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Predicting moisture-related degradation risks across facades 

Methodologies for moisture risk assessment across entire facades: Engineering and Data-Driven 
Approaches 

JAN MANDINEC 
Department of Architecture and Civil Engineering  
Division of Building Technology, Building Physics  
Chalmers University of Technology 

Abstract 
Predicting facade deterioration due to microclimate effects is crucial for sustainable building 
management. Traditional hygrothermal assessments often neglect these microclimate effects, 
leading to underestimated moisture risks, localized degradation and increased maintenance 
costs. To address these limitations, research advocates for the transition from a one-dimensional 
to a multi-dimensional approach, using Computational Fluid Dynamics (CFD) to capture 
microclimate effects, though this method is complex and computationally intensive. 

In this work two methodologies were developed—Engineering and Data-driven 
approaches—to assess moisture-induced degradation risks across facades, section by section. 
The Engineering approach combines semi-empirical wind-driven rain methods with solar 
irradiation analysis to model hygrothermal loads and risks. The Data-driven approach uses 
image-based analysis, 3D model data and climate data to train a machine learning algorithm for 
predicting degradation ratios. 

 The framework for Degradation Analysis over Facades was introduced to validate these 
methodologies and to provide degradation data for the Data-driven approach. Using drones and 
computer vision, the framework was applied to 16 case study facades in Gothenburg, Sweden. 
The analysis of degradation data reveals that south-facing facades are more damaged, while 
degradation patterns vary.  

 The Engineering approach, applied to a single, yet representative, facade due to the 
laborious simulation process, revealed discrepancies between the modeled and observable 
degradation. A better incorporation of the roof overhang into the chosen WDR method (Straube 
and Burnett method) would increase the accuracy of the approach. The Data-driven approach, 
applied to all 16 facades, performed well in predicting degradation using the test dataset, 
achieving R-squared (R2) value of 0.978, but deviated when predicting degradation on the 
validation facade (R2=-1.152), which was initially excluded from the analysis. This was attributed 
to the distribution shift that arises due to limited training data and unknowns introduced from 
prior maintenance.  

 Despite these limitations, both methodologies offer promising alternatives to full-facade 
moisture risk assessment using CFD. Although tested on a case from Sweden, these 
methodologies are broadly applicable. Ultimately, the Data-driven approach could offer a 
computationally inexpensive way to assess facades in entire neighborhoods.  

Key words: 

Hygrothermal, Risk assessment, Microclimate, Degradation, Status assessment, Computer 
vision, Machine learning, Brick, Facade  
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Förutsägelse av risk för fuktrelaterad nedbrytning av fasader  

Metoder för riskbedömning av fuktskador på hela fasader: Ingenjörs- och datadrivna 
tillvägagångssätt 

JAN MANDINEC 
Institutionen för arkitektur och samhällsbyggnadsteknik 
Avdelningen för byggnadsteknologi, byggnadsfysik 
Chalmers tekniska högskola 

Sammanfattning 
Att förutsäga nedbrytning av fasader på grund av variation i mikroklimat är avgörande för hållbar 
byggnadsförvaltning. Traditionella hygrotermiska beräkningar bortser ofta från dessa 
mikroklimateffekter vilket leder till underskattade fuktrisker, lokal materialnedbrytning och ökade 
underhållskostnader. För att åtgärda dessa begränsningar förespråkar forskningen en övergång 
från en endimensionell till en flerdimensionell metod. Beräkningsströmningsdynamik (CFD) är en 
komplex och beräkningsintensiv metod som kan användas för att fånga mikroklimateffekter. 

I detta arbete har två metoder utvecklats—Ingenjörs- och datadrivna tillvägagångssätt—
för att bedöma fuktrelaterade nedbrytningsrisker över fasader, sektion för sektion. 
Ingenjörsmetoden kombinerar semi-empiriska metoder för slagregn med analys av solstrålning 
för att modellera hygrotermiska belastningar och risker. Den datadrivna metoden använder 
bildbaserad analys, 3D-modelldata och klimatdata för att träna en maskininlärningsalgoritm för 
att förutsäga nedbrytningen. 

Ett ramverk för analys av nedbrytning av fasadmaterial introduceras för att validera de 
båda metoderna och för att tillhandahålla nedbrytningsdata för det datadrivna 
tillvägagångssättet. Med hjälp av drönare och datorseende tillämpades ramverket på 16 
fallstudiefasader i Göteborg. Analysen av nedbrytningsdata visar att fasader vända mot söder 
drabbas av fler skador och att nedbrytningsmönster varierar. 

Ingenjörsmetoden tillämpades, på grund av den arbetskrävande simuleringsprocessen 
på en representativ fasad. Metoden visade avvikelser mellan den modellerade och observerade 
nedbrytningen. En bättre implementering av taköverhäng i metoden för slagregnsberäkning 
(Straube och Burnett-metoden) krävs för högre noggrannhet. Den datadrivna metoden presterade 
väl i att förutsäga nedbrytning när den testades på de 16 fallstudiefasaderna, testdatasetet, med 
ett R-kvadrat (R2) värde på 0,978, men visade sämre resultat för nedbrytning av 
valideringsfasaden (R2=-1,152) vilken initialt exkluderades från analysen. Detta beror på den 
distributionsförskjutning som uppstår på grund av begränsad träningsdata samt oklarheter 
gällande tidigare underhåll av fasaderna. 

Trots dessa begränsningar erbjuder båda metoderna lovande alternativ till fullständig 
fuktriskbedömning av fasader med CFD. Även om de testades på ett fall i Sverige är dessa 
metoder generaliserbara. Det datadrivna tillvägagångssättet kan på sikt erbjuda ett 
beräkningsmässigt billigt sätt att bedöma fasader i hela områden. 

Nyckelord: Hygrotermisk, Riskbedömning, Mikroklimat, Nedbrytning, Statusbedömning, 
Datorseende, Maskininlärning, Tegel, Fasad 
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1. Introduction 
This section presents the background to the moisture risk assessment of facades, highlights the 
research gaps and proposes research objectives. The section then concludes with an outline of 
the research and its scope. 

1.1 Background and aim  
Building renovations are widely acknowledged as essential components of the decarbonization 
of the building sector. The European Commission estimates that more than 220 million building 
units were constructed before 2001. Current projections indicate that 85-95 % of the existing 
buildings will still be in use in 2050 [1]. Consequently, many of these buildings will require energy 
retrofits to meet efficiency standards. However, to ensure the long-term success of these 
retrofits, they must be accompanied by well-planned maintenance strategies whereof proper 
moisture safety measures constitute its important part that preserves building integrity and 
performance. 

 In general, a building that is improperly maintained or with built-in moisture safety issues 
loses its energy performance at an elevated pace. The exterior surface of a wall, commonly 
referred to as the facade, plays a key role in this process. When the facade material becomes wet,  
its thermal conductivity increases, which in turn intensifies the heat losses through the building 
envelope [2], [3]. Consequently, prolonged exposure of facades to adverse weather conditions 
and their insufficient drying may result in the occurrence of degradation patterns. Cracks, 
spalling, and other mechanical damages then accelerate the moisture ingress, which not only 
intensify the rate of degradation but also further exacerbate the loss of energy performance [4].  

The precise effect of moisture-related damage on the energy performance of the building 
is difficult to quantify as it coincides with natural aging of materials. The insulation materials, for 
instance, could undergo 12-80% performance reductions across different thermal performance 
metrics, depending on the insulation type and the degradation interval [5]. In consequence, such 
a drop in performance can have a significant impact on the performance of the whole building. 
Another influential factor is the degradation of Heat, ventilation and air conditioning (HVAC) 
systems. This was accentuated in a case study conducted by Eleftheriadis and Hamdy [6], who 
compared the performance of a single-family house in two simulation scenarios, one of which 
included the discussed modes of performance degradation. Such a scenario overconsumed 
18.4% and 47.1% of more primary energy over 20 years compared to the other case [6]. 

 In consequence, maintaining components in good condition not only ensures energy 
efficiency but also translates into significant energy cost savings. According to the U.S. 
Department of Energy, a proactive maintenance strategy which plans and prioritize renovation 
actions in a timely manner, is associated with a 12-18% cost reduction compared to reactive 
approach [7]. For building facades with cladding systems, cost savings depend on factors such 
as material performance degradation, minimum acceptable quality, service life, and repair 
frequency. This was demonstrated by Flores-Colen [8], who analyzed preventive and predictive 
maintenance strategies for five common facade claddings in Portugal (cementitious rendering, 
elastomeric coating, emulsion coating, ceramic tiling, and natural stone) using data from a large-
scale study. Except for emulsion coating, where proactive maintenance led to a 17% cost 
increase, other cladding systems showed cost reductions ranging from 0.5% to 20%. Despite the 
clear benefits with preventive and predictive maintenance strategies, approximately 70% of 
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renovation decisions in Sweden are made only after a component has exceeded its service life 
[9].  

 Irrespective of the maintenance strategy, all the cost-optimization efforts are futile if 
degradation occurs sooner than anticipated. This point is illustrated in Figure 1. Despite a major 
refurbishment of the facades of the tall residential building, which included the installation of 
costly scaffolding and replastering, it took just approximately 10 years for parts of the facade to 
delaminate. It is noteworthy that the damage is localized to this and similar south-facing facades, 
while facades facing other directions do not show such deterioration. Primarily, this is due to 
wind-driven rain (WDR), which is the main driving factor for weathering of buildings in 
Gothenburg.  

 

Figure 1 Localized delamination of render on a high-rise building in Gothenburg, Sweden. The degradation occurred 
approximately 10 years after a major renovation of the building's facade.  

 A similar example is shown in Figure 2. There, a south facing brick facade, which was 
renovated in 2013, exhibits numerous bricks subjected to spalling and efflorescence. Again, 
facades of the building oriented in other directions exhibit either no or negligible degradation. 
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Figure 2 Localized spalling degradation on a brick facade of a residential building in Gothenburg. Sweden. The facade 
was renovated in 2013.  

 Such a fast reoccurrence of degradation inevitably results in the premature need for 
renovation, a need that may not be financially feasible in the near future and will only intensify as 
the rate of deterioration can only accelerate. Therefore, regardless of the maintenance strategy 
taken, the renovation measures must be accompanied by proper preventive measures. 

In practice, the risk of moisture-induced deterioration is ensured by following technical 
standards. ByggaF in Sweden is an example of a qualitative moisture risk assessment tool, 
providing a framework and set of checklists to reduce moisture risks treating buildings from 
planning to operation stage [10]. Apart from qualitative methods like ByggaF, the risk of moisture-
related degradation can be assessed quantitatively by combining hygrothermal modeling and 
empirically-derived performance indicators. These combine dose response functions with 
critical moisture saturation exceedance, allowing, for example, to assess the risk of 
contamination by mold growth [11] and freeze-thaw degradation. The latter was probably  the 
main degradation mechanism for the occurrence of degradation in the aforementioned cases 
(Figure 1 and Figure 2), repeatedly freezing and thawing the excess moisture due to WDR. 
Therefore, despite the accessibility of both qualitative and quantitative methods for risk 
assessment, premature material degradation still occurs, pointing to the main limitations of 
moisture risk assessment.  

 Fundamentally, hygrothermal performance indicators cannot predict the occurrence or 
progression of degradation. One of the few attempts to bridge this gap was made by Portal et al. 
[12] who coupled a heat and moisture model with mechanical assessment of a historic panel 
painting to study how its lime wood supports responded to changing climate conditions. In most 
cases, however, hygrothermal performance indicators are used to estimate the risk of 
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degradation, and the freezing and thawing mode of deterioration is no exception. Theoretically, 
these indicators could serve as proxies for coupled models, providing a simpler means of 
estimating the onset and progression of degradation. Such indicators correlate the number of 
freeze-thaw cycles (doses) with the progression of damage. Numerous laboratory studies have 
shown that increased freeze-thaw cycles lead to greater deterioration severity. These studies, 
which adhere to technical standards, assess the impact of freeze-thaw cycles on the 
compressive strength and the micro/macrostructure of bricks [13], [14], [15]  and mortar [16], 
[17]. 

 However, applying dose-degradation correlations to real building envelopes is not 
straightforward. Laboratory test conditions are often too uniform compared to the varied 
exposures that real facades experience. For instance, technical standards for testing natural 
stone (EN 12371:2010), calcium silicate masonry (EN 772-18:2011), or clay masonry (SIS-CEN/TS 
772-22:2008) require that specimens remain fully saturated before and during each warming 
period, with cold exposure set to a fixed duration. In contrast, real facades are subject to uneven 
rain events, solar and long-wave radiation, and shading effects from nearby objects, all of which 
influence surface temperature and moisture content. 

 Mensinga [18], [19] has criticized these laboratory-based freeze-thaw resistance tests, 
arguing that they exaggerate real-world conditions. He highlights two main issues: the often-
omnidirectional nature of frost exposure and the insufficient control of specimen moisture 
saturation. The latter, he suggests, may explain why some bricks deemed less resistant in lab 
tests outperform in real-world conditions. Furthermore, it takes only a single freeze-thaw cycle 
for a brick to undergo irreversible volumetric changes, leading to damage. As a result, the number 
of cycles required for observable facade deterioration in the field remains unknown. This 
uncertainty extends to other indicators, such as the modified winter index [20] and the freeze-
thaw damage risk index [21]. As a result, hygrothermal performance indicators are  used only to 
compare different building envelope designs to minimize degradation risks as shown by [22].  

 Nevertheless, minimizing the risk of moisture degradation using hygrothermal 
performance indicators still doesn’t ensure the prevention of localized facade degradation. A 
typical hygrothermal assessment assumes one set of boundary conditions for entire facade. Real 
facades, however, are exposed to a variety of weather conditions that stem from factors like 
overshadowing or sheltering from wind-driven rain (WDR). Such microclimate across a facade 
then causes the exceedance of critical moisture conditions across some parts of the facade, 
driving the occurrence of localized degradation. Figure 3 illustrates the effects of microclimate 
on a south-facing never renovated brick facade. 
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Figure 3 The effects of microclimate. Photograph on the top shows the brick part of a facade in Flatås, Gothenburg, 
Sweden. On the bottom left, there is a detailed view of the facade, showing bricks subjected to spalling. The drawing 
on the bottom right shows the facade situation with respect to the surrounding buildings. 

The degradation primarily manifests as spalled bricks, forming a horizontal band across 
the central portion of the brickwork. Notably, the left side of the facade exhibits more pronounced 
deterioration, while areas beneath the roof overhang remain intact. A possible explanation for 
this pattern is the presence of a building in front of the facade. As illustrated in Figure 3, this 
building partially shelters the facade from wind and wind-driven rain, while leaving the left side 
exposed. Additionally, it provides shelter from solar radiation and sky radiation cooling. 
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Undoubtedly, studying the effects of microclimate can provide insights into the factors 
driving facade degradation, contributing to more effective conversion strategies. Recent research 
studies support this approach, advocating for the assessment of numerous points across a 
facade [23]. Despite this, hygrothermal assessments are still commonly conducted with a single 
set of boundary conditions for an entire facade. Therefore, the overarching aim of this thesis is 
stated as follows: 

Overarching objective: Investigate methods for moisture risk assessment for entire facades. 

 In theory, a few microclimate modeling methods could be leveraged to produce unique 
boundary conditions across a facade. The area which was given the most attention in scientific 
literature is wind-driven rain (WDR). In practice, semi-empirical methods are employed. Those 
allow for the straightforward quantification of rain intensity impacting the facade surface. Typical 
examples of such methods are the technical standard (ISO 15927-3:2009) and the Straube and 
Burnett (SB) method [24]. Nevertheless, neither semi-empirical method is without limitations. 
Both methods, for instance, have been developed for use with a limited number of facade 
geometry configurations. Furthermore, the impact of surroundings is accounted for superficially 
at best. In this regard, the SB method does not consider this aspect at all, while a single number 
factor that is based on the surrounding’s type is applied in the ISO standard to WDR. The 
limitations of the ISO standard have been partly addressed by Charisi and Thiis, who combined 
the standardized principles with ray tracing, which is a technique for modeling light transport. As 
a result, their methodology can account for the effect of small structural elements such as roof 
overhangs and window sill on the facade surface temperature and relative humidities [25], [26], 
[27].  

 Outside of the straightforward semi-empirical method and its derivatives, practitioners 
can make use of numerical simulations based on Computational Fluid Dynamics (CFD). 
Inherently, such an approach to WDR quantification is applicable to facades of complex 
geometries, while accounting for the urban environment. There has been significant progress in 
this area of research and several CFD models have been validated against field measurements 
for different building configurations [28], [29], [30], [31]. The validated models have been 
employed in further investigations within urban contexts [29], [32], also with the incorporation of 
radiation analysis [33]. Regardless of these advancements, from a pragmatic standpoint the use 
of CFD in practice is limited as it requires substantial computational power and is associated with 
long computational times. Moreover, CFD simulations require considerable domain expertise 
and are therefore complex in model setup and postprocessing.  

The use of semi-empirical methods for WDR quantification, and following hygrothermal 
risk assessment, is preferable in practical applications. However, whether those methods can be 
combined with the short-wave and the long-wave radiation analysis to produce a distribution of 
degradation risks across facades that correspond with the observed degradation, is still an open 
research question. Thus, the first research objective is formulated as: 

Research objective 1: Investigate the limitations of microclimate-based hygrothermal risk 
assessment from an engineering perspective. 

Addressing the first research objective requires a methodology that follows the principles 
of hygrothermal modeling. This includes steps to define boundary conditions, perform coupled 
heat and moisture simulations, and interpret the results using performance indicators. However, 
a different approach can be proposed. In theory, empirical observations of moisture-induced 
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degradation and its spatial distribution across facades could be used for risk estimation / 
degradation prediction across other, yet undamaged facades. Providing such an estimator 
primarily requires an objective quantification of degradation across facades that could be 
achieved by analyzing Unmanned Aerial Vehicle (UAV or drone)-based imagery using computer 
vision. The conjunction of drone imagery and computer vision analysis is a growing field of 
research, aiming toward automation of anomalies detection. The greatest degree of attention in 
civil engineering has been devoted to crack detection. There, the research has moved from the 
generation of orthophotos with zoom-in functionality suitable for manual inspection [34], and 
traditional computer vision techniques such as Sobel edge detection and thresholding [35], [36], 
[37] towards deep learning algorithms. The latter has already been extensively applied to civil 
engineering structures [38]. However, the focus currently shifts on its application to facades, 
which inherently involves more background noise. For instance, Chen [39] developed a method 
for pixel-level crack segmentation, involving a two-step neural network that consists of 
Convolutional Neural Network (CNN) and U-net model. Nevertheless, the training of CNN, and 
especially the training of its convolutional layers, which extracts features from images, typically 
requires a substantial number of training images. Consequently, other researchers address this 
issue by employing the concept of transfer learning, whereby pretrained CNNs are leveraged for 
feature extraction, with the CNNs’ classification layers then optimized for the detection of the 
desired degradation patterns. This concept has been used not only for crack detection [40], [41], 
but also for spalling and efflorescence [42], and spalling, peeling, biological growth and 
delamination [43].  

Regardless of the detection method the obtained data is primarily used to assist in the 
building inspection process. The further use of such degradation data is limited to mapping it onto 
orthophotos [44] or 3D models [45] of buildings or analyzing crack characteristics [46]. The use 
of computer vision-based degradation detection and its spatial distribution across facades has 
not been employed to study microclimate in terms of geometric and weather exposure aspects 
of facades. This represents a missed opportunity to construct a machine learning predictor 
capable of estimating the impacts of microclimate in undamaged facades. Motivated by this, the 
second research objective is stated as follows: 

Research objective 2: Explore the use of degradation data from UAV and computer vision to 
directly predict the impact of microclimate / degradation on facades.  

1.2 Thesis outline 
The central focus of this thesis is to present conceptual methodologies that address the research 
objectives and to demonstrate their practical applicability and accuracy in assessing/predicting 
moisture risk across facades. This is achieved by integrating a case study as a unifying narrative, 
within which the research objectives are systematically explored. The case study serves as a 
practical foundation, ensuring the methodologies' applicability and accuracy. The overall thesis 
structure, depicted in Figure 4, is organized into five parts: 

• Part I establishes the rationale for moisture risk assessment across entire facades. It 
concludes by defining the case study, which involves 16 yellow brick facades. 

• Part II introduces the theoretical foundation (methodology) for quantifying degradation 
across facades using UAVs and computer vision. It then applies these techniques to 
analyze the studied facades, generating degradation data that serves as input and target 
for evaluating the methodologies proposed in Part III. 
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• Part III presents methodologies (Engineering approach and Data-driven approach) for 
predicting risk of degradation across facades and demonstrates their application within 
the case study. 

• Part IV presents the results, focusing on the comparison between predicted degradation 
risk and the actual degradation distribution observed through computer vision analysis. 

• Part V discusses the applicability of the methodologies, offering conclusions and 
recommendations for future research. 

 

Figure 4 A flowchart showing the structure of this thesis 

The content of Part II and segments of Parts III and IV, which are related to the Data-driven 
approach, is derived from Paper I. Paper II then forms the basis for the Engineering approach in 
Part III and its results in Part IV. 

1.3 Scope of research 
The case study, which permeates this thesis, comprises 16 facades located in a residential 
(Flatås) area in Gothenburg, Sweden, which were constructed between 1954 and 1965. Nine of 
the facades face south, two facades face north and east, respectively, and three facades face 
west. 

Structurally, the facades can be divided into those with ventilated cavity and those 
without. Despite this distinction, all facades share a common outer layer consisting of yellow 
brickwork which covers lightweight concrete blocks. The brickwork is invariably underlain by a 
plastered lightweight concrete plinth. It should be noted, however, that the analysis and the 
subsequent predictions made by the methodologies focus exclusively on the area of brickwork. 
Table 1 summarizes the information about the facades studied. The location of the facades in the 
neighborhood is indicated in the title page figure of this thesis. 
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Table 1 List of facades used in the case study. Included is information regarding orientation, dimensions of the area 
examined (brickwork) 

Facade index  Address Facade  
orientation 

Dimension of 
brickwork [m] 

Ventilated  
cavity? 

1 Svangrumsgatan 3 South 13.15 x 8.90 No 
2 Svangrumsgatan 29 South 6.00 x 9.50 No 
3 Armlangdsgatan 1 South 6.20 x 10.60 Yes 
4 Synhallsgatan 16 South 6.32 x 8.00 Yes 
5 Svangrumsgatan 53 South 5.00 x 9.00 No 
6 Svangrumsgatan 36 South 6.00 x 11.40 Yes 
7 Distansgatan 37 South 3.00 x 8.00 No 
8 Synhallsgatan 17 South 4.00 x 13.98 No 
9 Verktumsgatan 1 South 5.00 x 8.55 No 

10 Armlangdsgatan 13 North 12.97 x 10.30 No 
11 Synhallsgatan 22 North 6.26 x 9.50 Yes 
12 Distansgatan 43 West 12.93 x 9.50 No 
13 Svangrumsgatan 16 West 7.40 x 11.20 Yes 
14 Svangrumsgatan 21 East 13.15 x 11.50 No 
15 Svangrumsgatan 52 East 12.09 x 11.40 Yes 
16 Synhallsgatan 5 East 4.00 x 13.40 No 

 

All facades are subjected to a degradation analysis in Chapter II. Likewise, the Data-
driven approach presented in Section 5 employs data from all the facades. On the contrary, the 
Engineering approach, presented in Section 4, due to its labor-intensive nature, is exemplified 
only on facade 1.  
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DEGRADATION ANALYSIS 

 

“A goal properly set is halfway reached” 
Zig Ziglar 
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2. Framework for degradation analysis over facades 
This section presents a theoretical framework for systemic investigation facade degradation, 
enabling the detection, quantification, and analysis of its spatial distribution.  

2.1 Framework overview and objective statement 
The purpose of the framework is to organize the process of quantifying the extent of degradation 
and analyzing spatial characteristics across facades by structuring the workflow into three 
phases: Prepare, Train and Analyze, as illustrated in Figure 5. It guides data collection, algorithm 
training and result analysis.  

 

Figure 5 Framework for degradation analysis over facade. Each column represents a phase, i.e., Prepare, Train, Analyze, 
consisting of several steps. 

The nomenclature of the phases is largely self-explanatory. In the Prepare phase, data are 
collected and prepared for the analysis, which is conducted in the Analyze phase. The latter 
phase, however, requires a computer vision algorithm that performs the analysis. The training of 
such an algorithm is handled in the intermediate Train phase but can be skipped if a pre-trained 
computer vision algorithm of a satisfactory performance is already available. 

 Before executing the framework, one must decide on the qualitative objective of the 
analysis and the desired performance metrics. The objective statement defines what degradation 
patterns, e.g., cracks, spalling, efflorescence, to look for. The performance metrics, on the other 
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hand, define how the degradations will be quantified. The most common metric for the 
assessment of facade is the area of degradation [47], but one can use other less common metrics 
or can invent a new one. For example, one may count the number of damaged bricks or estimate 
the severity of cracks by measuring their pixel width and orientation. Alternatively, one can 
measure the total (pixel) length of missing veneers etc. In the following, each phase is described 
in more detail.  

2.2 Prepare 
This initial phase involves the collection of photographs, their arrangement into orthomosaics 
and the subsequent division of orthomosaics into sections.  

The collection of the photographs can be done by any means deemed appropriate since 
the framework does not impose any universal requirements, except that the deterioration of the 
facades must be recognizable. In practice, however, the rules for image collection (such as 
distance from a facade surface) must be established prior to the collection to ensure 1) 
consistency and, if a pre-trained computer vision algorithm is available, 2) compatibility of the 
images with what the algorithm has been trained to detect.  

Based on experience, it is more appropriate to use Unmanned Aerial Vehicles (UAV’s or 
drones) to collect images than to take photographs from the ground. This is due to their inherent 
quality for close-up and normal-direction shots. Nevertheless, ground photography can still be a 
sufficient option, especially for facades of smaller proportions. Beyond a certain spatial limit, 
however, which depends on many factors like the quality of a camera and lighting, a significant 
loss of detail is to be expected. Even so, this limit may be pushed further using various pre-
processing techniques including sharpening, perspective transformation or deep learning 
upscaling [48]. Ultimately, the choice between drone and ground photography thus depends on 
the analysis target (i.e., spatiality of the facades) and its objectives.  

Captured drone (or ground) imagery must be stitched together (or in the case of ground 
photography, its perspective transformed) to form an orthomosaic of a facade. This step can be 
achieved by any software for graphic editing including Adobe Photoshop or Affinity Photo. 
Alternatively, a specialized tools like Microsoft Image Composite Editor are available. The last 
step in the Prepare phase involves slicing on the orthomosaics to equally sized rectangular (or 
squarish) sections. The proportion of the sections is arbitrary. 

2.3 Train 
The choice of computer vision algorithms must be aligned with the objectives of the 

analysis and the performance metrics. A plethora of computer vision methods and approaches 
are available. The simplest is to use "classical" algorithms such as thresholding [49], k-mean 
segmentation [50] or Canny edge detection [51]. These, however, usually include hard-coded 
conditions to function that often make them sensitive and thus impractical when applied to larger 
numbers of images. The focus of the research has therefore shifted in the last decade to deep 
learning algorithms. Such advanced computer vision models, while requiring greater expertise, 
offer robust approaches to degradation analysis [52], [53]. These models can be categorized into 
1) image classification, 2) object detection and 3) image segmentation. Their outputs differ and 
are illustrated in Figure. 
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Figure 6 Comparison of outputs between image classification, object detection and image segmentation 

Image classification algorithms, such as Inception [54] or ResNet50 [55] are ideal for 
binary degradation assessment, determining whether a section is affected or unaffected. Object 
detection algorithms, such YOLO (You Only Look Once) [56], EfficientDet [57], SSD (Single Shot 
MultiBox Detector) [58], are effective for detecting degraded bricks. Lastly, segmentation 
algorithms like U-net [59], FCN [60] or SegNet [61] are better suited for identifying cracks and 
missing veneers by coloring pixels associated with them. Although these algorithms are not 
natively designed for facade degradation detection, they can be retrained for this purpose. For 
instance, Wang et al. retrained Faster R-CNN [62] using 500 images to detect spalled and 
efflorescent bricks [63].  

To retrain such algorithms, one needs images with the desired degradation patterns to 
train upon. A sample of the sections that were derived in the previously described Prepare phase 
is an optimal candidate for this purpose as it tunes the selected algorithm towards specificities 
observable on the studied facades. The optimal size of such a sample must be decided 
experimentally. Before the training process begins, each image in the sample must be manually 
annotated, either by providing a binary damaged or undamaged label in the case of image 
classification, or by highlighting the degraded areas in the case of object detection or image 
segmentation.  

2.4 Analyze and the implications of framework’s results 
Once the training process is complete, the algorithm can be applied to each section of 

each facade, yielding raw degradation data across entire facades. These now need to be related 
to the chosen performance degradation metric to quantify the extent of degradation in each 
section. For instance, if a segmentation algorithm is used to highlight cracks, one can determine 
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the number of cracks in each section, classify whether a crack is horizontal, vertical or diagonal, 
or determine its width by counting pixels and relating them to the pixel size of objects of known 
dimensions.  

The results from one section are comparable to those from other sections, enabling novel 
approaches to facade deterioration assessment based on quantitative evaluation rather than 
traditional qualitative methods. This shift has significant implications for analyzing and predicting 
facade deterioration. For instance, the results can support investigations into why some areas of 
facades deteriorate more severely than others, using empirical, image-based evidence. 
Furthermore, this transition from qualitative to quantitative assessment could facilitate the 
application of Markov chains for predicting degradation states. By leveraging quantitative 
degradation data across facades, it may even be possible to develop machine learning models 
capable of predicting deterioration on previously unobserved facades. The next chapter 
illustrates some of the new possibilities by performing the spatial degradation assessment of 
facades in the case study.  
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3. Degradation analysis - implementation 
This chapter employes the proposed framework for degradation analysis of facades in the case 
study. The practical description of the framework implementation is complemented by the results 
from the degradation analysis.  

3.1 Implementation 
The objective of the case study is to quantify the spalling degradation across the brickwork of the 
facades using a variation of the area of degradation, i.e., the proportion of degraded bricks in a 
section, hereafter referred to as the degradation ratio, as a performance metric.  

Upon investigating the facades, it was clear that bricks in some areas have been 
previously replaced as visible in Figure 7. These may be also considered as degraded to obtain a 
more comprehensive picture about where the degradation occurs. Therefore, before conducting 
the degradation analysis, a survey of building owners was undertaken to gather facade renovation 
histories. However, most efforts to pinpoint replaced brick locations and restoration dates were 
unsuccessful, with only the date of the most recent replacement identified. Thus, the analysis 
focuses on physically degraded bricks (e.g., spalling) and clearly replaced ones. 

 

Figure 7 Example of the spalled and replaced bricks (bricks of noticeably brighter color) on a facade from the case 
study. Both are considered degraded for further analysis.  

The execution of the framework was initiated by conducting a drone survey of the 16 
facades using the DJI Mavic 3, equipped with a 4/3 CMOS Hasselblad camera. The operation of 
the drone was executed manually. Photographs were taken under overcast conditions, with the 
distance from the examined facade surface ranging from 3 to 6 meters, depending on the 
surrounding environment. The photographs for each facade were then stitched together into 
facade orthomosaics using Microsoft Image Composite Editor.  

 The objective for the subsequent sectioning of the orthomosaics was to obtain sections 
capturing approximately 1 m2 of actual facade area. To ensure approximate agreement to this 
objective, it was essential to obtain reasonable proportions of the studied areas of the facades. 
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This was done by combining on-site measurements, including the measurement of the distance 
from the ground to the examined area and its width, with a three-dimensional model of the 
neighborhood, obtained from the Digital Twin Cities Centre (DTCC) model [64]. The areas of 
interest on the facades were modeled within the DTCC’s model and divided into 1 m2 sections 
using Rhino 7. These sections were then used to segment the orthomosaics accordingly, ensuring 
consistency between the physical measurements and the digital model. It must be noted that 
prior to the use of the DTCC’s model, the height of the buildings was checked using technical 
documentation for one of the buildings.  

 To perform the degradation analysis, an in-house YOLOv4-based model capable of 
detecting spalled and efflorescent bricks as well as missing veneers in a stone masonry wall [65] 
was chosen for its capabilities and convenience. The model’s performance, however, was 
deemed insufficient during the initial testing, likely due to its inadequate robustness. Therefore, 
the model was tuned to the specific appearance of the degradation and the other visual 
characteristics of the case study facades. This re-training was done by using a sample of 5 to 8 
manually annotated sections from each facade, obtaining 90 images in total. These were divided 
based on the 80:20 rule to the training set and the test set. The re-training was conducted three 
times, with each model focusing on learning to detect different objects i.e., spalled bricks, 
replaced bricks and bricks.  

The maximum number of iterations, referred to as "max batches," was set to 2000 for the 
algorithm. Training each model took approximately 10 minutes on an Intel(R) Core(TM) i9-10900 
CPU @ 2.80GHz, equipped with an NVIDIA GeForce RTX 2070 SUPER GPU. The models achieved 
average precisions of 99% for brick detection, 87% for replaced brick detection, and 90% for 
spalled brick detection. An example of the models' output is shown in Figure 8, where the models 
detect spalled and replaced bricks.  

 

Figure 8 Output from the two models for detection of the replaced and spalled bricks. 

The models were then applied to all facade sections, and the degradation area was 
calculated by counting the number of degraded bricks in an image divided by the number of bricks 
in an image (degradation ratio). The results were stored in a database for further analysis and 
visualization, which is presented in the following subsection.  
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3.2 Summary of degradation analysis 
The results from the analysis are illustrated in Figure 9 which shows distribution of degradation 
ratios across all facades. 

 

Figure 9 Degradation assessment of all facades using YOLOv4 model 

The degradation distribution shown in Figure 9 are generally skewed towards zero. Of the 
1171 facade sections analyzed, 672 (57.4%) were undamaged, and 909 (77.6%) had degradation 
ratios below 0.05. Such low degradation is most common in north, west, and east facades, where 
only 26 sections exceed this threshold. Even among outliers, the degradation ratios remain below 
0.2, except for one section in facade 16, where 24.3% of bricks were classified as degraded or 
replaced. In contrast, south-facing facades show significantly higher degradation levels. While 
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the third quartile (Q3) degradation ratios for north, west, and east facades never exceed 0.025, 
south-facing facades exceed this value in seven instances, reaching 0.05 or more. Additionally, 
the upper whiskers of the box plots, representing 1.5 times the interquartile range (IQR), are 
consistently higher for south-facing facades, indicating more severe conditions. Figure 10 
highlights the positioning and prevalence of degradation on the south-facing facades. 

 

Figure 10 Spatial distribution of the degradation ratio on south-facing facades. Heatmaps were generated by upscaling 
degradation data arrays (sections) by a factor of 100 using spline interpolation. The facades are depicted to their actual 
scale. 

Figure 10 illustrates that degradation is generally more pronounced along the edges of 
facades, marked by thick continuous lines, except for facade 9, where degradation is 
concentrated near the dashed line. Most facades also exhibit damage in their lowest portions. 
Notably, only facades 3, 6, and 8 have bottom edges within 0.5 meters of the ground, suggesting 
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potential capillary suction. However, facade 3's lower sections appear less affected compared to 
facades 6 and 8. For other facades, with lower edges positioned over two meters from the ground, 
rainwater runoff seems a more plausible cause of degradation. Below the brickwork, the 
lightweight concrete render facilitates water runoff. 

Degradation patterns also appear around the middle or upper third of the facades. 
Facade 1 shows a prominent horizontal strip of damage just above the midpoint, with minimal 
degradation above it due to the roof overhang. In contrast, facade 2 has clusters of degradation 
above its midpoint, with the most prominent cluster closer to the upper edge, despite having the 
same roof overhang as facade 1. 

Despite similarities in degradation patterns, each facade exhibits unique damage 
characteristics. For example, facades 2 and 5 are almost identical in design but differ significantly 
in their levels of deterioration. Similarly, other facades, such as facades 1 and 4, display distinct 
degradation patterns when compared to the rest. 

The case study's degradation analysis offers unique insights into the prevalence and 
distribution of spalling across the facades. It highlights how facade microclimates influence 
surface conditions, leading to variations in the risk of physical degradation. This data serves as a 
foundation for developing methodologies to assess and predict degradation risks, providing a 
measurable target for validation, and in the case of machine learning models data to learn 
degradation patterns from. 
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Development of methodologies to address challenges in the 
assessment of hygrothermal risks across entire facades 
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4. Engineering approach 
The aim of this chapter is to address Research Objective 1: Investigate the limitations of 
microclimate-based hygrothermal risk assessment from an engineering perspective. This is done 
by proposing a methodology that uses readily available engineering tools and methods to assess 
the risk of moisture degradation across an entire facade. The chapter is divided into theoretical 
sections in which the methodology is described, and an implementation section in which the 
methodology is used to assess one of the facades in the case study. 

4.1 Overview of the methodology 
The proposed methodological framework for the assessment of the risk of moisture related 
degradation across facades consists of three steps. The first step is microclimate modeling, in 
which the scrutinized facade is segmented like in the degradation analysis (Section 2, to which 
hygrothermal boundary conditions are assigned, considering the facade’s weather exposure and 
surroundings. Leveraging the boundary conditions in the next step, hygrothermal modeling is 
performed in each section. Its outputs are then processed in the final step of the methodology, 
assessing the risk of degradation by employing hygrothermal performance indicators. The 
overview of the methodology is summarized in Figure 11. 

 

Figure 11 The engineering approach framework for assessing risks of moisture degradation across facades. 

 The methodology can be applied to assess the hygrothermal history of a facade and its 
sections, aiding in the study of how specific hygrothermal responses lead to degradation (as 
exemplified in Paper II). Alternatively, it can be used to predict degradation risks based on 
projected climate data (Paper III). 

4.2 Microclimate modeling 
Microclimate modeling focuses on defining boundary conditions for each facade section. This 
includes solar radiation, wind-driven rain and longwave sky-radiation cooling. The modeling is 
initiated by acquiring a three-dimensional model of a neighborhood that includes the facade 
under study with the roof overhang and the segmentation of the facade into sections. 
Furthermore, past or predicted hourly climate data is needed, depending on the aims of the study. 
Projected climate data is preferred to measured data because it eliminates potential missing 
data. The complete set of climate data required for modeling is given in Table 2.  
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Table 2 Required climate data for microclimate modeling 

Variable Units Purpose 
Direct normal radiation W/m² Solar analysis 

Diffuse horizontal radiation W/m² Solar analysis 

Atmospheric counter radiation W/m² Longwave radiation 

Horizontal rainfall intensity  mm Wind-driven rain 

Wind speed  m/s Wind-driven rain 

Wind direction deg Wind-driven rain 

 

 Several tools are available to convert climate data and building spatial characteristics 
into hourly solar irradiation, longwave radiation, and wind-driven rain data for each section of the 
analyzed facade. These include solar radiation analysis tools such as Ladybug [66], De Luminae 
[67], INDALUX [68] etc. However, none of these tools can fully handle all three aspects of the 
modeling. 

 Among these, solar analysis requires the least post-processing effort. For instance, Rhino 
7 plug in Ladybug, which is utilized in the case study, can in one function segment facades and 
provide hourly irradiation data for the sections while accounting for surroundings and roof 
overhangs. However, this data does not include solar reflections from the surroundings, which 
can be incorporated during post-processing to enhance precision if needed. A detailed account 
of how to do this is presented in Paper II. 

To perform the longwave radiation analysis, a balance equation is established. The 
incident longwave radiation exchange depends on contributions from atmospheric counter-
radiation, the ground-reflected radiation, and terrestrial counter-radiation. These contributions 
are influenced by parameters such as the fraction of the sky visible to each section of the facade 
(sky-view factor, which can be determined in Rhino 7 or similar) and its complement, the 
terrestrial view factor. The ground-reflected radiation is determined by the long-wave reflectivity 
of the surroundings, while the terrestrial counter-radiation is based on the emissivity and 
temperature of the surrounding surfaces. The analysis assumes the surrounding surfaces behave 
as opaque grey bodies with temperatures equal to the air temperature. More details can be again 
found in Paper II. 

Wind-driven rain (WDR) analysis requires the most extensive post-processing. Three 
semi-empirical methods are commonly used for WDR quantification: ISO 15927-3:2009, 
ASHRAE 160, and the Straube and Burnett (SB) method [24]. While all differ significantly, the ISO 
and ASHRAE methods are more advanced in incorporating influencing parameters, including 
correction factors for topography and surroundings. 

The ISO method accounts for height-dependent wind speeds, typical roof overhangs, and 
six building geometry types. ASHRAE 160 uses a height-based correction factor but lacks 
provisions for roof overhangs, with wind applied uniformly. The SB method, though less 
comprehensive in parameters and limited to standalone configurations, distinguishes between 
high-rise and low-rise buildings, incorporates roof overhangs, and uses a power-law function for 
wind speed profiles. 

All methods can map WDR distribution across a facade, assigning values to sections 
identified during radiation analysis. The SB method offers the most detailed mapping. Ultimately, 
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selecting the appropriate WDR method requires careful consideration of each method’s 
strengths, limitations, and the objectives of the microclimate modeling. 

4.2 Hygrothemal modeling 
The methodology involves applying microclimate-based boundary conditions to hygrothermal 
simulations (coupled heat and moisture transfer), which can be performed using tools like WUFI 
2D To maintain computational efficiency while analyzing numerous facade sections over 
extended periods, a 1D modeling approach is recommended. Key factors, such as explicit 
longwave radiation balance calculations and wind speed-dependent convective heat transfer, 
are incorporated to ensure accurate results. The indoor environment is typically modeled 
according to standards like EN 15026 to align with external climate conditions. 

4.3 Post-processing 
There are numerous hygrothermal performance indicators that can interpret the outcomes of the 
hygrothermal modeling, estimating the risk of moisture-related degradation. Among the most 
common is the exceedance of moisture content, estimation of condensation risks, assessment 
of drying potential or a mold growth index [11].  

The risk of physical degradation due to weathering, for which this methodology is 
primarily, but not exclusively, designed, is frequently associated with freezing and thawing. Such 
a degradation is frequently assessed through moist freeze thaw cycles, which counts the number 
of times the material experiences a temperature drop below 0 °C while exceeding a certain 
relative humidity level. More advanced indicators, such as the modified winter [20] or the freeze-
thaw damage risk (FTDR) index [21] also consider material properties and the severity of 
temperature drops. The FTDR index is particularly comprehensive, incorporating porosity and 
bimodal functions to estimate critical freezing temperatures and ice content. 

As with microclimate modeling, the choice of the hygrothermal performance indicator 
requires careful consideration to align with the objectives of the modeling. Regardless of the 
chosen indicator, hygrothermal performance should be assessed across all facade sections, 
mapping variations in degradation risk. 

4.4 Case study implementation 
The methodology is exemplified on facade 1 (Figure 12a), which was in Section 3 and Figure 9, 
highlighted as the most profoundly damaged. The objective is to quantify the variation in freeze-
thaw degradation risk across the brickwork of the facade and to compare it with actual 
degradation. 

The investigated façade measures 13.5 x 11.5 m (Figure 12c), with the brick section 
starting 3 m above the ground. Validated climate scenario (A1B) projecting hourly weather data 
for Gothenburg, Sweden, from 1991 to 2021 is used to define the hygrothermal response of the 
façade. The considered dimensions of the facade and its brickwork part correspond to DTCC 
model [64], which were verified using technical documentation and on-site measurements where 
possible. The facade faces south and is sheltered by neighboring buildings (Figure 12b). One 
building, located 14.5 m in front of the facade, provides shelter from the south and east, while a 
second building, 35 m further to the west, also offers some shelter. An open area is present to the 
southwest. 
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Figure 12 a) Photo of the case-study facade, b) footprints of the examined and surrounding buildings including 
dimensions, c) dimensions of the examined facade. 

The brickwork of the facade was segmented into 104 sections, which corresponds with 
the sectioning performed in “3. Degradation analysis - implementation”. Solar analysis and the 
acquisition of the sky-view factor for all sections were performed using Rhino 7. These were then 
transferred to the incident solar and longwave radiation using coefficients from Table 3. 

Table 3 Coefficients for microclimate radiation modelling. All values are taken from the WUFI database [69]. 
 

Value 
Short-wave reflectivity of surrounding  0.2 

Long-wave Reflectivity of surrounding 0.1 

Long-wave Emissivity of surrounding 0.9 

 

To quantify WDR over the sections, the SB method is chosen over the standardized ISO 
method regardless of its lack of parameters that can scale rain intensities based on neighboring 
buildings and terrain category (urban, suburban etc.). The SB method is preferred due to its ability 
to finely distinguish the effects of rain over a facade. It achieves this by providing maps of Rain 
Admittance Factor (RAF), a variable that scales the incoming rain over the facade surface. These 
maps are provided for several facade configurations. For the analysis, a configuration 
corresponding to a tall building is chosen due to the height of the facade being over 10 m. Figure 
13 shows how the mapping prescribed by the method is applied to the facade under scrutiny.   
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Figure 13 Mapping of the SB method to the facade under study. On the left is the prescribed RAF mapping for tall 
buildings with no roof overhang (>10m; H/W >> 1[45]). On the right is the adaptation of the mapping to the facade in 
question. The points on the right represent the centers of the individual sections. The resulting RAF coefficients are 
calculated based on interpolation within the range that can occur in each section. The extremes of each range are 
assigned to the edges of each area, with the inner area having its lower end located in the middle. 

 WUFI was chosen as the tool to perform hygrothermal modeling due to its convenience 
and its inherent ability to account for latent heat effects throughout the material. This quality is 
crucial for the accurate modeling of freeze-thaw behavior as phase changes of moisture—such 
as condensation and evaporation—release or absorb latent heat, affecting the temperature 
distribution.  

 The facade, which consists of hollow bricks (108 mm) and aerated concrete (200 mm) 
was modeled according to the technical documentation of the building. No material properties 
were found within the documentation thus WUFI material database was utilized, selecting 
’Aerated clay brick (672 kg/m3)’ and ‘Aerated concrete (600 kg/m3)’ are selected. Figure 14 shows 
a cross section of the facade and its discretization in WUFI into 58 and 92 computational cells.  

 

Figure 14 The two materials in the facade and their discretization into computational elements in WUFI 2D-3 

 To account for the specific microclimate at each of the 104 computational cells on the 
facade, a unique set of boundary conditions was defined for each cell, resulting in 104 individual 
models in WUFI. The initial temperature and relative humidity of the materials were set to the 
January 1991 averages: 1.75°C and 89% RH. The simulation time was set from January 1991 to 
the end of 2022.  

 The freeze-thaw damage risk (FTDR) index [21] was selected as the performance indicator 
for this case study. The risk is assessed at a depth of 2 mm below the surface to account for the 
material's inertia, which would otherwise lead to an overestimation if surface conditions were 
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used. The evaluation spans all 31 years of the climate sequence. Parameters from [70], also 
adopted by Zhou, are utilized for the assessment due to the unavailability of specific material 
data, as outlined in Table 4. However, the capillary moisture content parameter (wcap) is adjusted 
to the specific value provided in the WUFI database. 

Table 4 Parameters used for the calculation of the FTDR index.  
 

Aerated clay brick (672 kg/m3) Reference 
wcap 291.0 [69] 
l1, l2 0.18, 0.82 [70] 

a1, 
a2 

3.2e-8, 
9.5e-7 

[70] 

n1, 
n2 

3, 
2.2 [70] 

  

 The results from the application of the engineering methodology are further presented in 
Section 6. Discussion of its limitations and applicability is provided in Section 7. 
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5. Data-driven approach 
The methodology proposed in this chapter aims to address Research Objective 2: Explore the use 
of degradation data from UAV and computer vision to directly predict the impact of microclimate 
/ degradation on facades. Unlike its engineering counterpart, which uses conventional 
hygrothermal risk assessment methods, this methodology uses data and machine learning to 
assess moisture risks / predict degradation across entire facades. This chapter is again divided 
into a theoretical and an implementation section.  

5.1 Overview of the methodology 
The proposed data-driven methodology centers on constructing a machine learning algorithm 
(ML) to predict degradation across facades. This algorithm leverages image-based empirical 
evidence analyzed using the framework outlined in Section 2. It also incorporates climate data 
and spatial information from a three-dimensional model of the facade neighborhood. The 
methodology consists of three steps, as shown in Figure 3.  

The first step involves applying the Framework for Degradation Analysis Over Facades to 
generate target data for training the ML algorithm. The second step, referred to as "Integration," 
combines degradation data for each facade section with related features that influence 
degradation. This step emphasizes acquiring and aligning relevant data. Finally, the third step 
curates the integrated dataset and focuses on selecting, training, and testing the ML predictor. 

5.1.1 Integration 
After applying the Framework for Degradation Analysis Over Facades all facade orthomosaics 
should be segmented into sections, analyzed, and the resulting degradation data for each section 
stored in a database as the target variable. At this stage, the target variable must be 
supplemented with data features that include relevant environmental and spatial characteristics 
of the sections.  

 To achieve this integration, each facade under scrutiny in the 3D neighborhood model 
must first be segmented into sections corresponding to those used in the degradation analysis. 
Two types of features can be acquired by combining the 3D model and climate data: general, 
elementary and azimuth-based features. In addition to those, general information about the 
facades, such as the year of construction, year of renovation, and facade composition, can be 
collected. The elementary features include spatial factors that capture the influence of various 
modes of weathering. To capture the effects of WDR, these may include the height between the 
center of each section and the ground, or the horizontal distance of each center to the nearest 
corner of the facade. Moreover, to capture the longwave sky radiation, the sky-view factor should 
be collected.  

 Azimuth-based features integrate spatial characteristics with climate data to account for 
the effects of wind and wind-driven rain (WDR), while also considering surrounding buildings. This 
process involves breaking down weather factors like WDR into 36 directional components, each 
separated by 10° azimuths. The incoming rain is then scaled linearly based on the distance to the 
nearest object in each respective direction, considering objects at a distance 100 meters or 
longer without the obstructive effect. This process is illustrated in Figure 15. 
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Figure 15 Accounting for obstruction from nearby objects in azimuth-based features. On the left, unobstructed wind-
driven rain impinges on the center of a facade section. On the right, obstructed wind-driven rain is shown. The 
obstructions are considered by measuring distances in every azimuth visible from the section center, set apart 10° (red 
dashed line), and interpolated against the maximum of 100 meters. 

 It is important to note that the suggested features are not fixed within the methodology. 
Alternative features may be defined and could prove more impactful depending on the specific 
ML algorithm used. Experimentation with features is encouraged to optimize the model's 
performance.  

 Regardless of the features employed, the integration process may generate numerous 
features, leading to a large feature space and the risk of the curse of dimensionality, a concept 
introduced by Richard Bellman [71]. As dimensions increase, the feature space expands 
exponentially, requiring significantly more data to maintain adequate coverage. Consequently, 
data points may become sparse, obscuring underlying patterns. To address this, reducing the 
feature space is recommended before proceeding further. 

 Two common dimensionality reduction techniques to consider are Principal Component 
Analysis (PCA) [72] and binning. PCA transforms data into a new coordinate system aligned with 
the greatest variation, making it applicable to part or all of the database regardless of feature type. 
Binning, in contrast, aggregates similar features into groups, such as combining azimuth-based 
wind-driven rain (WDR) data from multiple directions.  

5.1.2 Constructing a machine learning predictor 
After the database includes the target variable and the explanatory features, the next step is to 
train an ML algorithm(s) for predicting degradation.  

To construct such an algorithm, the relevant features must first be selected from the 
feature space. This step is critical for mitigating overfitting, reducing computational costs and 
enhancing the predictive performance of ML models [73]. The importance of a feature depends 
on several factors, including the strength of correlations, the linearity of underlying patterns, and 
the type of algorithm used (e.g., classification or regression) and its specific purpose. 
Consequently, feature selection often involves experimentation and multiple iterations. 
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The choice of a feature selection method depends on aspects such as the dimensionality 
of data and the available computational resources. Commonly used methods include filter, 
wrapper, and embedded approaches, with the latter often integrated within ensemble algorithms 
like random forests. 

Selecting the appropriate ML algorithm itself depends on the nature of the data and the 
problem being addressed. For this methodology, algorithms capable of handling high-
dimensional, potentially sparse data are preferred, such as decision trees, support vector 
machines, or ensemble methods like random forests. To ensure that the selected features 
generalize effectively to unseen data, strategies like hyperparameter tuning and cross-fold 
validation can be employed. These techniques help mitigate overfitting, a common issue where 
the model captures noise rather than underlying patterns in the data. 

5.2 Case study implementation 
The methodology is implemented onto the 16 facades of the case study, with the objective of 
training the ML algorithm for predicting degradation across facades.  

5.2.1 Dataset generation 
 To acquire data for the algorithm, first the target variable, i.e., the degradation ratio of each 
facade section, is taken from Section 3. These are complemented with features generated in the 
Integration process, using the same DTCC neighborhood model as before. Three elementary 
features for the center of each section are derived, namely height from the ground, sky-view 
factor and distance from the closest edge of the facade. These are complemented by one 
categorical feature (Facade constant) which serves to distinguish between non-ventilated and 
three types of ventilated facades as defined in Table 1. 

 Azimuth-based features are generated for WDR while considering obstructions from 
neighboring objects. For this process, hourly weather data for Gothenburg, Sweden and the 
period between 1960 and 2023 are instituted. Data are derived from the validated climate 
scenario A1B and cover the exposure of the facades for most of their service life. Figure 16 
illustrates the used wind and rainfall intensity data by presenting a wind-rose diagram and total 
rainfall by wind-direction.   
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Figure 16 Wind and rain data for Gothenburg, Sweden, derived from the A1B climate projection for the period 1960–
2023. The left panel presents a wind-rose diagram, illustrating the frequency and intensity of wind directions. The right 
panel displays a heatmap, summarizing the cumulative horizontal rain intensity, binned into 40° azimuth intervals, 
highlighting the directional distribution of rainfall over the study period. 

The exposure intensity is notably higher on the south and southwest sides of the facades. 
The prevailing wind direction ranges between 200° and 210° azimuth, while the heaviest rainfall 
intensity is observed between 200° and 240° azimuth. The calculation of WDR-based azimuth 
features for each facade section utilizes rainfall intensity data during the winter months. The 
cosine rule, a foundational principle in widely used semi-empirical WDR methods, is employed 
to project precipitation onto the facade surfaces. These projections are further categorized into 
36 directions, each separated by 10° azimuth intervals, and multiplied by the mean wind speeds 
for the corresponding directions, while accounting for neighboring obstructions as described in 
Section 5.1.1. 

To reduce the dimensionality of the azimuth-based feature, binning, which aggregates 
WDR into bins separated by 40° azimuth intervals, and principal component analysis (PCA), 
which condenses the 36 dimensions into 2 principal components are used. These are 
complemented by the mean and sum of WDR values to finalize feature space. Altogether, the 
feature space comprises 17 features for constructing the machine learning predictor of 
degradation. Figure 17 presents the Spearman’s correlations for these 17 features, displayed for 
individual facades, facades grouped by orientation, and the entire dataset. 
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Figure 17 Spearman correlation coefficients of features with the degradation ratio across facades. In instances where 
data gaps existed, the correlation coefficient could not be defined due to the presence of constant input values, which 
prevented meaningful statistical analysis. 

 The features’ correlations with the degradation ratio (the target) vary considerably across 
different facades. This can be illustrated on the south-facing facades, where the sky-view factor 
shows strong positive correlations to the target variable in some facades (e.g., facade 1; r=0.79) 
while displaying negligible and negative correlations at the others (facade 7; r=-0.13).  

Grouping the facades to their respective orientation lessens the features’ correlations, 
while preserving notable variability. The highest recorded positive correlation is weak and is 
associated by the second principal component in south facing facades (PCA rain 2 south-facing; 
r=0.33). Similarly, as before, the direction of the correlation for the features is flipped, exhibiting 
a weak negative correlation for east facing facades (PCA rain 2 east-facing; r=-0.14). Considering 
the entire dataset, weak or negligible correlations can be observed across the features.  

5.2.2 Dataset apportion for performance testing and augmentation  
Given the disparities between facades’ distribution of degradation, as highlighted in Section 3.2, 
the performance of an ML predictor is to be evaluated assessing two aspects of generalization. 
The first aspect aims to assess the model’s generalization ability to unseen data, which are drawn 
from the same degradation distribution as the training data. The second aspect aims to test the 
model against unseen data, which may be drawn from a different distribution than the training 
data. To achieve this, data for one entire facade is excluded from the dataset and thus from the 
training process, forming the hold-out (the validation) sample for. The remaining data are 
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augmented, shuffled and divided according to 80:20 rule into the training sample, and the second 
hold-out (the test) sample. 

 In practical terms, facade 2 is selected as the validation facade. The reason lies in the 
degradation analysis as presented in Figure 8 and Figure 9. Facade 2 is the second most degraded 
facade in the dataset after Facade 1. Unlike Facade 1, which shows significantly higher levels of 
degradation compared to the other facades and may be considered an outlier with degradation 
levels not representative of the rest, the high degradation ratios in Facade 2 could potentially be 
predicted based on data from Facade 1. Figure 18 shows a photograph of Facade 2 and a detailed 
view on the facade.  

 

Figure 18 Photograph of Facade 2 (the validation facade). On the right is a detailed view of the area marked with a red 
mask in the photograph, illustrating replaced bricks and bricks undergoing spalling. 

 The validation facade encompasses data for 45 sections. The remaining data are 
augmented by a factor of 10, adding random Gaussian noise to the target variable. The resulting 
training and the test hold-out samples contain 9008 and 2252 datapoints, respectively.  

5.2.3 Selection and tuning of ML algorithm 
To construct the degradation predictor, a random forest regression algorithm was selected for its 
robustness against collinearity and overfitting, its ability to model complex relationships, and its 
inherent capability to assess feature importance. The model is constructed and its performance 
evaluated in two experimental set-ups, each incorporating both hold-up samples. In the first 
setup (Set-up 1), the random forest algorithm automatically selected features based on their 
importance, keeping those with an importance score exceeding the mean importance of all 
features. In the second setup (Set-up 2), the automatically selected features were augmented 
with manually chosen ones. This approach aims to assess the impact of varying feature 
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selections on the predictions for the validation facade, which, as previously noted, exhibits 
distinct degradation patterns compared to the rest. 

 To mitigate the risk of overfitting, hyperparameter tuning was performed using a grid 
search approach, systematically exploring a range of hyperparameter combinations to optimize 
model performance. The hyperparameter tuning process focuses on five key hyperparameters, 
deemed critical for constructing the random forest regressor. 

1. Number of Trees: This parameter determines the total number of trees in the forest. The 
default value is 100 trees, but the tuning process also explores configurations with 50 and 
200 trees. 

2. Maximum Depth: This hyperparameter specifies the maximum depth of each tree, 
defining the number of computational nodes allowed. The default value, ‘None,’ enables 
trees to grow until all leaves meet the minimum sample requirement for splitting. The 
tuning process includes fixed values of 10, 20, and 30. 

3. Minimum Samples to Split: This defines the minimum number of samples required to 
split a tree node. The default value is 2, but values of 5 and 10 are also tested during the 
optimization process. 

4. Minimum Samples per Leaf: This parameter sets the minimum number of samples 
needed to form a leaf node. The default value is supplemented by options of 2 and 4 to 
determine its influence on model generalization. 

5. Maximum Features for Splitting: This hyperparameter dictates the maximum number of 
features considered when identifying the optimal split. Options include considering all 
features (n), the square root of n, and the binary logarithm of n. 

Throughout the tuning process, cross-fold validation with 5 folds (k = 5) was employed to 
enhance the model's robustness across various subsets of the training data. The r2 scoring 
metric was employed to train the model, focusing on the ability to explain variance in the target 
variable effectively.  

 

 

 



 
 



 
 

Part IV 
RESULTS EVALUATION 

 

How well do the proposed methodologies perform? 
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6. Results of the methodologies 
This section presents the results of both methodologies employed. In the first subsection, which 
is reserved for the outcomes of the engineering approach, hygrothermal performance and 
distribution of degradation risks across Facade 1 is presented. The subsection concludes by 
highlighting correlations between the FTDR index and WDR, solar and longwave radiation. The 
second subsection highlights the outcomes of the Data-driven approach. Specifically, results for 
the two experimental setups including the two hold-out samples are presented.   

6.1 Engineering approach 
The implementation of the engineering approach involved 31 years (1991-2022) of hygrothermal 
simulations for 104 sections. The difference in hygrothermal performance across the facade is 
illustrated on two points with distinct boundary conditions. These are positioned below the roof 
overhang (Point A) and in the middle of the brickwork (Point B) as Figure 19 shows. 

 

 

Figure 19 Position of the examined points for illustrating difference in hygrothermal performance (red points) and 
summary of weathering impact. The top left image shows the position of examined point. The top right relates the points 
to the Rain admittance factor. The bottom left illustrates the sum of solar irradiation across the 104 sections of the 
facade over all winter months of the 31 years period. The bottom right shows the distribution of the sky-view factor over 
the facade. 
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 Point A and B can be regarded as the opposite extremes in terms of their WDR exposure. 
The RAF coefficient of the former point is the highest across the facade (1.02). On the contrary, 
the latter point is associated with one of the lowest RAF coefficients (0.4). In terms of their total 
solar radiation exposure over all winter months of the simulation period, Point A is, despite the 
presence of roof overhang, the most exposed spot on the facade, totaling almost 90 kW/m2. From 
this point, the total irradiation gradually decreases towards the bottom right corner, thus Point B 
is moderately exposed with 65 kW/m2. Finally, the sky-view factor reflects the presence of the roof 
overhang, rendering Point A, and the other sections at the height, the least exposed point in terms 
of sky radiation cooling (22%). Point B is in this regard much more exposed, exhibiting 37% of the 
view to be open towards the sky. How these differences translate into subsurface hygrothermal 
performance is illustrated in Figure 20, presenting a period from January to March of 1995. The 
year was chosen as a representative year as its winter mean temperature is closest to the mean 
winter value for all 31 simulation years. 

 

Figure 20 Hygrothermal performance 2 mm below the facade surface of Points A and B over the first three months of 
1995. The top graph shows the progression of temperatures. The bottom depicts the progression of relative humidities. 

 As illustrated, both points demonstrate similar temperature profiles, with Point A being 
slightly warmer than Point B due to the presence of more pronounced peaks and slightly 
shallower valleys. These differences, which can be attributed to the effects of solar and sky 
radiation, and particularly the peaks impact the number of times the subsurface temperature 
falls below 0°C. This can be observed especially during the third and the fourth week of the 
examined period, but a few instances can be observed in the sixth and the ninth week. In general, 
freezing and thawing cycles are scarce in the first two weeks of the examined period. This is 
followed by two weeks when Point A is subjected to nine cycles while Point B to 3. After a brief 
thaw, a cold period from the sixth week to the tenth week exerts numerous cycles on both points. 
During this period, both points exhibit their minimum temperatures with -13.5 and -15.33 °C for 
Point A and Point B, respectively. 

 A comparison of relative humidities for the two points reveals more noticeable 
differences, with Point A exhibiting higher levels of moisture saturation. This reflects WDR 
boundary conditions, where the adversity is more pronounced in the corners of the facade as 
illustrated in Figure 19. Nevertheless, both points exhibit either complete or nearly complete 
saturation in the beginning of the period examined but start getting drier from the third week. The 
drying process is occasionally intercepted by rain events of different intensities. For instance, 
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both profiles peak again in the seventh and the ninth week. Interestingly, the occurrence of the 
minimum relative humidity for the points differs significantly with Point A recording its minimum 
(81.9 %) in the sixth week and Point B (67.1  %) in the twelfth week of the examination period. 
Inherently, the difference in temperatures and relative humidities between the points result in a 
distinct freezing and thawing performance which is illustrated in Figure 21. 

 

Figure 21 Comparison of freezing-thawing performance 2 mm below the outer surface between points A and B during 
the third and fourth week of 1995. The top graph shows the formation of ice measured by the saturation degree of ice 
content (wi). The bottom graph shows the cumulative sum of the differences between the minimum and maximum wi 
in each complete and incomplete freeze-thaw cycle, which is known as the FTDR index. 

 As shown during the third and fourth weeks of 1995, Point A is exposed to more complete 
freeze-thaw cycles than Point B. In contrast, Point B remained frozen for most of the period, 
undergoing fewer complete cycles but more incomplete ones. Specifically, Point A was subjected 
to 10 complete and 4 incomplete freeze-thaw cycles, whereas Point B is exposed to 6 complete 
and 12 incomplete cycles. The maximum ice saturation degree reached 0.34 at Point A and 0.29 
at Point B. 

These differences influence the FTDR index over time. By the end of the examined period 
the FTDR index, which is calculated at the end of every complete and incomplete freezing and 
thawing cycle, reached 3.59 at Point A, compared to 2.19 at Point B. Notably, Point B had been 
already subjected to a freezing condition earlier that year, starting the two-week period with FTDR 
index of 0.16. Extending the period, further deepens the disparity between the points. This is 
illustrated in Figure 22, which compares the FTDR index for these points and all other sections of 
the facade over the entire 31-year simulation. 



46 
 

 

Figure 22 Progression of FTDR index for all facade sections. On the left, the graph illustrates a cumulative FTDR for all 
sections over the period of 1991 to the end of 2021, highlighting Point A and Point B. On the right, the histogram shows 
the frequencies of the final FTDR values. 

 As observed, the FTDR indices for all facade sections progress in a linear fashion and 
differ considerably by the end of the simulation period. The recorded FTDR index ranges from a 
maximum of 528.3 to a minimum of 239.4. In this context, the final FTDR index for Point A resulted 
in 424.0, which is near the median value of all outcomes (411.2). In contrast, the FTDR index for 
Point B fell within the first quartile, concluding at 300.3. 

 The slope of the FTDR progression, and consequently the final FTDR index for each 
section, is primarily driven by the severity of its boundary conditions. To better understand the 
impacts of the weathering factors, scatter plots showing the relationship of the FTDR index to 
Rain Admittance factor (RAF), winter mean solar radiation, and sky-view factors are presented in 
Figure 23. To emphasize the relationships, data are fitted using second-degree polynomial 
regression. The analysis is performed separately for sections adjacent to the roof overhang and 
to other sections, due to their observably distinct performance. 

 

Figure 23 Scatter plots comparing the relation between the FTDR index and RAF (on the left), winter mean solar radiation 
(in the middle) and the sky-view factor (on the right). Correlation analysis is done separately for sections positioned 
directly below the roof overhang (red color) and other sections (blue color). Each sample is fitted with the second-
degree polynomial regression curve. 
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 As illustrated, sections not adjacent to the roof overhang show a meaningful polynomial 
regression fit only in the case of the RAF coefficient, indicating that Wind-Driven Rain (WDR) is 
the most influential variable. Its R-squared (R²), the most common method for evaluating the fit 
of regression curve, is 0.90. Other weathering factors show a weak to negligible relationship with 
the FTDR index, though winter mean solar radiation explains 43% of the variance (R² = 0.44), 
indicating some influence. In contrast, sections directly below the roof overhang demonstrate 
stronger relationships between the FTDR index and weathering factors. Specifically, RAF and 
winter mean solar radiation account for 60% (R² = 0.60) and 61% (R² = 0.61) of the variance in the 
FTDR index, respectively. 

The results from the application of the engineering approach on Facade 1 are further 
complemented in Section 7.1. There the FTDR index is mapped in sections across the facade and 
compared to the actual degradation derived in Section 3. 

6.2 Data-driven approach 
The predictive capabilities of the Data-driven approach are tested in the context of the two 
experimental setups, which are defined in the Section 5.2.2. Performance is assessed using two 
distinct samples: 

1. Test Hold-Out Sample – This comprises 20% of the data from 15 facades and is used to 
evaluate the algorithm’s ability to predict degradation ratios for facades drawn from the 
same distribution as the training set. 

2. Validation Facade Sample – This sample consists of facades that were excluded from 
training to test the model’s generalization ability on degradation patterns that may not 
follow the same distribution as the training data. 

This evaluation framework ensures a thorough assessment of the model's predictive 
performance across both familiar and unseen facade conditions. 

6.2.1 Set-up 1 – automatic feature selection 
The threshold for the inclusion of a feature in the random forest regressor was derived by 
calculating the mean of the relative importance of all features and reads 0.059. Five features were 
further considered in the training process. These are listed in Table 5, which ranks all features 
based on their importances.  

Table 5 Selection of features based on their importance as estimated by Random Forest regression algorithm. The 
feature selection threshold (0.059) is indicated by the dashed line. 

 Feature Importance 
1 Sky-view factor 0.311 
2 PCA rain 2 0.219 
3 PCA rain 1  0.155 
4 Height from ground 0.124 
5 Distance to closest edge 0.060 
6 160 ≤ Rain < 200 0.030 
7 200 ≤ Rain < 240 0.029 
8 240 ≤ Rain < 280 0.018 
9 0 ≤ Rain < 40 0.015 

10 120 ≤ Rain < 160 0.014 
11 Rain sum 0.009 
12 Rain mean 0.008 
13 80 ≤ Rain < 120 0.004 
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14 Facade constant  0.003 
15 40 ≤ Rain < 80 0.001 
16 280 ≤ Rain < 320 0.000 
17 320 ≤ Rain < 360 0.000 

 

As observed, the training process included the three elementary features, namely the sky-
view factor, height from the ground and the distance from the closest corner. These are 
complemented by the two principal components derived from azimuth-based rain features. The 
training of the random forest regressor and the optimization using cross-fold validation, resulted 
in a set of following hyperparameters: 

• Number of Trees:    200 
• Maximum Depth:    N/A  
• Minimum Samples to Split:   2 
• Minimum Samples per Leaf:  1 
• Maximum Features for Splitting:  sqrt 

 
The application of the tuned model to the test sample and the validation facade is shown 

in Figure 24. 

 

Figure 24 Application of Random Forest regressor on the test set (to the left) and on the validation facade (to the right), 
using features selected in Table 5. The plots illustrate the comparison between predicted and actual 
degraded/undegraded ratio in each section of the facade. The red dashed line represents the theoretical best possible 
agreement between the predicted and actual values. 

 For the test hold-out sample, nearly all predictions align closely with the red dashed line, 
which represents the ideal best-fit between actual and predicted degradation ratios. This strong 
model performance is reflected in an R² value of 0.978. However, predictions for the validation 
facade tend to be lower overall, with the highest estimated degradation ratio reaching only 0.12. 
The poor performance on the validation sample is evident from the R² value of -1.152. 

6.2.2 Set-up 2 – manual feature selection 
This experimental set-up tests different feature combinations to assess their impact on 
predictions over the validation facade. Three elementary features from Set-up 1, i.e., sky-view 
factor, height above ground, and distance from the nearest edge, are kept constant throughout 
the analysis. These are complemented by the inclusion of “Facade constant” in the feature 
space. Although this feature showed low estimated importance in Set-up 1 ( 
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Table 5), its inclusion is justified, as the presence of a ventilated cavity is known to significantly 
influence the hygrothermal performance of facades and, consequently, the occurrence of 
degradation. Moreover, its importance within the random forest regression may increase when 
combined with specific feature subsets. The primary focus, however, is on the azimuth-based 
features, which are modified in each iteration. 

To illustrate their influence on predictive performance, three examples are considered: 

1. The feature 0 ≤ Rain < 40, 

2. The feature 200 ≤ Rain < 240, 

3. A combination of two azimuth-based features: 0 ≤ Rain < 40 and 160 ≤ Rain < 200. 

Regardless of the feature selection, hyperparameters are optimized, and the algorithm is 
trained as described in Section 5.2.3. Figure 26 shows the performance of the model using the 
three sets of features evaluating both test and validation hold-out samples. 

 

Figure 25 Application of the Random Forest regressor on the test set (first row) and the validation facade (second row) 
using three different subsets of azimuth-based features: (1) 0 ≤ Rain < 40 (left), (2) 200 ≤ Rain < 240 (middle), and (3) a 
combination of 0 ≤ Rain < 40 and 160 ≤ Rain < 200 (right). Each model also includes three elementary features: sky-
view factor, height above ground, and distance from the nearest edge, and the Facade constant. The red dashed line 
represents the ideal agreement between predicted and actual values. 

 As observed, using different, manually defined feature subsets, yields insignificant 
performance differences in the test sample but exerts notable performance changes in the 
validation facade. The application of the models on the test sample resulted in nearly identical 
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performance across the cases, reaching the minimum R² value of 0.977, which is also practically 
the same as the case presented in Set-up 1 (R² = 0.978).  

While the model in Set-up 1 consistently underpredicted degradation ratios (with a 
maximum prediction of 0.12), the three alternative models exhibited much greater variability, 
leading to both over- and underestimation. For instance, in the case using 0 ≤ Rain < 40, the 
highest predicted degradation ratio reached 0.42, while the corresponding actual value was only 
0.07. Conversely, the model severely underpredicted degradation for another section, where the 
true value was 0.41, but the model estimated only 0.03. Overall, the model overestimated 
degradation in 14 out of 40 sections and underestimated an equal number. 

Performance was similarly inconsistent across other feature subsets. The best overall r2 
score (0.119) was achieved using 200 ≤ Rain < 240. However, the model that produced the fewest 
overestimations used the combined feature subset 0 ≤ Rain < 40 and 160 ≤ Rain < 200. 

The results for the Validation facade in this experimental setup are further complemented 
in Section 7.2. There, the spatial distribution of predicted degradation ratios across the facade 
are compared to the actual distribution of degradation, which was derived in Section 3. 
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7. Comparison of predictions to target 
In this section, the results of the two methodologies, i.e., the risk of degradation or its prediction 
across facades, are compared to the actual degradation state of the same facades. 

7.1 Engineering approach 
The implementation of the engineering approach on Facade 1 resulted in a long-term evaluation 
of freezing and thawing risks across its 104 sections. Hygrothermal response of each section was 
simulated over 31 years (1991-2022), and the freezing and thawing performance was evaluated 
using the Freeze-Thaw Damage Risk (FTDR) Index. 

 

Figure 26 Spatial comparison of the FTDR index as derived by the engineering approach (top) and the actual degradation 
ratios (bottom). Values in both heatmaps are scaled against their respective maximums to ensure better comparability.  
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 To assess the accuracy of the outcomes, the FTDR index in each of the 104 sections is 
compared to the corresponding degradation ratio, as obtained in Section 3. Comparing the risk 
and the degree of degradation is deemed appropriate as one should theoretically correlate to the 
other. However, to ensure direct comparison, both variables are scaled against their respective 
maximum. The comparison is performed by mapping the FTDR index and the degradation ratios 
to the facade sections as shown in Figure 26. 

 As observed, the distribution of the FTDR index across the facade does not correspond to 
the actual degradation. Instead, it closely follows the distribution of the RAF coefficient, as shown 
in Figure 19. This is expected, given the strong correlation between the RAF coefficient and the 
FTDR index (Figure 23). However, the influence of the other climate factors, i.e., solar radiation 
and longwave sky radiation, is also evident. Notably, a reduced sky-view factor in sections 
adjacent to the roof overhang lowered degradation risks by 20 to 25 %. Additionally, solar 
radiation, which is highest in the top left corner during winter and gradually decreases toward the 
bottom right corner (Figure 19), contributes to the variation in FTDR indices, with lower values 
observed in the bottom right sections. 

 The true distribution of the degradation across the facade exhibits markedly different 
pattern. Most noticeably, the degradation is manifested as a band that extends from the left to 
the right, situated above the central portion of the facade (row 2 and 3). Furthermore, the left side 
of the facade exhibits a more pronounced degradation, while areas below the roof overhang and 
at the bottom right are intact.  
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7.2 Data-driven approach 
The outcomes of the random forest regressor trained within the Beyond (data-drive) approach 
and implemented onto the validation facade (Facade 2) are further mapped into the sections 
across the facade and compared with the actual degradation ratios derived in Section 3. This is 
done for the three cases of the experimental Set-up 1, which results were presented in Section 
6.2.2. The actual degradation ration across the validation facade is shown in Figure 27. 

 

Figure 27 Distribution of actual degradation ratios over the validation facade. The values were derived based on 
computer vision analysis presented in Section 3.  

As observed, the degradation is clustered above the center of the facade (rows 1 - 3) and 
near the edge of the facade, where the maximum degradation ratio is located (0.54). From these 
clusters, the degradation ratios get progressively lower towards the right edge of the examine 
area. This is apparent also in the sections adjacent to the roof overhang, which prevented 
degradation from occurring at columns 2 - 4. The true distribution of degradation over the 
validation facade is further compared to the outcomes of the three cases from Set-up 2. Figure 
28 shows the degradation distributions as predicted by the random forest regressor.  
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Figure 28 Spatial distribution of degradation predictions for three subsets of azimuth-based features. (1) 0 ≤ Rain < 40 
(left), (2) 200 ≤ Rain < 240 (middle), and (3) a combination of 0 ≤ Rain < 40 and 160 ≤ Rain < 200 (right). Each model also 
includes three elementary features: sky-view factor, height above ground, and distance from the nearest edge, and the 
Facade constant.  

 The predictions based on different subsets of features exhibited distinct spatial patterns 
over the validation facade. The 0 ≤ Rain < 40 subset (left) produced a pattern that resembled the 
actual degradation distribution (Figure 27). However, deviations were particularly noticeable in 
the upper sections of the facade (rows 0–2), where actual degradation was most prevalent, 
reaching a maximum of 0.45. In contrast, the model underestimated degradation in this region, 
predicting a maximum of only 0.03. Further notable discrepancies are in column 4, which is 
almost entirely, except row 0, highly overestimated and includes the predicted maximum of 0.42. 

 A similar pattern can be observed when using 160 ≤ Rain < 200 (middle). However, in this 
case, the degradation ratios are generally less pronounced except for column 4 where some 
predictions are higher, reaching a maximum of 0.38.  

To some extent the same pattern is discernable with the combined feature set (0 ≤ Rain < 
40, 160 ≤ Rain < 200) employed (right). In this case, the degradation ratios steadily increase from 
the bottom right corner to the left corner of row 3.   
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7. Discussion 
This section focuses on setting the outcomes from the case studies into perspective, discussing 
the applicability and limitations of the two proposed methodologies.  

7.1 Limitations of the engineering approach 
As seen in Section 7.1, the implementation of the engineering approach on Facade 1 

resulted in the distribution of degradation risks (FTDR index) across the facade that did not 
correspond to the actual facade degradation. This discrepancy may be attributed to uncertainties 
inherent to the methods used in the analysis to quantify the effects of microclimate across the 
facade. In particular, the effects of WDR across the facade, which has proven to be the most 
influential factor in the FTDR assessment (Figure 23), are captured using semi-empirical 
methods, which are known to be limited in facades with complex surroundings. Specifically in 
the case study, the Straube and Burnett (SB) method for WDR quantification was implemented 
for its quality to distinguish the effects of rain over a facade more finely compared to the other 
methods. Nevertheless, the other two methods, i.e., ISO 15927-3:2009 and ASHRAE 160, may 
have been more appropriate in addressing the specificities of the case study. The reason for this 
is twofold and include: 

1. Weather data scaling – Unlike the standardized methods, the SB method does not 
incorporate coefficients for scaling rain and wind data from weather stations (or climate 
models) to the on-site specifics of the case study.  

2. Disregarding the roof overhang – The used SB method allows to map WDR across 
several different facade geometries. The geometry used in the case study did not consider 
roof overhang, as shown in Figure 19. 

The first reason is deemed critical for the success of the analysis. To illustrate, ISO 
standard includes coefficients to scale down WDR based on the distance to nearby obstructions 
and the terrain categories (e.g., urban, suburban). These could have lessened the effects of WDR 
over the outcomes, pronouncing the impact of other weathering factors. Ultimately, this could 
have led to more precise outcomes as the sky-view factor was shown to correlate well with the 
degradation ratios over Facade 1 (Figure 17). Nevertheless, even the employment of either ISO 
15927-3:2009 or ASHRAE 160 still doesn’t guarantee the success of the analysis as neither of the 
semi-empirical methods were developed to capture all complexities of the surroundings.  

Interestingly, incorporating the roof overhang into the SB method could enhance the 
accuracy of degradation risks (FTDR) mapping across the facade. As further analysis of Figure 26 
suggests, the actual degradation pattern over the facade aligns more closely to the modeling 
results when the results are shifted downward, away from the roof overhang. From the modeling 
perspective, this inverted U-shaped pattern stems from the RAF coefficient, which reflects the 
distribution of wind pressure over the facade. Adjusting the RAF mapping lower on the facade 
while assuming low RAF in sections close beneath the roof overhang could significantly improve 
the accuracy of the results. However, some inaccuracies are to be expected, as the RAF mapping 
in the SB method is based on wind acting at normal angle to the facade. This could be the worst-
case scenario but may not represent well the true wind exposure of the facade in the complex 
environment with sheltering effects. Another source of uncertainty lies in material properties, 
which influence hygrothermal modeling and, consequently, the evaluation of the FTDR index. 
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Suitable technical documentation is often lacking, especially for older buildings, making it 
difficult to obtain precise material characteristics. 

In this application of the Engineering approach, material properties were sourced from 
the WUFI material database, while specific values used for FTDR index calculations were 
obtained from other references. However, the use of the FTDR index is not mandatory in the 
Engineering approach. Instead, the number of freezing and thawing cycles could have been used 
to maintain consistency with material databases and avoid potential discrepancies. 

Additionally, general surface boundary conditions—such as the rainwater absorption 
factor, which determines the fraction of impacting rain available for capillary suction—must be 
approximated due to limited data availability. 

7.2 Limitations of the Data-driven approach 
The two experimental set-ups provided key insights. First, the methodology effectively 

identifies areas under significant environmental stress, making them more susceptible to 
degradation. This is supported by the test hold-out sample, where the random forest regression 
model estimated most degradation ratios with a margin of error below 5%. 

However, applying the model to the validation facade reveals a crucial limitation for 
practical implementation. Unlike the test hold-out sample, which was drawn from the same 
distribution as the training data, the validation facade was reserved for later testing. The 
inaccurate predictions on the validation sample likely result from a distribution shift, a well-
documented challenge in machine learning applications. 

In essence, the distribution shift prevents the model from generalizing effectively to 
unseen data. A useful analogy is a self-driving car trained and successfully tested on the wide 
streets of Gothenburg, Sweden, but then deployed in the narrower, less familiar streets of 
Thessaloniki, Greece. Similarly, the validation facade presents environmental conditions and 
degradation patterns that differ from those in the training and test sets, leading to reduced model 
performance. This aligns with the observations in Section 3, where Figure 9 and Figure 10 
illustrate that degradation patterns vary uniquely across facades. In other words, the model has 
likely learned patterns specific to the training set, which do not fully translate to the validation 
facade.  

Moreover, distribution shift can affect both the predictive power of features and their 
selection. A feature that demonstrates high predictive potential across most facades may 
become irrelevant or even misleading when applied to facades with distinct degradation 
patterns. This shift also explains the prediction sensitivity observed in the validation facade when 
using different feature subsets, as illustrated in Figure 25. In conclusion, addressing the 
distribution shift is essential for the further development of the methodology. Presently, the shift 
stems from two limitations: 

1. Insufficient training sample – The current database consists of 16 facades, but many 
similar buildings across Sweden could be added. Expanding the dataset to include 
facades with degradation patterns like the validation facade may help reduce the 
distribution shift gap. 

2. Insufficient incorporation of renovation history – Renovation history was accounted for 
only superficially. Most buildings in the dataset were constructed in the early 1960s, with 
one exception from 1954. Despite their long lifespan, efforts to document facade 
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renovations yielded limited information—the earliest recorded renovation dates to 2011. 
In such cases, newly replaced bricks are often distinguishable by their brighter color. 
However, a closer inspection of several facades reveals additional areas where brickwork 
appears distinct from the rest. The challenge lies in determining whether these variations 
are due to previous replacements or other factors, such as differences in material 
properties from a separate batch of bricks. Given these uncertainties, the degradation 
analysis focused only on visibly damaged bricks and those with significantly brighter 
color. However, this approach likely imposed limitations, as it may have led to an 
oversimplified degradation pattern. 

Whereas the first limitation is easily addressable as more and more facades can be added 
into the database, the second point requires a significant improvement of the computer vision 
algorithm used in the analysis. The current approach relies on a supervised computer vision 
algorithm, which identifies patterns based on predefined annotations. However, this method has 
limitations when detecting unlabeled deviations in brickwork. 

A more effective alternative could be an unsupervised machine learning approach, such 
as the k-means algorithm, which clusters bricks based on deep computer vision features. This 
technique could categorize bricks into clusters representing damaged areas, replacements from 
10 years ago, older repairs, and so on. The number of clusters (k) could be user-defined or 
determined automatically by the algorithm. Additionally, integrating non-destructive testing 
methods could enhance accuracy, leading to a more comprehensive degradation analysis. 
Ultimately, this refined approach could produce significantly different insights and potentially 
address the distribution shift issue. 

Narrowing the distribution shift gap would enhance the methodology’s ability to identify 
facade sections under failure conditions and predict potential degradation risks. Additionally, it 
could help determine which areas are more susceptible to severe damage over time. However, 
for a more precise understanding of degradation onset, it is essential to consider facade 
composition and material properties. For example: 

• Drying potential: Some facades facilitate better moisture evaporation, delaying 
degradation. 

• Moisture tolerance: Certain brick types can absorb more moisture before reaching 
saturation, postponing freeze-thaw damage. 

• Material variability: Properties may differ within the same facade, affecting degradation 
patterns. 

To account for these factors, the degradation ratio of each section could be scaled using 
Monte Carlo-based hygrothermal simulations. This would estimate how many freeze-thaw cycles 
a facade must endure before deterioration begins. Ultimately, this approach would improve 
predictive accuracy, helping determine when and to what extent degradation is likely to occur. 

7.3 Applicability of the methodologies 
The two methodologies are fundamentally different to each other, using different methods and 
tools that—as discussed above—are bound to distinct limitations. Naturally, their predictive 
power differs as well as their applicability. Table 6 compares the two methodologies in terms of 
time complexity, accuracy, interpretability and scalability. 
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Table 6 Comparison of the two methodologies in terms of their applicability 

Criteria Engineering approach Data-driven approach 
Accuracy * Low Low 
Interpretability High Moderate 
Preparation time 

Long 
Long at first - reducing over time ** 

Application time Short 
Scalability Low  High 
* Both methodologies showed low accuracy in case study facades 1 and 2, respectively. Nevertheless, they 
both can be improved significantly 
** Including the application of Framework for degradation analysis 
 

Each domain of the applicability given in the Table 6 —except accuracy, which was 
presented and discussed above—is further discussed separately. 

7.3.1 Interpretability 
Although both methodologies aim to assess the risk of moisture induced degradation across 
facades, each uses different metrics to present their outcomes.  

Engineering approach uses performance indicators—FTDR index in the case study—that 
are commonly used in hygrothermal assessment. Such indicators express the risk of degradation 
in relative terms, comparing sections to each other. Ultimately, more freezing and thawing cycles 
mean a higher risk of degradation.  

 The Data-driven approach estimates the risk of degradation by directly predicting the ratio 
of degradation for each facade section. Ideally, these direct predictions should be held as definite 
and inevitable, as predictions are drawn from other facades that exhibit deterioration. However, 
it must be stressed that they are not so, primarily because of the discussed uncertainties 
regarding renovation history of the facades. As a result, the predicted degradation ratio might be 
a mix of data drawn from facades that are at different stages of their life cycle. Therefore, the 
outcomes from the Data-driven approach must be at the present regarded as microclimate 
indicator, showing where the facade is likely to degrade due to environmental impacts. 

7.3.2 Time complexity 
The application of each methodology on a facade is undertaken using a different application 
paradigm. Engineering approach is applicable to one facade at a time, making the time for the 
preparation and application of the methodology inseparable. On the other hand, Data-driven 
approach requires a database—integrating degradation data with spatial and weather data—and 
a trained machine learning predictor to perform any predictions. This separates the time needed 
for the preparation of the methodology and time for its application. 

 The time investments needed to apply the Engineering approach can be characterized as 
substantial in general. The computational costs depend mainly on two factors. The first factor is 
the number of sections to analyze. Defining the resolution of the outcomes, it predefines the 
computational expenses of the entire undertaking. The second factor that defines computational 
costs is the simulation time.  

To exemplify the computational costs, the case study performed in this thesis featured 
104 facade sections, performing 31 years of hygrothermal simulation. Several hours were spent 
defining boundary conditions, most of which were taken to perform irradiation analysis, followed 
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by the arrangement of boundary conditions into 104 WUFI models. Hygrothermal simulation itself 
took nearly 10 hours to perform on Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz 2.81 GHz. Finally, 
the last substantial time investment (several hours) was the collection of data from the WUFI 
hygrothermal models. It must be noted that the whole process was also very labor intensive.  

 Time complexity of the Data-driven approach primarily stems from its preparation phase. 
Substantial time and effort must be put into building suitable computer vision algorithms, mining 
features from a 3D-model of the neighborhood, finding optimal feature space and constructing a 
machine learning predictor. When these are done, however, it takes only to mine the required 
features to make predictions.  

In the context of the presented case study, the (re)training of the computer vision 
framework to detect damaged and replaced bricks took dozens of hours. This process included 
data collection, image annotations, the training process itself, manual inspection and sometimes 
correction of false detections. The process of mining data from a 3D model required a 
Grasshopper function, which development took several hours, but which can collect data almost 
instantaneously. Finally, the largest portion of time took the development machine learning 
predictor, respectively the testing the impact of individual features on the outcomes. 

7.3.3 Scalability 
Scalability is closely related to the time complexity of the methodologies. Applying the 
Engineering approach to a facade always requires completing its three steps defined in Section 
4, making its potential application to many facades a cumbersome endeavor. On the contrary, 
once all the methods and tools of the Data-driven approach are prepared and performing well in 
terms of their predictive capabilities, then the application of the methodology is nearly 
instantaneous. Moreover, further automation of the mining process of the features from a 3D-
model would allow a quick assessment of facades within entire neighborhoods. 
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8. Conclusion and future research work 
This section presents the concluding remarks of this thesis and offers an outlook on future 
research directions. 

8.1 Conclusions  
This thesis develops and evaluates two methodologies—Engineering approach and Data-driven 
approach—for assessing moisture-related risks across entire facades. These methodologies 
offer tools that bypass CFD-based simulations due to their practical limitations and enable the 
study of microclimate influences on degradation. Their primary application, as demonstrated in 
this thesis, is to identify where degradation is likely to occur on facades. Additionally, they can be 
used to analyze key driving factors and contribute to more effective conservation strategies. 

 To assess the accuracy of the proposed methodologies, the thesis applies them to 16 
case study facades from existing buildings as part of an empirical validation. In this process, the 
proposed Framework for Degradation Analysis over Facades is employed to capture both the 
extent of degradation and its spatial characteristics across the facades. The degradation data 
reveals that south-facing facades exhibit significantly more damage than those with other 
orientations and that degradation does not follow any specific pattern. These data are then used 
to validate the two methodologies. Due to its labor-intensive nature, the first methodology is 
validated on a single facade, while the second is assessed using data from 15 facades with one 
additional facade reserved for independent validation.  

 The Engineering approach was applied to Facade 1 for being identified in the degradation 
analysis as the most severely damaged. The results showed discrepancies between the 
predicted degradation risks mapping and the observed degradation pattern, highlighting the 
limitations of readily available tools for practitioners to assess microclimate-based degradation 
risk. Based on the validation results, the primary cause for the discrepancies stems from the WDR 
quantification over the facade, which is handled in the case study using the SB method, which 
was chosen for its ability to finely distinguish WDR intensities across a facade. Nevertheless, the 
mapping of the modeled risk of degradation onto the facade suggested that moving the SB 
method’s results down the facade—to account for the roof overhang—would lead to a relatively 
good agreement between the modeled predictions and observed degradation patterns.   

The Data-driven approach was applied on all 16 facades in the case study to demonstrate 
its capabilities and the challenges of estimating the degradation patterns caused by 
microclimate. By using degradation data as the target variable and combining spatial data from a 
3D neighborhood model with climate data as explanatory variables, the correlation analysis 
revealed no clear relationship across the sample, underscoring the difficulty of linking 
microclimate factors to degradation patterns. The random forest regressor model for predicting 
facade degradation showed excellent performance using the test dataset (a subset of 15 
facades), achieving R-squared (R2) value of 0.978. However, its performance dropped 
significantly (R2=-1.152) when tested on the validation facade (Facade 2), which was initially 
excluded from the analysis. This discrepancy is attributed to the distribution shift—where the 
algorithm learns degradation patterns from the training data that do not generalize to the 
validation facade.  
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The applicability of both methodologies in practice requires different sets of tools and 
expertise, making both approaches time consuming to implement. However, the Data-driven 
approach has an undisputable advantage over the Engineering approach since its application will 
become less time consuming over time. Ultimately, the Data-driven approach could offer a 
computationally inexpensive way to assess facades in entire neighborhoods.  

8.2 Future research  
Both methodologies showed a potential in assessing the risk of degradation across entire 
facades. Nevertheless, both methodological approaches need improvements to be applied 
reliably in practice, addressing their discussed limitations. The Data-driven approach will benefit 
from expanding the training dataset and better incorporating the renovation history of facades. 
Capturing more degradation data over facades could narrow the observed distribution gap. The 
engineering approach on the other hand could be improved by modifying the SB rain 
quantification method to better account for the roof overhang. In theory, this can be done by using 
the results of ray-tracing analysis to scale down the WDR near small construction elements, as 
demonstrated for the ISO standard in [26]. 

Apart from improving the methodologies, both approaches could also potentially 
complement each other in future research. The Engineering approach may benefit from 
degradation observations and the correlations between degradation and climate-related 
features identified by the Data-driven approach. This integration could help refine its 
microclimate model, leading to more accurate boundary conditions for different sections across 
facades. Conversely, the Data-driven approach could leverage insights from the Engineering 
approach, incorporating physics-based features to enhance predictive performance of its 
machine learning model. 

 This thesis focused on identifying where degradation is likely to occur on facades. Future 
research could build upon this by incorporating a time dimension into the methodologies, 
addressing when degradation is likely to begin and how it may progress over time. This could be 
explored through various approaches, such as Bayesian theorem or Markov chains for state 
predictions. By bridging spatial and time aspects, these advancements could contribute to more 
proactive and effective conservation strategies.  
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