CHAL

UNIVERSITY OF TECHNOLOGY

A transferable PINN-based method for quantum graphs with unseen
structure

Downloaded from: https://research.chalmers.se, 2025-10-16 15:29 UTC

Citation for the original published paper (version of record):

Laczko, C., Vaghy, M., Kovacs, M. (2025). A transferable PINN-based method for quantum graphs
with unseen structure. [IFAC-PapersOnLine, 59(1): 67-72.
http://dx.doi.org/10.1016/j.1facol.2025.03.013

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 59-1 (2025) 67-72

A transferable PINN-based method for

quantum graphs with unseen structure

*

Csongor L. Laczké * Mihaly A. Vaghy * Mihaly Kovacs ******

* Faculty of Information Technology and Bionics, Pdzmdny Péter
Catholic University, H-1444 Budapest, Hungary
** Department of Mathematical Sciences, Chalmers University of
Technology and University of Gothenburg, SE-41296 Gothenburyg,
Sweden
*** Department of Analysis and Operations Research, Budapest
University of Technology and Economics, Miegyetem rkp. 3-9, H-1111
Budapest, Hungary

Abstract: This study introduces a transferable approach for solving partial differential equa-
tions (PDEs) on metric graphs, often called quantum graphs, employing Physics-Informed
Neural Networks (PINNs). Unlike traditional solvers constrained by specific graph structures,
our method utilizes a Neumann-Neumann domain decomposition technique, offering adapt-
ability across various network topologies. By incorporating edge-wise surrogates, this approach
achieves experimental results comparable to those obtained with FEM across diverse network

configurations.

Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Physics Informed Neural Networks, partial differential equations, quantum graphs,
transferable deep learning, scientific machine learning

1. INTRODUCTION

Quantum graphs, mathematical abstractions representing
networks of quasi-one-dimensional systems coupled at ver-
tices, have emerged as powerful tools for studying a diverse
array of physical phenomena, such as superconductivity in
granular materials (Alexander, 1983), wave guide networks
(Flesia et al., 1987, 1989), cell differentiation (Cho et al.,
2018) or quantum transport processes (Simké et al., 2022).
These structures provide a versatile framework for mod-
elling complex systems with varying structural arrange-
ments.

In recent years, there has been a growing interest in devel-
oping efficient numerical techniques for solving quantum
graph problems, especially when its size renders traditional
approaches obsolete through memory limitations. For clas-
sical problems on domains an overlapping decomposition
was introduced in (Schwarz, 1870) more than 150 years
ago, further developed in (Babuska, 1957; Morgenstern,
1956; Sobolev, 1936). Then nonoverlapping decomposi-
tions were introduced due to their inherent parallelism
and the growth of high-performance computing (HPC)
(Dryja and Widlund, 1987; Lions, 1988, 1989). We use
a Neumann-Neumann method, originally introduced in
(Bourgat et al., 1989, 1991; Dihn et al., 1984; Tallec et al.,
1991), and generalized for quantum graphs in (Kovdcs
and Véaghy, 2024). For surveys on domain decomposition

* Supported by the EKOP-24-1 and the EKOP-24-3 University
Research Scholarship Programs of the Ministry for Culture and
Innovation from the source of the National Research, Development
and Innovation Fund, and the K-145934 grant of the Hungarian
National Research, Development and Innovation Office.

methods, we refer to (Chan and Mathew, 1994; Xu, 1992).
A more thorough theoretical background and historical

overview can be found in (Mathew, 2008; Toselli and
Widlund, 2005).

Relying on recent advances in machine learning and the
robust increase of computational power, several modern
numerical approaches have been developed for evolution
equations that approximate or enhance traditional solvers
(Raissi et al., 2019; Kovachki et al., 2021; Cao et al., 2024;
Liu et al., 2024). In particular, Physics-Informed Neural
Networks (PINNs) have been designed to solve complex
physical problems by integrating prior knowledge into the
learning process (Raissi et al., 2019). PINNs extend the
applicability of neural networks to nonlinear problems
without the need for linearization or other restrictive
assumptions. Automatic differentiation, inherent in the
functioning of neural networks, plays an important role
in this method. By differentiating neural networks with
respect to their input coordinates, physics-informed neural
networks allow for the evaluation of their adherence to the
governing equations, a process more stable numerically
than finite differences. The applications of PINNs range
from data-driven approaches for model inversion (Chen
et al., 2020; Haghighat et al., 2021; Smith et al., 2021),
through system identification (Stiasny et al., 2021), to the
development of new classes of numerical solvers for partial
differential equations (Yang et al., 2020).

While there exist PINN solutions for quantum graphs
(Zhao and Pasini, 2022), they explicitly include the graph
structure in the loss function to couple the loss functions
on the edges. Thus, if the graph structure or the param-
eters change, the model has to be retrained from scratch.

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2025.03.013

68 Csongor L. Laczko et al. / IFAC PapersOnLine 59-1 (2025) 67-72

This serves as motivation for our approach, which is de-
signed to be applicable even for unseen graph structures.

The key reference for our approach is (Wang et al., 2022),
where a PINN-based numerical solver for some classical
PDEs on domains using domain decomposition methods
was introduced. The authors trained an appropriate PINN
on a single 1 x 1 square with Dirichlet boundary condition
and used it to solve the Laplace equation and the Navier-
Stokes equation on various unseen domains decomposed
with an overlapping Schwarz method.

The problem we aim to address is formulating and solving
the time-independent Schrédinger equation on quantum
graphs. The following introduction is based on (Kovécs
and Vaghy, 2024). Let G = (V,E) be an arbitrary simple
graph, where V represents a finite set of vertices and E
represents the edges connecting them. FEach edge e € E
is assigned a length ¢, € (0,00) and a local coordinate
x € [0, Le].

A function u on a metric graph G can be defined as a
vector of functions and we write u = (ue)eck, and consider
it to be an element of a product function space of square
integrable functions on the edges. Let ue(v) denote the
value of u at v € V along the edge e € E.

We define ce () as a positive Lipschitz continuous function.
Since ce(x) may not be differentiable, we transform our
equation in a weak form. Furthermore, we define ve(x) as a
bounded function that satisfies ve(z) > vg for some vy > 0.
We also assume that fe(z) is a finite square integrable
function.

To define the vertex conditions, let us denote by E, the set
of edges incident to the vertex v € V, and by d, = |E,| the
degree of v € V. We denote by int(G) the set of vertices
with degree d, > 1 and by 9G the set V\int(G). We
seek solutions that are continuous on G and satisfy the
Neumann-Kirchhoff conditions, formulated as follows:

Z ce(V) due(v) =0 Vvev.

dzx
ecE,

If d, = 1, then this reduces to the classical zero Neumann
boundary condition.

Here, the derivatives are assumed to be taken in the direc-
tions away from the vertex and into the edge, commonly
referred to as the outgoing directions, a convention we
maintain throughout this work.

In order to write the vertex conditions more compactly, let
us define the vector of function values at v € V as

U(v) = (ue(v))eeEv € R%
and the bi-diagonal matrix
1 -1
I, = : € R =1)xdy,
1 -1
Then LU (v) = 0 € R%~! implies that the function values
along the edges in E, coincide at v € V. Similarly, we define

U'(v) = (V) g, € B*,

the vector of function derivatives at v € V and the row

vector
T

cv)" = (ce(v))eeEv € RI*d,

Then C(v) TU’(v) = 0 implies that the function u satisfies
the Neumann-Kirchhoff conditions at v € V.

Then the quantum graphs can be formally written as
—(ceu’e)’(m) —l—ve(x)ue(x) = fe(z), z € (0,Le), e€E,
0=LU(v), veint(G),
0=C(v)'U'(v), veV.
(1)

For the sake of simplicity, in this paper we assume that
ce(x) = 1 and ve(x) = 1. Without loss of generality we
also assume that each ¢, = 1, since otherwise we could
rescale the equations.

2. PRELIMINARIES
2.1 Finite Element Method for quantum graphs

In this section we highlight some key facts about the Finite
Element Method (FEM) for quantum graphs based on
(Arioli and Benzi, 2017).

We apply the classical one-dimensional FEM to each edge
with step size he. As the solution needs to be continuous
across neighbouring vertices, we introduce special finite
elements to the vertices, as shown on Figure 1.

Fig. 1. Blue: special finite element for vertices. Red:
classical finite elements on the edges.

After substituting the finite elements into the weak form
of (1) we obtain a stiffness matrix H of the following
structure:

Hll H12
H= .
{HE H22}

Here H is symmetric and positive definite. The matrix Hq;
is a block diagonal matrix, where each block corresponds
to the stiffness matrix of an edge. The matrix Hyo is
diagonal. The matrix Hy5 contains the cross-effects of edge
and vertex finite elements, and thus its nonzero structure
corresponds to the graph structure. For more details, we
refer to (Arioli and Benzi, 2017; Kovdcs and Vaghy, 2024).

In (Arioli and Benzi, 2017) and (Bolin et al., 2023) the
authors show the H'(G) error of the finite element solution
and the weak solution is O(h), where h = maxecg he, and
the L2(G) error is O(h?). Finally, the Neumann-Kirchhoff
error of the finite element solution is also O(h).

2.2 Neumann-Neumann method for quantum graphs

In this section we briefly describe the Neumann-Neumann
method for quantum graphs based on (Kovécs and Véghy,
2024). A given G quantum graph is decomposed into dis-
joint (w.r.t. their edges) subgraphs {G; = (V;, Ei)}izl o p-
The set of vertices that are shared on the boundary of

Csongor L. Laczko et al. / IFAC PapersOnLine 59-1 (2025) 67-72 69

multiple subgraphs will be denoted with I and called the
interface.

The idea of Neumann-Neumann methods is to keep track
of the interface values and iteratively update these val-
ues based on the deviation from the Neumann-Kirchhoff
condition. Formally, we start the algorithm from a zero
(or any inexpensive) initial guess ul. For n > 0 the new
iterate is computed as follows: first we solve the Dirichlet
problems

fe(z) = —(ceu:+%/)’(:ﬂ) + ve(x)uZJr%(x), xz € (0,0), e € E;,

0=LU(v), ve VAT,

up(v) = U-n+%(v), veV,nr,

?

1/
0=C;(W)TU™ 2 (v), ve VL.

K3
Here the function C; is the restriction of C to G;. Note
that we impose natural boundary conditions on the set of
vertices 0G; N OG, but we will still refer to these problems
as Dirichlet problems. Then we compute the solutions of
the residual Neumann problems

0 = —(cew? Y (z) + ve(z)w? (z), = € (0,4), e € E;,
0=ILW" (), ve VT,
0=C;(v)TW™(v), ve VAT,

!
3 G TUME (v) = Cv) W (), ve VT
wveV;
Finally, we update the interface values as

up (V) = up(v) =0) wit(v),
ecE,

with an appropriate 6 € (0,0max), for some O > 0
(Toselli and Widlund, 2005, Chapter C.3).

In (Kovacs and Vaghy, 2024) it is shown that the discrete
finite element version of the above procedure can be rewrit-
ten as a preconditioned Richardson iteration for the Schur
complement of the finite elements corresponding to the
vertices. We note that the usual presentation of domain
decomposition methods is based on the Richardson iter-
ation mainly for the sake of readability, but in practice,
the Schur complement system is often solved with more
sophisticated algorithms, such as GMRES or BiCGSTAB.
However, in this paper we will use Richardson iteration, as
the main goal is to test the performance of the pretrained
PINNs combined with the Neumann-Neumann method on
various manageable benchmark problems.

vel,

3. METHODOLOGY
3.1 Overview

To overcome the main difficulty of existing PINN-based
methods for quantum graphs, the explicit dependence on
the graph structure, we use the Neumann-Neumann it-
eration introduced in 2.2. For the sake of simplicity, we
completely decompose the graph to its edges. Since the
Neumann-Neumann iteration consists of Dirichlet prob-
lems and Neumann problems, we need to train a PINN
for a one-dimensional problem with Dirichlet boundary
condition on both sides and a PINN for a one-dimensional
problem with Neumann boundary condition on both sides.

However, the original problem might contain classical one-
dimensional Neumann boundary conditions imposed on
vertices of G, and thus we need to train two more
PINNs corresponding to edges with Dirichlet-Neumann
and Neumann-Dirichlet boundary condition configura-
tions.

We note that we could introduce further elementary sub-
graphs to the decomposition, for example, we could de-
compose the graph into triangles and edges. This might
improve convergence, but the number of separate PINNs
that need to be trained also increases.

3.2 Training data generation

We use synthetic data consisting of the right-hand side of
the differential equation f., the values of the coefficients
ce and v, the numerical values for the two boundary
conditions and the corresponding FEM solution.

The right-hand sides are sampled from a Whittle-Matérn
Gaussian random field with parameters v = 2.5 (corre-
sponding to twice differentiable functions) and I = 0.1,
sampled as a vector of size N = 128. The exact formula
for the kernel is given as:

1 oD, i Vv
g | —Vlwi—zl] Kv | —lvi—z5]],
rw2r-1 \ L L

where K, () is a modified Bessel function, and T'(-) is the
Gamma, function.

k(xg, xj) =

The value of c. and ve are set to 1. Despite the simplifica-
tion that c. and v, are assumed to be constant, they are
implemented as input vectors of the model of size N for
future works.

The dataset consists of M = 3-10% samples generated from
1,000 boundary condition values and 3,000 right-hand side
samples.

8.8 Network architecture and loss functions

To maintain simplicity and serve as a proof-of-concept, a
basic fully connected structure with tanh activation func-
tions was explored for the network architecture (Figure 2).
The input layer of the network has dimension 3 - 128 +
3 = 387, consisting of the right-hand side f. of size 128,
coefficients ¢, and ve each of size 128, boundary data of
size 2 and spatial coordinate x of size 1. The output is
the solution at the point . We note that including spatial
information is essential to compute the network’s gradient
w.r.t. to = so that we can compute the derivative for the
loss function.

Linear Linear Linear
I t : . Output
(b']?)p: . Tn: 387 | tanh | Tn: 956 | tanh | Tn: 256 }—><b.“k)p‘;l
Out: 256 ‘ Out: 256 ‘ Out: 1

Fig. 2. Network architecture. b is the batch size, k is the
number of x coordinates given as input.

The training procedure employs mini-batches, with b batch
size of 512, 1024 or 2048, depending on GPU memory.
Each batch of data is transformed to match the model’s
input format, with positional coordinate x added. The
transformation utilizes NumPy’s repeat, expand, and
reshape methods. For more details, see Figure 3.

70 Csongor L. Laczko et al. / IFAC PapersOnLine 59-1 (2025) 67-72

Trainer
Data Generator
Positional Coordinate repeat Positional Coordinate Model
kx1 (kD) x1
Right-hand side
MxN ; . :
Right-hand side expand Right-hand side concatenation Input
bx N (b-k)x N (b-k) x (3N +3)
BC Values
M x 2 1
Batch sampling BC Values expand BC Values Output
Coefficients ¢, v bx2 (b-k) x2 (b-k)x1
M x N, T
M x N Coo[[icinm:s c,v expand Coefficients ¢, v
bx N, (b-k)x N, |~ Loss arguments
Reference solution bx N (b-k)x N
M x N
Reference sglution reshape Reference solution
bx N b-N

Fig. 3. Diagram illustrating the components of the code, showing the flow of data and the changes in dimensions. The
functions are discretized into N points, M represents the overall size of the dataset, b is the batch size, while & is

the number of positional coordinates given.

It is also important to highlight that the output of the
model is the prediction at the given spatial coordinates x.
During training, we use k = N spatial points. But after
training, the model can make predictions at any number of
coordinates, and for any value on the interval [0, 1]. For the
Neumann-Neumann iteration, only the interface informa-
tion is required, which can be obtained by evaluating the
model at 4 points (2 per side, to capture the necessary
Neumann information). Although reducing the number
of input parameters does not significantly reduce infer-
ence time, it allows us to explore alternative approaches.
One such approach involves aggregating all the data into
a single input array, enabling one full iteration of the
Neumann-Neumann method to be computed with a single
pass through each model. This could potentially improve
efficiency, although we did not explore this option yet.

The choice of an appropriate loss function plays an impor-
tant role in training PINN models. The used loss function
for the PINN with Dirichlet-Neumann boundary is as
follows:

N
La(60) = 5 D (~eN"(@1l6) + oA (aal6) — f(1))

LEN(9) = (u(zo) — N(20l0))” + (v (zn) — N (zn16))°,
L4(9) = ‘9|

Here N is the number of data points, u denotes the ground
truth (generated by FEM) and N denotes the output of
the network.

The individual loss terms can be explained as follows:

e [1(6) is the network’s error predicting the available
data,

L2(0) is the residual error enforcing A to satisfy the
underlying PDE,

o LPN () is the boundary error,

L4(0) is a Tikhonov regularization to prevent overfit-
ting,

a, B, v and ¢ are constants that control the contribu-
tion of each term.

For the rest of the PINNs the Ly, Ly and L4 terms are
unchanged, while the boundary error is computed as

LPP(0) = (u(xo) — N(20]0))* + (u(zn) — N(zn]0))?,
LYN(0) = (v (z0) — N'(2010))* + (' (zx) — N'(zn10))*,
LYP(8) = (v (z0) = N'(20]0))° + (u(zn) — N(zn]6))°.

The weights assigned to each component are determined
empirically and through hyperparameter tuning, reflecting
their relative importance in achieving the desired model
performance. In our implementation, we set the values
of a =1, 8 =1-103 ~ = 1 and 6 = 0. We
note, that we included the boundary error explicitly, since
the numerical stability of the Neumann-Neumann method
heavily depends on the precision at the boundaries.

The training process used a train-validation split ratio of
0.8, with a test dataset size equal to the validation set. The
implementation was done using PyTorch with an AdamW
optimizer (learning rate: 5 x 10~%, weight decay: 1 x 1075).
Early stopping was applied with a learning rate scheduler
that reduced the rate by a factor of 0.7 if validation loss did
not improve by more than 0.0001 after 15 epochs. Training
stopped when the learning rate reached 1 x 10~7 or after
2000 epochs.

The training process was executed on a high-performance
computing cluster featuring Nvidia A100 and V100 GPUs.
The duration of each training epoch varied depending
on the model’s complexity, the dataset size, and the
availability of the resources.

4. NUMERICAL EXPERIMENTS

In this section we briefly describe some numerical ex-
amples. We tested our algorithm on the following graph
structures:

e A star graph, consisting of a center node connected
to n = 3 outer nodes, is a fundamental structure in
the literature of quantum graphs.

e The ladder graph consists of two paths of n = 100
nodes, with each pair connected by a single edge.
Thus, it has 2n nodes and 3n — 2 edges.

e The Turan graph is a complete multipartite graph
on n = 13 nodes with r = 4 disjoint subsets. That

Csongor L. Laczko et al. / IFAC PapersOnLine 59-1 (2025) 67-72 71

is, edges connect each node to every node not in its
subset.

e The Paley (pgl)—regular graph on p = 23 nodes was
also used. Generally, Paley graphs are constructed
from the members of a suitable finite field by con-
necting pairs of elements that differ by a quadratic
residue.

e While the performance of the algorithm on well-
structured graphs like the ones above is important,
we wanted to test its robustness on larger, random
generated graphs. We chose the Barabdsi model,
which generates a random graph generated through
the Barabasi-Albert preferential attachment model,
in which a graph of n = 100 nodes is grown by
attaching new nodes each with m = 2 edges that
are preferentially attached to existing nodes with high
degree. The degree distribution of the resulting graph
follows a power law.

Figure 4 shows the structure of the used graphs.

e /
|). f
RN L: ¥
// \\ \
~ ™~ N

(b) Ladder graph

(e) Barabasi graph

Fig. 4. Topology of graphs used in the numerical experi-
ments

The above graphs are generated with the networkx pack-
age. To assess the numerical accuracy, we have measured
the L? error, the edgewise mean L? error, the maximum
error and the Neumann-Kirchhoff error. The ground truth
for these errors is computed with FEM with 2'? equidis-
tant discretization points on each edge. Table 1 shows the
errors after the given number of iterations. The necessary
number of iterations are essentially the same as those
needed for FEM for the edge-wise surrogates.

5. DISCUSSION

In this section we discuss the limitations of our model and
some future works and ideas.

5.1 Training data

Initially, we discretized our functions into N = 1024
points, but found that lowering this to N = 128 drastically
reduces training times without sacrificing accuracy.

Graph L? error L? error/edge max norm N-K error #iter
Star 6.6851e-04 2.2284e-04 5.6736e-04 -3.6716e-05 7
Ladder 8.3662e-02 2.8075e-04 6.7209e-03 -1.9379e-05 26
Turan 3.8753e-02 6.1513e-04 6.1693e-03 -2.6996e-05 15
Paley 5.7848e-02 4.0738e-04 6.7808e-03 6.9660e-05 12
Barabasi 1.0297e-01 5.2536e-04 9.9284e-02 2.2018e-04 325

Table 1. Error rates of PINN method in
terms of L? error, L? error / edge, Neumann-
Kirchhoff error and the number of iterations

At first, we trained and tested our models with both ce
and ve set to a constant value of 1. Later we also trained
a set of PINNs where v, was a constant function with
different values on each edge e, although these models
exhibited lower accuracy by one magnitude, especially
when encountering values outside the range on which they
were trained.

We thoroughly tested the number of boundary condition
and right-hand side samples necessary for training. We
found that a total of 3 - 10 samples (obtained as the
Cartesian product of 1,000 boundary condition values and
3,000 right-hand sides) was sufficient to reach an accuracy
that is comparable to FEM.

However, we wish to highlight that our findings show
that the performance of the pretrained PINNs did not
plateau and increasing the number of training samples
could further increase its accuracy.

5.2 Network architecture and loss function

We found that increasing the number and width of the
linear layers also improves accuracy, again, at the cost of
increased training times. Since our goal was to identify an
optimal balance between accuracy and training efficiency,
we avoided excessive increases in layer count and width.

We tested some other architectures, for example, the so-
called linearity-preserving network of (Wang et al., 2022),
which has a similar structure to that of the branch and
trunk network of DeepONet. However, we did not see
enough improvements to switch from the basic linear layer
setup.

Additionally, we explored different «, 8, v and J coeffi-
cients for the various loss types; however, we found the
current configuration to be the most stable, achieving
convergence across a wide range of datasets without over-
fitting or underperforming.

5.8 Richardson iteration

We found that the convergence rate of the Richardson
iteration is extremely sensitive to 6 parameter, even if
the edges are solved with traditional FEM. Most notably,
the increased iteration number in the case of the Barabasi
graph is due to the fact that setting anything above the
very low value of # = 0.066, the iteration became unstable.
In the future, we wish to switch to a more sophisticated
algorithm to avoid the tedium of finding an optimal 6
value.

72 Csongor L. Laczko et al. / IFAC PapersOnLine 59-1 (2025) 67-72

6. CONCLUSION

We introduced a transferable PINN-based framework for
solving quantum graphs with unseen structure. The basis
of our approach is a nonoverlapping Neumann-Neumann
substructuring method. We decompose an arbitrary quan-
tum graph into its edges and solve the subproblems
arising from the Neumann-Neumann method with one-
dimensional PINNs. We highlight that our algorithm does
not explicitly use the graph structure during training, and
thus the pretrained models can be used for virtually arbi-
trary graph structures. In particular, the continuity and
Neumann-Kirchhoff vertex conditions are not explicitly
used in the loss function, only implicitly in the Neumann-
Neumann iteration. The code developed for this study is
available upon request.

In future works we aim to omit our assumption that the
coefficient functions are constant and generalize our PINN
for a reasonable space of coefficient functions. Further-
more, we wish to test different approaches, such as Deep-
ONet, Fourier Neural Operator, Laplace Neural Operator
or Kolmogorov-Arnold Network.

REFERENCES

Alexander, S. (1983). Superconductivity of networks. a percolation
approach to the effects of disorder. Physical Review B, 27(3),
1541-1557.

Arioli, M. and Benzi, M. (2017). A finite element method for
quantum graphs. IMA Journal of Numerical Analysis, 38(3),
1119-1163.

Babuska, I. (1957).
Differentialgleichungen der mathematischen Physik.
37(7/8), 243-245.

Bolin, D., Kovdcs, M., Kumar, V., and Simas, A. (2023). Regular-
ity and numerical approximation of fractional elliptic differential
equations on compact metric graphs. Mathematics of Computa-
tion, 93(349), 2439-2472. doi:10.1090/mcom/3929.

Bourgat, J.F., Glowinski, R., Tallec, P., and Vidrascu, M. (1989).
Variational formulation and algorithm for trace operator in do-
main decomposition calculations. In Second international sym-
posium on domain decomposition methods for partial differential
equations. STAM.

Bourgat, J.F., Glowinski, R., Tallec, P., and Vidrascu, M. (1991).
Analysis and test of a local domain decomposition preconditioner.
In Fourth international symposium on domain decomposition
methods for partial differential equations. STAM.

Cao, Q., Goswami, S., and Karniadakis, G.E. (2024). Laplace
neural operator for solving differential equations. Nature Machine
Intelligence, 6(6), 631-640.

Chan, T.F. and Mathew, T.P. (1994).
algorithms. Acta Numerica, 3, 61-143.

Chen, Y., Lu, L., Karniadakis, G.E., and Negro, L.D. (2020).
Physics-informed neural networks for inverse problems in nano-
optics and metamaterials. Opt. Ezpress, 28(8), 11618-11633.

Cho, H., Ayers, K., de Pills, L., Kuo, Y.H., Park, J., Ranudskaya,
A., and Rockne, R. (2018). Modelling acute myeloid leukaemia in
a continuum of differentiation states. Letters in Biomathematics,
5, 69-98.

Dihn, Q., Glowinski, R., and Périaux, J. (1984). Solving elliptic
problems by domain decomposition methods with applications.
In Elliptic Problem Solvers, 395-426. Elsevier.

Dryja, M. and Widlund, O. (1987). An additive variant of the
Schwarz alternating method for the case of many subregions.
Technical Report 339, Ultracomputer Note 131. Department of
Computer Science, Courant Institute.

Uber Schwarzsche Algorithmen in partiellen
ZAMM,

Domain decomposition

Flesia, C., Johnston, R., and Kunz, H. (1987). Strong localization of
classical waves: A numerical study. Europhysics Letters (EPL),
3(4), 497-502.

Flesia, C., Johnston, R., and Kunz, H. (1989). Localization of
classical waves in a simple model. Physical Review A, 40(7),
4011-4018.

Haghighat, E., Raissi, M., Moure, A., Gomez, H., and Juanes, R.
(2021). A physics-informed deep learning framework for inversion
and surrogate modeling in solid mechanics. Computer Methods in
Applied Mechanics and Engineering, 379, 113741.

Kovachki, N., Lanthaler, S., and Mishra, S. (2021). On Universal
Approximation and Error Bounds for Fourier Neural Operators.
Journal of Machine Learning Research, 22(290), 1-76.

Kovédcs, M. and Véghy, M.A. (2024). Neumann-Neumann type
domain decomposition of elliptic problems on metric graphs.
arXiv:2402.05707.

Lions, P.L. (1988). On the Schwarz alternating method. I. In First
international symposium on domain decomposition methods for
partial differential equations. STAM.

Lions, P.L. (1989). On the Schwarz alternating method. II. In Second
international symposium on domain decomposition methods for
partial differential equations. STAM.

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljaci¢, M.,
Hou, T.Y., and Tegmark, M. (2024). KAN: Kolmogorov-Arnold
Networks. arXiv:2404.19756.

Mathew, T. (2008). Domain Decomposition Methods for the Nu-
merical Solution of Partial Differential Equations, volume 61.
Springer, Berlin, Heidelberg.

Morgenstern, D. (1956). Begriindung des alternierenden Verfahrens
durch Orthogonalprojektion. ZAMM, 36, 7-8.

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019). Physics-
informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differen-
tial equations. Journal of Computational Physics, 378, 686—-707.

Schwarz, H.A. (1870). Gesammelte Mathematische Abhandlungen,
volume 2. Springer Berlin Heidelberg. First published in Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Ziirich, 1870.

Simké, I., Fabri, C., and Csédszar, A.G. (2022). Quantum-chemical
and quantum-graph models of the dynamical structure of ch5+.
Journal of Chemical Theory and Computation, 19(1), 42-50.

Smith, J.D., Ross, Z.E., Azizzadenesheli, K., and Muir, J.B. (2021).
HypoSVI: Hypocentre inversion with Stein variational inference
and physics informed neural networks. Geophysical Journal
International, 228(1), 698-710.

Sobolev, S.L. (1936). L’algorithme de schwarz dans la théorie de
Delasticité. Comptes rendus doklady de l’académie des sciences
de ’URSS, 4(13), 243-246.

Stiasny, J., Misyris, G.S., and Chatzivasileiadis, S. (2021). Physics-
informed neural networks for non-linear system identification for
power system dynamics. In 2021 IEEE Madrid PowerTech, 1-6.

Tallec, P., Roeck, Y., and Vidrascu, M. (1991). Domain decompo-
sition methods for large linearly elliptic three-dimensional prob-
lems. Journal of Computational and Applied Mathematics, 34(1),
93-117.

Toselli, A. and Widlund, O. (2005). Domain Decomposition Meth-
ods — Algorithms and Theory, volume 34 of Springer Series in
Computational Mathematics. Springer.

Wang, H., Planas, R., Chandramowlishwaran, A., and Bostanabad,
R. (2022). Mosaic flows: A transferable deep learning framework
for solving PDEs on unseen domains. Computer Methods in
Applied Mechanics and Engineering, 389, 114424.

Xu, J. (1992). Iterative methods by space decomposition and
subspace correction. SIAM Review, 34(4), 581-613.

Yang, L., Zhang, D., and Karniadakis, G.E. (2020). Physics-
informed generative adversarial networks for stochastic differential
equations. STAM Journal on Scientific Computing, 42(1), A292—
A317.

Zhao, Y. and Pasini, M.L. (2022). A deep learning approach to solve
forward differential problems on graphs. arXiv:2210.03746.

