Languages: A Semi-Automated
Approach and Intermediate Results

Weixing Zhang1 a, Regina Hebig1 b, Jan-Philipp Steghöfer2 c and Jörg Holtmann1 d

1Department of Computer Engineering, Chalmers University of Technology, University of Gothenburg, Sweden
2Xitaso IT & Software Solutions GmbH, Augsburg, Germany

{weixing.zhang, regina.hebig, jorg.holtmann}@gu.se, jan-philipp.steghoefer@xitaso.com

Keywords: DSL, Xtext, Textual Modeling, Grammar, Language Engineering.

Abstract: Xtext is a well-known domain-specific language design framework and technology. It automatically generates
a textual grammar for a language, given a meta-model specified in Ecore. These generated textual grammars
are typically not user-friendly. Python-style languages are popular among developers for their usability and
conciseness. We aim to propose a systematic approach to transform a DSL with a generated grammar into
a Python-style DSL. To achieve this, we analyze the problems of grammars generated with Xtext, based
on a lightweight architecture description language. In response to these problems, we propose a general
semi-automated grammar adaptation approach. We apply the approach to two other DSLs to validate the
generalization of the approach. We also discuss the limitations of this approach and prospects for the future.

1 INTRODUCTION

In contrast to general-purpose programming lan-
guages (GPLs) like Java, domain-specific languages
(DSLs) are computer languages tailored for a partic-
ular application domain (Kosar et al., 2016). DSLs
come in a variety of forms and are employed in a wide
range of domains(do Nascimento et al., 2012). For
example, DSLs are used to improve the level of ab-
straction and automation in the application develop-
ment in the robotic domain (Nordmann et al., 2014).
But it is important to take into account the workload
that goes into creating the DSL (Mernik et al., 2005).
The good news is that there are many tools available
for designing and developing DSLs, like JetBrains
MPS, MontiCore, Xtext, Racket, etc. (Iung et al.,
2020). One of them is Xtext (Eclipse Foundation,
2022c), an open-source software framework that sim-
plifies the development of DSLs. Xtext can generate a
complete DSL infrastructure, including parsers, link-
ers, compilers, etc. Developers utilize Ecore meta-
models to represent domain ideas and their relation-
ships when creating DSLs based on Xtext. From such
a meta-model, Xtext generates grammar that specifies

a https://orcid.org/0000-0003-2890-6034
b https://orcid.org/0000-0002-1459-2081
c https://orcid.org/0000-0003-1694-0972
d https://orcid.org/0000-0001-6141-4571

the concrete syntax. The editor and its different com-
ponents are automatically generated from the meta-
model of this language as Xtext artifacts.

The grammar generated by Xtext tends to specify
languages that are not user-friendly to use. For exam-
ple, the generated DSLs include default requirements
that developers type in all keywords, use braces to an
extensive amount, etc. This leads to a high effort in
writing when programming in these DSLs. In con-
trast, the Python (Python Community, 2022) language
provides a very clean coding style, is renowned for in-
creasing programmer productivity, and is considered
easy to learn (Gmys et al., 2020). Both are properties
are also relevant and desirable for DSLs. However,
there is currently no systematic approach for convert-
ing DSLs to Python-like languages.

In this paper, we introduce an approach to semi-
automatically convert textual DSL grammars gener-
ated by Xtext to a Python-like DSL. This means that
the resulting languages will be easy to code, easy to
read, user-friendly, concise, and use whitespace and
indents instead of braces (Gmys et al., 2020). We de-
veloped the approach by developing an architectural
description language (DemoAdl) as an exemplar for
automatically transforming a DSL to a Python-like
language. Once our transformation worked for De-
moAdl, we evaluated the approach with additional
DSLs, Xenia and ACME. This way we validate the



Metamodel 
(Ecore file)

Concrete Syntax 
(Xtext file)

Domain Program 
(User code)

Generate
Grammar Run MWE2 Run Runtime 

and Program

conforms to conforms to

Figure 1: The relationship between different artifacts in the
Xtext-based MDSE solution.

generalizability of our approach and explore its limi-
tations.

2 BACKGROUND

As outlined in the introduction, Xtext is a frame-
work for developing DSLs, and Xtext-based Model-
Driven Software Engineering (MDSE) is a common
solution for developing DSLs (Behrens et al., 2008).
In this solution, the DSL developer uses an Ecore
meta-model to describe the concepts of the domain
and the relationships between the concepts (Stein-
berg et al., 2008). For example, “port” becomes a
class in the meta-model when using a meta-model
to describe concepts in the field of system architec-
ture. Next, the concrete syntax is generated from the
meta-model by using the Xtext framework. Xtext pro-
vides Modeling Workflow Engine 2 (MWE2) (Eclipse
Foundation, 2022a), a declarative, externally config-
urable generator engine. After having a concrete syn-
tax, all Xtext artifacts can be generated by running the
MWE2 file. These artifacts actually make up the edi-
tor for the DSL, including linker, parser, type-checker,
etc., common components of editors, and editing sup-
port for Eclipse. After the editor is generated, code
written in the DSL could be resolved and supported
at runtime. Figure 1 shows the relationship between
the above concepts. When Xtext generates a tex-
tual grammar, it will generate a corresponding gram-
mar rule for each class or enumeration in the meta-
model and create an attribute in the textual grammar
for each attribute or association (i.e., reference or con-
tainment) in the meta-model. A grammar rule corre-
sponding to a class may contain multiple attributes,
and each attribute occupies a line of text. A grammar
rule corresponding to an enumeration contains multi-
ple alternative values, usually on the same line of text.

3 METHODOLOGY

As mentioned above, we developed the approach by
developing an architectural description language (i.e.,
DemoADL) for an example embedded system. The
DSL can be used to describe simple embedded sys-

Figure 2: A screenshot of part of the domain program with
a default Xtext style.

tem structures, which include hardware components
and software components. There are different types of
hardware components, and each software component
contains a number of sub-components. There are di-
rect links between hardware components and software
components, which together make up the system.

We created an Ecore meta-model that describes
the domain concepts from this system and generated
textual grammar from the meta-model by using Xtext.
This constitutes the default grammar for the concrete
syntax for DemoAdl. We used this DSL to code an
example program with a default style (we called this
program a “Default-style program”). We analyzed the
shortcomings of the grammar and the program con-
forms to it. We also created a draft of the program
to illustrate what it might look like in a Python-style
grammar. We call this program a “Python-like draft”.

Based on that analysis, we developed a systematic
approach to adapt grammars that were generated with
Xtext. The approach is based on grammar adaptation
rules in response to the problems analyzed from the
default-style DSL. We applied these rules to the gram-
mar Xtext generated for DemoAdl. To semi-automate
the grammar adaptations, we developed a script in the
form of an eclipse Java plug-in. After the adaptation
of the grammar, we generated an editor and wrote the
same program according to the newly adapted gram-
mar (we called this code a “Python-like program”).
This was to test whether we could successfully parse



such a program in the new editor.
To evaluate the generalizability of our approach,

we chose two other DSLs. Our selection criteria are
that the language 1) has an accessible homepage and
2) with examples on the homepage, and 3) has a
downloadable Ecore meta-model. We apply the pro-
posed approach to these two languages to determine
whether the script and approach can be applied to cre-
ate Python-style languages.

4 RESULTS

We present our analysis, our semi-automated ap-
proach, and an evaluation of our approach.

4.1 Analysis

As mentioned in the methodology section, we first an-
alyzed the shortcomings of the sample DSL (i.e., De-
moADL). We illustrate our findings with the help of
a snippet of the default style program in Figure 2. We
made the following observations about the grammar
generated by Xtext:
1. Inappropriate Position of Identifier. In Xtext,

‘name’ is the default name for an element’s iden-
tifier. However, when we use an attribute named
identifier to identify an element (e.g., a software
component in our case language DemoAdl), then
it will default to a normal attribute and be placed
within braces. This means that, for example,
when we type in keyword SoftwareComponent,
we have to type in the left brace first and then the
attribute identifier. For example, in Figure 2 (line
22), attribute identifier with value ‘swcomp1’ is
used to identify an element SoftwareComponent,
however, the attribute identifier is existing inside
of braces in the second line which reduces the
brevity of the code. If the same content is ex-
pressed in Python, e.g., in Figure 3, the identifier
value ‘swcomp1’ (line 1) will follow the keyword
SoftwareComponent to identify the element.

2. Heavy Separation of Code Blocks. The default-
style program uses both braces and commas to
separate and distinguish code blocks. For exam-
ple, PortGroup ‘portgroup1’ and ‘portgroup2’ are
on the same level while they are separated by a
comma symbol. Obviously, these commas are re-
dundant, because braces have already been able to
separate and distinguish them. In Python, for ex-
ample in Figure 3, ‘portgourp1’ and ‘portgroup2’
are separated by being on different lines though
there is no brace or comma for them. This is be-
cause there are indents to express hierarchy, and

Figure 3: Snippet of SoftwareComponent in the system
architecture description example, in Python style.

‘portgourp1’ and ‘portgroup2’ are on the same hi-
erarchy level.

3. Repetitive Keyword. There are different key-
words with the same functional implication. For
example, there are two keywords softwarecompo-
nent and SoftwareComponent, which are highly
redundant in function. This also reduced the us-
ability of the language.

4. Nested Braces. There are many nested braces, for
example in Figure 2, after typing in a keyword,
it’s necessary to open a brace. Next, we should
type in the keyword PortGroup and go into a brace
again. These nesting braces are unnecessary and
redundant, which increases the complexity of the
code. In Python, braces are avoided by having a
whitespace-sensitive syntax.

The draft shown in Figure 3 shows how the pro-
gram from Figure 2 could appear in a Python-style
language. The envisioned code in Figure 3 uses
whitespace and indentations to define and separate
code blocks, which greatly improves the conciseness
of the code. Identifier of e.g. SoftwareComponent
directly follows after the keyword ‘SoftwareCompo-
nent’ (cf. line 1 in Figure 3), which makes the code
more readable. There are no more braces and the
number of keywords and symbols is greatly reduced.

4.2 The Semi-Automated Approach

As mentioned earlier, we developed a semi-automated
approach to adapt a generated grammar to become
more like Python. On the one hand, we develop a
script that applies some changes automatically. On
the other hand, we require the language engineer to
take some specific decisions that must be done by
hand. The adaptations that are automatically com-
pleted by the script are removing braces, reposition-
ing attributes, and removing commas. Hand-crafted
adaptations address which keywords need to be re-
fined. In the following we describe these adaptations
in more detail:



Remove Braces and Introduce White-Space
Awareness. Removing all braces directly from the
grammar definition may cause errors, such as left
recursion errors(Bettini, 2019), which will prevent
the creation of a textual editor.

Therefore, the functionality of the braces needs to
be substituted with the use of whitespace and indents
to define code blocks. Thus, we need the language to
be whitespace-aware (Eclipse Foundation, 2022b). To
this end, the script introduces the following changes:

Import Required Features. Change the
reference in the grammar definition file
from org.eclipse.xtext.common.Terminals to
org.eclipse.xtext.xbase.Xbase. In addition, im-
port Xbase to refer to EClassifiers from that
model. This gives access to features that allow
white-space-aware grammars in Xtext.

Create BEGIN/END Terminals. Include
whitespace-aware blocks in your language
by using synthetic tokens in the grammar of
the form ‘synthetic:<terminal name>’. An
example using BEGIN/END is shown in Figure 4.

Redefine Expression. Inherits expressions
from Xbase and redefines the syntax of block
expressions by overriding the definition of
xbase::XExpression.

Reposition Attribute Identifier. With the help of
the script, we moved the attribute identifier from its
original position to after the keyword with the same
name as the grammar rule. For example, Software-
Component would be exactly followed by the attribute
identifier. Here, the script uses regular expressions to
find the attribute identifier and move it. If the iden-
tifier is called name, we do not need to do anything
with it.

Remove Commas. In this step, we removed com-
mas that separate code blocks. For example, if there
are multiple ports under the same PortGroup (cf. line
11 & 12 in Figure 5), we do not need to separate these
ports with commas because whitespace and indenta-
tions are used instead.

Refine Keywords. In this step, functionally redun-
dant keywords are manually removed. The aforemen-
tioned keywords SoftwareComponent and software-
component, e.g., were functionally redundant and we
removed one of them (in our case, we kept the up-
per case one). We did not implement this removal in
the script, because the keywords are language-specific
and people make different decisions about what to

keep. At the same time, we also did not implement
the removal of the BEGIN/END related to them in the
script. We will address these two automated opera-
tions in our future work by configurable rules with
a finite set of options. For manually removing func-
tionally redundant keywords, we recommend defining
a rule, e.g., to remove the keyword which is written
entirely in lowercase. However, our script automat-
ically removes the keyword ‘identifier’, because, in
our envisioned draft, the value of the identifier should
directly follow the keyword (e.g., SoftwareCompo-
nent) without the existence of the keyword ‘identi-
fier’, which would make the code more concise.

When the script adapts the grammar, it uses reg-
ular expressions to search for the target texts in the
entire grammar text, and then performs operations on
it, including deletion, modification, etc.

4.3 Evaluation

With the above modifications, the grammar of De-
moADL was changed. We generated the Xtext arti-
facts for the language by running the MWE2 work-
flow file. We wrote a program (cf. Figure 5) that con-
forms to the newly adapted textual grammar, which
was parsed successfully by the generated editor.

To evaluate the usability and generalizability of
the proposed approach, we applied it to two additional
DSLs, Xenia and ACME, which we selected based on
the criteria described above. The basic information of
the two DSLs is shown in Table 1.

Grammar Generation with Xtext. The Ecore
meta-model of ACME is from the Atlantic Zoo (At-
lanMod, 2019). To fulfill all technical constraints nec-
essary for the generation of model code and grammar
with Xtext, some small adaptations were necessary:

1. We filled in the namespace values (i.e., ‘Ns Prefix’
and ’Ns URI’) for all packages in the meta-model.

2. We filled in the value (i.e., ‘Instance Type Name’
for all the types under the package primitivetypes.

3. We changed the lower-bound value of two at-
tributes under the type Link from 1 to 0.

We then generated a textual grammar from both
DSLs’ meta-models using the Xtext framework.

Applying the Approach. With the proposed ap-
proach, we adapted both DSLs to a Python-like DSL
with the help of our script. All manual steps were
performed by the first author of this paper. For both
ACME and Xenia, executing these manual steps took
less than 30 minutes each.



(a) Grammar rule SoftwareComponent before adaptation. (b) Grammar rule SoftwareComponent after adaptation.

Figure 4: Comparison of grammar rules SoftwareComponent before and after adaptation.

Table 1: The two languages chosen for the evaluation.

Language Domain Language meta-model Homepage
elements Source

Xenia Generate web pages 14 (Rodchenkov, 2019) (Rodchenkov, 2020)
ACME SW Architecture description 16 (AtlanMod, 2019) (ABLE Group, 2011)

Figure 5: Screenshot of part of the example program for the
DemoADL language with a Python-like style in eclipse.

Outcome. An example program for the grammar
that Xtext generated for Xenia is shown in Figure 6-
(b) while the program for the resulting Python-like
grammar of Xenia is shown in Figure 6-(c). For com-
parison, two programs correspond to the “app Main”
example from the Xenia home page (Rodchenkov,
2020) (shown in Figure 6-(a)).

The comparison shows that the program in (c) is
much more concise than the one in (b) because there
are fewer keywords and nesting. Like Python, the pro-
gram in (c) uses whitespace and indents to express
hierarchy. The comparison to the original program
(Figure 6-(a)) also shows that the resulting Python-
like grammar is much closer in terms of compactness
to the actual, intended grammar of Xenia.

An example program for the grammar that Xtext
generated for ACME is shown in Figure 8 while the
program for the resulting Python-like grammar of
ACME is shown in Figure 9. Similarly, the two
programs conform to the example “simple cs” from
the subpage “An Overview Of Acme” of the ACME
homepage (ABLE Group, 2011) (shown in Figure 7).

Again we can see that the Python-like program in
(c))contains much fewer lines of code, and there is
no need to input braces in the program. Every identi-
fier (here e.g., the name) follows the main keyword to
identify a certain structure. Also, the comparison to
the original grammar shows that the Python-like style
is much closer to the original and intended grammar
of ACME (Figure 7) in terms of compactness.

Note that the original syntaxes of both Xenia and
ACME are quite different in style and neither is orig-
inally white-space sensitive. This shows that our ap-
proach and the script are applicable to diverse DSLs
and can be used by DSL developers to quickly reach
a Python-like grammar, which could then be used as
a basis for further refinements of the grammar.

5 DISCUSSION

5.1 Threats to Validity and Limitations

Threats to Validity. As discussed in the evaluation
part, we applied the proposed approach to the two
DSLs Xenia and ACME. The results show that the
approach could be successfully used for these two
DSLs. However, to ensure generalizability, we plan to
apply the approach to additional languages. Although
we could show that our method provides a quick way
to adapt diverse Xtext-generated grammars to Python-
style languages, there are still some limitations.

Expressiveness of Language. Even after adapting
a grammar with our approach, there is often room for
further modifications to the grammar to improve the
expressiveness of the language itself. In the Xenia



(a) The example from Xenia official website.

(b) The same Xenia example according to grammar generated by Xtext. (c) The same Xenia example according to Python-like grammar.

Figure 6: Comparison of Xenia programs in different styles (The original example is from https://github.com/rodchenk/xenia).

Figure 7: ACME original syntax from https://www.cs.cmu.
edu/∼acme/docs/language overview.html.

example, we can change the keyword page to the ar-
row -¿, indicating a “progressive” or “link” relation-
ship as it was done in the original grammar. Such
special keywords are typical for DSLs. Our proposed
approach does not include such operations, since they
are highly language-specific. We focus currently only
on adapting a DSL with a default Xtext-generated
grammar to Python style. However, in future work, it
might be interesting to support such operations with
automation tools.

Automation of Grammar Modification. We im-
plemented a small script in the form of an Eclipse
plugin to simplify grammar modification. However,
the functionality of the script is limited. For example,
adding a colon : after a certain type of keyword is not

Figure 8: The example from Figure 7 in the syntax automat-
ically generated by Xtext.

supported by the script at present. A feasible solution
will be to extend the functionality to support various

https://github.com/rodchenk/xenia
https://www.cs.cmu.edu/~acme/docs/language_overview.html
https://www.cs.cmu.edu/~acme/docs/language_overview.html


Figure 9: The example from Figure 7 in the Python-like
syntax after our tool modified the generated grammar.

modifications of keywords.
Also, while adapting the grammar, one may en-

counter problems such as left-recursion errors. Other
than the focused change to white-space awareness, we
currently provide no additional support to help devel-
opers avoid changes that lead to these errors.

5.2 Future Work

As we mentioned above, in the future we will apply
our approach to more languages to evaluate general-
izability. In addition, we plan to apply the approach
to larger DSLs, for example, EAST-ADL. We hope
that this will also help us refine our approach and ex-
tend the capabilities of the script. Namely, we hope
that we can address the previously mentioned limited
functionality of our script and the semi-automated na-
ture of our approach.

Converting a DSL generated from a meta-model
into a Python-like language can improve the lan-
guage’s simplicity, friendliness, and usability. How-
ever, these are all issues on the language appearance
level. In the future, we will discuss and explore how
to design a good DSL, including defining the stan-
dards of what a good DSL is.

Another interesting and related topic is blended
modeling (Addazi and Ciccozzi, 2021), which refers
to modeling in different notations (such as textual,
graphical, etc.) at the same time. When creating a tex-
tual language for a DSL that already has a non-textual
notation, the approach in this paper can help create
a concise, user-friendly textual language in the first
stage, thereby improving the user experience of mod-
eling activities (David et al., 2022). In future work,
we plan to evaluate our approach in this context.

6 RELATED WORK

Since the first version of Xtext was released in 2006
(Efftinge and Völter, 2006), the German company
itemis released several versions of Xtext. Eysholdt
and Behrens from the company briefly introduced the
motivation and capabilities of Xtext in (Eysholdt and

Behrens, 2010). In addition, itemis also officially re-
leased the Xtext User Guide, which introduces in de-
tail what Xtext is, how to use it and some of its in-
ternal principles (Behrens et al., 2008). This is the
technical manual that is the main reference for this
paper. Bettini’s book (Bettini, 2016) goes further and
shows how to develop DSLs using Xtext and Xtend.
Moreover, the book has a dedicated and independent
chapter to introduce Xbase, which is not included in
(Behrens et al., 2008) and it supplements the knowl-
edge about Xbase for us.

Mernik et al. in (Mernik et al., 2005) provide em-
pirical data and valuable experience on when and how
to develop DSLs, this study refers to these experi-
ences when designing the DSL. Neubauer et al. cus-
tomized the grammar generated from the Ecore meta-
model (Neubauer et al., 2015). However, their pur-
pose was to solve the problem that the Xtext gram-
mar generator did not create rules for meta-model
data types. In contrast, the modification in this paper
aims to bring the grammar closer to Python. Manual
changes were made by Sredojevi to the DSL’s gram-
mar definition file in (Sredojević et al., 2015). By
including keywords and identifiers, this change pri-
marily addresses the issue that the graphical repre-
sentation of the meta-model does not fully define the
grammar structure. In contrast, our approach replaces
the language’s overall style by modifying the entire
grammar definition file.

7 CONCLUSION

Xtext is one of the most commonly used methods for
developing DSL. It can be used to generate a textual
grammar from an Ecore meta-model. However, this
auto-generated grammar has a format that is often
considered cumbersome and difficult to work with.
Python is a language known for its simplicity, which
helps programmers become more productive. We aim
to make it easy for DSL developers to create their
languages with a Python-style syntax, in the hope
that these DSLs would benefit from the advantages of
Python’s syntax. In this paper, we analyze the primary
inadequacies of an auto-generated DSL (i.e., DSL
generated by Xtext) which is to describe the architec-
ture of an embedded system. Based on this analysis,
this paper presents an approach to semi-automatically
change a grammar that was generated with Xtext, so
that the DSL becomes a Python-like language. We
applied this approach to the design of the aforemen-
tioned lightweight example language and obtained an
intermediate result, a Python-like structure descrip-
tion language. We applied the approach to two ad-



ditional DSLs, Xenia and ACME, to validate the gen-
eralizability of our approach. The contribution of this
paper is a generalized approach for transforming gen-
erated DSLs into Python-like DSLs.

We intend to investigate the practical applications
of this approach in the future, e.g., the adaptation of
highly sophisticated and large DSLs in industrial set-
tings. In our future efforts, we intend to develop a
more complete system for the adaptation of automat-
ically generated grammar. We envision a rule-based
system that allows an engineer to configure a num-
ber of modifications of the grammar that, together,
change the concrete syntax significantly. We believe
such a system will contribute to making Xtext more
attractive to language engineers who want to combine
work on an evolving and rapidly changing language
with a user-friendly and compact concrete syntax, a
combination that Xtext currently does not support.

REFERENCES

ABLE Group (2011). Acme homepage. At Carnegie Mel-
lon University, https://acme.able.cs.cmu.edu/docs/
language overview.html, Last accessed Nov 2022.

Addazi, L. and Ciccozzi, F. (2021). Blended graphical and
textual modelling for uml profiles: A proof-of-concept
implementation and experiment. JSS, 175:110912.

AtlanMod (2019). Atlantic zoo. https://github.com/
atlanmod/atlantic-zoo, Last accessed Nov 2022.

Behrens, H., Clay, M., Efftinge, S., Eysholdt, M., Friese,
P., Köhnlein, J., Wannheden, K., and Zarnekow, S.
(2008). Xtext user guide. http://www.eclipse.org/
Xtext/documentation/, Last accessed Nov 2022.

Bettini, L. (2016). Implementing domain-specific languages
with Xtext and Xtend. Packt Publishing Ltd.

Bettini, L. (2019). Type errors for the ide with xtext and
xsemantics. Open Computer Science, 9(1):52–79.

David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi,
F., Malavolta, I., Raschke, A., Steghöfer, J.-P., and
Hebig, R. (2022). Blended modeling in commercial
and open-source model-driven software engineering
tools: A systematic study. Software & Systems Mod-
eling To appear.

do Nascimento, L. M., Viana, D. L., Neto, P., Martins, D.,
Garcia, V. C., and Meira, S. (2012). A systematic
mapping study on domain-specific languages. In IC-
SEA, pages 179–187.

Eclipse Foundation (2022a). Mwe2. https://www.eclipse.
org/Xtext/documentation/306 mwe2.html. Last ac-
cessed Nov 2022.

Eclipse Foundation (2022b). Whitespace-awareness.
https://www.eclipse.org/Xtext/documentation/
307 special languages.html. Last accessed Nov
2022.

Eclipse Foundation (2022c). Xtext homepage. https://www.
eclipse.org/Xtext/. Last accessed Nov 2022.

Efftinge, S. and Völter, M. (2006). oaw xtext: A framework
for textual dsls. In Workshop on Modeling Symposium
at Eclipse Summit, volume 32.

Eysholdt, M. and Behrens, H. (2010). Xtext: implement
your language faster than the quick and dirty way. In
OOPSLA Companion, pages 307–309.

Gmys, J., Carneiro, T., Melab, N., Talbi, E.-G.,
and Tuyttens, D. (2020). A comparative study
of high-productivity high-performance programming
languages for parallel metaheuristics. Swarm and
Evolutionary Computation, 57:100720.

Iung, A., Carbonell, J., Marchezan, L., Rodrigues, E.,
Bernardino, M., Basso, F. P., and Medeiros, B. (2020).
Systematic mapping study on domain-specific lan-
guage development tools. ESEM, 25(5):4205–4249.

Kosar, T., Bohra, S., and Mernik, M. (2016). Domain-
specific languages: A systematic mapping study. IST,
71:77–91.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Computing Surveys (CSUR), 37(4):316–344.

Neubauer, P., Bergmayr, A., Mayerhofer, T., Troya, J., and
Wimmer, M. (2015). Xmltext: from xml schema to
xtext. In SLE, pages 71–76.

Nordmann, A., Hochgeschwender, N., and Wrede, S.
(2014). A survey on domain-specific languages in
robotics. In SIMPAR, pages 195–206. Springer.

Python Community (2022). Python homepage. https:
//www.python.org/. Last accessed Nov 2022.

Rodchenkov, M. (2019). Xenia metamodel.
https://github.com/rodchenk/xenia/blob/master/
com.foliage.xenia/model/generated/Xenia.ecore, Last
accessed Nov 2022.

Rodchenkov, M. (2020). Xenia homepage. https://github.
com/rodchenk/xenia/, Last accessed Nov 2022.

Sredojević, D., Okanović, D., Vidaković, M., Mitrović, D.,
and Ivanović, M. (2015). Domain specific agent-
oriented programming language based on the xtext
framework. In ICIST, pages 8–11.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.
(2008). EMF: eclipse modeling framework. Pearson
Education.

https://acme.able.cs.cmu.edu/docs/language_overview.html
https://acme.able.cs.cmu.edu/docs/language_overview.html
https://github.com/atlanmod/atlantic-zoo
https://github.com/atlanmod/atlantic-zoo
http://www.eclipse.org/Xtext/documentation/
http://www.eclipse.org/Xtext/documentation/
https://www.eclipse.org/Xtext/documentation/306_mwe2.html
https://www.eclipse.org/Xtext/documentation/306_mwe2.html
https://www.eclipse.org/Xtext/documentation/307_special_languages.html
https://www.eclipse.org/Xtext/documentation/307_special_languages.html
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://www.python.org/
https://www.python.org/
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/
https://github.com/rodchenk/xenia/

