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Abstract

Geometry is central to many applied problems, though its influence varies.
Some problems are inherently geometric, requiring numerical methods that
preserve the underlying structure to remain accurate. Others are well un-
derstood in Euclidean space but demand different techniques when extended
to curved settings. This thesis addresses such geometric challenges through
studying numerical methods for two main types of problems: matching prob-
lems and stochastic (partial) differential equations. It is based on seven
papers—the first three focus on SPDEs and SDEs, while the remaining con-
sider matching problems and related differential equations. The first develops
a numerical method for fractional SPDEs on the sphere, combining a recursive
splitting scheme with surface finite elements. The second studies a Chebyshev–
Galerkin approach for simulating non-stationary Gaussian random fields on
hypersurfaces. The third introduces a geometric integrator for stochastic
Lie–Poisson systems, derived via a reduction of the implicit midpoint method
for canonical Hamiltonian systems. The fourth explores sub-Riemannian
shape matching, where shapes are matched using constrained motions, and
shows how this problem can be interpreted as a neural network. The fifth
studies the convergence of a gradient flow for the Gaussian Monge problem.
The sixth adapts geometric shape matching to recover protein conformations
from single-particle Cryo-EM data by using rigid deformations of chains of
particles. The seventh investigates the numerical signature of blow-up in
hydrodynamic equations, showing that numerical solutions can be used to
detect the onset in a class of hydrodynamic equations.

Keywords: Stochastic partial differential equations, shape analysis, optimal
transport, Gaussian random fields, Lie–Poisson systems, hydrodynamics,
surface finite element methods, geometric numerical integration.
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Chapter 1: Introduction

In the early stages of most mathematics curricula, emphasis is placed on
developing analytical problem-solving skills. For example, students spend
significant time manually computing roots of polynomials, solving differential
equations, and evaluating integrals. At this stage, it’s easy to assume that
every problem has a closed-form solution, and that solving it simply requires
learning the right techniques. However, as the curriculum progresses, the prob-
lems grow increasingly complex, and the techniques more intricate, revealing
that there are many problems for which we do not have a closed-form solu-
tion. In fact, as Stibitz and Larrivee (1957) observed, many of the problems
encountered in applications are not amenable to the analytical techniques the
typical student has learned. This is where numerical methods come into play.

Numerical methods have played a central role in the application of math-
ematics throughout history. Indeed, many famous mathematicians of the
past—such as Newton, Euler, Gauss, and Legendre—used numerical approxi-
mation in their work (Goldstine, 1977). Yet there’s a key distinction between
merely using numerical methods and systematically studying them. The field
that studies numerical methods from a mathematical point of view, as a
branch of analysis, is called numerical analysis. Numerical analysts not only
develop algorithms but also rigorously analyze their behavior—examining
when they work, when they fail, and how they can be improved. The field’s
roots extend back to the pre-digital era, when mechanical devices and numer-
ical tables were used to approximate solutions (Stibitz and Larrivee, 1957;
Goldstine, 1977).

However, according to Grcar (2011), the inception of modern numerical
analysis is closely linked to the development of the first digital computers.
Indeed, first modern paper in numerical analysis is often cited as (von Neumann
and Goldstine, 1947), the authors of which also played a significant role in
the development of the first digital computers. In this paper, John von
Neumann and Herman Goldstine rigorously study the sources of error in
a numerical matrix inversion algorithm. The paper is important not only
because it connects numerical analysis and its error analysis with digital
computers, but also, as Grcar (2011) notes, because it served as von Neumann’s
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2 Chapter 1. Introduction

way of establishing numerical analysis as a serious branch of mathematics.
Since then, computers and numerical analysis have remained closely linked.
As computers have grown more powerful and widespread across scientific
disciplines, numerical analysis has become an increasingly significant field.

Depending on whom you ask, one of the perks or drawbacks of numerical
analysis is that it can be applied to virtually any problem, and as such, a
numerical analyst can find themselves working on problems from a wide range
of fields. This thesis is a contribution to the field of numerical analysis, and
it is concerned with the development and analysis of numerical methods
for problems in mechanics, hydrodynamics, protein imaging, and stochastic
differential equations. These applications all have in common that they
are problems where numerical analysis is interacting with one of the oldest
branches of mathematics: geometry. Geometry is the study of space and
its properties, such as shape, distance and area, and it is a field that has
been studied for thousands of years. To combine it with numerical analysis
is not new: a famous example is one of the first numerical methods for
solving ordinary differential equations. It was invented by Newton in his proof
of Kepler’s second law (Wanner, 2010). This method is an early example
of a method we call geometric, since it preserves the underlying mechanical
properties of the true solution of the differential equation, properties that arise
from the geometry of the problem. However, it should be noted that Newton
used the numerical methods not to solve a known continuous problem, but to
infer the properties of the continuous problem from the numerical method.
In fact, as noted by Wanner (2010), this inverse use of numerical methods
has not been uncommon, and several of the mathematicians mentioned above
used numerical methods in this way.

In this thesis, geometry enters the picture in a few different ways. Some-
times, we are, like Newton, interested in methods that preserve the underlying
geometry of a mechanical problem. In these cases, the geometric aspects may
not be immediately obvious, and the motivation for the method becomes clear
only when we understand the underlying geometric mechanics of the problem.
In other cases, geometry plays a more concrete role: we are interested in
problems posed on curved spaces, rather than flat domains. This type of
problem could show up, for instance, if one is interested in modelling some
sort of hydrodynamical system on a global scale, i.e., a system not confined
to a flat subsection of the earth but rather one that evolves on the entire
surface of the Earth. A suitable domain in this case is the sphere, even if, as
Arnold remarks in (Arnold, 1989): a convenient simplifying assumption in
hydrodynamics is that the Earth is modeled as a flat torus. If we disregard
this, and accept that the Earth is not flat, we are faced with the problem of
solving differential equations on a curved space. Thus, geometry immediately
enters the picture, and the methods used to solve the problem must take this
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into account.
In more detail, this thesis consists of some introductory chapters, and

more importantly, of seven papers which can be divided into two categories
of applications.

1. Matching problems and hydrodynamics.

2. Stochastic (partial) differential equations.

The first category encompasses a variety of problems, but they are unified
by their connection to Lie–Poisson equations, a class of mechanical systems.
An important goal of the introductory chapters is to provide an overview of
geometric mechanics and differential geometry, which form the foundation for
these problems. This background will also be helpful for the second category,
where we study stochastic differential equations, both partial and ordinary.
More specifically, we focus on the numerical solution of elliptic stochastic
partial differential equations (SPDEs) on surfaces, as well as the numerical
solution of stochastic Lie–Poisson equations. The latter equations are a type of
stochastic (ordinary) differential equation that arises in mechanics, providing
a bridge to the first category. Elliptic SPDEs are used to simulate random
fields on surfaces, that is, mappings that assign a random value to each point
on the surface.

The introductory chapters are structured as follows: We begin by introduc-
ing some geometric and mechanical basics in Chapter 2. The final goal of that
chapter is the formulation of the Euler–Arnold equations, which are central
to many of the systems studied in this thesis. In Chapter 3, we discuss the
stochastic differential equations relevant to the second category of problems.
Chapter 4 covers equations arising in matching problems and hydrodynamics.
Finally, in Chapter 5, we summarize the papers included in the thesis. The
introductory chapters are based on those of my licentiate thesis (Jansson,
2022).
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Chapter 2: Mechanics and Differential
Geometry

Classical mechanics and differential geometry are intimately connected. In
this section, we introduce geometric concepts as they arise in mechanical
examples. The focus here is not to provide a self-contained introduction, but
rather to give a brief overview of some concepts and tools that appear in
several of the papers included in the thesis. For a complete introduction to
differential geometry, we refer the reader to (Lee, 2012), and for mechanics,
to (Arnold, 1989; Marsden and Ratiu, 1999).

2.1 The Basics: Positions and Velocities

We start with a question.

What is mechanics?

The answer: Mechanics is the study of motions, or displacements, of objects
in space. The displacements occur due to forces acting on the object.

Let us warm up with a few basic mechanical examples where displacements
take place in certain subspaces of the Euclidean space.

Example 2.1: Pendulums

Consider a pendulum. It consists of a mass m attached to a rigid rod
of length l. The mass is free to rotate in the vertical plane, i.e., it
is constrained to R2, and we let the angle between the rod and the
vertical axis be θ. The displacements are thus the possible positions
of the mass as determined by the rod, described by the angle θ. See
Figure 2.1a for an illustration. Mathematically, the possible positions
are modelled by some space Q ⊂ R2. Assuming for simplicity that
l = 1 and that the mass is free to rotate one full circle, Q is the circle
S1 = {x ∈ R2 : ∥x∥R2 = 1}.
A more complicated model is the double pendulum, with two masses
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6 Chapter 2. Mechanics and Differential Geometry

m1 and m2, attached to two connected rigid rods of length l1 and
l2; see Figure 2.1b. In this case, we need two angles to describe
the displacements, so the possible positions of the two masses are
Q = S1 × S1, i.e., a flat torus.
Returning to the single pendulum, and removing the constraint that
the mass only rotates in the vertical plane, we get a spherical pendulum;
see Figure 2.1c. Now, the possible positions are Q = S2, i.e., the sphere.

We have seen three examples of mechanical systems and how the constraints
determine the possible positions, i.e., the space of possible configurations
Q. These spaces are all examples of smooth manifolds. While the examples
we have seen, S1, S1 × S1 and S2, are easy to visualize and understand
without much background, in general, mechanical systems can have much
more complicated configuration manifolds. Intuitively, a manifold is a space
that is locally Euclidean, i.e., it looks like Rn close to each point, but globally,
it can be more complicated.

Formally, an n-dimensional topological manifold M is a completely separa-
ble Hausdorff topological space such that each point x ∈M has a neighbor-
hood U homeomorphic to an open subset of Rn. Denoting the corresponding
homeomorphism by ϕ, a pair (U, ϕ) is known as a chart.

A point x is in (U, ϕ) if x ∈ U . A family of charts (Ui, ϕi)
m
i=1 such

that every x ∈ M is in at least one charts is called an atlas. An atlas
is smooth if, for every pair of charts (Ui, ϕi) and (Uj , ϕj), it holds that
ϕi(Ui ∩ Uj) and ϕj(Ui ∩ Uj) are open sets in Rn and the transition functions
ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) are smooth. A smooth manifold is a
topological manifold equipped with a smooth atlas that is maximal, meaning
it cannot be contained in a larger smooth atlas. If there is an atlas for which
all transition functions have positive Jacobian determinants, then the manifold
is said to be orientable.

Charts are used to define local coordinates. The set of local coordinates for
a point x in (U, ϕ) is (x1, x2, . . . , xn) = ϕ(x). Working with local coordinates
is sometimes easier than working on the manifold itself.

Charts allow us to define what is meant by smooth mappings of manifolds.
A mapping F : M → N between two smooth manifolds M and N is smooth
if, for every x ∈M , there is a chart (U, ϕ) around x and a chart (V, ψ) around
F (x) such that F (U) ⊂ V and ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ) is smooth. A
smooth map that is bijective and whose inverse is also smooth is called a
diffeomorphism. Two manifolds are said to be diffeomorphic if there exists a
diffeomorphism between them.

The concept of charts is illustrated in Figure 2.2. For a concrete example,
let’s again consider the sphere.
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l

θ

m

(a) Single pendulum. The posi-
tion of the mass is determined by
the angle θ, so the configuration
space is Q = S1.

l1

θ1

l2

θ2
m1

m2

(b) Double pendulum. The posi-
tion of the masses are determined
by the angles θ1 and θ2, so the con-
figuration space is Q = S1 × S1,
i.e., a torus.

l

φ

θ

(c) Spherical pendulum. The po-
sition of the mass is determined
by the angles θ, between 0 and
π radians, and φ between 0 and
2π radians, so the configuration
space is Q = S2, i.e., the sphere.

Figure 2.1: Examples of pendulums.
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ϕi ϕj

M

Ui

Uj

ϕi(Ui)

Rn

ϕj ◦ ϕ−1
i

ϕj(Uj)

Rn

Figure 2.2: Illustration of two overlapping charts on a smooth manifold M .
Inspired by (Lee, 2012, Figure 1.6). Image from (Jansson, 2022).

Example 2.2: The sphere

The sphere S2 = {x ∈ R3 : ∥x∥R3 = 1} is a smooth manifold of
dimension 2. To construct an atlas for S2, we can use the stereographic
projection. Let N = (0, 0, 1) be the North Pole and S = (0, 0,−1)

be the South Pole. Let UN = S2 \ {N} and US = S2 \ {S}. The
stereographic projection from the North Pole is the mapping ϕN :

UN → R2 given by

ϕN (x, y, z) =

(
x

1− z
,

y

1− z

)
.

Similarly, we can construct the stereographic projection from the South
Pole, ϕS : US → R2 given by ϕS(x, y, z) = −ϕN (−x,−y,−z).
The stereographic projection is illustrated below. The figure is inspired
by (Lee, 2012, Figure 1.13).

ϕN (x, y, z)

(x, y, z)

N = (0, 0, 1)

Both (UN , ϕN ) and (US , ϕS) are charts, and the union of these two
charts is a smooth atlas for S2 (Arnold, 1989, Section 4.18B).
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The manifold of possible positions Q of a mechanical system does not alone
determine the dynamics of the system, i.e., how the system evolves in time. In
Lagrangian mechanics, we use positions and velocities to describe the motion
of systems. For instance, to describe the motion of the pendulum, we need to
know how the angle θ changes over time, i.e., the angular velocity θ̇ = dθ

dt . In
general, the velocities at x ∈ Q are described in terms of tangent vectors on
Q, i.e., the set of vectors tangent to Q at x. These vectors form a vector space
known as the tangent space at x and is denoted TxQ. Equivalently, TxQ is
the set of all derivations of smooth functions C∞(Q) at x, that is, the linear
maps v : C∞(Q) → R satisfying the product rule

v(fg) = f(x)v(g) + g(x)v(f)

for f, g ∈ C∞(Q). By taking the disjoint union of the tangent spaces at each
x ∈ Q, we get the tangent bundle TQ of Q. The tangent bundle is a manifold
of dimension 2n, where n is the dimension of Q (Lee, 2012, Proposition 3.18).
In particular, the tangent bundle can be equipped with local coordinates.
By (Lee, 2012, Corollary 3.3), given local coordinates (x1, . . . , xn) on Q, the
tangent space TxQ at x has a basis ∂

∂x1

∣∣∣
x
, . . . , ∂

∂xn

∣∣∣
x

where

∂

∂xi

∣∣∣∣
x

f =
∂f

∂xi
(x),

meaning that a tangent vector v ∈ TxQ in local coordinates has the expression

v =

n∑
i=1

vi
∂

∂xi
,

so by (Lee, 2012, Chapter 3), the tangent bundle TQ has local coordinates
(x1, . . . , xn, v1, . . . , vn), where vi are the components of the tangent vector v.

The single pendulum, or rather, its configuration manifold, provides a
good example of the tangent bundle.

Example 2.3: Pendulum velocities

For the single pendulum, Q = S1. The tangent space at θ is TθS1 = R.
Therefore, the tangent bundle is TS1 = S1 × R, i.e., a cylinder. This
is illustrated in Figure 2.3.

Tangent vectors allow us to define the differential of a smooth mapping be-
tween manifolds. Given a smooth map F : M → N between smooth manifolds
M and N , the differential of F at x ∈M is a linear map dFx : TxM → TF (x)N .
If tangent vectors are viewed as derivations, then the differential of F at x is
given by

dFx(v)(f) = v(f ◦ F ),
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TθS1

θ

(a) TxS1 (b) T S1

Figure 2.3: Illustration of TS1. The tangent space TθS1 at θ ∈ S1 is the real
line. By attaching a real line to each θ ∈ S1, we obtain a cylinder of infinite
height. Image from (Jansson, 2022).

for all f ∈ C∞(N).
Given a configuration manifold Q of a mechanical system, we can assign

to every point a tangent vector, i.e., a field of velocities. Mathematically, we
define a mapping X from Q into the tangent bundle T Q. If this mapping is
a section of TQ, meaning that it is a continuous map X : Q→ TQ with the
property that for all x ∈ Q,

p(X(x)) = x, (2.1)

where p is the natural projection sending v ∈ TxQ to x, then X is a vector
field. Equation (2.1) means that we attach a tangent vector to each point
of Q. If the map from Q to T Q is smooth, then X is a smooth vector field.
Equivalently, vector fields are linear maps on C∞(Q) that satisfy

X(fg) = gX(f) + fX(g),

for all f, g ∈ C∞(Q), i.e., they are derivations. The space of all smooth
vector fields on Q is denoted X(Q). For any f ∈ C∞(Q), the commutator
X,Y ∈ X(Q) is the vector field given by

[X,Y ](f) = X(Y (f))− Y (X(f)). (2.2)

If we know the vector field X, we can describe the trajectory of a system
by the curve γ(t) on M obtained by solving the differential equation

γ̇ :=
d

dt
γ = X ◦ γ

for all t ∈ Dom(γ) ⊂ R. The curve γ is called an integral curve of X.
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2.2 Equations of Motion: Lagrangian and Hamil-
tonian Mechanics

Let us return to the pendulum. The state of the pendulum is described by
the angle θ and the angular velocity θ̇. The movement of the pendulum is
determined by how gravity acts on the mass, i.e., by pulling the pendulum
downwards. One of the basic tenets of mechanics is Newton’s second law,
which states that the force acting on an object is equal to the mass of the object
times its acceleration. By inserting the gravitational force F = mg sin θ, where
m is the mass, we recover the equations of motion of the simple pendulum,

θ̈ +
g

l
sin θ = 0, (2.3)

where g is the gravitational constant and, as before, l is the length of the rod.
An alternative characterization of motion is that a system behaves as to

extremize a certain quantity, the action functional. In other words, mechanical
systems obey the principle of least action. Formally, a system is described by
a smooth function L : TQ→ R, called the Lagrangian. Given a path, i.e., a
smooth curve γ : [t0, t1] → Q, the action functional is

A[γ] =

∫ t1

t0

L(γ(t), γ̇(t)) dt.

If γ extremizes the action functional, it is known as a motion of the mechanical
system. The principle of least action is an example of a variational principle.
The equations of motion of the system are given by

∂L
∂γ

− d

dt

∂L
∂γ̇

= 0. (2.4)

These equations are known as the Euler–Lagrange equations, and are derived
by extremizing the action functional, see e.g., (Marsden and Ratiu, 1999,
Section 7.1).

As an example, let us again consider the single pendulum.

Example 2.4: Pendulum as a Lagrangian system

The potential energy of the mass is V = mgl(1− cos θ), and its kinetic
energy is T = 1

2ml
2θ̇2. The Lagrangian is given by the difference of

kinetic energy and potential energy, i.e.,

L(θ, θ̇) = T − V =
1

2
ml2θ̇2 −mgl(1− cos θ).

Therefore, by Equation (2.4), the equation of motion for the pendulum
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is

θ̈ +
g

l
sin θ = 0,

and we recover Equation (2.3).

Another basic example is that of a particle moving in R3 under the influence
of a potential V .

Example 2.5: Particle in potential part I

Let x be the position of a particle of mass m in R3. Its velocity ẋ

is denoted by v, so the kinetic energy is given by T = m
2 ∥v∥

2
R3 . The

potential energy is denoted by V . In this case, the Lagrangian is

L(x, v) = m

2
∥v∥2R3 − V (x).

By the Euler–Lagrange equations (2.4), the equation of motion is
mv̇ = mẍ = −∇V (x), and we recover Newton’s second law.
Consider now a first order perturbation, or variation, of the velocity v,
i.e., v + εδw. The perturbation of the velocity induces a perturbation
of the kinetic energy, i.e.,

δT = ⟨mv, δw⟩R3 .

Note that P (·) = ⟨mv, ·⟩R3 : TxR3 → R is a linear functional that
assigns to each perturbation of the velocity the associated perturbation
of the kinetic energy. We can identify P with p = mv, and we recognize
the momentum of the particle. Having introduced the momentum, we
can rewrite the equations of motion as

ẋ =
1

m
p,

ṗ = −∇V (x),
(2.5)

which are Hamilton’s equations for the particle. This is a first example
of a Hamiltonian system.

For a general mechanical system, a similar procedure as in the above
example can be applied to arrive at a Hamiltonian system from a Lagrangian.
First, consider the dual of the tangent space, i.e., the cotangent space T ∗

qQ

consisting of the linear functionals of TqQ. The cotangent bundle T ∗Q is the
disjoint union of the cotangent spaces at each q ∈ Q. The cotangent bundle
is a manifold of dimension 2n, where n is the dimension of Q (Lee, 2012,
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Proposition 3.18).
Let us, as in (Marsden and Ratiu, 1999, Chapter 7), consider a mechanical

system on Q with Lagrangian L : TQ→ R. If q is fixed, then L(q, ·) := Lq
is a function from TqQ to R. Take then the directional derivative of Lq at
v ∈ TqQ, i.e.,

FL(v)w =
d

dε

∣∣∣∣
ε=0

Lq(v + εw), (2.6)

where w ∈ TqQ is another tangent vector. In other words, we have a mapping
FL : TQ → T ∗Q that assigns to each v ∈ TqQ an element of the cotangent
space T ∗

qQ, in analogy with Example 2.5. This mapping is known as the fiber
derivative of L. As noted in (Marsden and Ratiu, 1999, Chapter 7), if we
work in local coordinates (q1, . . . , qn, v1, . . . , vn), then the Equation (2.6) is
given by

(q1, . . . , qn, v1, . . . , vn) 7→
(
q1, . . . , qn,

∂L
∂v1

, . . . ,
∂L
∂vn

)
,

and we set pi = ∂L
∂vi

. We refer to FL as the Legendre transform and define
the associated energy function E : TQ→ R by

E(v) = FL(v)v − Lq(v).

If FL is a diffeomorphism (the Lagrangian is hyperregular), we can define the
Hamiltonian H : T ∗Q→ R by

H = E ◦ (FL)−1 : T ∗Q→ R.

In this case, we can translate the Euler–Lagrange equations to Hamil-
ton’s equations (Marsden and Ratiu, 1999, Section 7.4) and obtain in local
coordinates

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

. (2.7)

Thus, in the case that the Lagrangian is hyperregular, we can move from
a description of the motion on the tangent bundle to a description on the
cotangent bundle and the Hamiltonian and Lagrangian viewpoints are two
sides of the same coin.

To illustrate the Legendre transform, we consider a Lagrangian system
that is hyperregular and can be translated to a Hamiltonian system, namely
the particle in a potential.
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Example 2.6: Particle in potential part II

Let us revisit Example 2.5, i.e., the particle moving in a potential
V . The configuration space is Q = R3. The cotangent space at x is
T ∗
xR3 = R3, and the cotangent bundle is T ∗R3 = R3 × R3. As noted

in Example 2.5, the Lagrangian is L(x, v) = m
2 ∥v∥

2
R3 −V (x). The fiber

derivative is just

FL(v)w =
d

dε

∣∣∣∣
ε=0

L(x, v + εw) = ⟨mv,w⟩R3 ,

which we recall from Example 2.5 as the induced perturbation of the
kinetic energy. The associated energy function is

E(v) = ⟨mv, v⟩R3 − m

2
∥v∥2R3 + V (x) =

m

2
∥v∥2R3 + V (x)

Note that in this case, FL is an isomorphism (we are merely working
with vector spaces). As we can identify p = mv ∈ R3 so that v = 1

mp,
the inverse of FL is the mapping (x, ⟨p, ·⟩R3) 7→ (x, p/m). Thus, the
Hamiltonian H : T ∗R3 → R is defined by

H(x, p) =
1

2m
∥p∥2R3 + V (x), (2.8)

and we can recover Hamilton’s equation for the particle (2.5) by
inserting the Hamiltonian (2.8) into (2.7).

The cotangent bundle is an example of a phase space of a mechanical
system. Its generalization is the concept of symplectic manifolds, which is
a manifold equipped with an additional structure known as the symplectic
form. To understand symplectic manifolds, we need to introduce the concept
of differential forms. Informally, a differential form is a function that assigns
to each point of a manifold a multilinear mapping that inputs tangent vectors
and outputs the oriented volume spanned by the vectors.

More formally, a k-form is a field of alternating k-linear maps on the
tangent spaces of a manifold, i.e., for each x ∈ M , a k-form ω is a map
ωx : TxM× . . .×TxM → R that is linear in each argument and antisymmetric,
i.e., the sign changes if we swap two arguments. We denote the space of
k-forms on M by Ωk(M). The wedge product of two forms ω ∈ Ωk(M) and
η ∈ Ωl(M) is a (k+ l)-form, denoted ω∧η. The wedge product is bilinear and
associative. If kl is even, the wedge product is commutative, and otherwise it
is anti-commutative.

The interior product of a k-form ω and a vector field X is a (k − 1)-form,
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denoted ιXω and is given by

ιXω(Y1, . . . , Yk−1) = ω(X,Y1, . . . , Yk−1),

where Y1, . . . , Yk−1 are vector fields.
The exterior derivative d : Ωk(M) → Ωk+1(M) is the R-linear mapping

that satisfies d2 = 0 and the product rule

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α ∈ Ωk(M) and β ∈ Ωl(M). A k-form α is exact if there is a (k − 1)-
form β such that α = dβ. Finally, we say that α is closed if dα = 0. Note in
particular that all exact forms are closed, but that not all closed forms are
exact.

Example 2.7: Integration of differential forms

An important feature of differential forms is that they can be integrated.
On a Euclidean space Rn, an n-form ω is given by ω = ϕ(x)dx1 ∧ . . .∧
dxn, for some smooth function ϕ. The integration of ω over a bounded
and convex domain D is the same as in the case of multivariate calculus,
i.e., ∫

D

ω :=

∫
D

ϕ(x) dx1 · · · dxk,

To integrate a k-form over a manifold M , we must carry over the notion
of integration from Euclidean space to the manifold. One way to do
this is to triangulate the manifold with bounded convex polyhedra,
and then to integrate over the k-chains defined by the triangulation. A
k-chain is a formal sum of k-cells, where a k-cell is a triple (D,F,O),
where D is a bounded convex polyhedron in Rk, F : D → M is a
differentiable map, and O is an orientation of Rk. The integral of a
k-form ω over a k-cell σ = (D,F,O) is∫

σ

ω =

∫
D

F ∗ω.

Here, F ∗ω(X1, . . . , Xk) := ω(dFx(X1), . . . , dFx(Xk)) is the pullback of
ω, where X1, . . . , Xk are tangent vectors on D. The orientation of the
k-cell is used to determine the sign of the integral over D, as usual in
multivariate calculus.
Given r ∈ N k-cells (D1, F1, O1), . . . , (Dr, Fr, Or) and integers
m1, . . . ,mr, a k-chain ck on M is the formal sum ck =

∑r
i=1miσi.
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The integral of ω over ck is∫
ck

ω =

r∑
i=1

mi

∫
σi

ω. (2.9)

As an example, consider the integral of the 1-form ω = xdx− ydy on
R2 over the submanifold K shown below.

R2

σ1

σ2 (1, 0)(0, 0)

(0, 1)

x

y

The figure is from (Jansson, 2022). Since K consists of two parts, a
quarter circle σ1 and a line segment σ2, we just need two 1-cells. To
cover the circular arch, we take D1 = [0, π/2], ϕ

(t)
1 = (cos(t), sin(t)).

The line segment is covered by D2 = [0, 1], ϕ
(t)
2 = (t, 0). Equation (2.9)

then gives∫
K

ω =

∫
σ1+σ2

(xdx− ydy) =

∫ π/2

0

− sin(2t) dt+

∫ 1

0

t dt = −1

2
.

Now we can note something interesting about the integral of ω over
K. Note that ω = dF , where F = x2/2 − y2/2, so ω is exact. The
boundary of K is ∂K = [(0, 1)]− [(0, 0)]. If we integrate F over ∂K,
we get ∫

∂K

F = F (0, 1)− F (0, 0) = −1/2,

i.e., the integral of F over the boundary of K equals the integral of
dF over K.
This is no coincidence, but a consequence of Stokes’ theorem (Fortney,
2018, Theorem 11.1). Stokes’ theorem states that for a manifold M of
dimension k with boundary ∂M , it holds that∫

∂M

ω =

∫
M

dω,

where ω ∈ Ωk−1(M).
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A symplectic form is just a non-degenerate closed 2-form. Non-degeneracy
means that for every x ∈ M , if ωx(u, v) = 0 for all v ∈ TxM , then u = 0.
Not all manifolds can be equipped with a symplectic form. Indeed, all
symplectic manifolds are even-dimensional (Lee, 2012, Proposition 22.7),
thereby excluding many manifolds, such as the circle, the ball and odd-
dimensional vector spaces. However, the fact that symplectic manifolds are
even-dimensional is indicative of how they are used in mechanics. In a phase
space, one doubles the number of variables by considering both position and
momentum variables, meaning that we need two sets of coordinates, i.e., we
necessarily work in an even-dimensional space.

We have already encountered quite a few examples of symplectic manifolds.

Example 2.8: Symplectic manifolds

1. The sphere, S2, is a symplectic manifold with symplectic form.

ωx(u, v) = ⟨x, (u× v)⟩R3 ,

where x ∈ S2, u, v ∈ TxS2, × is the cross product and ⟨·, ·⟩R3 is
the Euclidean inner product. Here, we think of S2 as a submani-
fold of R3.

2. If V is a real vector space of dimension n, then

T ∗V = V × V ∗,

where V ∗ is the dual of V , is a symplectic manifold when equipped
with the canonical symplectic form given by

ω((v1, α1), (v2, α2)) = α2(v1)− α1(v2),

where v1, v2 ∈ V and α1, α2 ∈ V ∗. Cotangent bundles can in
general equipped with a canonical symplectic form (Lee, 2012,
Proposition 22.11).

The symplectic form is used to describe the dynamics of a system evolving
on a symplectic manifold. Given a smooth function H on a symplectic manifold
(M,ω), its Hamiltonian vector field XH is defined by

dH = ω(·, XH). (2.10)

The function H is called the Hamiltonian, and the dynamics of the system it
defines are given by the general form of Hamilton’s equations

ż = XH(z),
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where z(t) ∈ M . Thus, all we need to do Hamiltonian mechanics is a
Hamiltonian function on a symplectic manifold.

2.3 Symmetries: Lie Groups and Lie Algebras

An important part of mechanics is the study of symmetries and conserved
quantities of a system. Let us start with an example.

Example 2.9: Particle in potential part III

Recall the setting from Examples 2.5 and 2.6, i.e., the particle moving
in R3 under the influence of a potential V . Assume that the potential
only depends on the distance to the origin, V (x) = Ṽ (∥x∥R3) for some
Ṽ : R → R. If this is the case, then the Lagrangian is invariant under
rotations, meaning that if R is a rotation matrix (the set of which is
denoted SO(3)), then

L(Rx,Rẋ) = L(x, ẋ).

In other words, the system is rotationally symmetric.
This has an interesting consequence. Consider the angular momen-
tum given by L = x × p, where p = mẋ is the momentum of the
particle. By using that ṗ = −∇V (x) and ẋ = 1

mp we see that the time
derivative of L along a solution is

L̇ = ẋ× p+ x× ṗ = x× ṗ = ∇V (∥x∥R3)× x =
V ′(∥x∥R3)

∥x∥R3

x× x = 0,

i.e., L is a conserved quantity of the system. The conservation of
angular momentum is a direct consequence of the rotational symmetry
of the system.
Consider now the case when the potential is invariant under arbitrary
translations in direction of x1 = (1, 0, 0), the first coordinate direction
of R3. In formulas, this means that V (x) = V (x+ ax1) for all a ∈ R.
Then, the Lagrangian is invariant under translations in the x1-direction,

L(x+ ax1, ẋ) = L(x, ẋ).

Similarly to the rotational invariant case, the system has a conserved
quantity, the first component of the linear momentum p1 = m(ẋ)1
since

ṗ1 = m(ẍ)1 = −(∇V (x))1 = 0.

Thus, the conservation of the first component of the linear momentum is
a direct consequence of the translational symmetry in the x1-direction.
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We have now seen two examples of how a symmetry of a system leads
to a conserved quantity. This is, as we shall see, not a coincidence.

To study symmetry, we need to introduce a way to consider continuous
transformations acting on systems, for instance, a way to mathematically
describe how a system can be rotated or translated. The properties that
remain unchanged under continuous transformations are known as continuous
symmetries, and these are mathematically described by Lie groups. A Lie
group H is a smooth manifold that is also a group such that the map
(h1, h2) 7→ h1h

−1
2 is smooth for all h1, h2 ∈ H. A Lie subgroup of H is a

submanifold that is closed under the group operations.
The Lie algebra h of a Lie group H is defined as the tangent space of H at

the identity e ∈ H. In general, a Lie algebra is just a vector space equipped
with a Lie bracket, which is a bilinear map [·, ·] : h× h → h satisfying

• Anticommutativity : [X,Y ] = −[Y,X],

• Jacobi identity : [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

for all X,Y, Z ∈ h. A subspace of a Lie algebra that is closed under the
Lie bracket is called a Lie subalgebra. The space of vector fields X(Q) on a
manifold Q is a Lie algebra with bracket given by Equation (2.2).

The Lie bracket on a Lie algebra h of a Lie group H arises from the
commutator of vector fields on H. To see this, we denote left translation by

Lh1h2 = h1h2,

and right translation by

Rh1h2 = h2h1,

where h1, h2 ∈ H. Left and right translations are by definition smooth
mappings. Because inversion is also smooth on Lie groups, the inverse of
left and right translation are also smooth, that is to say, L−1

h = Lh−1 and
R−1
h = Rh−1 are smooth maps. The differential of left translation at a point

h′ ∈ H acting on a vector v ∈ Th′H is denoted by d(Lh)h′(v) and produces a
vector in Thh′H.

Now, let ξ be a fixed element of h = TeH. We have that d(Lh)e(ξ) ∈
ThH, and so we have a mapping from H to TH given by h 7→ (h, vξ(h))

where vξ(h) = d(Lh)e(ξ), meaning that this is a vector field. Moreover,
d(Lh′)vξ(h) = vξ(h′h) meaning that vξ is a left-invariant vector field. We
notice directly that a left-invariant vector field is completely determined by
its value at the identity, so we can identify the set of left-invariant vector
fields with h as vector spaces (Marsden and Ratiu, 1999, Section 9.1). In fact,
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a bit more can be said. It turns out that the Lie bracket of two left-invariant
vector fields is also left-invariant, meaning that the set of left-invariant vector
fields is a Lie subalgebra of X(H). The Lie bracket on h is given by the Lie
bracket of left-invariant vector fields, i.e.,

[ξ1, ξ2] = [vξ1 , vξ2 ](e),

where vξ1 and vξ2 are left-invariant vector fields corresponding to ξ1 and ξ2.
Lie groups come equipped with an exponential map exp: h → H that

maps elements of the Lie algebra to the Lie group. The exponential map of
an element X is defined by considering the flow, that is, the solution to (2.1)
of the left-invariant vector field vX at time 1;

exp(X) = γvX (1).

An important example of Lie groups can be found in the various matrix
groups.

Example 2.10: Matrix Lie groups

A classical example of a Lie group is the general linear group GL(n),
which consists of all real invertible n × n matrices. Its Lie algebra,
denoted by gl(n), is the space of all n× n matrices. The Lie bracket
on gl(n) is [A,B] = AB −BA, i.e., the matrix commutator.
There are several important subgroups of GL(n) that are also Lie
groups. One example is O(n), which contains all orthogonal matrices
of dimension n. Another example is SO(n), which consists of elements
of O(n) with determinant 1. Note that while SO(n) ⊂ O(n), their Lie
algebras are the same: so(n) = o(n) = {A ∈ gl(n) : A⊤ = −A}.

A key property of Lie groups is that they can act on other manifolds. IfH is
a Lie group and X is a set, a left action of H on X is a map Φ: H ×X → X

that satisfies

Φ(e, x) = x, Φ(g,Φ(h, x)) = Φ(gh, x),

for all g, h ∈ H and x ∈ X. A right action is defined similarly, as a map
Φ: X ×H → X, but with the composition rule now being from the right,

Φ(x, gh) = Φ(Φ(x, g), h).

If the group is clear from the context, we often write Φ(h, x) as h · x. If Φ
is a smooth map and X is a smooth manifold, then we say that the group
action is smooth. Now, if H acts on X, the orbit of x ∈ X is the set

Ox = {h · x : h ∈ H},
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in other words, the set of all elements that x can be mapped to by the group
action. The stabilizer of x is the set of all elements that leave x fixed,

Hx = {h ∈ H : h · x = x}.

The stabilizer is a subgroup of H. A group action is transitive if there is only
one orbit, i.e., for all x, y ∈ X, there is an h ∈ H such that h · x = y. If all
stabilizers are trivial, meaning that Hx = {e} for all x ∈ X, then the action
is free.

We have already seen how Lie groups can act on themselves by right or
left translation. Another important example is the action of a Lie group H
on itself by conjugation,

Ch1
h2 = Lh1

Rh−1
1
h2 = h1h2h

−1
1 ,

where h1, h2 ∈ H. The conjugation action gives rise to the adjoint representa-
tion, denoted by Adh ∈ End(h), which is given by the differential of Ch at the
identity. Here, End(h) denotes the space of endomorphisms of h, that is, linear
maps from h to h. By varying h we get the map Ad : H → End(h). Differentiat-
ing Ad we obtain the map ad : h → End(h). Explicitly, h ∋ Y 7→ [Y, ·] = adY .

The coadjoint representation is defined by

⟨Ad∗h ξ, Y ⟩ = ⟨ξ,Adh−1 Y ⟩,

for all ξ ∈ h∗ and Y ∈ h. Here ⟨·, ·⟩ is the dual pairing between h and h∗.
Likewise, the dual of ad is denoted by ad∗, and is a map from h to End(h∗).

Explicitly, it is given by

⟨ad∗X η, Y ⟩ = ⟨η,− adX Y ⟩ = ⟨η, [Y,X]⟩,

for all η ∈ h∗ and X,Y ∈ h.
The orbits of Ad∗ are known as coadjoint orbits. The coadjoint orbit of

ξ ∈ h is the set

Oξ = {Ad∗h ξ, h ∈ H}.

The coadjoint orbits can be endowed with a symplectic structure known as the
Kirillov–Kostant–Souriau form. To write down this form, we first remark that
by Marsden and Ratiu (1999, Section 14.2), coadjoint orbits are manifolds,
and that the tangent space of the coadjoint orbit Oξ at η ∈ Oξ is given by

TηOξ = {ad∗ξ η : ξ ∈ h}.

The symplectic form is then given by

ωη(ad
∗
ξ1 η, ad

∗
ξ2 η) = ⟨η, [ξ1, ξ2]⟩,
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where ξ1, ξ2 ∈ h and η ∈ Oξ. Moreover, the coadjoint orbits “slice up” the
dual algebra. This means that the coadjoint orbits provide a special kind of
partition of h∗ known as a foliation (Kirillov, 2004).

To give an example of the above concepts, we consider the special orthog-
onal group SO(n).

Example 2.11: Special orthogonal group

Let G,H ∈ SO(n). The conjugation action of G on H is given by

CGH = GHG−1 = GHG⊤.

The Lie algebra of SO(n) is so(n), which consists of all n × n skew-
symmetric matrices. To compute the adjoint representation, we differ-
entiate CG at the identity, i.e., we insert the curveH(t) = I+tX+O(t2)

for some X ∈ so(n), where I is the identity matrix, into CG and dif-
ferentiate at t = 0. Thus, we obtain

d

dt
CGH(t)

∣∣∣∣
t=0

=
d

dt
GIG⊤ + tGXG⊤ + O(t2)

∣∣∣∣
t=0

= GXG⊤ = AdGX.

To find the coadjoint representation, we first identify so(n) with so(n)∗

by the Frobenius inner product ⟨A,B⟩ = −Tr(AB). Therefore, the
coadjoint representation is given by

⟨Ad∗G ξ, Y ⟩ = ⟨ξ,AdG⊤ Y ⟩ = −Tr(ξG⊤Y G)

= −Tr(GξG⊤Y ) = ⟨GξG⊤, Y ⟩,

where ξ ∈ so(n)∗ and Y ∈ so(n). We conclude that Ad∗G ξ = GξG⊤.
Likewise, ad∗ is computed by

⟨ad∗X η, Y ⟩ = ⟨η,− adX Y ⟩ = −Tr(η[Y,X]) = −Tr(ηY X − ηXY )

= −Tr((XηY − ηX)Y ) = −Tr([X, η]Y ),

meaning that ad∗X η = [X, η]. Finally, the coadjoint orbit of ξ ∈ so(n)∗

is the set of all GξG⊤ for G ∈ SO(n).
If n = 3 we can be even more explicit. We can identify so(3) with R3

by the isomorphism

ξ =

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 7→

ξ1ξ2
ξ3

 = ξ̂. (2.11)
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Thus, the coadjoint representation is Gξ̂, and so the coadjoint orbit is

Oξ̂ = {Gξ̂ : G ∈ SO(3)}.

Since G is a rotation matrix, the coadjoint orbit is the set of all vectors
that can be obtained by rotating ξ̂, i.e., the sphere of radius ∥ξ̂∥R3 .
If so(3) is identified with R3, then adξ̂1 ξ̂2 = ξ̂1 × ξ̂2. This means the
tangent space to a coadjoint orbit Oξ̂ at Gξ̂ is

TGξ̂Oξ̂ = {v ×Gξ̂ : v ∈ R3},

that is, the set of all vectors that are orthogonal to Gξ̂, which we
already knew from Example 2.2. The Kostant–Kirillov–Souriau form
is given by

ωGξ̂(v1 ×Gξ̂, v2 ×Gξ̂) = ⟨Gξ̂, v1 × v2⟩

This is recognized as the standard symplectic form on the sphere from
Example 2.8. The foliation of R3 by coadjoint orbits is just the foliation
of R3 by concentric spheres, thus obtaining something resembling an
onion, where the layers are the coadjoint orbits.

We are now ready to discuss symmetries of mechanical systems. Let us
consider a system with configuration manifold Q and Lagrangian L : TQ→ R.
Let H be a Lie group that acts on Q. This action induces the tangent lifted
action of H on TQ. If the action of H on Q is given by Φ: H ×Q→ Q, then
Φh = Φ(h, ·) defines a diffeomorphism of Q for each h ∈ H. The tangent lifted
action TΦ: H × TQ→ TQ is given by

TΦh(q, v) = (Φh(q), d(Φh)q(v)).

Example 2.12: Tangent lifted action of SO(3)

Let us return to Example 2.9. The group SO(3) acts on R3 by rotation,
i.e., ΦR(x) = Rx where R ∈ SO(3) and x ∈ R3. One verifies that
d(ΦR)(v) = Rv, so the tangent lifted action is given by TΦR(x, v) =
(Rx,Rv).

Now, H is a symmetry of the system if the Lagrangian is invariant under
the tangent lifted action of H, meaning that

L(TΦg(q, v)) = L(q, v).
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This implies that if γ(t) follows the equations of motion, that is, solves the
Euler–Lagrange equations (2.4), then so does Φg(γ(t)).

The observation from Example 2.9—that if the system has a symmetry,
then there is a conserved quantity—is formalized in Noether’s theorem, which
in its Lagrangian formulation states that

Theorem 1 (Noether’s theorem, Lagrangian version). Let the Lagrangian
L : TQ → R be invariant under the tangent lifted action of a Lie group H.
Then there is a conserved quantity I : TQ→ h∗ given by

I(q, v) =
∂L(q, v)
∂v

∂Φh(q)

∂h

∣∣∣∣
h=e

.

2.4 Observables: Poisson Systems

Hamiltonian mechanics gives rise to a natural understanding of observables,
namely, simply as functions of the phase space. Given a symplectic manifold
(M,ω), an observable is a smooth function C∞(M) ∋ f : M → R. Two
functions f, g ∈ C∞(M) can be combined to form a new observable by taking
their Poisson bracket, defined by

{f, g} = ω(Xf , Xg),

where Xf and Xg are the Hamiltonian vector fields of f and g, respectively.
The Poisson bracket is a bilinear map {·, ·} : C∞(M)×C∞(M) → C∞(M)

that satisfies

• anticommutativity : {f, g} = −{g, f},

• the Jacobi identity : {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 and

• the Leibniz rule: {f, gh} = g{f, h}+ {f, g}h.

In other words, the Poisson bracket is a Lie bracket on C∞(M) which in
addition satisfies the Leibniz rule. Further, if H is a Hamiltonian, that is, a
function that describes the energy of a system, then the time evolution of an
observable F is given by

Ḟ = {F,H}. (2.12)

The concept of Poisson brackets allows for a generalization of symplectic
manifolds to Poisson manifolds, where the bracket is not directly related to a
symplectic form. Indeed, a Poisson manifold (M, {·, ·}) is a smooth manifold
M equipped with a bilinear map {·, ·} : C∞(M)× C∞(M) → C∞(M) that
satisfies the same properties as the Poisson bracket on a symplectic manifold
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above, i.e., anticommutativity, Jacobi identity, and the Leibniz rule. This
mapping is also called a Poisson bracket, and, to reiterate, it does not need
to arise from a symplectic form. It is in this case still possible to define
Hamiltonian vector fields, by the mapping f 7→ Xf = {f, ·}. In contrast to
symplectic manifolds, odd-dimensional manifolds can be Poisson manifolds.

An important example of a Poisson bracket is that of the Lie–Poisson
bracket on the dual h∗ of a Lie algebra h. Systems governed by this bracket
are known as Lie–Poisson systems.

Example 2.13: Lie–Poisson systems

Let h be a Lie algebra with Lie bracket [·, ·]. To define the Lie–Poisson
bracket on C∞(h∗), we first note that since Tξh∗ ∼= h∗ for all ξ ∈ h∗,
and since dfξ : Tξh

∗ → R is linear, the differential of f at ξ is an
element of h∗∗ that we in turn identify with h.
The Lie–Poisson bracket on C∞(h∗) is given by

{F,G}(ξ) = ⟨ξ, [dFξ, dGξ]⟩, (2.13)

where F,G ∈ C∞(h∗).
A Lie–Poisson system is a system whose dynamics are governed by
the Lie–Poisson bracket. Let H ∈ C∞(h∗) denote the Hamiltonian.
Then, the time evolution of an observable F ∈ C∞(h∗) is given by
Equation (2.12) with the Lie–Poisson bracket. Lie–Poisson systems
have a number of conserved quantities, namely the Casimir functions,
which are functions C ∈ C∞(h∗) that satisfy {C, h} = 0 for all h ∈
C∞(h∗). Another conserved quantity is the Hamiltonian, as the time
evolution of the Hamiltonian is zero, i.e., Ḣ = {H,H} = 0.
There is an alternative formulation of Lie–Poisson systems. Let ξ ∈ h∗

be arbitrary. Then, the time evolution of the observable F ∈ C∞(M)

is given by, according to the chain rule,

d

dt
F (ξ) = ⟨ξ̇, dFξ⟩.

Further, by Equation (2.13), we have that

⟨ξ̇, dFξ⟩ = ⟨ξ, [dFξ, dHξ]⟩ = ⟨ξ, addHξ
dFξ⟩ = ⟨ad∗dHξ

ξ, dFξ⟩,

Since F is arbitrary, we conclude that

ξ̇ = ad∗dHξ
ξ. (2.14)

Lie–Poisson systems are an important example of Poisson systems. They



26 Chapter 2. Mechanics and Differential Geometry

arise in many contexts, such as in fluid dynamics, rigid body dynamics
(Marsden and Ratiu, 1999, Chapter 1) and magneto-hydrodynamics (Morrison
and Greene, 1980). A very concrete example of a Lie–Poisson system is the
rigid body.

Example 2.14: The rigid body part I

Consider a rigid body of uniform density, i.e., a body that does not
deform, meaning that the distance between any two points on the
body is constant. The rigid body moves by rotating around its center
of mass, which is assumed to be at the origin.
The equation of motion of the rigid body is

Iω̇ = Iω × ω, (2.15)

where ω ∈ so(3) ∼= R3 is the angular velocity of the body, and I is
the inertia tensor of the body, a real, positive definite, and symmetric
3 × 3 matrix. We assume that I is diagonal, i.e., I = diag(I1, I2, I3)

with I1, I2, I3 > 0.
These equations do not have an immediate interpretation as a Hamil-
tonian system, as ω lives in a three-dimensional space. However, it
can be interpreted as a Lie–Poisson system. To see this, we first note
that the angular velocity ω is an element of so(3), the Lie algebra of
SO(3). The angular momentum L = (L1, L2, L3) is given by

L1 = I1ω1, L2 = I2ω2, L3 = I3ω3,

so that Equation (2.15) can be written as

L̇ = L× I−1L. (2.16)

Now, we view L as an element of so(3)∗, which we identify with so(3)

through the standard inner product. Then, the Lie–Poisson bracket
on C∞(so(3)∗) is, by Equation (2.13),

{F,H}(L) = ⟨L, [dFL, dHL]⟩.

As we identify so(3) with R3, the Lie bracket can be verified to be
the standard cross product, [L1, L2] = L1 × L2. Furthermore, the
differentials dFL and dHL coincide with the gradients of F and H with
respect to L, and the Lie–Poisson bracket becomes

{F,H}(L) = ⟨L,∇F ×∇H⟩

Thus, if an appropriate Hamiltonian H ∈ C∞(so(3)) can be identified,
the rigid body equation (2.16) can be written as a Lie–Poisson equation.
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Recall from example Example 2.11 that the coadjoint action of so(3) on
its dual is ad∗ω L = ω × L, so

{F,H}(L) = −⟨L×∇H,∇F ⟩ = ⟨ad∗∇H L,∇F ⟩.

By Equation (2.14), the rigid body equations can be written as

L̇ = −L×∇H,

where

H(L) = −1

2
(L1/I1, L2/I2, L3/I3).

This means in particular that H(L) is a preserved quantity. Further,
any Casimir function of the Lie–Poisson bracket is a conserved quantity
of the rigid body equations. In this case, a Casimir function is C(L) =

∥L∥2R3 . Therefore, C(L) = C for some constant C > 0, and H(L) =

H for some constant H > 0. Note that C(L) = C describes a sphere,
and H(L) = H describes an ellipsoid, so the rigid body evolves on the
intersection of a sphere and an ellipsoid.

Finally, we remark that there is a Hamiltonian formulation of symmetries
and Noether’s theorem. This leads to the concept of momentum maps as well
as a Hamiltonian version of Noether’s theorem, which for us will be important
in the context of numerical integration of Poisson systems. To this end, let H
be a Lie group that acts on a Poisson manifold (M, {·, ·}). The action of H
on M is said to be canonical if

{F ◦ Φh, G ◦ Φh} = {F,G} ◦ Φh (2.17)

for all F,G ∈ C∞(M) and all h ∈ H. A ξ ∈ h generates a path in H by
γ(t) = exp(tξ). The infinitesimal generator of the action of H on M is the
vector field given by

vξ(q) =
d

dt

∣∣∣∣
t=0

Φexp(tξ)(q),

where q ∈M . For ξ, η ∈ h, the Lie bracket of the infinitesimal generators is
given by

[vξ, vη] = v[η,ξ],

meaning that ξ 7→ vξ is a Lie algebra anti-homomorphism from h to the Lie
algebra of vector fields on M . The infinitesimal version of Equation (2.17) is

vξ{F,G} = {vξF,G}+ {F, vξG},
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for all F,G ∈ C∞(M).
Assuming that vξ is a Hamiltonian vector field, i.e., vξ = XJ(ξ) for some

J : h → C∞(M), then the map µ : M → h∗ given by

⟨µ(q), ξ⟩ = J(ξ)(q)

is called the momentum map. These maps allow us to formulate a Hamiltonian
version of Noether’s theorem (Marsden and Ratiu, 1999, Theorem 11.4.1).

Theorem 2 (Noether’s theorem, Hamilton version). Let H be a Lie group
acting canonically on a Poisson manifold (M, {·, ·}) with momentum map
µ : M → h∗. If the Hamiltonian H ∈ C∞(M) is invariant under the action
of H, that is, H ◦ Φh = H for all h ∈ H, then the momentum map µ is a
conserved quantity. This means that µ is preserved under the flow of the
Hamiltonian vector field of H.

It is illustrative to see how this works for a concrete example.

Example 2.15: Particle in potential part IV

Recall the Hamiltonian formulation of the particle in a potential V
from Example 2.6. The Hamiltonian was given by H(q, p) = 1

2p
2+V (q),

where (q, p) ∈ T ∗R3. Consider an arbitrary matrix Lie group H acting
on R3 by ΦAx = Ax. Just as in Example 2.9, we shall see that if V is
invariant under the action of H, then there is a conserved quantity. As
an example, if H = SO(3), then the angular momentum is preserved.
We must first see how SO(3) acts on T ∗R3, i.e., the cotangent version
of the tangent lifted action. As in Example 2.12 one sees that

TΦA(x, v) = (Ax,Av),

where (x, v) ∈ TR3. We denote the Euclidean inner product between
two vectors x, y ∈ R3 by x · y. To compute the cotangent lifted action
T ∗ΦA : T ∗R3 7→ T ∗R3, we take, for an arbitrary A ∈ SO(3), a co-vector
p ∈ T ∗

xR3 and a vector v ∈ TAxR3, and simply compute (keeping track
of the base points for clarity),

⟨T ∗ΦA(x, p), (Ax, v)⟩=⟨(x, p), TΦA−1(Ax, v)⟩=p ·A−1v=⟨A−⊤p, v⟩,

where the pairing between A−1p and v makes sense only if A−⊤p ∈
T ∗
AxR3, so the cotangent lifted action is just T ∗ΦA(x, p) = (Ax,A−⊤p).

Note that since H = SO(3), then A−⊤ = A, so the cotangent lifted
action is just T ∗ΦA(x, p) = (Ax,Ap). The infinitesimal generator of
the action is given by taking the curve A(t) = I + tξ + O(t2) and
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differentiating at t = 0, so that

vξ(x, p) =
d

dt

∣∣∣∣
t=0

(A(t)x,A−⊤(t)p) = (ξx,−ξ⊤p).

Now, vξ(x, p) should be a Hamiltonian vector field for some function
J(ξ), meaning that it should be of the form

vξ = XJ(ξ) =

(
∇pJ(ξ)

−∇xJ(ξ)

)
.

Thus, we have that ∇pJ(ξ) = ξx, so J(ξ) = ξx · p + C(x) for some
function C(x), and −∇xJ(ξ) = −ξ⊤p, so ∇xJ(ξ) = ξ⊤p · x + D(p)

for some function D(p). However, as ξ⊤p · x = ξx · p, we see that
D(p) = C(x) = 0, so J(ξ) = ξx · p. Finally, using the Frobenius inner
product ⟨A,B⟩ = Tr(A⊤B) to identify g with its dual, the momentum
map is given by

⟨µ(x, p), ξ⟩ = Tr(µ(x, p)ξ⊤) = J(ξ)(x, p)

= ξx · p = Tr(x⊤ξ⊤p) = Tr(px⊤ξ),

where in the last step we used the transpose invariance of the trace.
This means that the momentum map is given by the projection of px⊤

onto h induced by the Frobenius inner product.
If V is invariant under the action of H, then by Noether’s theorem, the
projection of px⊤ is a conserved quantity. In the case of H = SO(3),
the projection is simply (px⊤ − xp⊤)/2, and applying the mapping
(2.11), we identify this with p× x, the angular momentum.

2.5 The Arnold Approach: Geodesics on Lie
groups

Let us now consider a large class of mechanical systems, namely, those
whose motion can be understood as geodesics on Lie groups. A geodesic
is a generalization of straight lines (the shortest path in flat spaces) to
manifolds. To define geodesics, we first need to introduce a way to measure
length on a manifold. To this end, we introduce Riemannian metrics. A
Riemannian metric on a manifold M is a smoothly varying inner product
on the tangent space at each point. That is, for each x ∈ M , we have a
positive definite symmetric bilinear form gx : TxM × TxM → R. All smooth
manifolds admit a Riemannian metric, meaning that all smooth manifolds
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can be made into Riemannian manifolds. The Riemannian structure allows
for the definition of concepts such as length, angles and curvature. In local
coordinates (x1, . . . , xn), the Riemannian metric is given by a symmetric
positive definite matrix [g] = (gij) where gij = g( ∂

∂xi
, ∂
∂xj

).

Given a vector v ∈ TxM , its length is |v|g =
√
gx(v, v). Further, the

length of a smooth curve γ : [a, b] →M is defined as

len(γ) =

∫ b

a

|γ̇(t)|g dt.

The distance between two points x, y ∈ M is defined as the infimum of the
lengths of all curves that start at x and ends at y. A geodesic is a curve that
minimizes the energy functional (Lee, 2018, Chapter 6)

E(γ) =

∫ b

a

|γ̇(t)|2g dt.

Let us illustrate these concepts by revisiting the sphere.

Example 2.16: The sphere as a Riemannian manifold

Consider the sphere. To describe its tangent space, we use the local
coordinates (θ, ϕ) ∈ [0, 2π)× [0, π]. Seeing tangent vectors as deriva-
tions, TxS2 is the span of ∂

∂θ and ∂
∂ϕ . Thus, to specify a Riemannian

metric on S2, we need to give the values of the inner products of these
basis vectors. On the sphere, the usual metric is the round metric

[g] =

[
1 0

0 sin2 θ

]
.

The round metric on S2 is the metric induced by the immersion of S2

into R3. Below, we see this illustrated, with a geodesic between two
points on the sphere. Image from (Jansson, 2022).

TxS2

y

x
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Riemannian metrics also allow us to define the gradient of a function. If
f :M → R is a smooth function, the gradient ∇f ∈ X(M) of f at x ∈M is
the vector ∇f(x) ∈ TxM that satisfies

gx(∇f(x), v) = dfx(v)

for all v ∈ TxM . Note the similarity between this definition of the gradient
and the definition of Hamiltonian vector fields in Equation (2.10).

To understand acceleration on a manifold, we must be able to generalize
the concept of directional derivatives of vector fields to manifolds. To do this,
we have to compare vector fields in different tangent spaces. This is done by
connections. A connection is formally is a map ∇(·)· : X(M)×X(M) → X(M)

that satisfies

• C∞(M)-linearity in the first argument : ∇fX+hY Z = f∇XZ + h∇Y Z,

• linearity in the second argument : ∇X(Y + Z) = ∇XY +∇XZ and

• the Leibniz rule in the second argument : ∇X(fY ) = X(f)Y + f∇XY ,

for all X,Y, Z ∈ X(M) and f, h ∈ C∞(M). In other words, a covariant
derivative is C∞(M)-linear in the first argument and is a derivation in the
second argument. We call ∇XY the covariant derivative of Y in the direction
of X. A connection is symmetric if ∇XY − ∇YX = [X,Y ] for all X,Y ∈
X(M).

Further, connections act on tensor fields such as Riemannian metrics,
namely by

∇X (g(Y,Z)) = X(g(Y,Z))− g(∇XY,Z)− g(Y,∇XZ),

where X,Y, Z ∈ X(M) and g(X,Y ) is the smooth function that sends x ∈M

to gx(X(x), Y (x)). If, for all X ∈ X(M), ∇Xg = 0, then ∇ is said to be
compatible with g.

Connections may be used to define geodesics without the need for a
Riemannian metric. As all manifolds admit a connection we can always have
a notion of geodesics (Lee, 2018, Proposition 4.12), but there may be many
connections on a manifold. If, however, we are given a Riemannian metric,
there is a symmetric connection that is compatible with the metric known
as the Levi–Civita connection. In the following, whenever a connection is
mentioned, it is assumed to be the Levi–Civita connection. Moreover, we
shall simplify notation somewhat and write g(X,Y ) as X · Y .

Equipped with Riemannian geometry, we return to mechanics. Let H be a
Lie group. Consider a mechanical system with configuration manifold H and
a left-invariant Lagrangian L : TH → R, i.e., for any h′ ∈ H and (h, ḣ) in
TH, we have that

L(Lh′−1h, Lh′−1 ḣ) = L(h, ḣ).
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Note that we slightly abuse notation and denote left translation and its tangent
lift with the same symbol. A left-invariant Lagrangian is determined by its
behavior at only one point, say the identity e ∈ H. Therefore, it is sufficient
to provide only a mapping ℓ : h → R to specify a left-invariant Lagrangian on
H. Indeed, it holds that

L(h, ḣ) = L(Lh−1h, Lh−1 ḣ) = L(e, Lh−1 ḣ) := ℓ(Lh−1 ḣ). (2.18)

The following theorem, due to Poincaré (1901), gives the equations of motion
of a mechanical system described by a left-invariant Lagrangian on a Lie
group.

Theorem 3. Let the Lagrangian L be as in Equation (2.18) on a Lie group
H Consider the extremizer γ : [0, 1] → H of∫ 1

0

L(γ, γ̇) dt.

The curve γ determines a curve on h by v(t) = Lγ(t)−1 γ̇(t). It satisfies the
Euler–Arnold equation

ṁ− ad∗vm = 0, m =
δℓ

δv
∈ h∗. (2.19)

See (Modin, 2019) for a proof and further details. An important class of left-
invariant Lagrangians are the quadratic Lagrangians, which are determined by
an inner product on the Lie algebra h. To this end, let A be a positive-definite,
symmetric linear operator A : h → h∗, so that the inner product is given by
⟨v, w⟩ = Av(w). The inner product gives rise to a left-invariant Lagrangian
L : TH → R by

L(h, ḣ) = 1

2
⟨Lh−1 ḣ, Lh−1 ḣ⟩ = ℓ(Lh−1 ḣ), (2.20)

where h ∈ H, ḣ ∈ ThH and ℓ : h → R is the function ℓ(v) = ⟨v, v⟩. The
Lagrangian (2.20) determines a Riemannian metric, so that the Euler–Arnold
equations (2.19) can be interpreted as geodesics on the Lie group H.

As an example of a mechanical system of this geodesic type, we consider
again the rigid body in R3, as in (Marsden and Ratiu, 1999, Chapter 15).

Example 2.17: The rigid body part II

Recall the rigid body from Example 2.14. Just as it has a Hamiltonian
formulation, it also has a Lagrangian formulation. Consider a rigid
body in R3 with a fixed point at the origin, with a reference configu-
ration given by a compact domain B ⊂ R3. Any configuration B̃ of
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a rigid body is of the form B̃ = AB, where A ∈ SO(3) is a rotation
matrix. Thus, the configuration manifold is the Lie group SO(3) and
the motion of a rigid body is a curve A : [0, 1] → SO(3). The velocity
of the curve is Ȧ(t) ∈ TA(t) SO(3). By left translation, we obtain the
angular velocity ω(t) = A(t)−1Ȧ(t) ∈ so(3) ∼= R3.
The velocity at x ∈ B is given by d

dtAx = Ȧx. Under the assumption
that there are no external forces acting on the body, the Lagrangian is

L(A, Ȧ) = 1

2

∫
B

∥Ȧx∥2R3 dx,

that is, the kinetic energy of the body. We note immediately that
L is quadratic and positive definite, so it is a Riemannian metric on
SO(3). Furthermore, it is left-invariant, as L(XA,XȦ) = L(A, Ȧ) for
all X ∈ SO(3). Thus, we can reduce the problem to the Lie algebra
so(3) ∼= R3. However, in this case, we can nicely reason explicitly
about how the reduced Lagrangian arises.
First, since A−1Ȧ ∈ so(3), action of A−1Ȧ is given by ω × x where ω
is the natural identification of A−1Ȧ = A⊤Ȧ with a vector in R3, as
described by Equation (2.11). By the left-invariance of the metric, the
Lagrangian can be written as

L(A, Ȧ)=1

2

∫
B

(A⊤Ȧx)⊤(A⊤Ȧx) dx=
1

2

∫
B

∥ω × x∥2R3 dx=
1

2
⟨ω, ω⟩B ,

where ⟨·, ·⟩B is the inner product on so(3) ∼= R3 given by

⟨v, w⟩B =

∫
B

(v × x̂)⊤(w × x̂) dx̂.

Thus, as we are on R3, we can define a mapping I : so(3) ∼= R3 →
so(3)∗ ∼= R3 by w⊤Iv = ⟨v, w⟩B . I is a positive definite and symmetric
matrix, which in fact coincides with the moment of inertia tensor of
the rigid body (Marsden and Ratiu, 1999, Section 15.3). We see that
the reduced Lagrangian is just

ℓ(ω) =
1

2
ω⊤Iω.

In the context of Theorem 3, the operator A is I, and the Euler–Arnold
equation (2.19) becomes,

L̇ = − ad∗ω L = L× ω,

since by Example 2.11, the coadjoint action of so(3) on its dual is just
ad∗ω L = ω×L. We have recovered the rigid body equations of motion
from Example 2.14. And, moreover, we see that the motion of the
rigid body follows a geodesic on SO(3).
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Systems that follow the Euler–Arnold equation are known as Euler–Arnold
systems, and examples include not only the rigid body, but also for instance
hydrodynamical systems or equations in shape analysis, topics we return to
in Chapter 4.



Chapter 3: Stochastic (Partial)
Differential Equations

In this chapter, we briefly introduce the theory of SDEs and elliptic SPDEs.
The goal is to describe the two remaining applications, namely stochastic Lie–
Poisson systems on a class of Lie algebras, as well as elliptic stochastic partial
differential equations on surfaces. While stochastic Lie–Poisson systems are
decidedly mechanical in nature, elliptic SPDEs arise in a different context.
For the purpose of this thesis, their purpose is to produce structured spatial
noise on surfaces, also called random fields, that can be used as input to other
algorithms. For instance, in (Modin and Viviani, 2019a), random fields on
the sphere are used to generate random initial conditions for the simulation
of fluid systems. The noise generated by elliptic stochastic partial differential
equations is different from the noise used to drive the stochastic Lie–Poisson
systems, as the former is a noise on the spatial domain whereas the latter
systems are driven by time-dependent scalar noise.

3.1 Stochastic Differential Equations

We start by introducing the notation and basic concepts of stochastic differ-
ential equations. For a more detailed introduction, see for instance (Karatzas
and Shreve, 1998) and (Øksendal, 2003).

SDEs are used to describe the evolution of a finite-dimensional system that
is influenced by random noise, and are examples of stochastic processes, i.e.,
collections of random variables defined on some probability space (Ω,F ,P),
taking values in some measurable space (E, E). A stochastic process is
indexed by a parameter in some set T , which is often referred to as time, thus
motivating the notation Xt(ω), where t ∈ T and ω ∈ Ω. The dependence on
ω is often suppressed, and we write Xt instead.

In the remainder of this section, we assume that T = R+ and that the
process takes values in R. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space
satisfying the usual conditions, i.e., that F0 contains all P-null sets and the
filtration is right-continuous. Then X is adapted to the filtration (Ft)t∈T if

35
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Xt is Ft-measurable for all t ∈ T .
A famous, and for the remaining presentation very useful, example is

Brownian motion.

Example 3.1: Brownian motion

Brownian motion B = {Bt, t ∈ R+} is a stochastic process with the
following properties:

1. B0 = 0.

2. Bt has independent increments, that is to say, for 0 ≤ t1 < t2 ≤
t3 < t4, the increments Bt2 −Bt1 and Bt4 −Bt3 are independent.

3. Bt − Bs is normally distributed with mean zero and variance
t− s.

4. Bt has almost surely continuous paths, that t 7→ Bt is continuous
except on a set of measure zero.

A sample path of Brownian motions, also called a realization of the
process, is depicted below.

In the remainder of this section, we assume that B is adapted to the
filtration (Ft)t≥0.

Brownian motion can be used to build many other stochastic processes
through the concept of stochastic calculus. First, consider the Itô integral∫ t

0

Xs dBs,

where X is a process adapted to (Ft)t≥0 and satisfies that E[
∫ t
0
X2
s ds] <∞.

We omit the formal construction of the Itô integral, which can be found in
(Øksendal, 2003, Section 3.1). Morally, however, the Itô integral is a limit of



3.1. Stochastic Differential Equations 37

sums of the form
n−1∑
i=0

Xti(Bti+1
−Bti),

where t0 = 0 < t1 < . . . < tn = t is a partition of [0, t]. This sum does not
converge in the usual sense, but in mean-square sense. The proof of this is
based on the Itô isometry, which allows us to convert the mean of the squared
stochastic integral to an integral of the square of the integrand. Thus, the
properties of the Lebesgue integral can be used. The Itô integral has many
nice properties, such as linearity, but for this thesis, the important property
is that the Itô integral has zero mean.

Using the Itô integral, we can define Itô processes, which are processes of
the form

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs, (3.1)

where X0 is deterministic, and µ : [0,∞)×R → R and σ : [0,∞)×R → R are
functions such that

|µ(t, x)|+ |σ(t, x)| ≲ (1 + |x|),
|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≲ |x− y|,

for all t ∈ [0,∞) and x, y ∈ R (Øksendal, 2003, Section 5.2). In other words,
the coefficients satisfy a linear growth condition and are globally Lipschitz
continuous in x uniformly in t. A shorthand for Equation (3.1) is the stochastic
differential equation

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt.

The ordinary rules of calculus do not hold for the Itô integral. In particular,
the chain rule is replaced by Itô’s formula, which states that for a function
f ∈ C2(R),

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dBs +
1

2

∫ t

0

f ′′(Xs) ds.

In many applications, one values instead to have the usual chain rule, and
this is achieved by the Stratonovich integral,∫ t

0

Xs ◦ dBs,

and is defined (again, omitting its precise construction) as the limit of sums
of the form

n−1∑
i=0

1

2
(Xti +Xti+1

)(Bti+1
−Bti).
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Again, these converge in mean-square sense. The Stratonovich chain rule is
just

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) ◦ dBs,

the usual chain rule. While the standard chain rule means that it is easier to
work with the Stratonovich integral, it does not have as nice properties as the
Itô integral. For instance, it does not have zero mean. In some cases, however,
the Stratonovich integral is preferred. For example, while beyond the scope
of this thesis, it is a natural question to ask how one can generalize stochastic
analysis to manifolds. A description of stochastic calculus on manifolds is
given in for instance (Hsu, 2002). In essence, the less awkward chain rule of
the Stratonovich integral makes the generalization to manifolds much more
straightforward.

3.2 Stochastic Lie–Poisson Systems

In Example 2.13, we considered a class of systems governed by equations of
the form

ξ̇ = ad∗dHξ
ξ,

where ξ is an element of the dual of a Lie algebra h, and H is a Hamiltonian
on h∗. We assume that h is J-quadratic, meaning that there is a matrix J
such that all A ∈ h satisfy

A∗J + JA = 0

with J∗ = ±J and J2 = cIn, for c ∈ R non-zero, where In denotes the n× n

identity matrix. Note that if A ∈ h, then the conjugate transpose A∗ satisfies

AJ + JA∗ = ±(JA∗ +AJ)∗ = 0.

Moreover, we assume that the group of h is a compact, simply connected
subgroup of GL(n,C).

As noted in (Modin and Viviani, 2019b) and in Paper III, this assumption
(under an appropriate choice of duality pairing) implies in particular that the
Lie–Poisson system is an isospectral system of the form

ξ̇ = [∇H∗, ξ].

A way to make this system stochastic is to add transport noise, i.e., to set
H = H0 and introduce M noise Hamiltonians Hk : h

∗ → R, k = 1, . . . ,M ,
and consider the system

dξ = [∇H∗
0, ξ] dt+

M∑
k=1

[∇H∗
k, ξ] ◦ dBkt ,
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where Bkt are independent Brownian motions. This type of system is known
as a stochastic Lie–Poisson system, and has been studied extensively in the
literature, both from the perspective of numerical analysis but also for their
use in the modelling of physical systems; see for instance the papers (Bréhier
et al., 2023; Hong et al., 2021; Liao and Wang, 2005; Luesink et al., 2024;
Holm, 2015). Their numerical integration is the focus of Paper III of this
thesis.

Stochastic Lie–Poisson systems are interesting for many reasons. Firstly,
it evolves on the same coadjoint orbits and has the same Casimirs as the
deterministic system. Furthermore, its coefficients typically do not satisfy
the usual Lipschitz conditions, so the system is not amenable to standard
existence and uniqueness results. Instead, its geometric properties can be
used to show that the system has a unique solution; see (Bréhier et al., 2023,
Proposition 1).

Example 3.2: The rigid body part III: stochastic

Let us revisit the rigid body from Example 2.17, but now with added
noise. Recall that the system evolves on (the dual of) the Lie algebra
so(3) ∼= R3, but that it remains constrained to the sphere with radius
determined by the length of the angular momentum vector at the initial
time. What would happen if we added noise to the system? If we
add additive Itô noise, i.e., for some Σ ∈ R3×3 and Bt = (B1

t , B
2
t , B

3
t )

independent Brownian motions, we get the system

dLt = Lt × I−1Lt dt+ΣdBt.

In the deterministic case, the Casimir 1
2L

⊤
t Lt =

1
2∥Lt∥

2
R3 is a preserved

quantity that constrains the system to the sphere. By Itô’s formula,
we have

d(∥Lt∥2R3) = 2⟨Lt, Lt × I−1Lt⟩R3 dt+ 2L⊤
t ΣdBt +Tr(ΣΣ⊤) dt

= 2L⊤
t ΣdBt +Tr(ΣΣ⊤) dt,

so in this case,

E ∥Lt∥2R3 = ∥L0∥2R3 +Tr(ΣΣ⊤)t,

meaning that the Casimir is not preserved, and we drift off the sphere.
If, however, we add Stratonovich transport noise, we get

dLt = Lt × I−1Lt dt+ Lt ×∇Lt
H(Lt) ◦ dBt,

and in this case, the Casimir is preserved. Indeed, the Stratonovich
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Figure 3.1: A realization of the stochastic rigid body system in blue, contrasted
with the deterministic path in black.

chain rule gives that

d(∥Lt∥2R3) = 2⟨Lt, Lt × I−1Lt⟩R3 dt

+ 2⟨Lt, Lt ×∇Lt
H(Lt)⟩R3 ◦ dBt = 0.

A realization of the system is shown in Figure 3.1, computed using the
method of Paper III. The system remains on the sphere, but due to
the noise, the behavior is different from the deterministic case.

Moreover, to numerically integrate this class of systems in a manner that
preserves interesting properties such as coadjoint orbits, several methods exist;
see for instance the papers (Bréhier et al., 2023; Hong et al., 2021; Liao and
Wang, 2005; Luesink et al., 2024).

3.3 Structured Noise on Surfaces

In Section 3.1 and Section 3.2, we saw stochastic processes (taking values in
either R or in a Lie algebra h) driven by scalar Brownian motions. In the
definition of a stochastic process, there is nothing that says that the index set
T has to be one-dimensional. Indeed, a stochastic process can be indexed by
any set, and in particular, it can be indexed by a spatial domain such as a
manifold. In the literature, a stochastic process indexed by a spatial domain
is known as a random field to distinguish it from other stochastic processes.
The generation of random fields has been the main motivation of the work
presented in Papers I and II of this thesis.

In the following, let M be a Riemannian manifold. Formally, we view
a random field Z as a collection of random variables indexed by the points
in the manifold, i.e., as a F ⊗ B(M)-measurable function Z : Ω ×M → R.
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Here B(M) is the Borel σ-algebra on M , i.e., the σ-algebra consisting of all
sets that can be generated by open sets in M . Later in this thesis, we view
random fields as random variables taking values in a suitable function space
on M . To make the latter view precise, we need to introduce said function
spaces, which is why we postpone the discussion to Section 3.4.

A random field is said to be second-order if, for all x ∈ M , the random
variable Z(x) has finite second moment. The mean function of Z is given by

µ(x) = E[Z(x)] =

∫
Ω

Z(x) dP .

If µ(x) = 0 then Z is centered. The covariance function C : M ×M → R is
defined by

C(x, y) = E[(Z(x)− µ(x))(Z(y)− µ(y))].

The covariance function is a measure of how much the random variables Z(x)

and Z(y) are correlated.
Further, Z is said to be Gaussian if, for all x1, . . . , xn ∈M and coefficients

a1, . . . , an ∈ R, the random variable
∑n
i=1 aiZ(xi) is Gaussian. A Gaussian

field is completely determined by its mean and covariance functions.
Finally, if H is a Lie group and M is an H-homogeneous space (i.e., H

acts transitively on M), then we say that Z is isotropic with respect to the
action of H if, for all k ∈ N, x1, . . . , xk ∈ M , and h ∈ H, the multivariate
random variable

(Z(h · x1),Z(h · x2), . . . ,Z(h · xn))

has the same law as

(Z(x1),Z(x2), . . . ,Z(xn)).

As a shorthand, we say that Z is H-isotropic. A classical example is that of
a stationary Gaussian random field on Rd.

Example 3.3: Isotropy I: the Euclidean space

The Euclidean space of dimension d is a Lie group, and acts transitively
on itself. A Gaussian random field Z (with finite second moment) on
Rd is stationary if its distribution is invariant under translations, i.e.,
for all k ∈ N and x1, . . . , xk, y ∈ Rd,

(Z(x1), . . . ,Z(xk))

has the same law as

(Z(x1 + y), . . . ,Z(xk + y)).
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This has two immediate consequences. Firstly,

µ(x) = E[Z(x)] = E[Z(x+ y)] = µ(x+ y),

so the mean function of Z is constant (meaning that we can assume
that it is zero), and secondly, its covariance function satisfies

C(x1, x2) = E[Z(x1)Z(x2)] = E[Z(x1 − x2)Z(0)] = C(x1 − x2, 0),

meaning that the covariance function only depends on the difference
of the points.
Moreover, we can ask what happens if the random field is also isotropic
with respect to the rotation group SO(d), i.e., we consider the group
of translations and rotations, the special Euclidean group SE(d), that
acts transitively on Rd. An element of SE(d) is a pair (R, y), where
R ∈ SO(d) and y ∈ Rd, and the action is given by (R, y) · x = Rx+ y.
Thus, that Z is SE(d)-isotropic means, in addition to being invariant
under translations, that

(Z(Rx1), . . . ,Z(Rxk))

has the same law as

(Z(x1), . . . ,Z(xk)),

for all k ∈ N, x1, . . . , xk ∈ Rd, and R ∈ SO(d). An example of a field
(on a periodic square) is shown below.

A field that is SE(d)-isotropic is called an isotropic stationary Gaussian
random field on Rd, and in this case, the mean function is constant,
and the covariance function depends only on the distance between the
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points. Indeed, by first using the invariance under translations, we
have that

C(x1, x2) = C(x1 − x2, 0),

and then using the invariance under rotations, we have that

C(x1 − x2, 0) = C(R(x1 − x2), 0)

meaning that C is constant on the sphere of radius ∥x1 − x2∥Rd ,
implying that the covariance function only depends on the distance
between the points. Thus, to specify an isotropic stationary Gaussian
random field on Rd, it is enough to specify a positive definite function
depending only on a scalar, i.e., the distance.

It is clear that the properties of the random field depend on the appropriate
choice of group. To drive home the point, consider the sphere S2.

Example 3.4: Isotropy II: the sphere

Consider the case when the Riemannian manifold M is the unit sphere
in R3, i.e., M = S2. The sphere is an SO(3)-homogeneous space, so we
say that a Gaussian random field Z on S2 is isotropic if, for all k ∈ N,
x1, . . . , xk ∈ S2 and T ∈ SO(3), the multivariate random variable

(Z(Tx1),Z(Tx2), . . . ,Z(Txn))

has the same law as

(Z(x1),Z(x2), . . . ,Z(xn)).

A sample of an isotropic Gaussian random field is illustrated below.

Note now that for any x, y ∈ S2, there is a unique T ∈ SO(3) such
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that Tx = y. Thus, the mean function satisfies

µ(x) = E[Z(x)] = E[Z(Tx)] = µ(Tx) = µ(y),

so it is constant. Further, by the invariance under rotations, we have
that

C(x, y) = C(Tx, Ty)

for all T ∈ SO(3), so the covariance function can only depend on
quantities that are invariant under rotations, in other words, on the
distance between x and y.

In both cases, the appropriate choice of symmetry group leads to a constant
mean function and a covariance function that only depends on the distance
between the points.

Honing in on the Euclidean case, we can ask how to generate SE(d)-
isotropic Gaussian random fields on Rd. A Gaussian random field on Rd is
completely determined by its mean and covariance functions, and a popular
choice of covariance function is the Matérn covariance function, defined as

C(∥h∥Rd) =
21−νσ2

Γ(ν)
Kν(κ∥h∥Rd)(κ∥h∥Rd)ν , (3.2)

where ν > 0 is a smoothness parameter, σ2 > 0 is the variance, α > 0 is a
scale parameter, Kν is the modified Bessel function of the second kind, and
Γ is the Gamma function. The Matérn covariance function was originally
introduced by the Swedish statistician Bertil Matérn, originally for forestry
applications (Matérn, 1960), but has since found applications in several fields,
from meteorology to machine learning (Guttorp and Gneiting, 2006; Handcock
and Wallis, 1994; Porcu et al., 2024). Fields with Matérn covariance are known
as Whittle–Matérn fields.

If we now want to generate a Whittle–Matérn field on the sphere, a
natural first attempt is to replace the Euclidean distance with the geodesic
distance on the sphere, i.e., to replace ∥h∥R3 with d(x, y) = arccos(⟨x, y⟩R3)

in Equation (3.2). This, however, does not always lead to a valid covariance
function, as noted by Gneiting (2013). Therefore, to generate a Whittle–
Matérn field on the sphere (or any other Riemannian manifold), we need to
take a different approach, which we introduce in the next section.

3.4 Elliptic SPDEs on Manifolds

Whittle (1963) showed that random fields with Matérn covariance functions
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are solutions to the stochastic partial differential equation

(κ2 −∆)βZ = W,

where κ is a positive constant, ∆ is the Laplace operator on Rd, β > d/4 is
a positive constant, and W is a white noise. The parameters β and σ2 are
related to the parameters of the Matérn covariance function (3.2) by

ν = 2β − d/2, σ2 =
Γ(ν)

Γ(2β)(4π)d/2κ4β
.

Following Lindgren et al. (2011), the equivalent SPDE on a compact
manifold allows us to define Whittle–Matérn random fields on the manifold. It
is immediately clear that some machinery is needed to do this. In this section,
we touch on some necessary elements of the theory of partial differential
equations. We refer to (Taylor, 2011) for an in-depth treatment of the subject.

Consider a compact, oriented Riemannian manifold (M, g), without bound-
ary. The first step is to define the equivalent of the Laplace operator on
M . This is the Laplace–Beltrami operator ∆M , which is, analogously to the
Laplace operator on Rd, defined as the divergence of the gradient, i.e.,

∆Mf = div(∇Mf),

where the divergence of a vector field v is the function div v given by

d(ιvµg) = div vµg.

In local coordinates, the Laplace–Beltrami operator is given by

∆Mf =
1√
|g|

∂

∂xi

(√
|g|gij ∂f

∂xj

)
,

where |g| is the determinant of the metric tensor and (gij) are the elements
of the inverse of the metric tensor.

When working with elliptic stochastic partial differential equations, it
is convenient to view the solutions as random variables taking values in
Hilbert spaces known as Sobolev spaces. We denote by L2(M) the space of
square-integrable functions on M , equipped with the inner product

⟨f, g⟩L2(M) =

∫
M

fg µg,

where µg is the volume form on M induced by the metric g. Sobolev spaces
on M can be defined by Bessel potentials, i.e., operators of the form Br =

(I −∆M )−r/2 The Sobolev space Hr(M) with r > 0 is defined as

Hr(M) = BrL
2(M),
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where the corresponding norm is given by ∥f∥Hr(M) = ∥B−rf∥L2(M). Sobolev
spaces with r < 0 are defined as the spaces of distributions generated by

H−r(M) =
{
u = B−kv, v ∈ H2k+r(M)

}
,

where k is the smallest positive integer such that 2k + r > 0. More details on
Sobolev spaces on manifolds defined using Bessel potentials can be found in
(Herrmann et al., 2018; Strichartz, 1983; Triebel, 1985).

A random field Z on M is an L2(M)-valued random variable, i.e., as a
F ⊗ B(L2(M))-measurable function Z : Ω → L2(M). The generalization of
Whittle–Matérn fields on Rd to M is given by the solution to the stochastic
partial differential equation

(κ2 −∆M )βZ = W. (3.3)

Here W denotes a white noise on M , i.e., a zero-mean Gaussian random field
understood as a random variable in Hr(M), where r < −dim(M)/2, such
that for any ϕ, ψ ∈ L2(M),

• ⟨W, ϕ⟩L2(M) is Gaussian with mean zero, and

• E[⟨W, ϕ⟩L2(M)⟨W, ψ⟩L2(M)] = ⟨ϕ, ψ⟩L2(M).

By the spectral theorem (Taylor, 2011, Proposition 6.6.), there are eigenpairs
(λi, ϕi) of the Laplace–Beltrami operator, i.e., ∆Mϕi = λiϕi, such that the
eigenfunctions form an orthonormal basis of L2(M). This allows for an easy
definition of the operator (κ2 −∆M )β as

(κ2 −∆M )βf =

∞∑
i=1

(κ2 − λi)
β⟨f, ϕi⟩L2(M)ϕi.

The numerical solution of Equation (3.3) is the focus of Paper I of this thesis.
Equation (3.3) immediately allows for two generalizations. The first is to

consider more general functions of the differential operator, i.e., to consider
the equation

Z = ζ(∆M )W, (3.4)

where ζ(∆M ) is defined by

ζ(∆M )f =

∞∑
i=1

ζ(λi)⟨f, ϕi⟩L2(M)ϕi.

Note that the function ζ must be chosen such that the series converges in
L2(M), and that since ζ appears also on the right-hand side, we do not require
that ζ is invertible. The class of random fields defined by Equation (3.4) was
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studied in (Lang and Pereira, 2023). A second generalization is to consider
fields defined by more general differential operators, i.e., to consider the
equation

Z = ζ(L)W, (3.5)

where L is an elliptic self-adjoint differential operator on M ; see for instance
(Dziuk and Elliott, 2013, Equation 3.4) for an example on surfaces. Using
Equation (3.5), we can obtain random fields that behave differently in different
parts of the manifold. Fields defined by Equation (3.5) are studied in Paper
II of this thesis.

By varying the coefficients of the differential operator, one can model
different types of random fields and obtain a large class of random fields on
manifolds.

Example 3.5: Spatially varying fields on the sphere

To illustrate the class of fields that can be generated by Equation (3.5),
consider the sphere S2, since it is a domain where explicit compu-
tations are easily available. We consider the differential operator
L = div(D∇S2) + V , where D(x) : TxS2 → TxS2 is a positive definite
self-adjoint operator, and V : S2 → R+ is a potential function. The
potential function can be used for instance to scale the field in different
parts of the domain, but in this example, we set V = 10 and focus on
the operator D that models anisotropy in the field. As an example,
we select D(x)v = α1(∇f · v)∇f + α2(Xf · v)Xf , where f : S2 → R
is a smooth function, Xf is the Hamiltonian vector field of f , and
α1, α2 > 0 are constants. If α2 ≪ α1, the field is elongated orthogo-
nally to the level sets of f ‚ and if α1 ≪ α2, the field is elongated along
the level sets of f . We select f(x) = x2, where x = (x1, x2, x3), and
ζ(z) = z−1. We consider both (α1 = 10, α2 = 1/10) (elongated or-
thogonally to the level sets of f), and (α1 = 1/10, α2 = 10) (elongated
along the level sets of f). Below we show one realization of each case,
generated using the method of Paper II along with the function f .
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3.5 Numerical Methods for Elliptic SPDEs on
Surfaces

We now briefly describe two approaches to the numerical solution of elliptic
SPDEs on surfaces, namely spectral methods and finite element methods.
Finite element methods are the main computational tools in Papers I and II of
this thesis. In the following, let M be a compact, oriented surface embedded
without boundary in R3. Spectral methods are based on a truncation of
the Fourier series expansion of the solution in terms of an eigenbasis of
the differential operator L. Finite element methods, on the other hand,
approximate the solution to PDEs using linear combinations of functions in
some finite-dimensional function space defined on a triangulation of the surface.
While both spectral and finite element methods use linear combinations of
basis functions, a key distinction lies in their support: spectral methods are
global, while finite elements are local.

To be more concrete, consider the deterministic elliptic PDE

Lu = f,

where L is an elliptic differential operator on M as defined in Section 3.4 and
f is a function on M . FEM methods rely on the weak formulation of the
PDE, that is, to find u ∈ H1(M) such that

a(u, v) = ⟨f, v⟩L2(M), (3.6)

for all v ∈ H1(M), where a : H1(M) × H1(M) → R is the bilinear form
associated with the L.

To apply FEM on surfaces, we approximate M by a polyhedral surface
Mh obtained via triangulation. Specifically, we define

Mh =
⋃
Tj∈T

Tj ,

where T is a collection of non-degenerate triangles with vertices on M . We
assume the that for any two triangles Ti, Tj ∈ T , the intersection Ti ∩ Tj is
either the empty set, a common vertex, or a common edge.

If M is a Euclidean domain, that is, flat, one has that Mh =M , and we
can proceed by defining a finite-dimensional subspace of H1(M) consisting
of piecewise linear functions on the mesh. The weak formulation (3.6) then
reduces to a linear system of equations on this subspace. For more details
on FEM in the Euclidean case, see (Brenner and Scott, 2008; Larsson and
Thomée, 2008; Strang and Fix, 2008).

In the more general case when M is a surface, the situation is more
complicated since Mh ̸=M ; see Figure 3.2.
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Figure 3.2: Illustration of the difficulty of working with FEM on surfaces. A
Euclidean domain can be discretized by flat triangles, but a curved domain
cannot.

Before carrying on, let us briefly discuss spectral methods. These have
benefits over finite element methods, such as they:

(i) may converge faster,

(ii) require no discretization of the spatial domain, and

(iii) are easier to implement if an explicit eigenbasis is known.

Moreover, spectral methods are in a sense intrinsic to the surface as the
eigenbasis is determined by the geometry of the surface and not by its
embedding in R3. In contrast, the FEM methods considered in this thesis are
extrinsic.

However, spectral methods also have their drawbacks. As they are global
methods, they can be a poor choice for problems with strong local features.
More critically, spectral methods require a tractable eigenbasis, which is only
available in special cases. To illustrate this, consider Equation (3.4). If an
eigenbasis (λi, ϕi) to ∆M is explicitly known, then the solution Z can be
written as

Z = ζ(L)W =

∞∑
i=1

ζ(λi)Wiϕi,

where Wi are independent standard Gaussian random variables. Truncating
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the series after N terms gives the approximation

ZN =

N∑
i=1

ζ(λi)Wiϕi.

Under the assumption that ζ(λ) decays as λ−α for some α > 0, the mean-
square error of the approximation satisfies

E[∥Z − ZN∥2L2(M)] =

∞∑
i=N+1

ζ(λi)
2 ≤

∞∑
i=N+1

λ−2α
i .

By Weyl’s law, the eigenvalues grow as λi ∼ i2/ dim(M) (Jost, 2011, Equation
3.2.24), so under the assumption that α > dim(M)/4, the error decays as

E[∥Z − ZN∥2L2(M)] ≤
∞∑

i=N+1

i−4α/ dim(M) ≤
∫ ∞

N

x−4α/ dim(M) dx

=
1

−4α/dim(M) + 1
N−4α/ dim(M)+1.

However, the eigenbasis is not known in general. A notable exception is the
Laplace–Beltrami operator on the sphere S2, whose eigenbasis is given by
the spherical harmonic functions. A conceivable remedy in the general case
would be to use finite element methods to approximate the eigenbasis, but
this is not feasible in practice, as one cannot hope to obtain a sufficiently good
approximation of the eigenbasis (Boffi, 2010). Instead, one can use the finite
element method to approximate the solution directly. This is the motivation
of Paper II of this thesis.

As in the Euclidean setting, the finite element method on surfaces ap-
proximates solutions to partial differential equations by solving the weak
formulation (3.6) on a finite-dimensional function space. However, on sur-
faces, the finite element space is a subspace of H1(Mh), not of H1(M). This
complicates the error analysis, as functions in H1(M) and H1(Mh) are not
directly comparable.

One solution to this problem was proposed by Dziuk (1988), who intro-
duced the surface finite element method (SFEM). The method solves the issue
by firstly selecting an appropriate coordinate system to work in, and by then
providing a suitable bijection between the surface and its discretization that
allows one to define the lift of functions on the mesh to the surface. That
is, a function uh defined on Mh can be mapped to a function uℓh defined
on M . This allows the error analysis to be carried out. Nonetheless, the
method is not without drawbacks. The discretization of the surface introduces
additional error terms that are not present in the Euclidean case. Moreover,
a proper definition of SFEM requires a significant amount of machinery. For
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a thorough treatment of the subject, we refer to (Dziuk and Elliott, 2013). In
the interest of clarity, we instead consider a brief 1-dimensional example.

Example 3.6: SFEM on the circle

Let us consider the Helmholtz equation on the circle S1,

u(θ)−∆S1u(θ) = f(θ), (3.7)

where θ is the angle on the circle, and f(θ) = cos(θ). The solution
to Equation (3.7) is u(θ) = cos(θ)/2. We study the approximation of
the equation on a discretization of the circle, that is, a triangulation
by straight line segments. We consider the case of three mesh points
θ1 = 0, θ2 = 2π/3 and θ3 = 4π/3, i.e., the points with coordinates
v1 = (1, 0), v2 = (−1/2,

√
3/2) and v3 = (−1/2,−

√
3/2). The length

of each line segment is
√
3, which also is the mesh size. Denote the

line segments T1, T2 and T3. The triangulation of the circle is thus the
union of the line segments, that is, the triangle with vertices at the
mesh points, and is denoted by S1h (see below).

On S1h, we define the finite element space Sh as the set of piecewise
linear functions on each Ti,

Sh = {ϕh ∈ C(S1h)|ϕh|Ti
∈ P 1(Ti) for each Ti, i = 1, 2, 3},

where P 1(Ti) is the space of linear functions on the triangle Ti. The
space Sh is spanned by the basis functions ϕ1, ϕ2, and ϕ3: these are
defined by ϕi(vj) = δij for i, j = 1, 2, 3.

Every function in Sh can be written as a linear combination of the
basis functions by ϕh =

∑3
i=1 βiϕi for some βi ∈ R. See below for an

illustration of the basis functions.
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The weak formulation of Equation (3.7) is to find u ∈ H1(S1) such
that ∫

S1
(uv +∇S1u · ∇S1v) dx =

∫
S1
fv dx,

for all v ∈ H1(S1). To write down the weak formulation on the
mesh, we need to determine how to compute the gradient on S1h. In
the context of surface finite elements, this is done by computing the
gradient in the embedded space (in this case R2) and then projecting
it back to the mesh, i.e., ∇S1h = Ph∇, where the ij-th component of
Ph is given by (Ph)ij = δij − (νh)i(νh)j . Here, νh is the normal to S1h.
Given some approximation Fh : S1h → R of the function f : S1 → R,
the weak formulation on S1h is to find uh ∈ Sh such that∫

S1h

(
uhvh +∇S1huh · ∇S1hvh

)
dxh =

∫
S1h
Fhvh dxh,

for all vh ∈ Sh. The weak form on Sh is equivalent to the linear system
that determines the coefficients βi, i = 1, 2, 3 in the expansion of uh in
terms of the basis functions. This linear system is given by

Iβ + Sβ = Fh,

where [I]ij =
∫
S1h
ϕiϕj dxh, [S]ij =

∫
S1h

∇S1hϕi · ∇S1hϕj dxh, β =

(β1, β2, β3) and [Fh]i =
∫
S1h
Fhϕi dxh. The matrices I and S can

be computed explicitly,

I =
h

6

4 1 1

1 4 1

1 1 4

 , S =
1

h

 2 −1 −1

−1 2 −1

−1 −1 2

 .
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To approximate the function f on the mesh, we use piecewise linear
interpolation: we set Fh(vi) = f(θi), i = 1, 2, 3 and linearly interpolate
between the points, along the line segments to obtain,

Fh|T1
(t) =

2h− 3t

2h
, Fh|T2

(t) = −1

2
, Fh|T3

(t) =
3t− h

2h
,

for t ∈ [0, h]. The right-hand side of the linear system is given by

Fh =


∑3
i=1

∫
Ti
Fh|Ti(t)ϕ1|Ti(t) dt∑3

i=1

∫
Ti
Fh|Ti(t)ϕ2|Ti(t) dt∑3

i=1

∫
Ti
Fh|Ti(t)ϕ3|Ti(t) dt

 =

 h/2

−h/4
−h/4

 .
The solution to the linear system is then given by

β =


h2

h2+6

− h2

2(h2+6)

− h2

2(h2+6)

 ,
and the FEM approximation of u is given by uh =

∑3
i=1 βiϕi. To

compare uh with u, we need to move one of the functions to the other
space, i.e., we must lift uh to u or project u to uh. In SFEM, uh can be
moved to S1 by lifting it from S1h along the normal of S1. The starting
point for the lifting operator is the isomorphism p : S1h → S1 given by

p(x) =
x

∥x∥R2

.

The lift of a function η : S1h → R is the function ηℓ : S1 → R given by

ηℓ(x) = η ◦ p−1(x).

When, as in this case, one is working explicitly, it can be easier to
instead send the true function to the mesh. The inverse lift of the
function f evaluated at a point p ∈ S1h is given by f(θp), where θp is the
angle of the point p expressed in polar coordinates. The approximate
solution uh and the inverse lifted true solution are shown below.
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v1 v2 v3

0.4

0.2

0.0

0.2

0.4

T1 T2 T3

SFEM solution
Inverse lifted true solution

As expected, this approximation is not very good, as the mesh is very
coarse. To improve the approximation, one can refine the mesh, i.e.,
add more points to the mesh, and then repeat the procedure. Below,
we show the behavior of the approximation as the mesh is refined.

Note that in the above figure, we plot the solution as well as its
approximations on the interval [0, 2π], i.e., on the circle. This is to
facilitate the comparison of the solutions, but it also showcases another
interesting feature of SFEM. Consider the coarsest solution. On S1

h,
it is piecewise linear, but when lifted to S1, it is not piecewise linear.
This is due to the fact that the normal to the circle is not constant.



Chapter 4: Matching Problems and
Hydrodynamics

Having covered the mathematical and mechanical background, we now turn
to matching problems and hydrodynamics. Many concepts presented in this
chapter can be understood as examples of mechanical systems evolving as
geodesics on Lie groups. In other words, we are considering generalizations
of the rigid body as presented in Example 2.17. This generalization was
first made by Arnold (1966), who showed that the Euler equations for an
incompressible fluid can be understood as a geodesic on the group of volume-
preserving diffeomorphisms. In this chapter, we first briefly discuss how the set
of diffeomorphisms can be understood as a group and how this group separates
into different subgroups. Next, we touch on the geometric understanding of
ideal hydrodynamics, before moving on to shape matching. To conclude the
theoretical part of the chapter, we discuss the optimal transport problem and
how it can be understood in the same context as the other problems presented
in this chapter. Finally, we discuss some aspects of numerics for these kinds
of problems.

4.1 The Diffeomorphism Group

In this section, we briefly introduce the diffeomorphism group and its structure.
For more details, see (Hamilton, 1982; Khesin and Wendt, 2009; Schmeding,
2022).

Let (M, g) be a smooth, oriented and compact Riemannian manifold.
Consider two diffeomorphisms ϕ, ψ of M . We can make some observations
about their composition.

1. The composition of two diffeomorphisms is a diffeomorphism, i.e., ϕ ◦ ψ
is a diffeomorphism.

2. The inverse of a diffeomorphism is a diffeomorphism, i.e., ϕ−1 is a
diffeomorphism.

55
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3. There is an identity diffeomorphism, namely the identity map e(x) = x

for all x ∈M .

4. It holds that ψ ◦ ψ−1 = e.

Thus, the set of all diffeomorphisms of M is a group, denoted Diff(M).
In fact, a more can be said: Diff(M) can be interpreted as an infinite-

dimensional Lie group (Leslie, 1967). A detailed treatment of infinite-
dimensional Lie groups is beyond the scope of this thesis, but briefly, an
infinite-dimensional manifold is modeled on an infinite-dimensional space
rather than a finite-dimensional one. The group of diffeomorphisms is a
Fréchet manifold, that is, a manifold that locally looks like a Fréchet space.
To make it a Lie group, the inversion and composition maps must be smooth.
The Lie algebra of Diff(M) is given by X(M).

It is possible to equip Diff(M) with a Riemannian metric of the form

⟨γ̇, γ̇⟩γ =

∫
M

v · Lv µg, (4.1)

where γ is a smooth curve taking values in Diff(M), L : X(M) → X∗(M) is an
invertible elliptic differential operator acting on vector fields and v = γ̇ ◦ γ−1.
One example of such an operator is L = (1−∆M )k for some k ∈ N∪{0}. The
metric (4.1) is right-invariant as well as weak, meaning that the metric does
not provide an isomorphism between tangent spaces and cotangent spaces,
but only an injective map.

The invariance means that the Euler–Arnold framework can be applied to
the diffeomorphism group. In Section 2.5 the metric is left-invariant. However,
a right-invariant metric can be made left-invariant by switching the order of
the composition of the diffeomorphisms, and the only difference is that the
sign changes.

An important subgroup of Diff(M) is the group of volume-preserving
diffeomorphisms, denoted SDiff(M). This means that the determinant of the
Jacobian of the diffeomorphism is equal to one. The Lie algebra of SDiff(M)

is given by the space of divergence-free vector fields, denoted Xdiv(M). An
arbitrary smooth vector field can be decomposed into a divergence-free part
and a gradient part by v = vdiv + ∇f , where vdiv ∈ Xdiv(M) for some
f ∈ C∞(M). Moreover, the divergence-free vector fields are orthogonal to
the gradient fields with respect to the L2 inner product on M .

4.2 Spherical Ideal Hydrodynamics

The motion of an incompressible fluid on a Riemannian manifold (M, g) is
governed by the Euler equation,

v̇ +∇vv = −∇p, (4.2)
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where v denotes the velocity field and p the pressure. In (Arnold, 1966), it
was shown that the Euler equations (4.2) arise similarly to the rigid body
equations, namely as a geodesic on a Lie group.

Consider a fluid occupying M . The fluid is incompressible, meaning that
the volume of a reference fluid element is preserved by the flow. We track the
motion of the fluid by a mapping ϕ : M × [0, 1] →M . This mapping must be
a diffeomorphism to prevent any non-physical behavior of the fluid, such as
discontinuities or particles passing through each other. Moreover, it has to be
volume-preserving, i.e., be an element of SDiff(M). The velocity of a fluid
element is then given by ϕ̇, and its kinetic energy is given by

L(ϕ, ϕ̇) = 1

2
⟨ϕ̇, ϕ̇⟩ϕ =

1

2

∫
M

v · v µg,

where µg is the volume form induced by the metric g, v = ϕ̇ ◦ ϕ−1 is the
velocity field of the fluid and ⟨·, ·⟩· is the metric on SDiff(M) given by (4.1)
with L = Id.

A curve that extremizes the kinetic energy is a geodesic on SDiff(M), and
one can directly compute the minimizer by calculus of variations, that is,
by taking variations of ϕ. See for instance (Modin, 2019) for details on this
approach. Alternatively, one can note that due to the right-invariance of the
metric, the equations of motion are the Euler–Arnold equations. We identify
the Lie algebra of divergence-free vector fields with its dual by the inner
product 1

2

∫
M
v · v µg and consequently the Euler–Arnold equation becomes

v̇ − ad∗v v = 0.

Thus, to determine the equations of motion, it suffices to identify what ad∗ is
in this context. It turns out that

⟨ad∗v v, w⟩ =
∫
M

∇vv · wµg.

However, we cannot conclude that ad∗v v = ∇vv since ∇vv is not necessarily
divergence-free, and we are testing it against a divergence-free vector field.
Therefore, the identification of ad∗v v with ∇vv is only valid up to a gradient
field. That is, ad∗v v = ∇vv + ∇p for some p ∈ C∞(M) (Arnold, 1989,
Appendix B), (Marsden and Ratiu, 1999, Section 1.5). Thus, we recover the
Euler equations (4.2).

In the following, we focus on the case M = S2. While we could consider a
larger class of manifolds, known as Kähler manifolds, of which the sphere is
an example, we stick to the sphere for brevity, as the arguments are similar
to the general case but much more transparent. Let J : TS2 → TS2 be the
mapping that rotates tangent vectors by an angle of π/2. Interestingly, that
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the Hamiltonian vector field of the function f is related to the gradient of
f by

Xf = −J∇f.

This is a consequence of the fact that the sphere is a Kähler manifold, i.e.,
that J connects the symplectic form with the metric.

As discussed above, the Euler equations can be interpreted as an Euler–
Arnold equation on SDiff(S2). It also turns out that the Euler equations also
can be written as a Lie–Poisson system on (C∞

0 (S2), {·, ·}), where

{ψ1, ψ2} = J∇ψ1 · ∇ψ2.

To see this, first note that a smooth function ψ ∈ C∞(S2) is mapped to a
divergence-free vector field by ψ 7→ −J∇ψ. This mapping is not an isomor-
phism; for example, all constant functions are mapped to the zero vector field.
However, if we quotient out the constants, we obtain an isomorphism between
C∞(S2)/R and Xdiv(S2). Moreover, this is a Lie algebra anti-homomorphism,
since

−X{ψ1,ψ2} = [Xψ1
, Xψ2

].

A Lie–Poisson system evolves on the dual of the Lie algebra. To find the
dual of C∞(S2)/R, note first that C∞(S2)∗ ∼= C∞(S2) using the L2 pairing
⟨·, ·⟩L2(S2). With this identification, the dual of C∞(S2)/R is the annihilator
of the constant functions, that is, the set of functions satisfying∫

S2
ψ µg = 0.

This means that the dual is the space C∞
0 (S2). The general form of a Lie–

Poisson system on C∞(S2) is

ω̇ + ad∗δH
δω
ω = 0,

for some Hamiltonian H : C∞
0 (S2) → R. On S2, ad∗ is given by ad∗ψ ω =

−{ψ, ω}. It thus remains only to determine the Hamiltonian of the Euler
equations. First, note that v = −J∇ψ for some ψ. Using the kinetic energy
as the Hamiltonian, we have

H(ω) =
1

2

∫
S2
v · v µg =

1

2

∫
S2
⟨J∇ψ, J∇ψ⟩µg = −1

2

∫
S2
ψ∆S2ψ µg.

Hence, ∆S2ψ = ω and we obtain the vorticity formulation of the Euler
equations on S2:

ω̇ + {ψ, ω} = 0, ∆S2ψ = ω. (4.3)
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An infinite number of conserved quantities, known as Casimirs, exist for
Equation (4.3). These are given by integrals of the form

Ck =

∫
S2
ψk µg,

for k ∈ N. Solutions of Euler equations evolve on the level sets of the Casimirs.
The second Casimir (enstrophy) plays an important role in fluid behavior (see
for instance (Kraichnan, 1967)). It has also been conjectured that higher-order
Casimirs are important for the formation of large-scale vorticity structures as
well (Abramov and Majda, 2003; Newton, 2015).

4.3 Shape Analysis

Shape analysis, the mathematical study of how shapes can be compared, is
another area of mathematics that can be viewed through the lens of geodesics
on the diffeomorphism group. To compare shapes, we must define a meaningful
notion of distance between shapes. Shapes—at this stage still loosely defined—
are nonlinear objects, and there is no canonical way to compare them. Shape
analysis addresses this problem by constructing shape matching frameworks
that are flexible enough to be applicable in many settings.

The origins of shape matching go back to D’Arcy Thompson in (Thompson,
1992), while its modern form was developed by Grenander (1994). Thorough
treatments of the topic can be found in (Bruveris and Holm, 2015; Younes,
2010). The basic idea, as illustrated in Figure 4.1, is to find a suitable warp
that takes one shape to another in an energy-minimizing way. One can then
compare two shapes by measuring the energy of the warp that takes one
shape to the other. This has found applications in for instance medical image
analysis (Bistoquet et al., 2008; Bruveris and Holm, 2015; Ceritoglu et al.,
2013; Risser et al., 2013; Qiu et al., 2009).

A
warp

B

Figure 4.1: The idea of shape matching is to move A to B in an energy
minimizing manner. From (Jansson, 2022).

In more detail, the goal is to identify a set of suitable shapes (often a
metric space) S and a Lie group H acting on S. The deformation of shapes
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by elements of H is defined as the action of H on S. In many cases, the
group H is the group of diffeomorphisms of M , i.e., Diff(M), where M is
the underlying spatial domain of the shapes. A diffeomorphism ϕ ∈ Diff(M)

warps the shape A ∈ S by deforming the underlying domain M by ϕ. The
action depends on the choice of shape space, which varies depending on the
context.

Example 4.1: Shapes

A few examples of shape spaces are

Smooth functions: Images can be modeled as smooth functions
on a domain. For image matching, the shape space is C∞(M)

and a diffeomorphism ϕ warps the shape I ∈ C∞(M) by the
action ϕ · I = I ◦ ϕ−1.

Landmarks: Landmarks are points on M used to describe
shapes. In this case, the shape space is MN where N is the
number of landmarks. A diffeomorphism ϕ warps the shape
L = (L1, . . . , LN ) ∈MN by ϕ · L = (ϕ(L1), . . . , ϕ(LN )).

Densities: Densities can also be understood as shapes. In this
case, the shape space is the set of smooth functions on M that
are positive and integrate to one. A diffeomorphism ϕ warps the
shape f by ϕ · f = f ◦ ϕ−1 det(Dϕ), where Dϕ is the Jacobian
of ϕ.

In the following, we focus on the case when H is the group of diffeomor-
phisms. The goal of shape matching is to find a diffeomorphism that minimizes
an appropriate distance between two shapes. For example, if S = C∞(M),
the distance between two shapes A,B ∈ C∞(M) can be measured by the
L2-distance, i.e.,

d(A,B) = ∥A−B∥L2(M) =

(∫
M

|A(x)−B(x)|2 µg
)1/2

.

A naive first approach would be to just minimize the distance between the
shapes, i.e., to find a diffeomorphism ϕ that minimizes d(ϕ · A,B). This is
known as greedy matching. However, we cannot assume that A and B are in
the same orbit of the action of Diff(M); there may not exist a diffeomorphism
ϕ such that ϕ ·A = B. As a result, greedy matching will run indefinitely and
generate increasingly complex warps of the underlying space. To address this,
a regularization term can be introduced to penalize the complexity of the
warp. The Riemannian metric on Diff(M) (4.1) can be used to regularize the



4.3. Shape Analysis 61

matching problem by the term

1

2σ

∫ 1

0

⟨γ̇(t), γ̇(t)⟩γ(t) dt =
1

2σ

∫ 1

0

∫
M

v(t) · Lv(t)µgdt, (4.4)

where σ > 0 is a regularization parameter and v is the time-dependent
vector field that generates the warp by the differential equation γ̇(t) =

v(t) ◦ γ(t), γ(0) = e. Thus, the energy (or cost) of matching the shapes A and
B is given by the functional

E(v) = d(γ(1) ·A,B) +
1

2σ

∫ 1

0

∫
M

v(t) · Lv(t)µgdt. (4.5)

Interestingly, the inclusion of the regularization terms leads to a variational (or
mechanical) understanding of the problem of minimizing E in Equation (4.5)
over curves v : [0, 1] → X(M), that is to say, a reduction to a dynamical
formulation. To see this, note first that the matching term d(γ(1) · A,B)

depends only on the final time point of the curve t 7→ γ(t). Hence, an
optimal curve t 7→ v(t) must follow the dynamics determined by the action
functional that consists solely of the regularization term (4.4). Due to the
right-invariance of the metric, the Euler–Arnold framework can be applied
to the problem, as with the rigid body and the Euler equations. Indeed, by
Marsden and Ratiu (1999, Theorem 13.5.3), the optimal curve t 7→ v(t) must
satisfy the Euler–Arnold equation (2.19) where m = Lv. As with the Euler
equations, the derivation comes down to determining what ad∗vm is on the
diffeomorphism group. For an arbitrary vector field w ∈ X(M), we have that

⟨ad∗vm,w⟩ = −⟨m, [v, w]⟩ = −⟨m,∇vw −∇wv⟩

= −
∫
M

m · ∇vw −m · ∇wv µg.

Metric compatibility implies that m · ∇vw = v(m · w) − w · ∇vm. The
divergence satisfies that for any vector field v and smooth function f , div(fv) =
f div v + v(f), so m · ∇vw = div((m ·w)v)−w ·mdiv v −w · ∇vm, and thus∫

M

m · ∇vwµg =

∫
M

(div((m · w)v)− w ·mdiv v − w · ∇vm) µg

= −
∫
M

(w ·mdiv v + w · ∇vm) µg

where the final step follows from the divergence theorem on Riemannian
manifolds (Lee, 2012, Theorem 16.32). Finally, we define ∇⊤

mv by∫
M

∇⊤
mv · wµg =

∫
M

m · ∇wv µg,
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so we have

⟨ad∗vm,w⟩ = ⟨∇⊤
mv +∇vm+m div v, w⟩,

and we see that the Euler–Arnold equation (2.19) becomes

ṁ+∇⊤
mv +∇vm+m div v = 0, m = Lv. (4.6)

These equations are known as the EPDiff equations. An illustration of shape
matching is provided in Figure 4.2. The EPDiff equations (4.6) generates a
curve of diffeomorphisms γ : [0, 1] → Diff(M) that is a geodesic in Diff(M).
Since ψ ∈ Diff(M) acts on a shape A ∈ S by ψ.A, γ descends to a flow on
the orbit of A, given by

Orb(A) := {ψ.A : ψ ∈ Diff(M)} ⊂ S.

The goal of shape matching is to find the element in the orbit of A that is as
close to the target B as possible. Typically, B /∈ Orb(A), so the matching will
not be exact. However, this is precisely the point: by only being able to match
approximately, the problem is regularized compared to greedy matching.

Furthermore, consider the set of diffeomorphisms that leaves A unchanged,

DiffA(M) := {ψ ∈ Diff(M) : ψ.A = A} ⊂ Diff(M).

Note that if ψ,φ ∈ DiffA(M), then (ψ ◦ φ).A = ψ.φ.A = A, and ψ−1.A =

ψ−1.ψ.A = (ψ−1 ◦ψ).A = A. Thus, DiffA(M) is a subgroup of Diff(M). The
orbit can be understood as the quotient set Diff(M)/DiffA(M).

The EPDiff equations (4.6) provide a starting point for concrete matching
algorithms: begin with an initial guess of the initial value v(0) of v, then solve
the EPDiff equations (4.6) to determine v(t) for all t ∈ [0, 1]. With this curve,
we compute γ(1) and evaluate the modified energy

Ẽ(v) = d(γ(1) ·A,B) +
1

2σ

∫
M

v(0) · Lv(0)µg.

This simplified expression for the energy (4.5) is valid since the regularization
energy is conserved along the dynamics of the EPDiff equations (4.6). Indeed,

d

dt

∫
M

v ·mµg = 2

∫
M

v · ṁ µg = 2

∫
M

m · adv v µg = 0,

since adv v = 0. The initial guess of v(0) is then updated by computing the
gradient of the energy Ẽ with respect to v(0) and taking a step in the negative
gradient direction, as detailed in (Beg et al., 2005). Of course, the EPDiff
equations are partial differential equations, so a spatio-temporal discretization
is in practice needed to solve them.
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D
iff
A
(M

)

γ(1)

Id

Diff(M)

S

γ(1) ·AA
Orb(A)

B

Figure 4.2: Illustration of the geometric structure of shape matching. The
EPDiff equations induce a curve in Diff(M) that moves the initial shape
A ∈ S along its orbit to get A as close as possible to the target shape B.
From (Jansson, 2022).

4.4 Optimal Transport

Optimal transport is another type of matching problem, concerned with
finding the most efficient way to transport one distribution of mass to another.
The classical example is the problem of moving a pile of earth into a hole in
the ground in the most efficient way. More specifically, given two probability
measures µ and ν on measurable spaces X and Y , the optimal transport
problem is to find a measurable map T : X → Y that minimizes the cost∫

X

c(x, T (x)) dµ(x),

while satisfying the constraint that ν(B) = µ(T−1(B)) for all measurable sets
B ⊂ Y . Here c : X × Y → R is the distance function.

This problem, known as the Monge problem, has a rich and well-developed
theory, see for instance (Villani, 2009), which is beyond the scope of this
thesis. Instead, we will briefly consider the fluid-mechanical interpretation
of the optimal transport problem, known as the Benamou–Brenier approach
(Benamou and Brenier, 2000), as it is closely related to the Euler equations and
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the diffeomorphism group. Let Dens(M) = {f ∈ C∞(M) : f > 0,
∫
M
f µg =

1} be the set of densities on M . This space is, as with diffeomorphism group, a
Fréchet manifold (Hamilton, 1982, Chapter 4). Its tangent spaces are given by
smooth functions that integrates to zero, i.e., TρDens(M) = {f ∈ C∞(M) :∫
M
f µg = 0}. We can equip Dens(M) with a Riemannian metric, the Otto

metric, given by

⟨ρ̇, ρ̇⟩ρ =
∫
M

|∇S|2ρµg,

where S is given by ρ̇ + div(ρ∇S) = 0. The optimal transport problem
can be understood as a Lagrangian variational problem of finding a path
ρ : [0, 1] → Dens(M) that minimizes the action

1

2

∫ 1

0

⟨ρ̇t, ρ̇t⟩ρt dt.

The optimal transportation map is given by the flow of the vector field
−∇St(x) at time t = 1, where St is the solution to the continuity equation
ρ̇t + div(ρt∇St) = 0. Moreover, the Otto metric arises naturally. When the
cost is quadratic, the Otto metric arises as the reduction of an L2 metric
on the diffeomorphism group Diff(M) to the space of densities Dens(M), as
detailed in for instance (Khesin and Wendt, 2009; Modin, 2017; Otto, 2001).
This reduction is carried out by a certain projection mapping, which provides
a one-to-one correspondence between geodesics on Dens(M) and a certain
class of geodesics on Diff(M) (Khesin and Wendt, 2009, Corollary A.5:5.7).
This connection not only provides an interesting geometric point of view of
the optimal transport problem, but also provides a way to study the geometry
of certain matrix decompositions, as demonstrated in (Modin, 2017). The
matrix flows discussed in (Modin, 2017) served as the foundation for the work
presented in Paper IV.

4.5 Geometry-Preserving Spatial Discretization

In the previous section, we have seen a few different types of problems that
can all be understood as geodesic problems on Lie groups. However, their
motivations in applications are all quite different. For instance, the Euler
equations have a clear physical interpretation, with several conserved quantities
that are important for the dynamics of the system. In geophysical fluid
dynamics, the long-term behavior of the Euler equations is of interest, and its
behavior is in those cases often determined by the geometric properties of the
equations. Thus, when simulating the Euler equations or other fluid dynamical
equations, over long timescales, it is important to preserve these geometric
properties, i.e., to use geometric numerical methods. When solving equations
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arising in shape matching, the primary objective is to find an optimal warp
that transforms one shape into another. Given that the simulation horizon
is often relatively short, it can be argued that less sophisticated numerical
methods may suffice for these problems. For instance, finite differences or
finite elements in space combined with an explicit time-stepping scheme can
be good enough.

For the Euler equations, we need structure preservation in both space and
time. The structure preserving spatial discretization we consider here is based
on the idea of Berezin–Toeplitz quantization (Hoppe, 1989; Hoppe and Yau,
1998). A detailed description of this numerical method, known as Zeitlin’s
method, introduced in (Zeitlin, 1991, 2004), can be found in (Modin and
Viviani, 2024). The method applies to a relatively small class of manifolds,
but one that includes the important examples such as the sphere and the flat
torus. The idea is to take the vorticity equation (4.3) and replace it with a
Lie–Poisson system on su∗(N), the algebra of skew-Hermitian matrices, for
some N ∈ N. This system is given by

Ẇ +
1

ℏ
[P,W ] = 0, ∆NW = P,

where P,W ∈ su(N) and ∆N : su(N) → su(N) is a quantized version of
the Laplacian. Zeitlin’s method is interesting in its own right, and has a
beautiful geometric description, as detailed in (Modin and Viviani, 2024).
However, from the perspective of traditional numerical analysis, Zeitlin’s
method displays relatively poor performance. It is proven in (Gallagher, 2002)
(for the toroidal case) and (Modin and Viviani, 2024) (for the spherical case)
that Zeitlin’s method converges, for a fixed final time, as 1/N , but with
a constant depending exponentially on the final time. Thus, for long-time
simulations, the error may grow large.

From a geometric numerical perspective, however, the method is still
useful, as it preserves the geometric properties of the Euler equations in the
sense that

1. the discrete system is a Lie–Poisson system, just as the continuous
system, and

2. there are N independent Casimirs, of the form tr(W k), k = 1, . . . , N .

These properties are important for the long-term behavior of the system, and
thus, the method is useful for long-time simulations of the Euler equations.
Moreover, Arnold (1989, Appendix B) noted that the instability—the fact
that two similar initial conditions of the Euler equations can lead to diverging
solutions—can be understood by the fact that the curvature of the diffeo-
morphism group is negative. Modin and Perrot (2024) showed that Zeitlin’s
method correctly approximates the curvature of the diffeomorphism group,
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meaning that Zeitlin’s method displays the same type of stability as the Euler
equations if N is large enough.

In time, a Lie–Poisson integrator such as the isospectral midpoint method
of Modin and Viviani (2019b) should be used, to ensure the preservation of
the above geometric properties. Simulations with Zeitlin’s method provide
physically plausible behavior such as the conservation of enstrophy over long
timescales. This contrasts with more traditional numerical methods, such as
the spectral method proposed by Dritschel et al. (2015).

Returning briefly to shape matching (or optimal transport, for that matter),
the situation, as noted earlier, differs somewhat. The primary goal is to find
an optimal warp that transforms one shape into another, and the long-term
behavior of the system is generally not of concern. Nevertheless, it is sometimes
useful to obtain spatially discrete systems in a way that capture the desired
geometric properties. In Paper VI, the shapes are chains of molecules, and we
wish to act on them only by rigid motions, i.e., elements of the rotation group.
To achieve this, it is possible to restrict the set of available deformations
to only include the Lie group of rotations. The shape matching framework
still applies in this case, but, not only are we guaranteed to obtain rigid
deformations, the problem is also automatically spatially discrete, i.e., there
is only need for a temporal discretization. In this sense, it can also be viewed
as a geometric numerical method.



Chapter 5: Summary of Included Papers

Having discussed some background and motivation for the included papers,
we now provide a brief summary of each paper.

5.1 Paper I

We study a finite element-based solution method for the stochastic elliptic
differential equation

(κ2 −∆S2)
βu = W,

where κ > 0 is a constant, ∆S2 is the Laplace–Beltrami operator on the sphere
S2, β > 1/2, and W is white noise on S2. This is exactly the Whittle–Matérn
random field on the sphere, as described in Section 3.3 and Section 3.4. A
sample realization of u is pictured in Section 3.3. The solution of the equation
is a random field on S2 that, following (Lindgren et al., 2011), is the equivalent
of a Whittle–Matérn random field on R2. The main contribution of the paper
is the derivation of a surface finite element method for the equation, building
on the methodology of Dziuk and Elliott (2013). The operator in question is
fractional, and the proposed solution is to split the equation into two parts: a
non-fractional part and a fractional part. By letting β = ⌊β⌋+ {β}, where
⌊β⌋ ∈ N denotes the integer part of β and {β} ∈ [0, 1) the fractional part, the
equation is rewritten as a system of equations given by the recursion

(κ2 −∆S2)u
i = ui−1

for i = 1, . . . , ⌊β⌋ with u0 = W. If {β} = 0, we set u = u⌊β⌋, otherwise,
we solve the equation u = (κ2 − ∆S2)

{β}u⌊β⌋. This fractional operator is,
following Bonito and Pasciak (2015), approximated using a sinc quadrature
rule, in which the inverse fractional operator is approximated by the sum of
the solution of several elliptic problems. In other words, the price to pay to
get rid of the fractional operator is that several elliptic problems need to be
solved. We prove that the method converges in mean square, and provide
some numerical illustrations of this fact.

67
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5.2 Paper II

We study the numerical approximation of random fields defined on a compact,
oriented and boundaryless smooth surface or curve M that is given by

Z = ζ(L)W,

where W is white noise on M . This equation is described in more detail in
Section 3.4.

Here, L is the elliptic differential operator associated to the bilinear form

a(u, v) =

∫
M

D(x)∇Mu(x) · ∇Mv(x) dx+

∫
M

V(x)u(x)v(x) dx,

where D(x) : TxM → TxM is a positive definite, symmetric operator, and
V(x) : TxM → R+ is a potential function. Finally, ζ : R → R is a smooth
function with sufficiently fast decay at infinity, to ensure that Z is regular
enough. This model is similar to the one studied in (Lang and Pereira, 2023),
in which L is the Laplace–Beltrami operator on M .

Using the eigenpairs (λi, ei) of L, the random field can be written as

Z =

∞∑
i=1

ζ(λi)Wiei,

where Wi are independent standard Gaussian random variables. However, as
the eigenpairs of L are unknown in general, we propose to use surface finite
elements as in (Dziuk and Elliott, 2013) to approximate Z. This is done by
defining a discrete version of L defined on a triangulation of M that defines
the approximate surface Mh, and then using the eigenpairs (Λhi , E

h
i ) of the

discrete operator to approximate Z on Mh by

Zh =

Nh∑
i=1

ζ(Λhi )W
h
i E

h
i ,

where Wh
i are independent standard Gaussian random variables. In order to

avoid relying on the eigenpairs of the discrete operator, we prove that we can
express Zh using the nodal basis of the finite element space, i.e., that there
are Gaussian weights Zi such that

Zh =

Nh∑
i=1

Ziψi,

where ψi are the nodal basis functions of the finite element space Sh ⊂ H1(Mh).
The weights Zi are correlated, but the correlation matrix can be expressed in
terms of the finite element matrices. The key contribution of the paper is to
prove that the root-mean-square error between Zh and Z converges to zero
as the mesh size h goes to zero. The rate depends on the smoothness of Z.
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5.3 Paper III

We consider the numerical integration of stochastic Lie–Poisson systems on
the class of J-quadratic Lie algebras h, i.e., equations of the form

ξ̇ = [∇H0(Xt)
∗, ξ] +

M∑
k=1

[∇Hk(Xt)
∗, ξ] ◦ dBkt ,

where ξ ∈ h∗, Hi : h
∗ → R and Bkt are independent Brownian motions. These

systems were discussed in more detail in Section 3.2. The goal is to derive
integrators that preserve the geometric properties of the system, i.e., the
Lie–Poisson structure and the Casimirs. To do this, we adapt the integrator
for deterministic systems that was suggested by Modin and Viviani (2019b).
In essence, the goal is to lift the system to the cotangent bundle of the Lie
group of h using the momentum map µ, on which the system “unreduces” to a
canonical stochastic Hamiltonian system. This system is then integrated using
the implicit midpoint method. Apart from deriving the integrator, the key
contribution of the paper is to first prove the desired preservation properties,
but also the convergence of the method. The theoretical methods used in the
paper are all based on the momentum map framework of Section 2.4. The
convergence proof essentially entails proving that the error analysis of the
proposed method is, by the momentum map, inherited from the error analysis
of the implicit midpoint method, which is well-studied in the literature, see
for instance Milstein and Tretyakov (2004). The method and its convergence,
is illustrated on several examples, including the rigid body appearing in
Section 3.2 and the Zeitlin discretization of the Euler equations, briefly
discussed in Section 4.5.

5.4 Paper IV

We consider landmark matching, as described in Section 4.3, modified in
two ways. The first modification is that the vector field warping the initial
landmarks is parametrized by a set U of parameters. The second modification,
inspired by Chen and Öktem (2018), is that the matching term includes the
case where the target landmarks z1, . . . , zm are in a metric space N that may
be different from the original manifold M . The main reason for introducing
these modifications is that they allow us to connect deep learning and landmark
matching. This is possible by viewing residual neural networks as temporal
discretizations of time-continuous control problems, as in (Celledoni et al.,
2021; Li et al., 2018), and by describing how the control problems can be
interpreted as high-dimensional landmark matching problems.
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The main result of the paper lies in describing the geometric structure
of the modified problem. The parametrization of vector fields determines a
subset of X(M) which is not a Lie subalgebra of X(M). The matching problem
is considered as a nonlinear control system where the space of controls is given
by U . Inspired by Younes et al. (2020), we refer to this version of landmark
matching as sub-Riemannian landmark matching.

It is shown that a dynamic formulation of sub-Riemannian landmark
matching can be derived using an Euler–Arnold argument, just as in the
non-modified case. In more detail, an equation governing the evolution of the
time-dependent control variable u is derived. We describe how the dynamic
formulation allows for matching to be performed by a shooting algorithm,
meaning that it is only the initial state of the control u that needs to be
determined. Finally, some numerical results illustrate the algorithms.

5.5 Paper V

Paper V is concerned with proving the convergence of one of the matrix flows
appearing in the context of the optimal transport of Gaussian distributions.
The flow was proposed in Modin (2017), namely the vertical flow

Ḃ = −ProjVer ∇GJ(B), B(0) = A,

where J = Tr(Σ0(I −AT )(I −AT )) for some positive definite and symmetric
matrix Σ0. Here, ProjVer refers to the projection onto the fibers of the
principal O(n,Σ0)-bundle over P (n),

GL(n) O(n,Σ0)

P (n)

(5.1)

where P (n) is the space of positive definite matrices and O(n,Σ0) is the group
of orthogonal matrices with respect to the metric Σ0. The main result of
the paper is to prove that the flow converges to the matrix obtained in the
polar decomposition of A, i.e., the unique P ∈ P (n) and Q ∈ O(,Σ0) such
that A = PQ. The techniques used in the paper relies on the geometric
interpretation of the Monge problem briefly discussed in Section 4.4.

5.6 Paper VI

In this paper, we consider a shape matching problem that arises in the
context of imaging of proteins. Cryogenic electron microscopy (cryo-EM) is
a technique that allows for imaging of proteins at atomic resolution. Since
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low doses of radiation are used, the resulting images are very noisy, so the
reconstruction of the 3D structure is a challenging problem. A few simplifying
assumptions are made: the type of protein is known, and its global orientation
is known. Further, the protein is simplified so that we model it as a rigid
chain of positions, i.e., we only keep track of the positions of certain atoms in
the backbone of the protein. Due to these simplifications, we can view the
conformation reconstruction problem as an indirect shape matching problem,
in which a prior configuration of the protein (modelled as a set of relative
positions in R3) is deformed to match the observed data (modelled as a
function on L2(R2)). This results in a deformed prior, which should match
the conformation that resulted in the observed data. In practice, a vector
v of N positions, i.e., v ∈ R3N is compared to an observation f ∈ L2(R2)

by means of a forward operator F : R3N → L2(R2), i.e., the similarity score
between f and v is given by

d2(f, v) = ∥F(v)− f∥2L2(R2).

In the words of Section 4.3, the shape space is thus R3N .
To ensure that the deformations are rigid, we restrict the deformations

to the N -fold product of the group of rotations SO(3), i.e., H = SO(3)N ,
where each factor acts on a triplet of positions. The main contribution of
the paper is to show that the protein conformation reconstruction problem
is amenable to the shape matching framework, and to derive implementable
gradient-based shape matching methods for the problem.

The method is illustrated on synthetic data in various numerical experi-
ments.

5.7 Paper VII

We study the numerical signature of blow-up in hydrodynamical equations.
Whether hydrodynamical equations blow up in finite time is usually hard
to determine analytically, so numerical methods are often used to study the
problem. For instance, for the three-dimensional Euler equations, numerics
by Luo and Hou (2014) partially guided Chen and Hou (2021); Elgindi
(2021). However, as noted by Fefferman (2022), it is often the case that
numerical simulations might seemingly indicate blow-up, but that the blow-up
is an artifact of the numerical method. This paper concerns the numerical
signature of blow-up in the context of Zeitlin’s method, the merits of which
were discussed in Section 4.5. We study the complexified Euler equations,
suggested by Sverak (2018) as a model equation since these equations, at least
in the toroidal case, are not well-posed (Albritton and Ogden, 2023). The
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complexified Euler equations are given by

∂tu+∇uu+∇uu = −∇p, div u = 0,

where u is a time-dependent complexified vector field, and p is a complexified
pressure. The paper first contains a derivation of the complexified vorticity
equations, as a Lie–Poisson system on the algebra (C∞(S2,C), {·, ·}C), where
{·, ·}C is the complexified Lie–Poisson bracket. Then, Zeitlin’s method is
extended to the complexified case, and careful numerical experiments are
performed to argue that

1. the observed blow-up is not an artifact of the numerical method, and

2. the time to blow-up decreases as the spatial resolution increases.

To argue for the first point, we show that the Casimirs of the complexified
vorticity equations are conserved up to machine precision and that the re-
versibility of the spatially discrete system is preserved, i.e., by running the
simulation backwards in time the initial condition is recovered. Finally, we
exclude the possibility that the blow-up is due to the temporal discretization
by varying the time step size, and see that the time to blow-up remains, for
a fixed spatial resolution, within a certain range. To argue for the second
point, we repeat the experiments with varying spatial resolution, and see that
the time to blow-up decreases as the spatial resolution increases. Finally,
we identify a possible signature of blow-up: we observe a linear relationship
between the spatial resolution and the growth rate of the norms: the higher
the spatial resolution, the faster the norms grow.
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