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Abstract

As industrial environments become more dynamic and collaborative, Au-
tonomous Mobile Robots (AMRs) are being deployed to work alongside hu-
mans. While hybrid human-robot settings offer improved efficiency and adapt-
ability, they also challenge safety due to human behavior’s inherent unpre-
dictability. This thesis is motivated by the goal of enabling AMRs to antic-
ipate and react to dynamic environments by integrating learning-based pre-
diction with optimization-based control. Specifically, it focuses on safer and
more efficient future-oriented navigation, i.e., decision-making that incorpo-
rates predictive information about the near future.

The core problem addressed in the thesis is: How can AMRs safely and
efficiently navigate human-populated, dynamic environments by integrating
perception, motion prediction, and optimization-based control? Specifically,
this involves: (1) developing motion prediction methods capturing the un-
certainty of human behavior; (2) designing control strategies incorporating
predictive information; (3) ensuring the real-time performance of the system.

The main contributions of this thesis are threefold: (i) a “Factory with Vi-
sion” framework integrating perception, prediction, planning, and control; (ii)
enhanced multimodal prediction techniques for downstream motion planning
and control, and (iii) integration of motion prediction with both model predic-
tive control and on-manifold control barrier functions. The proposed meth-
ods were evaluated in simulated scenarios with static and dynamic obstacles,
including multi-agent environments. Performance was assessed in terms of
safety, efficiency, and adaptability. Results show that the framework outper-
forms previously proposed approaches, offering more accurate motion predic-
tion, safer navigation, and better handling of complex, dynamic environments.

Keywords: Motion prediction, deep machine learning, mobile robot, pre-
dictive control, obstacle avoidance, navigation, automation.
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CHAPTER 1

Introduction

The increasing demand for automation in various industries has led to the
development of advanced indoor logistics systems that can efficiently handle
the movement of goods and tools. In such systems, mobile robots play a crucial
role in enhancing productivity and reducing operational costs. However, the
integration of robots into these systems raises safety concerns, particularly
when humans and robots work in close proximity. To address these challenges,
it is essential to develop solutions that not only enhance the efficiency of
logistics operations but also ensure the safety of human workers.
Autonomous Mobile Robots (AMRs) [1] have emerged as a promising so-
lution for indoor logistics, as they are equipped with advanced perception
capabilities that allow them to navigate complex and dynamic environments
in real time. An AMR is a mobile robotic platform designed to navigate and
perform tasks in dynamic, complex environments using a combination of lo-
cal sensing and lightweight onboard control. While capable of basic functions
such as obstacle avoidance and local motion execution, AMRs in this architec-
ture rely heavily on external systems—particularly cloud-based services—for
global planning, perception integration, and coordination. When operating as
part of a fleet, AMRs receive task assignments and optimized navigation com-



Chapter 1 Introduction

mands from the cloud, enabling coordinated and adaptive behavior across the
system. This technology is also known as cloud robotics [2]. Cloud robotics
is a distributed robotic architecture in which the majority of computational
intelligence—such as task allocation, path planning, semantic mapping, and
multi-robot coordination—is offloaded from individual robots to centralized
or distributed cloud infrastructure. This approach allows robots to operate
with minimal onboard processing, drawing on shared resources such as global
maps, live sensor fusion (e.g., from fixed ceiling cameras), and fleet-level con-
trol logic. Cloud robotics enables scalable, cost-efficient, and highly adaptive
robot deployments, particularly in environments where collaborative or coor-
dinated behavior is required. The primary task of AMRs can be concluded as
follows: With the premise of no collisions, travel from the start configuration
to the goal configuration, and at the same time satisfy certain constraints
(such as reference speed and route) as well as certain objectives (such as low
energy consumption or short travel time). To achieve this, AMRs must be
able to perceive their surroundings, reason about potential interactions and
conflicts, plan their paths, and execute their movements effectively.

For humans, it is ubiquitous and routine to evade another pedestrian or
vehicle during locomotion. Although the process of decision-making and exe-
cution is immediate and voluntary, it involves several steps [3]. First, individ-
uals perceive the approaching object and recognize it as a potential obstacle.
Next, they estimate the object’s movement to assess possible obstruction. Fi-
nally, they modify their actions to avert a potential collision if their paths are
predicted to intersect. Without an accurate estimation of the motion of other
objects, dynamic obstacle avoidance can become unresponsive and hazardous.
This natural circuit in human beings inspires the implementation of motion
prediction abilities in AMRs.

Most existing studies focus on either motion prediction or motion planning,
but few have integrated both aspects into a cohesive framework. Meanwhile,
dynamic obstacle avoidance remains a significant challenge due to the limita-
tion of reactive control strategies and the simple motion models of dynamic
obstacles. This research aims to bridge this gap by proposing a novel approach
that combines learning-based motion prediction with optimization-based con-
trol for motion planning. By leveraging the strengths of both techniques,
the proposed approach seeks to outperform traditional methods in dynamic
obstacle avoidance.



1.1 General Background

This thesis discusses the challenge of dynamic obstacle avoidance for AMRs
operating in regulated environments, such as industrial indoor environments,
including warehouses and factories. A solution that integrates Model Predic-
tive Control (MPC) with deep learning-based multimodal motion prediction is
introduced. Multimodal motion prediction involves forecasting multiple plau-
sible future positions of a target object, allowing AMRs to make informed
decisions about their own movements in response to dynamic obstacles. The
proposed approach aims to improve the safety and efficiency of AMRs in hy-
brid environments where they coexist with human workers.

In the following sections, the background, industrial context, objectives, and
proposed solutions will be briefly outlined to provide a general understanding
of the research. More detailed discussions on perception, planning, control,
and implementation will follow in subsequent chapters.

1.1 General Background

The rapid advancement of automation technologies has revolutionized indus-
tries globally, leading to unprecedented levels of productivity and efficiency,
where automation refers to the use of control systems and information tech-
nologies to reduce the need for human intervention in the production of goods
and services [4]. As industries increasingly adopt new technologies such as
robotics, Artificial Intelligence (AI), and the Internet of Things, logistics sys-
tems are significantly affected and challenged. Efficient logistics handling
becomes essential to accommodate the increased production capabilities, ne-
cessitating the development of more efficient and responsive transportation
systems.

Automatic robotic systems are increasingly integrated into logistics opera-
tions to streamline processes, reduce costs, and improve overall efficiency. This
leads to inevitable human-robot interactions, which raise safety concerns. En-
suring the safety of human workers in environments where robots operate is
paramount, as accidents can lead to severe injuries or fatalities. Consequently,
the balance between maximizing productivity through automation and main-
taining a safe working environment requires intelligent and reactive robots. In
the field of indoor logistics, AMRs have emerged as a solution to address these
challenges, providing a means to enhance flexibility and efficiency in logistics
operations while prioritizing safety.
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Figure 1.1: The Fetch mobile manipulator H (left) and the MiR100 mobile plat-
form [@ (right).

1.2 Industrial Background

Historically, manufacturing processes have been characterized by high-volume,
low-diversity production, where the focus was on maximizing output with
minimal variation. However, the shift towards more flexible and customized
manufacturing has transformed the landscape, as consumers increasingly de-
mand personalized products and services. This evolution necessitates the
adoption of advanced technologies that can accommodate varying production
requirements and respond to changing market demands. As a key division in
Volvo Group, Volvo Group Trucks Operations has recognized this trend and
is actively working on finding solutions to achieve the shift.

In this context, the development of AMRs is particularly noteworthy due to
their flexibility. The popular AMR architecture involves a movable platform
equipped with various sensors so that it can navigate autonomously within
a facility. Although this kind of AMRs can operate independently, the high
autonomy level often comes with a high cost and complexity and cannot be
utilized for applications other than the specific task they are designed for. To
address these limitations, the Factory with Vision (FwV) solution is proposed
as a more affordable and expandable alternative. This innovative approach
allows for the integration of low-cost, modular AMRs with external vision
systems, enabling them to adapt to various tasks and environments while
maintaining a focus on safety and efficiency. In particular, as conceptualized
in Figure. [I.2] the transportation part of the FwV solution relies on a vision
system containing ceiling-mounted cameras that monitor the environment and
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Figure 1.2: The concept of the Factory with Vision solution [7].

a fleet of AMRs equipped with safety sensors, where the vision system provides
high coverage of the workspace, detecting obstacles and potential hazards in
real-time, and guiding the AMRs accordingly. This combination of technolo-
gies not only enhances operational efficiency but also ensures a safer working
environment for human workers.

1.3 Requirements and Objectives

As a summary of the project’s background, the following requirements of the
transportation system under the FwV framework are identified:

1. From safety to smoothness: Safety should always be the premise, which
means that AMRs must stay a safe distance from humans and not cause
any accidents that could lead to injuries. What’s more, on top of safety,
AMRs should also behave smoothly in their operations, ensuring that
their movements are not abrupt and intrusive to humans.

2. From effectiveness to efficiency: Effectiveness refers to the ability of
AMRs to complete their tasks successfully, while efficiency emphasizes
the optimal use of resources, including time and energy. The trans-
portation system should prioritize efficiency without compromising ef-
fectiveness, ensuring that AMRs can perform their tasks in a timely and
resource-efficient manner.

3. From economy to expandability: The FwV solution is designed to be
an economical alternative to traditional high-cost AMRs. Meanwhile,
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Factory with Vision

Figure 1.3: The requirements of the FwV solution.

the ceiling-mounted vision system allows for the easy addition of more
functions, such as anomaly detection and guidance for robotic manipu-
lators, making the system expandable to meet future needs. Although
this is out of the scope of this thesis, possible future expansions will be
brought up and briefly discussed.

From intelligence to adaptability: Despite various representations of in-
telligence, the focus here is on the adaptability and flexibility of AMRs in
dynamic environments. The transportation system should enable AMRs
to adapt to changing conditions, such as variations in the workspace
layout or the presence of unexpected obstacles, ensuring that they can
continue to operate effectively in diverse situations.

These requirements are reflected in the publications related to this project
and will be discussed later.

Based on these requirements, considering the research field and the limited

time and resources available for this project, the primary focus is to develop a
pipeline from perception to action for AMRs in the FwV framework. Specifi-
cally, the objectives include:

1.

Investigating different perception methods including the ceiling-mounted
vision system.

Developing algorithms for handling the perception data and generating
informative predictions of the environment for AMRs.

Implementing control strategies that allow AMRs to navigate safely and
efficiently in dynamic environments.
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Apart from these objectives, during the project, another two topics are touched
upon: the combination of high-level scheduling with control and learning-
based reference trajectory generation. These topics are not the main focus of
this thesis but are relevant to the overall development of the transportation
system.

1.4 Solution Overview

In this section, An overview of the proposed pipeline is provided, detailing the
key components involved in the transportation system for AMRs within the
FwV framework. The pipeline encompasses four main aspects: perception,
reasoning, motion planning, and scheduling.

Perception

Perception is the process through which AMRs gather and interpret infor-
mation about their environment. As humans rely on certain receptors to
perceive their surroundings, AMRs utilize various sensors to achieve a similar
understanding [1], [8]. Some initial and well-developed perception sensors in-
clude inductive sensors, optical sensors, and so on. These sensors cannot work
alone but require corresponding infrastructure such as floor-embedded wire or
markers to guide the direction. In contrast, more recent sensors can work in-
dependently, among which vision-based (e.g., RGB cameras) and range-based
(e.g., LIDAR) sensors are the most prominent. There are also other auxil-
iary sensors that have limited detection ranges but can provide additional
information and safety, such as ultrasonic and tactile sensors.
Infrastructure-dependent sensors are widely used in traditional industrial
transportation robots, known as Automated Guided Vehicles (AGVs) [9], [10].
Strictly speaking, these sensors are not capable of perceiving the general sur-
roundings including obstacles, except for the pre-laid guiding paths. Even
though these sensors can provide reliable navigation, they cannot perceive
the complete surroundings, thus lack the flexibility to adapt to dynamic en-
vironments. Newly developed AMRs leverage more advanced sensors with
comprehensive perceptual capabilities, allowing them to deviate from fixed
paths and navigate autonomously in dynamic environments. Light Detec-
tion and Ranging (LiDAR) sensors, for example, create detailed 3D maps
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Figure 1.4: The examples of an optical marker (left) and a visual marker (right).

of the environment according to the distances to surrounding objects, which
are widely used in autonomous vehicles because of their high work frequency
and accuracy. While LiDAR sensors provide a range representation of space,
cameras usually capture rich visual information that is in line with human
instinct. Thanks to the development of computer vision and deep learning,
visual information can be processed to identify, classify, and track objects in
real time.

In this research, the main focus is on processing data from the most acces-
sible and cost-effective visual sensor - RGB cameras. As shown in Figure. [.2]
AMRs utilize environmental information captured by ceiling-mounted RGB
cameras to perceive the workspace and detect obstacles. The top-down view
provides an omniscient perspective with less occlusion compared to cameras
mounted on the robots themselves , , . In addition to AMR, guid-
ance, the vision system can be used to monitor the overall workspace, pro-
viding valuable insights into the operational status and potential hazards. It
can also be integrated with other automation systems, such as robotic manip-
ulators. All these extensions are not available with sensors mounted on the
robots.

After obtaining sensory data, it needs to be further digested and inter-
preted to facilitate informed decision-making. In the context of AMRs, the
aim is to enable AMRs to determine their locations, identify surrounding ob-
stacles, and track dynamic objects (humans or human-operated vehicles) in
their workspace. Localization can be achieved through various techniques,
such as GPS, SLAM (Simultaneous Localization and Mapping) , odome-
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try, and visual or optical markers (as shown in Figure. . Different methods
require different types of sensors and may have varying levels of accuracy and
reliability. To benefit from the advantages of multiple sensors, sensor fusion
is often employed to combine data from different sources, enhancing the over-
all localization accuracy. The perception of obstacles has different levels of
complexity, ranging from detection to classification and tracking. Obstacle
detection involves identifying the presence of an object, which is straightfor-
ward for range-based sensors like LIDAR or depth cameras. RGB cameras can
provide rich visual information, allowing for more sophisticated classification
but also requiring more complex computer vision algorithms for detection. For
the purpose of navigation, the perception process should not only distinguish
drivable areas from obstacles but also identify dynamic obstacles since they
usually pose a higher risk of collision. When focusing on visual information
from RGB cameras, semantic segmentation [14] is a powerful technique for
drivable area detection, which classifies each pixel in an image to determine
whether it belongs to a drivable area or an obstacle. Then, object detection
and tracking algorithms can be applied to identify dynamic obstacles and
record their trajectories for future inference.

Reasoning

Apart from the perception of the instantaneous environment, inferring human
intentions and predicting the future states of dynamic obstacles are crucial in
human-robot interactions [15]. Without accurate estimations of the motions
of other objects, dynamic obstacle avoidance can be unresponsive and passive.
Passive or reactive collision avoidance is generally sufficient for low-speed sce-
narios; for example, most social service robots are lightweight, operate at
low speeds, and can easily stop or change direction to avoid close encounters
with humans. However, in industrial environments, AMRs often operate at
higher speeds and weights, especially when transporting heavy loads. In these
cases, a proactive approach is necessary to ensure safety and efficiency and
the motion prediction ability is an important premise for proactive decision-
making. Traditional motion prediction methods often rely on simple motion
models, which may not accurately capture the behavior of dynamic obstacles
and their interactions with other objects in the environment. To address this
limitation, this research utilizes learning-based motion prediction techniques
that can forecast multiple plausible future positions of a target object. By
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Figure 1.5: Different representations of a warehouse map, including (from left to
right) the real map, the simplified geometric map, the occupancy grid
map, and the topological map. The map is a part of a Gazebo world.

leveraging the historical data and image processing ability of Convolutional
Neural Networks (CNNs), the inherent uncertainty in human behavior can be
better captured, allowing AMRs to make informed decisions about their own
movements in response to dynamic obstacles.

Planning and control

After reasoning about the perceived data, a 2D or 3D map of the environ-
ment can be constructed. Assuming the floor of the workspace is planar,
this research focuses on 2D representations of the environment. There are
usually two kinds of maps: Occupancy Grid Maps (OGMs) and geometric
maps. OGMs are discrete representations of the environment, where each
cell indicates whether it is occupied or free. Geometric maps, on the other
hand, provide a continuous representation of the environment, recording exact
distances, positions, and physical dimensions of elements. Besides the envi-
ronmental representation, topological maps can represent the connectivity of
the accessible areas for AMRs by constructing mathematical graphs, which
are mostly used for high-level scheduling and routing, while the OGM and
geometric maps contain more detailed and real-time information for low-level
planning.

While different literature uses various terminologies, the planning process
[1], [16], |17] is decomposed and concluded as follows (formal definitions are
provided in later chapters):

1. Motion planning: As the umbrella term for other planning sub-processes,
motion planning refers to the overall process of determining a feasible
motion for an AMR from its current configuration to a desired goal con-
figuration. In cases where the orientation of the robot is not important,

12
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the configuration can be represented as a 2D point in the workspace.

2. Path planning: Path planning is a sub-process and normally the first
step in motion planning, which focuses on finding a collision-free geo-
metric path from the start to the goal point based on the environmental
layout. The path can be represented as a series of waypoints through
which the AMR should proceed.

3. Trajectory planning: Conceptually, trajectory planning is the next step
after path planning, where the focus shifts from the geometric path to
the timing of the motion and the kinematic constraints of the AMR.
A trajectory is a time-parameterized sequence of states that the AMR
should follow to execute the planned path. Unlike the reference path
that is usually predefined, the reference trajectory, especially for the
local reference trajectory, can be generated online based on the current
state of the AMR and the surrounding environment.

4. Trajectory tracking: Strictly speaking, trajectory tracking is not a plan-
ning but a control task that ensures the AMR follows the generated
trajectory accurately. It is listed here to compare different definitions
and to provide a complete picture of the planning and control process.
Even though some literature uses the term trajectory planning to re-
fer to both trajectory planning and tracking, this research distinguishes
them by emphasizing the difference between planning and control.

Since the refinement of the reference path, which is the global trajectory gen-
eration, is not the focus of this study, the term reference trajectory or reference
states in the following text refers specifically to the local reference trajectory.
When discussing the global reference trajectory, the modifier “global” will be
explicitly included for clarity.

To achieve a navigation task, AMRs need to go through the motion planning
and tracking process iteratively, but not necessarily in a sequential manner.
For instance, trajectory planning and tracking can be completed together
using optimization-based reference path tracking methods [18], while some
learning-based controllers generate actions directly from the perception data
without explicit reasoning, planning, and tracking [19]. The choice of planning
and control methods depends on the specific requirements of the task, such as
the complexity of the environment, the speed of the AMR, and the availability
of computational resources.
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Figure 1.6: Motion planning and trajectory tracking in the mobile robot navigation
problems. The robot should reach the goal from the current location.
In path planning, the task is to find a feasible path (or path nodes
defining a path), as the blue dashed line and circles show. In trajec-
tory planning, both global trajectory and local trajectory are relevant.
A global trajectory (blue dots) is a refined temporal state sequence,
while a local trajectory (red dots) focuses on considering the kinody-
namic constraints at the current time. Finally, the trajectory tracking
problem is actually a control problem for generating control signals,
such as velocity and angular velocity.

Path planning approaches [16], [20] can be categorized into map-based and
graph-based methods. As mentioned earlier, map-based methods plan paths
based on the concrete representation of the environment, in the form of OGMs
or geometric maps. These methods focus on finding collision-free paths given
the appearance of obstacles in the environment. On the other hand, graph-
based methods require a pre-built topological map representing the connec-
tivity of the environment, which already considers the static layout of the
workspace. The graph-based methods are more suitable for high-level schedul-
ing and routing, while the map-based methods are more suitable for low-level
planning. In this research, a similar path planning sequence is adopted, where
the global path is planned based on the topological map, and the local path
is planned based on the concrete map representation.

A reference path consists of a series of sparse waypoints within the workspace,
which an AMR can follow by adjusting its heading toward the next waypoint
until reaching the final goal. However, this approach often results in jerky
and inefficient movements, particularly when sharp turns or obstacle avoid-
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ance are required. A reference trajectory (global or local) [17] represents a
more refined version of the reference path, incorporating temporal informa-
tion that accounts for the kinematic constraints of the AMR. Unlike reference
paths, reference trajectories are more amenable to real-time updates, allowing
for better adaptation to the AMR’s current state and environmental changes.

After generating the motion plan, the AMR needs to execute the planned
trajectory while considering the dynamic constraints as well as the uncertain-
ties in the environment. Given the reference trajectory, a high-level control
problem focuses on generating proper kinematic commands, such as veloc-
ity, angular velocity, and acceleration. A low-level control problem, on the
other hand, focuses on generating proper dynamic commands, such as torque
and force, to ensure the kinematic commands are executed accurately. Since
the mapping from dynamic commands to kinematic commands depends on
the specific AMR model and the floor conditions, it is fine-tuned through
calibration and testing with simple and efficient control algorithms, such as
PID control. In this research, the focus is on the high-level control problem,
where the reference trajectory is tracked by adjusting the velocity and angular
velocity of the AMR.

Scheduling and more

Task allocation and scheduling are essential components of an indoor logistics
system, ensuring that resources are allocated efficiently and tasks are com-
pleted on time. A scheduler is responsible for assigning tasks to available
AMRs based on their current status and the task requirements, at the same
time optimizing the overall system performance in terms of certain objectives,
such as minimizing the total travel time or energy consumption. A schedule
is a time plan for AMRs including the start time, end time, and the path to
follow for each task. The scheduling process is closely related to the plan-
ning and control process, as the planned paths and trajectories need to be
coordinated with the task schedule to ensure that AMRs can complete their
tasks without conflicts or collisions. In this research, the scheduling aspect is
briefly discussed, referencing Sabino F. Roselli’s work [21] on task allocation
and scheduling for AMRs in the FwV framework.

Mobile robot fleet coordination [22] is another important aspect of the trans-
portation system, when multiple AMRs need to work in the same workspace.
The coordination can be centralized, decentralized, or distributed, each with
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Feature Centralized Decentralized Distributed
Strate Single controller for Independent controllers Individual controllers
&y the entire system for each AMR with shared information
Communication None None Yes
(one controller) (independent) (locally/globally)
Performance Global optimal Suboptu?nal SUbOPtlmal_
(local optima) (near-global optimal)
X X Intermediate
Complexity Highest Lowest per controller per controller
Scalability Poor High Intermediate and flexible

Interactions

Full interactions
among AMRs

No interaction

Partial and (maybe)
local interactions

Applications

Small to middle-size
systems

Systems with relatively
independent AMRs

Large systems with
communication modules

Table 1.1: Comparison among different coordination and control strategies.

its own advantages and challenges [23]. Centralized coordination regards the
planning and control of all AMRs as a single entity and requires a central
computer to manage the entire fleet. Decentralized coordination treats each
AMR as an independent agent that makes decisions based on local information
and different agents do not communicate with each other. Distributed coor-
dination is a compromise between centralized and decentralized coordination,
where every AMR has its own planner and controller but can communicate
with other AMRs to share information and coordinate their actions. In this re-
search, a distributed implementation is adopted. A comparison with different
coordination strategies is provided in Table [I.1]

Even though many aspects of the transportation system are discussed in this
section, there are still more technical details and research topics uncovered,
such as the design of the mechanical structure of AMRs, the implementation
and calibration of sensors, the construction of the communication system and
the latency handling, etc. These topics are not the focus of this thesis and are
left for future research and development.
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1.5 Related Work

In this section, a brief overview of the related work is provided, focusing on the
research areas of motion prediction, control, and dynamic obstacle avoidance.
The literature review aims to identify the current state-of-the-art methods
and techniques used in these areas, highlighting the gaps and challenges that
need to be addressed. By analyzing the existing research, this thesis aims to
build upon the strengths of previous work and propose novel solutions that
can outperform traditional methods in dynamic obstacle avoidance.

Motion prediction

Motion is a fundamental aspect of human behavior, and predicting human
motion is essential for safe and efficient human-robot interactions. In the con-
text of this work, as defined in [24], motion prediction refers to forecasting
the future positions of dynamic obstacles, such as humans or human-operated
vehicles. Traditional motion prediction methods rely on simplified motion
models. The Constant Velocity Model (CVM) is one of the most common
assumptions [25]—[27], where the object is assumed to move at a constant ve-
locity. Despite its simplicity, it is favored for its computational efficiency and
ease of implementation, and it is proven to be surprisingly effective [27]. Con-
sidering the predominance of straight-line movements in human trajectories,
the CVM can provide a reasonable approximation of human motion in terms
of overall accuracy. However, the limitations of the CVM become apparent
when humans perform complex maneuvers, such as turning or deviating from
their original paths, where the risk of collisions increases. In general, assum-
ing all agents are rational—meaning they do not move randomly or collide
intentionally—an agent’s motion is influenced by both internal and external
stimuli. The internal stimuli include the agent’s destination, social etiquette
[28], and physical constraints, while the external stimuli encompass the en-
vironment’s layout and the presence of other agents. Numerous studies have
explored pedestrian and crowd behavior by stressing the interactions among
agents and between agents and the environment via mathematical models.
One prominent model is the Social Force Model (SFM) [29], which describes
the interactions among agents as repulsive forces, and the final motion is de-
termined by the equilibrium of these forces. Velocity obstacle-based methods
[30]—[32] offer another approach, considering the relative velocity of agents to
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select an optimal, collision-free motion. While these interactive models are
effective for crowd simulation and coordination, they are less suited for dy-
namic obstacle avoidance applications, as they typically do not incorporate
environmental information or account for uncertainty in their predictions.
Advancements in deep learning have enabled the use of neural networks to
model environmental contexts and agent interactions with greater precision.
Neural networks also provide the ability to account for uncertainty, making
them well-suited for dynamic environments. Social pooling [33], [34] is a tech-
nique that captures interactions among agents by aggregating their features
to infer collective behavior, through which the network can learn motion pat-
terns of agents with the consideration of their interactions. CNNs are utilized
to extract spatial features from the environment [35[—[39], thereby enhancing
the network’s ability to perceive context. This is crucial for neural networks
to make adaptive predictions when the environment is dynamic and the lay-
out may change over time. Additionally, advanced methods like attention
mechanisms [40]-[42] and inverse reinforcement learning [43], [44] further im-
prove motion prediction by capturing intricate dependencies between agents
and their environments. These approaches contribute to more accurate and
adaptive predictions in dynamic, multi-agent settings. Since uncertainty is
inherent in human behavior, it is also a challenge for deep learning models to
include uncertainty estimation in their predictions. Mixture density models
[45] can estimate the distribution of future motion in the form of a mixture of
Gaussian distributions, known as the Gaussian Mixture Model (GMM). This
method provides a parameterized probability directly from the neural net-
work but is prone to mode collapse in high-dimensional spaces [35], [38], [46].
Variational inference [47] is another approach that models the distribution
of future motion as a latent variable. By sampling from the latent variable,
variational models can produce diverse trajectory outcomes [40], [48]. Apart
from obtaining the parameterized distribution, there are other methods to
estimate the uncertainty in motion prediction, such as sample generation and
discrete probability map estimation. Multiple choice learning [46] is a tech-
nique that generates multiple plausible options for target outputs, allowing
the model to capture different possible outcomes. The learning process is en-
abled by the use of a Winner-Takes-All (WTA) loss function, which updates
the most likely output sample based on the ground truth. Some variations of
the WTA loss, such as Evolving WTA [35] and Swarm WTA [38], have been
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proposed to improve the stability of the model for motion prediction tasks.
Discrete probability map estimation [36], [43] is an unparameterized method
that estimates the probability distribution of predictions. The basic idea is
to regard the ground truth as a discrete probability map on the image axis
of the map, and the model is trained to match the probability map directly.
This method is computationally efficient and can be easily implemented with
existing neural network architectures, such as U-Net [36], [49]. For short-term
prediction, contextual cues in the vicinity are usually sufficient to obtain accu-
rate and reasonable results, while for long-term prediction, a common choice
is to include the estimate of the possible intended goals of the agent as an in-
termediate condition [36], [41], [50]-[52]. With the development of generative
deep learning, except for the variational autoencoder [40] and generative ad-
versarial networks [34], more generative models are used for motion prediction
tasks, such as flow-based generative models [53] and diffusion models [54].

By reviewing previous research on motion prediction, there are several
achievements and challenges that need to be addressed [24], [55]. The aid
of deep learning has significantly improved the accuracy and robustness of
motion prediction models, and the integration of uncertainty analysis, espe-
cially multimodality, has enhanced the reliability of predictions. Most recent
studies have focused on the following challenges:

e Enhancing the use of environmental context to make the model more
adaptable to different scenarios.

o Capturing the interactions among agents and considering different be-
haviors in multi-agent settings.

o Integrating motion prediction with downstream planning and control
algorithms in human-robot interaction applications.

Control of mobile robots

For mobile robots, the goal of the control task is to generate proper commands
to drive the robot from its current state to the desired state while considering
the constraints and objectives of the task. For low-level control, the con-
trol command can be the speed of wheels or the torque of motors, while for
high-level control, which is the focus of this research, the control command is
usually the kinematic action, such as velocity, angular velocity, and accelera-
tion. The constraints of mobile robots can be kinematic constraints on velocity
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and acceleration and environmental constraints on collision avoidance. The
basic and necessary objectives of the control task include the safety of the
navigation and the reachability of the desired goal, while more objectives can
coexist depending on the specific task and application, such as minimal en-
ergy consumption [56], [57], short travel time [58], minimal deviation from the
reference path, etc.

A simple yet practical control strategy is the classic wait-and-go, where the
robot waits if the reference path is obstructed and continues when the path
is clear. This is widely deployed in AGVs [9]. Pure pursuit [59] is another
simple control algorithm that guides the robot to follow the reference path by
adjusting its heading toward the next waypoint. While these algorithms are
straightforward and fast, they do not consider constraints and objectives by
design. One way to take constraints and objectives into account is to generate
several candidates of control commands and evaluate them based on certain
criteria. Dynamic Window Approach (DWA) [60], [61] is a sampling-based
planning and control algorithm that generates a set of feasible control com-
mands within a dynamic window and evaluates them based on the pre-defined
constraints and objectives, such as the distance to obstacles and the goal. Es-
sentially, DWA is a proof-by-exhaustion method, whose performance is highly
dependent on the computational complexity of a single sample, sampling res-
olution, and the size of the dynamic window. Due to the limited sampling
resolution, the proposed control action by DWA is usually sub-optimal.

On the contrary, optimization-based methods regard the control task as
an optimization problem and solve it by finding the optimal control command
that minimizes a certain cost function, while satisfying the constraints. Linear
Quadratic Regulator (LQR) [62] is a classic optimization-based control algo-
rithm that minimizes the quadratic cost function of the control commands
and the state errors. LQR is widely used in linear systems and has a closed-
form solution, but it requires a linearized model of the system and cannot
handle constraints directly. Model Predictive Control (MPC) [63] is a more
general optimization-based control algorithm that solves control tasks by pre-
dicting the future states of the system and optimizing control commands over
a finite time horizon. MPC operates by minimizing an objective function
while adhering to specified constraints. However, as it involves solving a con-
strained optimization problem at each time step, it can be computationally
demanding. Thanks to the development of optimization solvers and the in-
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creased computational power, MPC has obtained real-time performance in
many applications. For example, PANOC (Proximal Averaged Newton-type
method for Optimal Control) [64], a line-search method combining forward-
backward iterations with fast Newton-type steps over a specifically designed
merit function, is proposed to solve nonlinear optimization problems in real
time. PANOC has been applied to solve the MPC problem for AMRs and
self-driving vehicles and has shown promising results in terms of effectiveness
and computational efficiency [18], [65], [66].

Apart from optimization-based methods, reactive control strategies are also
widely used in obstacle avoidance for mobile robots. Reactive control means
that the control command is generated based on the instantaneous state of the
robot and the environment, without considering the future states. Interaction
models, such as the SFM and velocity obstacle, can be used not only for motion
prediction but also for control by regarding the robot as one of the agents and
generating the control command based on the interaction forces or velocities
[67]. Artificial Potential Field (APF) [68], [69] is another algorithm that
generates control commands by constructing a potential field influenced by
both obstacles and the target goal, which is similar to the principle of the SFM.
APF is simple and fast but subject to local minima and oscillation around the
obstacles. Dynamical System Modulation (DSM) [70] is a reactive control
algorithm that reshapes the dynamical system according to the objectives
and constraints so that global convergence can be guaranteed. Control Barrier
Function (CBF) [71] is another reactive optimization method to ensure that
certain system states remain within a safe set or desired region. It is often used
in combination with Quadratic Programming (QP) to compute safe control
inputs that avoid unsafe states |72].

Recently, Reinforcement Learning (RL) 73] has been used to solve control
tasks by learning the optimal control policy through trial and error. Deep
Reinforcement Learning (DRL) [74] combines deep learning with RL to handle
high-dimensional state and action spaces so that it can be applied to complex
control tasks and workspaces. Although DRL has shown high flexibility and
learning ability, it has the risk of instability and requires a large amount of
data for training. DRL also lacks interpretability, which makes it unsuitable
for safety-critical industrial applications. New techniques have emerged to
address these challenges, such as adding safe constraints to RL algorithms
[75] or combining traditional model-based methods with RL [19].
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Dynamic obstacle avoidance

Static obstacle avoidance has been well-studied and widely applied in mobile
robots [17]. Since static obstacles do not move, once the map of the en-
vironment is constructed, the path planning and control tasks can be solved
deterministically. For the case of unstructured environments, where the map is
only locally explored, reactive control strategies can be used to avoid collisions
effectively and efficiently [76], [77]. Compared to static obstacle avoidance,
Dynamic Obstacle Avoidance (DOA) is more challenging due to the following
reasons: (a) The states of dynamic obstacles change over time, which requires
real-time adaptation of the control commands to avoid collisions; (b) The mo-
tion of dynamic obstacles is uncertain, and the controller must account for this
uncertainty to ensure safe and efficient navigation; (c) The rising complexity,
due to the appearance of multiple dynamic obstacles and consideration of mo-
tion prediction, requires more sophisticated control algorithms and challenges
the computational efficiency of the system.

A basic idea to solve DOA is to treat dynamic obstacles as static at ev-
ery time step and solve the obstacle avoidance problem in real time. This
idea is effective in environments characterized by low-speed scenarios, cooper-
ative agents, and simple motion patterns of dynamic obstacles. For proactive
strategies, the consideration of the obstacles’ future motion is necessary [55].
Some methods relied on model-based (78], |[79] or velocity-based [25], [31], [80]
predictions to estimate the future states of dynamic obstacles, and then gener-
ate control commands avoiding the predicted obstacle positions. More recent
work focuses on two aspects [55]: integrating learning-based predictions into
control and coupling prediction with control for more adaptive and robust
navigation. Coupled prediction and control methods [81]-[84] have drawn in-
creasing attention due to their ability to consider human-robot interactions
in human motion prediction, giving a better chance to solve the “freezing
robot problem” [85]. The coupled methods rely on cooperative behaviors of
dynamic obstacles, which is reasonable for social robot navigation tasks in
open spaces. However, in industrial environments, transporting robots of-
ten operate at higher speeds and weights, and human workers may not be
able to cooperate with the robots due to obstruction or distraction. In these
cases, the assumption of cooperative agents may not hold and coupled meth-
ods can lead to over-confident decisions and potential collisions. Since the
proactive approach considers future information, decoupled methods (sepa-
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rating prediction and control) can handle interactions between robots and
humans explicitly or implicitly. The decoupled methods with explicit human-
robot interaction modeling make motion predictions of humans considering
the robot’s presence, while the implicit methods adjust the prediction based
on the current motion patterns of humans, which can be influenced by the
robot’s behavior in real time. While decoupled methods separate prediction
and control, they are still closed-loop if the controller considers motion predic-
tion results at each time step. One of the promising decoupled methods is to
combine motion prediction with optimization-based methods, such as MPC
[18], [86], [87]. The ability to handle predictive information in MPC makes
the integration of motion prediction and control straightforward and natural.

1.6 Research Questions

The research questions are formulated based on the identified gaps and chal-
lenges in the related work, aiming to address the limitations of existing meth-
ods and propose innovative solutions for dynamic obstacle avoidance in indus-
trial indoor environments. The research questions are as follows:

RQ1: What are the key design principles and architectural components re-
quired to develop an effective and scalable Factory with Vision frame-
work for industrial applications?

RQ2: How can learning-based motion prediction techniques be integrated with
optimization-based control methods to improve the safety and efficiency
of AMRs in dynamic environments?

RQ3: Which motion prediction methods are suitable and efficient for capturing
the uncertainty in human behavior and how can they provide actionable
insights for downstream planning and control tasks?

RQ4: What planning and control strategies can be employed to ensure safe,
stable, efficient, and flexible navigation of AMRs in hybrid environ-
ments?
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1.7 Research Approach

The research approaches are outlined to provide a roadmap for addressing the
research questions and achieving the objectives of the thesis. The research
approaches include:

e Designing and implementing the Factory with Vision framework: The
architecture of the FwV framework includes the vision system, AMR
planner and controller, and other automation systems. Each module is
implemented and tested in an experimental setup. The detailed valida-
tion is conducted in simulation environments.

o Integrating learning-based motion prediction with optimization-based
control: The key is to develop a pipeline processing the perception data
and generating informative predictions of dynamic obstacles. A proper
interface is designed to connect the motion prediction module with the
motion planning and control module, improving the safety and efficiency
of AMRs in dynamic environments.

e Proposing novel motion prediction methods: Different learning-based
motion prediction methods are explored and compared to identify the
most suitable and efficient approach for capturing the uncertainty in hu-
man behavior. These methods are evaluated based on their prediction
accuracy, computational efficiency, uncertainty expression, and compat-
ibility with downstream planning and control algorithms.

e Developing planning and control strategies for hybrid environments:
Various planning and control strategies are developed and tested to en-
sure safe, stable, efficient, flexible, and scalable navigation of AMRs in
hybrid environments. Apart from optimization-based control methods,
learning-based controllers are also explored to adapt to complex envi-
ronments where dynamic and nonconvex constraints are present.

1.8 Outline

This thesis is comprised of two parts. Part I is an overview of the indus-
trial project, the research background, related approaches, and summaries of
several publications based on this project. Part II contains the selected pub-
lications that are most relevant to the research questions and objectives of
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this thesis. In Part I, after the general introduction in Chapter 1, Chapter
2 provides a detailed explanation and discussion of perception and reasoning
techniques, while Chapter 3 focuses on planning and control strategies, fol-
lowed by a brief discussion on scheduling and fleet coordination as well as
an extension on reactive control and control barrier functions. In Chapter 4,
appended papers are summarized and reviewed from the perspective of the
research questions and objectives. Finally, the conclusion and future work of
this thesis are presented in Chapter 5.
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CHAPTER 2

Perception and Reasoning

Similar to the recognition process of humans, robots need a two-step process to
understand the environment and make decisions. The first step is perception,
which involves sensing the environment and extracting relevant information.
The second step is reasoning, which consists of interpreting the information
and making instructive decisions based on it. Sensors play a crucial role in the
perception process, providing robots with the necessary data to understand
their surroundings. Based on the selection of sensors, the environment can
be perceived in different representations. The raw data from the sensors are
then processed and transformed into a world representation that can be used
for reasoning and decision-making. This chapter briefly discusses sensors for
AMRs and the perception process.

2.1 Sensor
A sensor is a device that detects and responds to some type of input from
the physical environment [88]. They are widely used in various applications,

such as robotics, automation, and smart homes. In the context of robotics,
sensors are the eyes and ears of robots, playing a crucial role in perceiving the
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environment and enabling robots to interact with it. They provide robots with
information about their surroundings, allowing them to make decisions and
take actions based on that information. There are different ways to classify
sensors. For example, a common classification is based on the type of physical
quantity they measure, such as temperature, pressure, light, sound, etc. In
this thesis, sensors are categorized based on their purpose and detection range.
From inner state estimation to outer environment perception, sensors used in
robotics can be classified as follows:

e Sensors for robot state estimation: These sensors are used to estimate
the internal state of the robot, such as position, orientation, velocity,
and acceleration. They provide feedback to the robot’s control system
and kinematic information as a reference for the motion model.

e Sensors for close-range safety: These sensors are used to detect obstacles
and hazards in the robot’s immediate vicinity. They are directly con-
nected to the safety layer and play a critical role in preventing serious
accidents and injuries.

e Sensors for path guidance: These sensors are used to guide the robot
along a predefined path, which relies on external infrastructure along
the path. Most AGVs use this type of sensor for navigation.

e Sensors for environment perception: These sensors are used to perceive
the general environment around the robot, such as objects, obstacles,
and landmarks. They provide rich information about the surroundings
and enable the robot to make informed decisions accordingly.

In practice, different sensors are often combined to provide a comprehensive
perception, which is known as sensor fusion [89]. By fusing data from multiple
sensors, robots can obtain a more accurate and reliable representation of the
environment. In this thesis, the main focus is on the processing of visual
perception of the environment.

Sensors for robot state estimation

The estimation of the robot’s internal state is essential for reactive motion con-
trol and state feedback. The robot’s state includes its kinematic features, such
as position, orientation, and velocity, as well as other dynamic and physical
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Figure 2.1: Conceptual examples of some sensors that can be used for AMRs.

properties. The scope of this research is focused on the sensors that provide
kinematic information. Inertial Measurement Units (IMUs) [90] are commonly
used for state estimation, usually consisting of accelerometers, gyroscopes, and
sometimes magnetometers. IMUs measure the robot’s linear acceleration and
angular velocity to estimate its position and orientation. Global Position-
ing System (GPS) is another sensor used for localization, which provides the
robot’s global position and velocity. However, GPS has limitations in indoor
environments due to signal blockage and low accuracy. Rotary encoders are
used to measure the robot’s wheel rotation and calculate its position and
velocity. They are commonly used in mobile robots for odometry estimation.

These sensors measure the robot’s kinematic state directly with high ac-
curacy and low latency, which makes them suitable for real-time control and
feedback. For example, they can provide ground truth data of the robot’s
state for calibration and validation purposes. They also serve as a reference
in the motion model for other external sensors to correct their measurements.

Sensors for close-range Safety

Safety is paramount in human-robot collaboration, particularly in shared
workspaces where robots and humans are not separated by physical barri-
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ers. Close-range safety sensors are mounted on the robot to detect obstacles
and hazards in its immediate vicinity, thereby preventing collisions and ensur-
ing safe operation. Tactile sensors, which measure contact forces and pressure
through mechanical deformation, displacement, or changes in electrical resis-
tance and capacitance, play a crucial role in detecting physical interactions.
In AMRs, tactile bumper sensors typically serve as the last line of defense,
acting as emergency brakes when contact with an obstacle occurs. For near-
range detection, ultrasonic sensors are employed to measure the distance to
nearby obstacles by emitting high-frequency sound waves and calculating the
time it takes for the waves to return. With a typical range of a few meters,
ultrasonic sensors are well-suited for close-range safety applications. Infrared
sensors have similar functionality to ultrasonic sensors but operate based on
the reflection of infrared light.

These sensors provide real-time feedback on the robot’s near surroundings,
enabling it to react quickly to unexpected obstacles and alleviate or avoid
serious accidents. They are often embedded in the robot’s safety layer and
are designed to trigger emergency stop mechanisms when necessary.

Sensors for path guidance

Path guidance sensors are used to guide mobile robots along predefined paths,
typically supported by external infrastructure. For example, magnetic sensors
detect magnetic fields generated by electrical wires embedded in the floor to
localize and navigate mobile robots. Similarly, optical sensors, such as in-
frared sensors and cameras, identify visual markers or patterns on the ground
to provide positional information. While path guidance sensors are well-suited
for fixed routes and highly structured environments, their reliance on exter-
nal infrastructure limits their flexibility in dynamic or unstructured settings.
Despite the potential for layout changes in factories and warehouses, some
permanent infrastructure remains available for use in calibrating the robot’s
position, such as fiducial markers.

Sensors for environment perception

To perceive the general environment around the robot, sensors should be able
to establish a comprehensive representation of all objects in the vicinity. Hu-
mans can perceive the world through different senses, among which vision is
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|

Figure 2.2: Depth image taken by an Intel RealSense depth camera. Each pixel on
the depth image (right half) contains a value indicating the distance
in the space w.r.t. the camera’s position.

the most dominant. People can use visual information to recognize objects,
infer spatial relationships, track moving objects, etc. Cameras are such sen-
sors for visual perception, providing rich information about the environment.
RGB cameras capture color images which is consistent with humans. The
output of RGB cameras is a 3D matrix I of size H x W x 3, where H and W
are the height and width of the image, respectively, and 3 represents the three
color channels (red, green, and blue). By capturing a series of images from
time ¢; to t2, RGB cameras can represent the spatial and temporal informa-
tion of the environment as {It}ﬁ’f, where the cardinality of the set depends on
the frame rate (also known as Frames Per Second, FPS) of the camera. An-
other type of camera widely used in robotics is depth cameras, which provide
depth information in addition to color, as shown in Figure 2:2] The depth in-
formation can be obtained through various technologies, such as stereo vision,
structured light, and Time-of-Flight (ToF). Stereo vision uses two cameras
to capture the same scene from slightly different perspectives, allowing the
system to calculate the depth by triangulation. Structured light projects a
pattern of light onto the scene and measures the deformation of the pattern
to infer depth. Time-of-flight cameras emit light pulses and measure the time
it takes for the light to return, which is proportional to the distance to the
object. Depth cameras output depth images besides color images, where each
element represents the distance to the corresponding pixel in the color image.

Unlike most cameras receiving information passively, LiDAR sensors ac-
tively emit laser beams and measure the time it takes for the beams to return
after reflecting off objects. LiDAR sensors provide accurate distance measure-
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ments of the surrounding 3D space in the form of point clouds. The point
cloud is a set of 3D points where the number of points and their spatial dis-
tribution depend on the sensor’s field of view and resolution. The point cloud
can be further processed to extract features such as planes, lines, and objects.

Placement of sensors

The common setup of AMR focuses on attaching various sensors to the robot
to enhance its perception capabilities and autonomy, such as shown in Figure
21l Cameras and LiDAR sensors are often mounted on the robot’s chassis
or a raised platform to provide a broad field of view and reduce occlusions.
The choice of sensor placement depends on the sensor’s field of view, range,
and purpose. The placement of sensors should be carefully designed to maxi-
mize coverage, minimize blind spots, and ensure robust perception in various
scenarios. This setup allows the robot to perceive its surroundings from mul-
tiple perspectives and modalities, enabling it to make informed decisions and
navigate complex environments autonomously. However, unlike public open
spaces, industrial environments are scattered with obstacles obstructing the
detection of sensors. To address this issue, another solution is to attach the
sensors, especially visual sensors, to the ceiling or walls to provide a bird’s-eye
view of the environment, such as shown in Figure [1.2] This setup can im-
prove the visibility of the sensors and reduce occlusions caused by obstacles
on the ground. These sensors can also be used for other purposes, such as
guiding other robots, gathering production data, and detecting anomalies and
hazards. In this thesis, a visual system composed of ceiling-mounted cameras
with overlapping fields of view is applied to provide a comprehensive percep-
tion of the environment. By using a camera grid, the workspace is covered
from a bird’s-eye view, and a real-time 2D map is generated to assist AMRs
in navigation and obstacle avoidance.

2.2 Perception

Sensor data contains a wealth of raw environmental information that must be
processed to extract meaningful features and insights. Perception is the pro-
cess of interpreting sensor data to understand the environment and support
informed decision-making. For instance, LiDAR point clouds can be analyzed
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to detect objects based on their shapes and infer their spatial positions and
relationships, while camera images provide color and texture information use-
ful for object recognition and identification. In this work, the emphasis is on
visual perception. Perception encompasses several critical tasks, including de-
tection and classification, segmentation, and tracking. This section discusses
these tasks in the context of visual perception.

The general form of a perception task involves a model that processes the
input and generates a corresponding output. For a model Gy parameterized
by 6, the task is to generate an estimation § = G(x) given an input x that
the gap between the estimation and the ground truth is as small as possible.
The “gap” is defined by a loss function £(g, y), for example, using Euclidean
distance as a loss to evaluate the closeness of two 2D points. The form of the
output and the design of the loss function vary for different perception tasks.

Detection and classification

Detection and classification are fundamental tasks in visual perception that
involve identifying objects in the image and assigning them to predefined cat-
egories. Object detection aims to locate objects within an image or video
frame and draw bounding boxes around them, while object classification fo-
cuses on assigning labels to detected objects based on their visual appearance.
Detection and classification models are trained on annotated datasets to rec-
ognize specific object features, such as people, vehicles, and obstacles. The
output y usually contains the coordinates of bounding boxes, the confidences
of bounding boxes, and the confidences of classes (the class with the highest
confidence is the identified class). There are many classic deep learning-based
object detectors, such as Faster R-CNN [91], YOLO [92], [93], and SSD [94],
which leverage Convolutional Neural Networks (CNNs) to extract features
and estimate object locations and classes. Through detection and classifica-
tion, robots can identify and localize objects of interest in their surroundings,
enabling them to make informed decisions and take appropriate actions.

Segmentation

Segmentation is the process of partitioning an image into semantically mean-
ingful regions or segments. Unlike object detection, which focuses on iden-
tifying objects as a whole, segmentation aims to assign a label to each pixel
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Figure 2.3: An example of object segmentation and detection of an industrial
laboratory from a BiSeNet neural network .

in the image, creating a pixel-wise mask that distinguishes different objects
and background regions. Semantic segmentation assigns a single class label
to each pixel, while instance segmentation differentiates between individual
object instances of the same class. Deep learning models, such as U-Net
and other encoder-decoder architectures , have been widely used for se-
mantic and instance segmentation tasks. By segmenting the environment into
distinct regions, robots can better understand the spatial layout and relation-
ships between objects, facilitating more accurate perception and interaction.

Tracking

Tracking involves following objects over time as they move through the envi-
ronment. Object tracking is essential for maintaining consistent identities and
trajectories of objects across frames, enabling robots to predict their future
positions and avoid collisions. Tracking algorithms typically rely on motion
models and appearance features to estimate object states and associate them
with previous detections. Multi-object tracking extends this concept to handle
multiple objects simultaneously, tracking their interactions and movements in
complex scenes [97], [98]. By tracking objects in real time, robots can antic-
ipate their behavior and plan to avoid potential collisions or conflicts, which
is vital for dynamic obstacle avoidance.
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2.3 Reasoning

Reasoning refers to the application of rational cognitive processes to extrap-
olate from existing knowledge to generate new insights. In the context of
robotics, it is for robots to learn from past experiences and data to either in-
fer the cause/intention/result of an event/action or predict the future state of
the environment |15]. As humans, reasoning is a natural process and happens
frequently, such as avoiding collisions with other pedestrians in advance by
predicting their motion. An AMR, without extending the current informa-
tion to predict the future state of the environment, cannot navigate proactively
and smoothly.

Motion prediction

Motion prediction is a crucial component of reasoning in dynamic obstacle
avoidance tasks. In this context, motion is defined as the change in an ob-
ject’s position in space over time, considering the object as a unified entity.
Although motion can be interpreted in various ways, this definition focuses
on the overall trajectory of the object. While motion is continuous in real
life, for the facility of computation and compatibility with digital devices,
the time domain is sampled according to sampling time t5. To distinguish
the discrete time domain from the continuous one, the subscript k is used to
indicate a discrete time step. Formally, let p, be the position of an object
at time step k, and the motion of this object over a discrete time interval
[k, k+T] can be represented as a sequence (py, P41, - -, Ppor), Which is also
known as a trajectory. Motion prediction aims to forecast the future positions
of objects based on information available at the current time step. Let the
current time step be 0; the task of motion prediction is to estimate the future
positions (py, Ps, ..., pr) of an object over the next T time steps. Through
object detection and tracking, the current and past positions of an object can
be obtained, i.e., (p_,,P;_p,--.,Py), Where h is the history length. For a
fixed workspace, the past trajectory of an object can be directly used to pre-
dict its future motion [7]. However, since object motion is restricted by the
environment, it is important to consider environmental context, especially if
the layout of the workspace is not fixed. As shown in Figure 23] segmen-
tation techniques can be used to extract drivable areas, obstacles, and other
relevant features from the environment, resulting in an occupancy grid or
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semantic map. By combining object trajectories with environmental informa-
tion, motion prediction models can anticipate the future positions of objects
more accurately and adaptively, and they are more generalizable to unseen
scenarios.

In summary, in a dynamic environment with N; moving obstacles, given
their past trajectories 7—[(7”52)0 where ng = 1,2,..., Ng and the environmental
information I°"V, the motion prediction task can be formulated as estimating
the future positions of the target object 7—15*% over the next T' time steps:

7 (3 N, nv
A = M HY) 0 1 o H O 1) (2.1)

Note that the inputs to the motion prediction function are not absolute, which
means that not only can more information be included, but the model may
only rely on partial information based on the application scenario. However,
the given representation of the motion prediction function covers the common
case. As mentioned before, traditional model-based methods cannot handle
the complexity of the motion prediction model fMF and deep learning-based
methods have shown great ability in processing high-dimensional data, captur-
ing complex features, and generating generalizable predictions. In this work,
deep learning models are employed to learn the motion patterns of objects
and predict their future positions accurately and efficiently.

Uncertainty in motion prediction

Uncertainty is an inherent aspect of human motion and can be conceptualized
in two main forms: aleatoric and epistemic [99]. Aleatoric uncertainty refers
to inherent, irreducible randomness within a system, which can be quantified
given sufficient data. It is typically parameterized statistically as variances or
ranges. In contrast, epistemic uncertainty arises from a lack of knowledge or
understanding of the system, and it tends to be more pronounced when the
randomness in motion is minimal. Epistemic uncertainty can potentially be
reduced through the acquisition of more information or improved modeling.
In motion prediction, as illustrated in Figure aleatoric uncertainty refers
to the inherent local randomness in an object’s motion, such as jitter or noise,
while epistemic uncertainty arises from the lack of complete information about
the object’s motion or the environment, or the model’s inability to capture all
relevant factors.
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Figure 2.4: An example of different types of uncertainty for the motion prediction

problem. Two possible futures describe the epistemic uncertainty while
the increasing future motion area depicts the aleatoric uncertainty (lo-
cal randomness).

To capture local uncertainty, instead of predicting a position point at each
time step, a probability distribution over the future positions can be estimated.
In practice, the probability distribution can be represented by a parametric
distribution, such as a Gaussian distribution (as in Figure , or a discrete
probability map. As for epistemic uncertainty, if the model has a limited
ability to consider diversity due to inadequate model capacity or a lack of en-
vironmental information, it cannot accurately predict the change of motion in
terms of speed or direction. A more challenging problem is to include Multi-
modal Motion Prediction (MMP), which is a comprehensive representation of
epistemic uncertainty. The term “multimodal” refers to the existence of mul-
tiple modes (local peaks) in the probability distribution. Gaussian Mixture
Models are common representations of multimodal distributions.

Considering a motion prediction task, where given an input x, after a cer-
tain time steps, there are M ground-truth future positions Y = {"y}M_ .
Note that the multiple ground-truth positions are normally not available in
practice. Define M as a mode set that contains all ground truth positions of
the mode. For simplicity, mode sets cannot overlap with each other, i.e., a
position can only belong to a single mode set. For any ‘y, 7y € Y, assuming
their distance (such as Euclidean distance) is d(‘y,”y), they belong to the
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Figure 2.5: Three different motion prediction pipelines are involved in this work
(each row is a pipeline). The first row is the MDN-based motion predic-
tion method . The second row is the multi-hypothesis-based method

7 ‘ The last one is energy-based motion predictors .

same mode if and only if their distance is no larger than a certain threshold

€Em , ie.,

Yy e M = d('y.’y) < em, (2.2)

or there exists another y € Y such that y and 7y can be proven to be in the
same mode with y, i.e.,

ylyeM = JyeY,(y,y e M)A (y,y e M), (2.3)

where M’ is another recognized mode set. The second rule has a chain ef-
fect that clusters data points in close vicinity. Traditional single-point motion
prediction is insufficient for capturing multimodal characteristics in motion
prediction. To achieve multimodal motion prediction, the model should be
able to output either a probability distribution or multiple predictions at
once. In this work, three different approaches are discussed for multimodal
motion prediction: parameterized multimodal distribution estimation, multi-
ple hypothesis generation, and discrete probability map prediction.
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Learning the uncertainty

Gaussian Mixture Models (GMMs) are a common parameterized multimodal
probability distribution representation. A GMM is a weighted sum of multiple
Gaussian distributions,

Pr(y) = TN (Y| o> Bn)»

m=1 m=1

T = 1,

M=
M=

where 7, is the weight of the m-th Gaussian component, ., and ¥, are
the mean and covariance of the m-th Gaussian component, respectively. The
number of components M is a hyperparameter that needs to be determined
based on the scenario. Instead of estimating the future position y directly,
the motion prediction model needs to estimate the parameters of the GMM.
For a future time step ¢t € {1,2,...,T},

P, = MO (g 1), (2.4)

where I:’t is the output parameter vector containing the weights 7, means
[, and covariances 3 of the GMM. So, the probability distribution of the
predicted future position ¥, is

M

Pr(g|@) = Y Fn(@, N (Gl (z,0), S (@.0)). (25)

m=1

This kind of deep-learning model is called the Mixture Density Network (MDN)
[45]. To train an MDN, since it is a probabilistic model, the loss function can
be designed as the negative log-likelihood of the ground truth future positions
y given the input =z,

M
Lyir, = —log Pr(ylz) = —log Y mmN (ylttm, Zm). (2.6)
m=1

MDNs have shown great potential in capturing multimodal distributions and
generating diverse predictions, making them suitable for multimodal motion
prediction tasks. However, it has been mentioned in the literature [35] that
MDNs may struggle to capture complex multimodal distributions with high-
dimensional data, and they have a tendency to generate mode collapse, which
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is in line with our experimental observations [18]. To address these limita-
tions, other approaches such as multiple hypothesis generation and discrete
probability map prediction can be considered. A motion prediction pipeline
based on MDNs is illustrated in Figure

Multiple hypothesis generation is a straightforward approach to multimodal
motion prediction, where the model generates multiple predictions for each
time step. Instead of outputting a single prediction, the model generates Z
hypotheses for the future position at each time step. The number of hypothe-
ses Z is a hyperparameter that needs to be determined based on the scenario.
The output of the model is a set of Z future positions {*§,}Z_;, which is the
z-th hypothesis of the future position at time step ¢. The difficulty of this
approach lies in the design of the loss function, as the ground truth future
positions are not unique. Multiple choice learning [46] is a learning paradigm
that can be used to train models with multiple hypotheses. The basic idea is
to treat each hypothesis separately and calculate the loss for each hypothesis
given a single ground truth future position. Then, the hypothesis with the
lowest loss is selected to be updated, in which way the model learns to gen-
erate diverse predictions covering the various future positions. This kind of
loss function is also known as the Winner-Takes-All (WTA) loss. Formally,
the WTA loss is defined as

Z
Lwra = sz 'l(z:gta Yy), w,=0(z= argmiinl(lgt, Yi)), (2.7)
z=1

where I(*9,, y,) is the loss term between the z-th hypothesis and the ground
truth future position and 6(+) is the generalized Kronecker delta function which
is 1 if the condition is satisfied and 0 otherwise. The WTA loss encourages
the model to generate diverse predictions and learn to predict the correct
future position among multiple hypotheses. This approach is simple and ef-
fective for tasks with multiple potential choices, as it allows the model to
explore different possibilities and generate diverse predictions. There are two
problems with the original WTA loss. First, if there are fewer hypotheses
than targets (ground truth future positions) in the neighborhood, at least one
hypothesis will be attracted by at least two targets and result in a local equi-
librium. Second, each target only attracts one hypothesis, which may lead to
the abandonment of some hypotheses. In the context of motion prediction,
the first problem leads to wrong predictions, while the second problem leads
to untrackable hypotheses. To address these problems, an Evolving WTA
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(EWTA) loss was proposed [35], which alters the idea of winner-takes-all to
top-winners-take-all, i.e., it updates the top 2z, hypotheses. During training,
Ztop 1S @ preset hyperparameter, and its value keeps decreasing as the train-
ing progresses until it reaches 1. In this way, more hypotheses are updated
compared to the original WTA loss. However, it still leaves some equilibria
between different targets. To further address this issue, we propose an exten-
sive training strategy via two new loss functions: the Adaptive WTA (AWTA)
loss and the Swarm WTA (SWTA) loss [38]. The AWTA loss is designed to
attract hypotheses to the nearest target, depending on if the distance/loss be-
tween the hypothesis and the target is smaller than an adaptive range, defined
as

Tadp = Izrélg( ) + tadp (rzneag:( ) — gélg( l)) , (2.8)
where Z = {1,2,...,Z}, *l is the loss between the z-th hypothesis and the
target, and o,qp is a hyperparameter that controls the range. Then, the

AWTA loss is

z
Lawra = Zwlzl(zgtv Ye), wl=0(°1 < Tagp). (2.9)

z=1
The AWTA loss has a clustering effect that attracts all hypotheses to their
nearest targets, so hypotheses gather around the mean positions of compo-
nents/modes from the ground truth distribution. Although the clustering
effect shows the mean positions of the modes, it loses the representation of
the local uncertainty. To address this issue, the SWTA loss is proposed to

recover the local uncertainty after the clustering effect. The SWTA loss is
defined as

z
Lswra = Zw; Igéigl(lﬁu Yy), wl=0("l < ragp)- (2.10)
z=1

The SWTA loss can counteract the clustering effect of the AWTA loss by
giving greater updates to hypotheses within each cluster that are closer to
the ground truth positions. The combination of the AWTA and SWTA losses
provides a comprehensive training strategy for multiple hypothesis generation.
The overall training process requires three steps: the evolving step (EWTA),
the clustering step (AWTA), and the recovery step (SWTA). The trained
model can generate multiple hypotheses for a single time step, as shown in
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Figure[2.5] To predict a sequence of future positions, the model can be applied
iteratively to generate multiple hypotheses at each time step, which is time-
consuming. To address this issue, a more efficient approach is to generate
multi-channel probability maps for all future time steps at once.

Given a ground-truth position y,, instead of the one-hot encoding, a prob-
ability distribution, such as the Gaussian distribution, can be assumed to
represent the uncertainty of the ground-truth position. By converting the
real-world position to the pixel position and covering it using a probability
distribution, a ground-truth probability mask A can be generated. Then, the
new task is to learn the probability mask representing the ground-truth po-
sition. As validated in the literature, the U-Net [49] architecture is suitable
for this task, which is a fully convolutional network with an encoder-decoder
structure. For the learning strategy, the Binary Cross-Entropy (BCE) loss is
commonly used to train the model, which is defined as

Loce =— Y [Awp o(By )] = > [(1— Ay ) In(1 = 0(Bu w))),
w’,h’ w’,h’
(2.11)
where F is the output of the model, o(-) is the sigmoid function, and (w’, k')
is the pixel position. Assuming the size of the probability mask is W x H,
we have w',h/ € {1,2,..., W} x {1,2,...,H}. The BCE loss encourages
the model to predict a probability mask that best matches the ground truth
mask pixel to pixel, and may lead to overestimation. Similarly but from a
different perspective, the Kullback-Leibler Divergence (KLD) can be used to
match the probability mask by minimizing the difference between the two
probability distributions. The KLD loss is defined as
£KLD = Z Aw’,h’ In M, (212)
w’,h! w’,h
where P is the processed output of the model in the form of a probability map.
Both BCE and KLD can achieve multimodal motion prediction with notable
uncertainty representation and give high coverage of the ground truth posi-
tions. This is particularly useful in open spaces when the movement of objects
is highly random [36]. However, for downstream tasks, the overestimation of
the probability mask may lead to a high false positive rate and the plan-
ner struggles to find a feasible path. To address this issue, we propose to use
energy-based learning for more accurate and concentrated prediction. Energy-
based models are widely studied for their generative ability [101], but they are
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also used for regression tasks [102]. For an energy model Gy(-) with parame-
ters 6, given input & and output y, the model should assign lower energy to the
ground truth position y than to other positions ¥/, i.e., Gyg(z,y) < Go(x,y’).
The output of the model is the energy map E = Gg(x), where E, p/ is the
energy at pixel position (w’, h’'). The predicted future position g is the posi-
tion with the lowest energy in the energy map, i.e., § = argming ns Ey pr.
The desired energy map should enforce that ||y — g|| is minimized. Multiple
predictions can be drawn by Monte Carlo sampling from the energy map,
then the energy map is regarded as an unnormalized probability distribution.
According to the Gibbs-Boltzmann distribution,

e—Go(z.y)

(2.13)

Since the integral in the denominator is normally intractable, its approxima-
tion is used in practice, e.g., via important sampling. Another option is to
discretize the energy space and substitute the integral with a summation. For
motion prediction tasks, if the discretized grid size is equal to the resolution
of the environmental image, the approximation of the integral is sufficiently
accurate. For a discrete energy map E with size W x H, the probability map
P is

e~ FBuw.n

Zg/’:l Zgﬂ e B’

where y = [w, h] " indicating the row index w and column index & of the pixel
position. Training based on the probability representation above is straight-
forward but unstable, and the result tends to be noisy when the size of the
energy map is large. The learned model is sensitive to noise and likely to
generate too high or low energy values. To solve this problem, the weighted
soft loss and the Positive Exponential Linear Unit (PELU) are proposed.

The weighted soft loss is similar to the probability mask A, but instead of
regarding it as a distribution, it is normalized as a weight mask for the energy
space to refine the probability:

P, :=Pr(ylz;0) = (2.14)

e_A’UJ,}LEw,h
W H _E )
D=1 D=1 €

where A is the normalized weight mask (A divided by its maximum value).

(2.15)

w,h =
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The PELU activation function is defined as
fPELU(fL') = max(O, .’E) + min(O, ﬂELU(ew — 1)) + 1 + €, (216)

where SgLy is a positive hyperparameter that controls the slope of the negative
part [103], and € is a small positive constant to avoid numerical instability.
Using the PELU layer to substitute the exponential function in the energy
model can stabilize the training process [100]. With E' = fprru(—F), the
probability map is

!
P, = w.h . (2.17)
w, W H
D wr=1 2n=1 By
Combining the new probability representation with the NLL loss, we get the
Energy-oriented NLL (ENLL) loss,

Lenpy = —In Z Ay wE,y 1 +1n Z E, . (2.18)

w’,h! w’,h!

From the experimental results [100], the energy-based learning strategy is
shown to be more suitable for downstream motion planning tasks compared
to the other aforementioned methods in terms of safety and efficiency.

Implicit reasoning in motion prediction

Implicit reasoning refers to the underlying cognitive processes that guide
decision-making without explicit awareness or representation of the reasoning
results. In the context of obstacle avoidance, especially for dynamic obstacles,
implicit reasoning means that the robot can avoid collisions as it considers the
future states of the obstacles without explicitly predicting them. As an obser-
vation while training Deep Reinforcement Learning (DRL) agents for obstacle
avoidance, the agents can learn to avoid collisions with dynamic obstacles in
advance without any explicit motion prediction [19], [104]. This phenomenon
suggests that the agents implicitly reason about the future states of the obsta-
cles based on their current and past positions. The agents learn to anticipate
the future positions of the obstacles and adjust their trajectories accordingly to
avoid collisions. This implicit reasoning is a powerful capability that enables
robots to navigate complex environments and interact with dynamic obstacles
effectively. Since this is not the focus of this work, the detailed mechanism of
implicit reasoning in obstacle avoidance is not discussed here. However, it is
an interesting research direction that warrants further investigation.
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Planning and Control

After the perception and reasoning of the surroundings, a mobile robot needs
to plan its path according to the scheduled task. Then, the robot needs to
control its motion to follow the planned path. The planning and control of
the robot are crucial for the robot to navigate safely and efficiently in the en-
vironment. The planning usually has two levels: global (long-term) planning
and local (short-term) planning. Global planning is to generate a reference
path from the start to the goal by considering the static layout of the envi-
ronment. Local planning is to generate a local reference trajectory to follow
the reference path while avoiding unexpected obstacles during global plan-
ning, such as dynamic obstacles. Finally, the controller generates the control
signals to follow the local reference trajectory. While there are various plan-
ning and control algorithms, the choice of the algorithm depends on specific
requirements, such as the environment, robot, and task.

3.1 Planning in the environment

According to the application, there are two common types of environments:
requlated workspaces and open freespaces. Factories and warehouses are exam-
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ples of regulated workspaces, where the high-level layout of the environment
is known and fixed. There are regulations and standards to follow in these
environments, such as the division of human and vehicle areas. AGVs [9] are
widely applied in these environments simply to follow the predefined paths.
On the other hand, open freespaces are environments where the layout may
frequently change, such as some public areas where people are moving around
or some indoor environments where, for example, furniture may be moved
frequently. Navigation in these environments is often referred to as the social
navigation problem [55], where the robot needs to be more flexible to interact
with the environment and people. Planning in different environments requires
different approaches. Besides, planning globally and locally in the environment
is also different. Global planning focuses on generating a reference path from
the start to the goal according to the high-level layout of the environment.
The reference path is usually fixed after the global planning, unless the en-
vironment is significantly changed and the original plan is no longer valid.
Global planning in open spaces requires the robot to find valid path nodes
to reach the goal while avoiding obstacles, which makes sampling-based al-
gorithms popular choices, such as Rapidly Exploring Random Trees (RRTS),
probabilistic roadmaps, and their variants. As for regulated workspaces, there
are usually predefined drive lanes and robots are not allowed to find their own
paths, which makes graph-based algorithms, such as A* and Dijkstra, more
suitable.

After obtaining the reference path, it is common to generate a local ref-
erence trajectory during runtime. Although it is not necessary to have local
planning, for instance, reactive controllers can directly follow the reference
path and avoid obstacles reactively, local planning can help the robot avoid
unexpected obstacles more smoothly and efficiently. The local planning is
based on the reference path, the current state of the robot, and the current
situation of the environment. For example, Timed Elastic Band (TEB) [105]
and Dynamic Window Approach (DWA) [60], [106] are two popular local plan-
ning algorithms. TEB is a trajectory optimization algorithm that considers
the robot’s kinematic constraints and the environment’s dynamic constraints.
DWA is a sampling-based algorithm that generates a set of feasible trajectories
and selects the best according to the cost function. Other algorithms, such as
RRT-based algorithms [107]-[109] and artificial potential field methods [69),
are also used for local planning. Local planning is often closely related to the
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control of the robot, and many local planning algorithms can be extended to
control the robot directly or directly generate the control signals. For exam-
ple, DWA generates the trajectory by repeating the sampled control signals,
then the robot can follow the trajectory by executing the control signals.

Apart from the classic planning algorithms, there are also learning-based
planning algorithms, such as Reinforcement Learning (RL) and neural network-
based methods [73]. RL is a type of machine learning that enables an agent to
learn how to interact with the environment to achieve a goal. The agent learns
by trial and error, and the learning process is based on the reward signal from
the environment. Neural networks are introduced to process more complex
data and learn more complex policies. Learning-based planning algorithms
have shown promising results in some specific tasks, such as playing games
[110] and controlling robots |111]. However, learning-based planning algo-
rithms are often data-hungry and require a large amount of data to train the
model. Besides, the learning process is often time-consuming and the model
may not be interpretable. Therefore, learning-based planning algorithms are
not widely used in the industry yet, but they have the potential to be applied
in the future.

In this work, we focus on the planning and control of mobile robots in reg-
ulated workspaces, such as factories and warehouses. The robots are required
to follow predefined paths and avoid unexpected obstacles. Global planning
uses either a visibility graph with A* [112] or a predefined path graph [18§].
For a given graph, if the traffic load is low, the A* algorithm is sufficient to
provide the reference path; Otherwise, there should be a high-level scheduler
to manage the traffic [113]. In the following sections, we will assume the refer-
ence path is given for each robot and focus on the local planning and control
of the robots.

3.2 Obstacle avoidance

Obstacle avoidance is a critical part of the local planning and control of mobile
robots. The robot needs to avoid unexpected obstacles while following the
reference path. There are two types of obstacles: static obstacles and dynamic
obstacles. Static obstacles are obstacles that do not move, such as pallets,
parked vehicles, and containers in the factory. Dynamic obstacles are obstacles
that move, such as other mobile robots, humans, and forklifts. To avoid an
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obstacle, we need to consider the sizes of both the robot and the obstacle. A
simple way to avoid an obstacle is to inflate the obstacle by the size of the
robot so that the robot can be regarded as a point [112].

Obstacles can be represented as geometric shapes (such as polygons and
ellipses) or occupancy grids. In this work, static obstacles are modeled as
polygons represented by sets of inequalities. Let @ = U,, O™ be the set of
all static obstacles, where each obstacle O™ with Ne(n) edges is a closed-
set representing the occupied area of the obstacle and can be defined by a
closed intersection of half-spaces, i.e., O = {p € R2|b§") - (agn))—'—p >
0, Vi € N[l,Né
N[l,Ne(")] =112, ,NE(")}. Assuming convex polygons, a robot is inside a
polygonal obstacle if it is inside all half-spaces defining the obstacle. A penalty
term for the robot being inside an obstacle can be defined as

n)]} with @ and b being the coefficients of the half-spaces, and

Jo(p) = QoY [] max (0.6 = (a")7p) . (3.1)

where Qo is the penalty weight for collision with static obstacles. The penalty
term is zero if the robot is outside the obstacle, and it increases as the robot
gets closer to the center of the obstacle. For dynamic obstacles, to consider
the uncertainty, they are modeled by two-dimensional Gaussian distributions
in the geometric form of ellipses. For an ellipse centered at pu = [,U/m,/iy]—r
with axes o = [0,,0,] (the correlation between the axes is neglected for
simplicity), an indicator can be defined to judge if a point p = [ps,p,]" is
inside the ellipse as

2 2
oz oy

_ 2 _ 2
L(pm,a)max{m(“ He)” Py = o) } (3.2)

Then, the area D™ occupied by the n-th dynamic obstacle can be defined as

D) = {p € R?

Wplu™,o™) =0}, (3.3)

and the corresponding penalty term is

Na

Jp(p) = Qp Y uplp™, ™), (34)

n=1
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where Ny is the number of dynamic obstacles and Qp is the penalty weight
for collision with dynamic obstacles. The penalty term for dynamic obstacles
is usually time-varying, and it is updated at each time step according to
the current estimations of the dynamic obstacles. These obstacle-avoidance
constraints and penalty terms can be used in optimization-based planning
and control algorithms. To obtain a smooth and efficient trajectory, instead
of considering just the current and next time steps, the trajectory should be
optimized over a horizon of multiple time steps. By moving the predictive
horizon over time, we can obtain an MPC formulation for the optimization
problem. The MPC problem can be solved online at each time step to generate
the control signals for the robot to follow the reference path while avoiding
obstacles.

Given a mobile robot with the discrete motion model ¢, ; = f(c;, uy),
where ¢, and u, are the state and control input at time step £, the obstacle
avoidance problem can be formulated as follows (assuming the current time
step is 0):

N-1
Join Jy + Z ler = Ellg, + llur — g,
0:N—-1 k=0
s, epyr = flep uy), Yk € N v, (3.5)
CO = 607

pr ¢ OUDy, VEk € Ng n_1,

where Jy is the terminal cost, ¢, is the known initial state, p;, is the position
of the robot, €, and 4, are the reference state and control input at time
k, Q. and @, are the weights for the state and control input, and N is the
prediction horizon. The reference states, which is the local reference trajectory
in this case, can be drawn from the reference path without considering the
obstacles. The MPC controller can handle obstacle avoidance even though the
reference states are inside the obstacles. To successfully avoid the obstacles,
the optimization problem should not have local minima, which means the
obstacles should be convex and not too large. However, a better solution is to
find a better reference trajectory that avoids the obstacles as much as possible.
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3.3 Reference trajectory generation

While the reference path is fixed after the global planning, the local reference
trajectory is generated during runtime according to the current state of the
robot and the environment. The simplest way to generate the reference trajec-
tory is to sample the reference path according to a reference speed. While most
common convex obstacles can be handled by the MPC controller, non-convex
obstacles or large obstacles may either cost a lot of computation time or lead
to local minima. Therefore, it is better to generate a reference trajectory that
avoids the obstacles as much as possible. Traditional approaches normally
use trajectory optimization, such as TEB [105] and Stochastic Trajectory Op-
timization for Motion Planning (STOMP) [114], or sampling methods, such
as DWA and RRT. In this work, a learning-based approach is proposed to
generate the reference trajectory.

Deep Reinforcement Learning (DRL) 73] is a type of machine learning that
combines deep learning and reinforcement learning. The basic idea of DRL is
to learn a policy that maps the state of the environment to the action of the
agent. While DRL has been used for navigation and control of mobile robots,
it has limited usage in the real world due to the lack of interpretability and
stability. To take the benefits of DRL’s ability to learn complex environments
as well as its constant and efficient computation speed, instead of directly
using DRL to control the robot, we propose to use its action as a tendency
of the robot’s motion and generate the reference trajectory accordingly. To
introduce the general idea, we use Deep Q-Network (DQN) [115] as an exam-
ple; in a later paper, the Deep Deterministic Policy Gradient (DDPG) [116]
algorithm is implemented to substitute DQN for better performance [104].
The first step is the regular DRL agent training for action generation. The
basis of RL is the Markov Decision Process (MDP), which is a discrete-time
stochastic process with the Markov property. The MDP is defined by a tuple
(S, A, P,R,v), where S is the state space, A is the action space, P is the
transition probability, R is the reward function, and « € [0, 1] is the discount
factor. The agent interacts with the environment by taking actions and re-
ceiving rewards. The goal of the agent is to learn a policy 7 that maximizes
the discounted cumulative reward Gy, = Y ;o ¥ Riti+1 at time step k, where
Ry, is the reward at time k. The policy is a mapping from the state space to
the action space, i.e., m : S — A. The optimal policy in a state is the one that
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maximizes the expected cumulative reward,

7*(s) = argmax E; [G|Sk = s, 7], (3.6)

=Vx(s)

where the expectation is called value V' of state s following policy 7. Similarly,
the state-action value function, also known as the Q-value, is defined as

Gr(8,a) =K, [G|Sk = s, A = a]. (3.7)

According to the Bellman expectation equation for MDPs, the @-value func-
tion can be expressed recursively as

4 (8,a) = Ex [Rit1 + Yqx (Skt1, Ak 41)|Sk = 8, Ax = a] . (3.8)

Temporal Difference (TD) learning is a type of RL algorithm that learns by
updating the estimate of the value function based on the difference between
the expected and real rewards at each time step. As a famous variant of TD
learning, Q-learning maximizes the @)-value iteratively and stores the value in
a look-up table called Q-table according to the following update rule:

Q(sv CL) — Q(S, a‘) +oa|r+ rylrlr}g‘fi Q(Sl7 a'/) - Q(S, CL) ’ (39)

where s’ and a’ are the next state and action, r is the reward at (s, and «
is the learning rate. The DQN algorithm is a deep learning-based Q-learning
algorithm that uses a neural network to approximate the Q-value function
rather than storing it in a look-up table with limited capacity. The neural
network is trained to minimize the loss function,

2
L) = [r+max Qs 675~ Q(s,0:0)| . (310)
a’'e

where 0 and 0'4'8" are the parameters of the current and target networks,
respectively. The target network is a copy of the current network that is
updated less frequently to stabilize the training process. Except for the tar-
get network, the DQN algorithm can also use experience replay to stabilize
the training process and improve the convergence speed. The experience re-
play stores the agent’s experience in a replay buffer and samples a batch of
experiences randomly to train the network.
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Figure 3.1: The action and state spaces of the RL agent [19].

For the motion planning and control task, the action space is the velocity
and angular velocity of the robot. The state space can be divided into two
parts: the state of the robot and the state of the environment. Figure [3.]]
visualized the action and state spaces of the RL agent. For DQN, since it
can only handle discrete action space, the continuous action command needs
to be discretized. To have more velocity options, the action space is defined
as the combination of the linear acceleration {—1,0,1} where 1 means full
acceleration, 0 means no acceleration, and —1 means full deceleration, and
angular acceleration {—1,0,1} where 1 means turning right with maximum
angular acceleration, 0 means no turning, and —1 means turning left with
maximum angular acceleration. Overall, there are nine possible actions for
the robot to choose from. The state space is divided into internal state s
and external state s int
speed and angular velocity of the robot, the description of the closest point on
the reference path, and the description of the upcoming nodes of the reference
path. The external observation s®** for the environment is obtained from
the sensor data in practice. LIDAR and cameras are commonly used sensors
for mobile robots. The LiDAR data is simulated by a ray-and-sector model,
where several rays are clustered as a sector whose range is determined by
the closest distance of rays in the sector. The camera data is simulated by
a multi-channel image from a bird’s eye view, which includes a distance map
channel indicating each pixel’s distance to the agent, and two occupancy map
channels indicating the current and one past occupancy of each pixel. After
training the DQN agent, it outputs @Q-values of all action options, and the

ext

. The internal observation s™ contains the previous
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action with the highest @Q-value is chosen as the action of the robot during
inference. To generate a local reference trajectory, the action is used as a
tendency of the robot’s motion. Specifically, the agent is simulated to run N
steps. In the first step, the agent takes the original action, while for the rest
steps, to improve stability, an extra constant reference speed is used instead,
and the angular velocity decays over time. Then, a local reference trajectory
is generated with IV steps.

3.4 Proactive control

By perceiving others’ motion intentions, humans can easily avoid each other
in advance. Unlike traditional obstacle avoidance methods that only consider
the current state of the obstacles, proactive control allows the robot to take
evasive action in advance by introducing motion prediction of dynamic obsta-
cles in the loop. The MPC controller can be naturally combined with motion
prediction due to the predictive horizon. Assuming accurate motion predic-
tion, a sufficient condition for an AMR to avoid a dynamic obstacle within
the predictive horizon is that the robot avoids collisions with all potential
obstacles at the corresponding time steps, i.e.,

Vi € Nig genys m € N, Py & Dy, (3.11)

where m’f)tk is the predicted area occupied by the m-th potential mode of the
obstacle at time step ¢ and M is the number of potential modes. This is an
over-conservative condition, especially when considering multimodal motion
prediction. If too much uncertainty is considered, potential obstacles may
occupy the entire drivable area and the robot can not find any feasible tra-
jectory. Two strategies are proposed to balance conservatism and feasibility:
using soft constraints rather than hard constraints to predict potential obsta-
cle avoidance and using grouped obstacle predictions at each step rather than
individual predictions.

The grouped prediction is achieved through unsupervised Clustering and
Gaussian Fitting (CGF) [7], [18], [100], as shown in Figure which uses
DBSCAN [117] to find clusters of predicted position points of all dynamic
obstacles based on their spatial proximity, then fit each cluster into a Gaussian
distribution to obtain a GMM. As discussed in [100], CGF can mitigate the
computation burden of the optimization solver and also alleviate the freezing
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robot problem [85].
The overall optimization problem [100] can be formulated as (assuming the
current time step is 0, omitting robot index 4 if there is no ambiguity)

min Z {JR(k) + Jo(px) + Jp(pr)

- Y el (312)
j=1#i

st ¢y = flep, uy), VE € Ny voaj, (3.13)

Uy, € [Umin, Umax], Yk € Njg y_1], (3.14)

U, € [Umin, Umax), Yk € No,n_1, (3.15)

pr ¢ O, Vk € N y_1], (3.16)

Pr & D, VE € Nik o - (3.17)

where

Tr(k) = [lex—Ellg, + llug =115, + [Ju,—u 113, (3.18)

is the state and action constraint term with corresponding penalty weights
(Q., Qu, and Q,), and (let dgeet, is the safe distance between two robots)

. . . . 2
JF(p](gl)’pl(cj)) = max |:0an ' (dﬂeet - H Pg) - pgcj)H) :| (319)

is the fleet collision avoidance term that will be further discussed in the next
section.

3.5 Fleet control and coordination

While fleet coordination is not the main focus of this research, basic fleet
collision avoidance methods are implemented and tested [100], [104], [118],
this problem will be briefly discussed in this section.

For collision avoidance in multi-robot systems, the MPC problem can be
formulated in three different ways, as outlined in Table To achieve a bal-
ance between optimality and scalability, distributed MPC is identified as the
most suitable approach for our application, particularly when a large and dy-
namically changing fleet of robots operates simultaneously with opportunities
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MPC DDPG HYB-DDPG

FENEES

PENERS

FENERS

Timestep: 80| Timestep: 80) Timestep: 50

Figure 3.2: Comparison among MPC, DRL, and DRL-MPC hybrid methods in

multi-agent cases [104].

for information exchange . As shown in Eq. , the distributed MPC
approach requires each robot to query the locations and predicted states of
other robots within the planning horizon. While direct point-to-point com-
munication is feasible, it may lead to excessive communication overhead as
the number of robots increases. To mitigate this, the proposed pipeline in-
corporates a “robot manager” as an intermediary. This manager collects and
stores the current and predicted states of all robots, allowing any robot to
query information efficiently through the manager. This approach is also im-
plemented in a ROS-based simulation , facilitating streamlined commu-
nication and coordination. While distributed MPC effectively resolves some
fleet-level conflicts [118], it remains inherently constrained by the limitations
of MPC itself. As illustrated in Figure [3:2] if multiple robots and static
obstacles create nonconvex configurations, MPC struggles to find feasible so-
lutions due to its convex optimization constraints. To address this limitation,
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a DRL-MPC hybrid approach is introduced [19], |[104]. This method follows a
distributed-training-distributed-execution framework [119], where agents are
trained in single-agent settings, treating other robots as dynamic obstacles
during execution. During runtime, deep reinforcement learning (DRL) gener-
ates a reference trajectory based on inference, which is subsequently utilized
by MPC for motion planning. This hybrid approach enhances collision avoid-
ance capabilities, enabling more effective navigation in complex and highly
dynamic environments.

Beyond local coordination, a high-level scheduler can further optimize fleet
management by coordinating the execution of robot motion plans, thereby
minimizing the risk of fleet-wide collisions [113|. While this aspect falls outside
the scope of this research, integrating local coordination with a high-level
scheduling system presents a promising direction for future work.

3.6 Reactive control in complex environment

While MPC is effective in handling predictive information and optimizing
control commands under constraints, it faces challenges in real-time compu-
tation and handling highly complex obstacles. Conversely, CBFs |71] provide
formal safety guarantees and computational efficiency, but traditional CBF
methods struggle with nonconvex and highly concave obstacles. As part of a
collaborative projectﬂ this research builds on the on-Manifold CBF (MCBF)
framework [120], extending its applicability to complex dynamic environments
by integrating motion prediction for proactive navigation. Compared to tradi-
tional CBF, which operates in Euclidean space and can be limited in handling
complex obstacle geometries, MCBF incorporates an on-manifold approach
[121] with geodesic approximation to provide effective, efficient, and feasible
navigation around obstacles. This enables the controller to accurately manage
highly intricate shapes, such as concave obstacles, which are challenging for
conventional methods.

The prior MCBF framework [120] demonstrated strong performance in nav-
igating complex scenarios, such as maneuvering around a C-shaped obstacle
that encloses a mobile robot. However, one major challenge remained: the
critical parameters for geodesic approximation required manual tuning for

IThis section is based on the collaboration with Yifan Xue and Asst. Prof. Nadia Figueroa
from the University of Pennsylvania.
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different obstacle geometries, which could limit its adaptability in dynamic
environments. To address this, the collaborative project introduces two ma-
jor extensions:

e Integrating multimodal motion prediction into the MCBF pipeline to
enable proactive obstacle avoidance rather than purely reactive behav-
ior.

e Automating adaptive parameter tuning for geodesic approximation, en-
suring that MCBF remains effective across diverse and evolving envi-
ronments without requiring manual adjustments.

These enhancements significantly improve the robustness, adaptability, and
practicality of MCBF, making it a more viable solution for collision-free nav-
igation in complex, dynamic settings.

Gaussian Process Distance Field. As an unparameterized probabilistic ap-
proach to modeling the environment, Gaussian Process Distance Fields (GPDF)
[122], [123] provide distance and gradient information from all detected ob-
stacles in a continuous and differentiable form. For a set of points P =
{pP1,p2,...,pm} representing obstacles, each point can be modeled as a Gaus-
sian distribution. Define a latent field o(p) and the inverse function fi,, map-
ping to the distance field faist(p),

finv (ko(p, P)) = |lp — P, (3.20)
fdist(p) = finv(o(p))7 (321)
o(p) ~ G(0,k, (p,P)), (3.22)

where G represents Gaussian process and k, is the covariance kernel function.
The latent field can be regarded as a smooth occupancy field. According to
Gaussian process regression,

8(p) = ko(p, P) (Ko(P,P) +021) " -1, (3.23)

a(P,o,)

— ko(p, P) (Ko(P,P) + 021) " ko(P, p), (3.24)
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where K,(P,P) is the covariance kernel of the given points, o, is the noise
covariance, 1 is a vector of ones (let k,(P,P) = 1), and «(-) is the Gaussian
process model. The gradient of the distance field can be derived as

fgrad (p) = vpfdist (p)

= agi;v [ Vpko(p, P) - (P, 0,)] . (3.25)

In GPDFs, the distance field provides information about how far a point is
from the surrounding obstacles, while the gradient field encodes both the
direction and rate of change of the distance to obstacles with respect to the
robot’s position. These properties of GPDFs make them suitable to integrate
with the control algorithm.

On-Manifold Control Barrier Function. To define safe control, Control Bar-
rier Functions (CBFs) [124] are proposed to introduce the definition of safe
control from the perspective of keeping the dynamic system inside a safe set,
such as a configuration set without any collisions with obstacles. In general,
A CBF defines a safe set via a continuously differentiable function h(x), given
x as the state vector, where

C = {z € R"|h(z) < 0}. (3.26)

The set C is referred to as the safe set. To keep the system in C, a constraint
on the derivative can be enforced,

h(x,u) < ah(zx), (3.27)

where u is the control input for the system. Note that h contains @, which
is related to the control input w as well. For a nonlinear control-affine sys-
tem, this can be transferred as a linear inequality in the control input [124].
Given a nominal control input, the safe control problem can be solved through
Quadratic Programming (QP), and the whole method is called CBF-QP.
While CBF-QP is designed for safe control, it cannot handle local minima
or saddle points [120]. To address this issue, a modulated version utilizing
the on-manifold method [125] is introduced in [120]. The basic idea of this
On-Manifold CBF (MCBF) method is to modulate the dynamics and project
it onto the tangent planes of the obstacle barrier functions.
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One problem is to determine the correct direction of projection. For exam-
ple, in 2D cases, the dynamics can be projected to either the left or the right
direction, which means the robot can choose to turn left or right in front of an
obstacle. In [120], the direction is selected based on a geodesic approximation
strategy, which is to iteratively move along the obstacle surface or the isoline
according to the relative position of the robot with respect to the obstacle,
and then choose the direction leading to the desired goal position (for details,
see [120]). While this method is effective, the distance to move along the ob-
stacle surface or isoline requires manual selection through tuning a step size
parameter.

In this work, we proposed an adaptive MCBF in cooperation with multi-
modal motion prediction for proactive and local-minima-free obstacle avoid-
ance, named the MMP-MCBF framework. First of all, instead of hand-tuning
the parameter, an automatic parameter selection algorithm (see Paper E) is
proposed so that MCBF can work in environments where the shapes of un-
safe regions may change over time due to the movement of dynamic obstacles.
The MMP-MCBF approach follows the same structure as the integration of
motion prediction and MPC, which is that a motion predictor generates mo-
tion predictions of dynamic obstacles, and a controller then takes the motion
prediction results to generate proper actions. However, there is a major dif-
ference. Unlike MPC, CBF considers the unsafe region as a whole set, so
motion predictions over multiple predictive time steps are summed to form
a complete unsafe region. The consequence is that the overall unsafe region
is normally nonconvex, especially with multimodal motion prediction. To
generate a smooth distance field that can be converted into barrier functions
for CBF, unsafe regions are modeled by GPDFs by sampling their boundary
points. Note that MMP-MCBF is able to handle non-convex obstacles but
also create more non-convex obstacles since it considers predictions over all
time steps as a total unsafe region.

In the simulated scenarios and real-world experiments, this MMP-MCBF
framework is shown to be safer and more efficient compared to other methods,
including MPC with motion prediction, CBF with motion prediction, and
MCBF without motion prediction, especially with the presence of nonconvex
obstacles.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers. These papers have
been chosen to represent the research contributions while ensuring minimal
overlap in theoretical foundations and content.
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Paper A MPC for trajectory tracking

Single-robot

MDN+MPC paper C
Multi-robot
DRL+MPC

Paper B

Single-robot

WTA+MPC Pr.'oactive (.:ollisiop

avoidance with motion

prediction

Paper D Paper E

Multi-robot Single-robot

EBM+MPC EBM+CBF

Figure 4.1: The roadmap of this thesis is structured around the attached papers.
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The red block (Papers A, B, and C) represents the primary research
trajectory, focusing on the exploration of multimodal motion prediction
and its integration with Model Predictive Control (MPC) for proac-
tive dynamic obstacle avoidance. The blue-bordered block extends
the application of MPC-based trajectory tracking by incorporating a
Deep Reinforcement Learning (DRL) heuristic for reference trajectory
generation. The orange block builds upon the integration of learning-
based motion prediction with optimization-based trajectory tracking,
replacing MPC with a Control Barrier Function (CBF)-based method
to handle obstacles with more complex geometries. Motion predic-
tion models are Mixture Density Network (MDN), Winner-Takes-All
(WTA) loss-based model, and Energy-Based Model (EBM).



4.1 Paper A

Paper A Paper B Paper C Paper D Paper E
RQ1 v v v
RQ2 v v v v
RQ3 v v v
RQ4 v v v v v

Table 4.1: The coverage of the research questions is mapped to the attached pa-
pers, demonstrating how each study contributes to addressing the key
research objectives.

4.1 Paper A

Z. Zhang, E. Dean, Y. Karayiannidis, and K. Akesson

Motion Prediction Based on Multiple Futures for Dynamic Obstacle
Avoidance of Mobile Robots

IEEE International Conference on Automation Science and Engineering
(CASE), Lyon, France, 2021, pp. 475-481

© 2021 IEEE. Reprinted, with permission, from Z. Zhang, et al., “Mo-
tion Prediction Based on Multiple Futures for Dynamic Obstacle Avoid-
ance of Mobile Robots,” IEEE 17th International Conference on Au-
tomation Science and Engineering (CASE), Lyon, France, 2021, pp.
475-481, doi: 10.1109/CASE49439.2021.9551463. .

To explore the possibility of combining deep learning methods with tradi-
tional optimization-based methods and solutions to dynamic obstacle avoid-
ance problems in industrial environments, this paper introduces a collision-free
mobile robot navigation pipeline and an industrial perception system consist-
ing of a grid of ceiling-mounted top-view cameras. The vision system gathers
environmental information, such as locations and identifications of static and
dynamic obstacles. Trajectories of dynamic obstacles are sent to a Mixture
Density Network (MDN), which outputs motion predictions of the obstacles
in the form of Gaussian Mixture Models (GMMs). Geometrically, GMMs are
ellipses and can be formulated as nonlinear constraints in the Model Predic-
tive Control problem. The receding horizon feature of MPC makes it natural
to handle motion predictions of dynamic obstacles, so mobile robots can take
proactive actions to better avoid dynamic obstacles. The use cases in this pa-
per display that the proposed approach provides valid predictions of motion
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in a dynamic environment and has the capability to avoid dynamic obstacles
in advance.

My contribution to this paper includes conceptualization, methodology
development, programming, result validation, writing, editing, visualization,
etc. The motion prediction part was implemented by me. The MPC controller
was based on another work [112] that I supervised. I designed the experiments
and all the figures. The manuscript was initially drafted by me, and after in-
corporating feedback from co-authors and reviewers, I revised and finalized
the paper.

The individual contributions of each author are outlined as follows.

Z. Zhang (Main) worked on the ideas, method development, program-
ming, result evaluation, writing and editing, visualization, etc.

o E. Dean (Conceptualization | Review) was involved in discussing the re-
search idea and reviewing the manuscript.

o Y. Karayiannidis (Conceptualization | Review) was involved in discussing
the research idea and reviewing the manuscript.

+ K. Akesson (Conceptualization | Review | Supervision | Project adminis-
tration | Funding acquisition) provided supervision on both the research
and the project funding the research activities.

4.2 Paper B

Z. Zhang, H. Hajieghrary, E. Dean, and K. Akesson

Prescient Collision-Free Navigation of Mobile Robots with Iterative Mul-
timodal Motion Prediction of Dynamic Obstacles

IEEF Robotics and Automation Letters (RA-L), vol. 8, no. 9, 2023, pp.
5488-5495

© 2023 IEEE. Reprinted, with permission, from Z. Zhang, et al., “Pre-
scient Collision-Free Navigation of Mobile Robots With Iterative Mul-
timodal Motion Prediction of Dynamic Obstacles,” in IEEE Robotics
and Automation Letters, vol. 8 no. 9, pp. 5488-5495, Sept. 2023, doi:
10.1109/LRA.2023.3296333. .

This paper introduces an integrated approach for collision-free navigation
of autonomous mobile robots in dynamic and uncertain environments. The
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4.2 Paper B

method combines multimodal motion prediction, utilizing enhanced Winner-
Takes-All (WTA) loss functions to predict dynamic obstacles, with Model Pre-
dictive Control (MPC) to incorporate these predictions into real-time motion
planning. Following motion prediction by the neural network, an unsupervised
technique—clustering and Gaussian fitting—is employed to generate geomet-
ric representations of obstacles, which are then used to formulate avoidance
constraints within the MPC framework. The proposed approach demonstrates
superior performance compared to navigation strategies that either disregard
motion prediction or rely on non-learning-based motion prediction methods.

My contribution to this paper includes conceptualization, methodology
development, programming, result validation, writing, editing, visualization,
etc. The motion prediction part was implemented by me. The MPC con-
troller was based on another work [112] that I supervised. I designed the
Python experiments and all the figures except for the ones related to the
Gazebo simulation. The manuscript was mostly written by me except for the
ROS implementation, and after collecting opinions from co-authors and re-
views, I revised and edited the final version of the paper.

The individual contributions of each author are outlined as follows.

Z. Zhang (Main) worked on the ideas, method development, programming
(algorithm and Python), result evaluation, writing and editing, visualiza-
tion, etc.

o H. Hajieghrary (Programming | Visualization | Review) worked on the
programming (ROS, Gazebo simulation) and visualization of the Gazebo
simulation, and was involved in discussing the research idea and reviewing
the manuscript.

o E. Dean (Conceptualization | Review) was involved in discussing the re-
search idea and reviewing the manuscript.

« K. Akesson (Conceptualization | Review | Supervision | Project adminis-
tration | Funding acquisition) provided supervision on both the research
and the project funding the research activities.
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4.3 Paper C

K. Ceder*, Z. Zhang*, A. Burman, I. Kuangaliyev, K. Mattsson, G.
Nyman, A. Petersén, L. Wisell, and K. Akesson

Bird’s-Eye-View Trajectory Planning of Multiple Robots using Contin-
uous Deep Reinforcement Learning and Model Predictive Control
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Abu Dhabi, UAE, 2024, pp. 8002-8008, *denotes equal contri-
bution,

© 2024 IEEE. Reprinted, with permission, from K. Ceder, Z. Zhang et
al., “Bird’s-Eye-View Trajectory Planning of Multiple Robots using Con-
tinuous Deep Reinforcement Learning and Model Predictive Control,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Abu Dhabi, United Arab Emirates, 2024, pp. 8002-8008, doi:
10.1109/IR0OS58592.2024.10801434. .

This paper introduces a novel method for efficient motion planning and con-
trol of multiple mobile robots, which uses a learning-based algorithm for refer-
ence generation and Model Predictive Control (MPC) for trajectory tracking.
Deep Reinforcement Learning (DRL) agents trained via the Deep Determin-
istic Policy Gradient (DDPG) algorithm are utilized to generate reference
trajectories for mobile robots. The learning ability and fast inference of the
DRL make it suitable for real-time navigation tasks in complex environments,
while MPC produces stable and optimized action based on the given reference.
By combining DRL and MPC, the overall computation time is shortened and
robots are able to handle more complex environments (such as nonconvex ob-
stacles) compared to pure MPC, and the stability is enhanced compared to
pure learning-based method.

This work extends the original single-robot setting to multi-robot applica-
tions by leveraging DDPG agent training only on single-agent environments
with distributed MPC. As a Decentralized Training with Decentralized exe-
cution (DTDE) approach, the training process maintains the same training
process as single-agent learning, ensuring efficiency and scalability. This multi-
agent extension exhibits emergent cooperative behaviors among mobile robots
and demonstrates superior performance in handling complex scenarios com-
pared to standalone DRL or MPC approaches.

My contribution to this paper includes conceptualization, methodology
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4.4 Paper D

development, programming, result validation, writing, editing, visualization,
ete. I initiated this project and proposed the research idea [19]. The MPC
implementation and multi-agent part were implemented by me. I designed the
experiments for the multi-agent part and the other experiments are based on
my previous paper [19]. All the figures were designed and generated by me.
The manuscript was partially written by me (MPC and multi-agent parts),
and after collecting opinions from co-authors and reviews, I revised and edited
the final version of the paper.

The individual contributions of each author are outlined as follows (*K.
Ceder and Z. Zhang have each contribution).

o K. Ceder* (Main) worked on the ideas, method development, program-
ming, result evaluation, writing and editing, visualization, etc. The major
work includes single-agent training, implementation, and evaluation. The
majority of the paper, except for the MPC and multi-agent parts, is written
by K. Ceder.

e Z. Zhang* (Main) worked on the ideas, method development, program-
ming, result evaluation, writing and editing, visualization, etc. The major
work includes multi-agent implementation and evaluation, as well as DRL-
MPC integration. The MPC and multi-agent parts of the paper are written
by Z. Zhang. Z. Zhang initiated this project.

e A. Burman, I. Kuangaliyev, K. Mattsson, G. Nyman, A. Petersén, and
L. Wisell (Programming | Visualization | Writing) worked on the pro-
gramming (training of DDPG agents), and were involved in discussing the
research process of DDPG training and implementation. They wrote a
report on the DDPG training and implementation, which was used as a
reference for the final publication.

« K. Akesson (Review | Supervision | Project administration) provided su-
pervision on the research project.

4.4 Paper D

Z. Zhang, G. Hess, J. Hu, E. Dean, L. Svensson, and K. Akesson
Future-Oriented Navigation: Dynamic Obstacle Avoidance with One-
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Shot Energy-Based Multimodal Motion Prediction
Under Review.

The paper presents an integrated approach for collision-free navigation of
multiple autonomous mobile robots in dynamic and uncertain environments,
such as warehouses. The approach combines:

o Multimodal Motion Prediction using an Energy-Based Learning (EBL)
model to predict dynamic obstacles,

o Model Predictive Control (MPC) to incorporate these predictions into
real-time motion planning.

The method groups predicted obstacles based on proximity to improve effi-
ciency and mitigate the freezing robot problem, where a robot halts unneces-
sarily due to uncertainty. The proposed system is validated across industrial-
like warehouse scenarios, showing superior performance over existing obstacle
avoidance techniques.

The main contributions include proposing an energy-based negative log-
likelihood loss function, integrating the one-shot energy-based multimodal
motion prediction with MPC controllers, and extensively validating the pro-
posed method in a warehouse environment.

My contribution to this paper includes conceptualization, methodology
development, programming, result validation, writing, editing, visualization,
etc. The motion prediction part was implemented by me. The code pipeline
was based on my preceding work [18]. I designed the Python and ROS2 ex-
periments and all the figures. The manuscript was written by me, and after
collecting opinions from co-authors and reviews, I revised and edited the final
version of the paper.

The individual contributions of each author are outlined as follows.

e Z. Zhang (Main) worked on the ideas, method development, program-
ming, result evaluation, writing and editing, visualization, etc.

e G. Hess (Programming | Review) worked on the programming (improving
the deep learning training process).

o J. Hu (Programming) worked on the programming (regulated pure pursuit
control algorithm and part of the motion prediction function).
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4.5 Paper E

o E. Dean (Review) was involved in reviewing the manuscript.

« L. Svensson (Conceptualization | Supervision) co-supervised this paper and
provided guidance for the deep learning part.

« K. Akesson (Conceptualization | Review | Supervision | Project adminis-
tration | Funding acquisition) provided supervision on both the research
and the project funding the research activities.

4.5 Paper E

Y. Xue*, Z. Zhang*, K. Akesson, and N. Figueroa

Proactive Local-Minimum-Free Mobile Robot Navigation using MMP-
MCBF Framework

To be submitted for possible publication, *denotes equal contribution.

In this work, we proposed a safe and efficient mobile robot navigation
pipeline, named MMP-MCBF, based on the integration of motion predictions
of dynamic obstacles and an improved on-manifold control barrier function
method, which enables mobile robots to avoid dynamic obstacles proactively.
To consider motion prediction in the control barrier function framework, we
further improved the on-manifold CBF algorithm for adaptively and automati-
cally parameter searching. Apart from the traditional CVM-based prediction,
a learning-based EBM motion predictor is investigated in this pipeline to
consider multimodal motion prediction for more comprehensive and flexible
prediction. From both simulated scenarios and real-world experiments, the
proposed MMP-MCBF approach outperforms other popular obstacle avoid-
ance approaches, shown to be safe and efficient in complex and dynamic en-
vironments, especially with the presence of non-convex static or dynamic ob-
stacles.

The individual contributions of each author are outlined as follows (*Z.
Zhang and Y. Xue have equal contributions).

e Z. Zhang* (Main) worked on the ideas, method development, program-
ming (improving MCBF, adding motion prediction into the pipeline), in-
vestigation (simulation data collection and neutral network training), result
evaluation, writing and editing, visualization, etc. Z. Zhang initiated this
project.
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e Y. Xue* (Main) worked on the ideas, method development, programming
(developing the MCBF code and improving the integration), investigation
(leading the real-world experiments), result evaluation, writing and editing,
visualization, etc.

e K. Akesson (Review | Supervision | Funding acquisition) provided super-
vision and helped to acquire funding for this collaboration.

o N. Figueroa (Conceptualization | Review | Supervision | Resources) pro-
vided supervision and relevant experimental conditions. N. Figueroa hosted
this collaboration.

4.6 Contributions

The contributions of my research are directly connected to the aforementioned
research questions. A coverage mapping from selected papers to research ques-
tions is shown in Table 1

Research Question 1: What are the key design principles and architectural
components required to develop an effective and scalable Factory with Vision
framework for industrial applications?

Contribution 1: As discussed in Papers A, B, and D, the Factory with Vi-
sion framework is designed based on three key principles: effective modular
components, coherent software interfaces, and practical input/output design
tailored to real-world conditions. The primary hardware components include
cameras, mobile robots, and various communication and computing devices,
while the software components encompass image processing, environmental
perception and reasoning, motion planning, and motion control. Modulariza-
tion is essential for scalability and maintainability, ensuring that individual
components can be upgraded or replaced without disrupting the overall sys-
tem. Software inputs should be directly accessible from physical sensors or
derived from sensor outputs, while software outputs must be executable by
the corresponding hardware and actuators. Smooth and coherent interfaces
between different components are crucial for system integration. For instance,
motion prediction outcomes must seamlessly integrate with the motion plan-
ning and control module. To facilitate this, the clustering and Gaussian fitting
method was developed to transform motion prediction results into a form suit-
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able for downstream planning and control processes.

Research Question 2: How can learning-based motion prediction techniques
be integrated with optimization-based control methods to improve the safety and
efficiency of AMRs in dynamic environments?

Contribution 2: According to Papers A, B, D, and E, integrating motion pre-
diction with control requires consideration of two key aspects: (1) whether the
motion prediction outcomes can be effectively utilized by the control method,
and (2) whether the chosen control approach has the capability to incorporate
predictive information. In Papers A, B, and D, MPC is selected due to its
receding horizon feature, which allows it to naturally incorporate predictive
information. With a predictive horizon, MPC can utilize motion prediction
at each corresponding time step within the horizon, enabling proactive obsta-
cle avoidance. In contrast, Paper E employs a CBF-based method instead of
MPC. Since CBFs do not inherently support predictive information, motion
predictions over all time steps are aggregated into a single obstacle represen-
tation. This approach ensures that control constraints remain feasible while
incorporating prediction. Regardless of the control method, motion predic-
tion outcomes must be transformed into geometric representations that can
be processed by optimization algorithms. To achieve this, the CGF method is
introduced to convert neural network-based predictions into structured geo-
metric constraints suitable for control. Furthermore, as highlighted in Papers
B and D, the selection of motion prediction techniques should be informed
by their compatibility with downstream planning and control tasks. Overly
conservative predictions that encompass excessively large areas may lead to
overly cautious behavior, reducing efficiency. Thus, motion prediction should
be tailored to strike a balance between safety and feasibility, ensuring that
predictions provide actionable and practical information for navigation and
control.

Research Question 3: Which motion prediction methods are suitable and
efficient for capturing the uncertainty in human behavior and how can they
provide actionable insights for downstream planning and control tasks?

Contribution 3: In Papers A, B, and D, various motion prediction methods
are proposed and evaluated to determine their suitability for capturing the
uncertainty in human behavior while providing actionable insights for down-
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stream planning and control tasks. Paper A uses Mixture Density Models
(MDNs) to generate GMMs directly. However, MDNs are subject to mode col-
lapse with high-dimension data space and cannot handle image inputs. Paper
B introduces an improved Winner-Takes-All (WTA) loss function to enhance
the accuracy and diversity of multimodal motion prediction, ensuring that
predicted motions better reflect real-world human motion variations. Because
WTA works with convolutional neural networks, it can be used with image
inputs and the model can encode environmental information. Paper D fur-
ther advances the motion prediction framework by incorporating energy-based
learning, which refines predictive accuracy while maintaining computational
efficiency for real-time applications. To ensure compatibility with control algo-
rithms, motion prediction outcomes are transformed into structured geometric
representations using the CGF method. Additionally, Papers B and D dis-
cuss the importance of balancing prediction accuracy and conservativeness.
While capturing uncertainty is essential for robust motion planning, exces-
sively broad predictions may lead to over-conservative navigation behavior,
reducing efficiency. The proposed methods strive to optimize this trade-off,
ensuring that predictions are both informative and feasible for real-world de-
ployment in autonomous navigation.

Research Question 4: What planning and control strategies can be employed
to ensure safe, stable, efficient, and flexible navigation of AMRs in hybrid
environments?

Contribution 4: This research question is addressed across all selected pa-
pers. Papers A to D employ Model Predictive Control (MPC) for collision-free
navigation, leveraging MPC’s capability to incorporate predictive information
and enforce constraints. Additionally, Paper C and its preceding work propose
a Deep Reinforcement Learning (DRL)-MPC hybrid approach, where DRL is
used to generate a reference trajectory that MPC subsequently follows. This
combination integrates the strengths of both methods: DRL excels in navi-
gating complex obstacles through learning, while MPC provides stability and
optimized behavior by ensuring constraint satisfaction and smooth trajectory
execution. Paper E explores an alternative to MPC by testing the proactive
collision avoidance pipeline using Control Barrier Functions (CBFs). Specif-
ically, it employs an improved variant known as on-Manifold CBF (MCBF),
which enables smooth handling of concave obstacles. Unlike MPC, CBF-based
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methods do not inherently incorporate predictive information; however, they
guarantee non-penetration of obstacles and generally offer faster computation
compared to MPC. While the combination of motion prediction and MCBF
results in more conservative behavior—due to the CBF’s inability to explic-
itly handle predictions—the integrated approach demonstrates strong perfor-
mance in navigating nonconvex dynamic obstacles. This highlights the trade-
off between computational efficiency, predictive adaptability, and constraint
satisfaction when selecting control strategies for proactive obstacle avoidance
in dynamic environments.
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CHAPTER b

Concluding Remarks and Future Work

This thesis investigates the development of multimodal motion prediction
techniques for dynamic obstacles, which are designed to enhance mobile robot
navigation algorithms for proactive collision avoidance. Additionally, it ex-
plores motion planning and control strategies tailored for mobile robots op-
erating in complex environments. The core objective is to integrate learning-
based approaches with optimization-based controllers to enable safe, efficient,
stable, and intelligent navigation, particularly in industrial settings. A portion
of this research has been conducted in collaboration with Volvo GTO, with a
specific focus on implementing the Factory with Vision framework to improve
robotic perception and decision-making in manufacturing environments.

The primary research trajectory of this thesis focuses on integrating deep
learning-based multimodal motion prediction with MPC-based mobile robot
controllers to enable proactive dynamic obstacle avoidance. As demonstrated
in Papers A, B, and D, the proposed approach outperforms conventional
obstacle-avoidance strategies in terms of both safety and efficiency. In Pa-
per B and its preceding work, an improved winner-takes-all loss function is
proposed to enhance the multimodality of motion prediction. In Paper D, a
novel energy-based learning strategy is proposed to refine motion prediction.

(0]



Chapter 5 Concluding Remarks and Future Work

Paper C addresses real-time performance and the capability of the motion
planner and controller to handle complex, nonconvex obstacles. By employ-
ing deep reinforcement learning to generate reference trajectories for MPC,
the proposed hybrid approach shows improved real-time performance and a
higher success rate in avoiding complex obstacles. This hybrid approach is also
extended to multi-agent cases in Paper C' through distributed training and
execution fashion. Paper E explores alternatives to MPC for managing more
complex navigation scenarios, such as avoiding highly concave obstacles. As
part of a collaborative project, this work builds upon the on-manifold Control
Barrier Function (CBF) method, introducing two key modifications: adap-
tive parameter tuning for dynamic environments and motion prediction for
dynamic obstacles. The proposed approach is demonstrated to be adaptive,
flexible, and robust, enabling mobile robots to navigate complex dynamic en-
vironments with concave obstacles effectively.

In summary, this research investigates proactive dynamic obstacle avoidance
for mobile robots by exploring the integration of learning-based methods for
environmental perception and reasoning with traditional optimization-based
control techniques. The objective is to achieve a balance between adaptability,
computational efficiency, and theoretical guarantees in mobile robot naviga-
tion. The contributions of this thesis present a comprehensive framework that
seamlessly integrates motion prediction, planning, and control, with promising
applications in industrial automation, smart manufacturing, and human-robot
collaboration.

Future work includes further refinement of learning-based motion prediction
models, development of adaptive control strategies for dynamic environments,
and real-world deployment and validation in large-scale industrial applica-
tions. Particularly,

e Enhancing Motion Prediction Stability: From Papers A and B to Paper
D, the motion prediction methodology has evolved in terms of visual scene
understanding, faster and more stable inference, and providing probabilistic
information. However, experimental results, particularly those involving
human motion noise, indicate that motion predictions are not consistently
stable. Due to the inherent uncertainty in human motion, sudden changes
in predicted constraints can lead to infeasibility issues in control algorithms.
While such uncertainty and motion noise are unavoidable, implementing
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a memory mechanism in motion prediction could enable predictions to be
made correlatively over time, thereby improving stability.

o Integrating a Unified Navigation Framework: A more cohesive pipeline
that integrates the approaches from Papers C and D can be developed
to achieve more flexible and intelligent navigation within a fleet of mobile
robots.

o Expanding Real-World Deployment: While Paper E includes some real-
world experiments, further implementation and validation of the proposed
approach in industrial settings are beneficial. Additional experiments will
help assess its practical feasibility and contribute to increasing automation
in factory environments.

¢ Addressing the Trade-Off Between Safety and Efficiency: Observations
from Papers D and F highlight the significant impact of dynamic obstacle
uncertainty on control strategies. Striking a balance between safe yet overly
conservative navigation and efficient but potentially less stable navigation
remains a critical challenge. Future research should explore both techni-
cal advancements and philosophical perspectives to address this trade-off
effectively.

These potential research directions influence both academic advancements and
industrial applications in the field. While the primary motivation of this re-
search has been to bridge the gap between motion prediction and downstream
planning and control, this work represents one step toward more autonomous
and intelligent industrial transportation solutions, with the potential for ap-
plications in broader everyday scenarios. Although the complete realization
of the Factory with Vision framework remains a long-term goal, it is my sin-
cere hope that this thesis contributes to and inspires further research in this
evolving field.
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