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Abstract

Robots often need to be reconfigurable—to customize, calibrate, or optimize robots operating
in varying environments with different hardware. A particular challenge in robotics is the
automated and dynamic reconfiguration to load and unload software components, as well
as parameterizing them. Over the last decades, a large variety of software reconfiguration
techniques has been presented in the literature, many specifically for robotics systems. Also
many robotics frameworks support reconfiguration. Unfortunately, there is a lack of empiri-
cal data on the actual use of reconfiguration techniques in real robotics projects and on their
realization in robotics frameworks. To advance reconfiguration techniques and support their
adoption, we need to improve our empirical understanding of them in practice.

We present a study of automated reconfiguration at runtime in the robotics domain. We
determine the state-of-the art by reviewing 78 relevant publications on reconfiguration. We
determine the state-of-practice by analyzing how four major robotics frameworks support
reconfiguration, and how reconfiguration is realized in 48 robotics (sub-)systems. We con-
tribute a detailed analysis of the design space of reconfiguration techniques. We identify
trends and research gaps. Our results show a significant discrepancy between the state-
of-the-art and the state-of-practice. While the scientific community focuses on complex
structural reconfiguration, only parameter reconfiguration is widely used in practice. Our
results support practitioners to realize reconfiguration in robotics systems, as well as they
support researchers and tool builders to create more effective reconfiguration techniques that
are adopted in practice.

Keywords Software reconfiguration - Robotics - State of the art - State of practice

1 Introduction

Robots are increasingly deployed in our lives. Being multi-purpose, they can operate in a
variety of safety-critical environments, such as private homes, hospitals, restaurants, factories,
and museums. Such robots have a variety of mobility and manipulation devices, as well as
redundant sensors brought together in a robotic control system—*“an interconnection of
components forming a system configuration that will provide a desired system response”
(Dortf and Bishop 2011).
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Robots are concurrent and distributed software systems (Aarsten et al. 1996) composed
of many components. Configuring and assembling these components—many with alterna-
tive implementations—is essential to customize robotic systems towards different hardware,
runtime environments, or non-functional properties (e.g., performance or energy consump-
tion). In fact, the initial release of the Robot Operating System (ROS) (Cousins et al. 2010)
in 2010 already contained hundreds of open-source components stored in 15 repositories,
accounting for customization needs and enhancing robot versatility to changing application
requirements. To this end, so-called configuration mechanisms enabling customization are
considered essential by robot manufacturers and developers (Garcia et al. 2020b; Garcia et al.
2022).

Configuration determines which components of a system are present and active, and how
they are connected. It also instantiates the component parameters. Configuration is often not
static, but reconfiguration is typically needed to assure the correct and trustworthy operation
of robotic systems. Reconfiguration (Kortenkamp et al., 2016) often involves the activation
or deactivation of components, the modification of their connections, the replacement of
control and functional algorithms, and changing control parameters at runtime. Also, recon-
figuration needs to be triggered, which is usually provided via specific interfaces. The topic
of reconfiguration is quite broad. This article focuses on automated software reconfiguration
at runtime in robotics control systems. Static configuration and manual reconfiguration, but
also related topics under the umbrella of self-adaptation, are beyond the scope of this article.

Self-adaptation is the ability of a system to dynamically adapt to unexpected environ-
mental changes and failures. Self-adaptation subsumes reconfiguration. It allows a system
to adapt its configuration when the conditions change, to deal with uncertainties that are
difficult or impossible to anticipate before deployment (Calinescu et al. 2020). Uncertainty
is a system state of incomplete or inconsistent knowledge caused, e.g., by unpredictable phe-
nomena in the execution environment or incomplete and inconsistent information obtained
by potentially imprecise, inaccurate, and unreliable sensors (Ramirez et al. 2012). At run-
time, a self-adaptive system collects additional information to resolve the uncertainty and
adapt itself (Calinescu et al. 2020). To this end it may use reconfiguration. For example, let
us assume that a configuration parameter is the nominal maximum speed of a robot, which
depends on the robot kinematics. Then, the actual maximum speed of the robot is adapted
(i.e., reduced) by using reconfiguration for meeting safety requirements, taking also environ-
ment uncertainty (e.g., wet floor) into account. When the robot is out of safety-critical zones
or conditions, the maximum speed is adapted (i.e., increased). Finally, the actual speed is
continuously regulated according to the path geometry. As an alternative to reconfiguration,
self-adaptation may also use other techniques, i.e., internal variables, as an alternative to
configuration parameters to achieve the intended behavior.

To enable effective and safe reconfiguration as described above, specific implementation
techniques are needed. To this end, the scientific community has conducted extensive research
on software reconfiguration of robotic systems. At the same time, popular robotics frame-
works, such as the Robotic Operation System (ROS) (Quigley et al. 2009), YARP (Metta
et al. 2006; Fitzpatrick et al. 2008), or Smartsoft (Lotz et al. 2013b) provide mechanisms for
implementing reconfiguration. However, surprisingly little is known about the adoption and
characteristics of reconfiguration mechanisms in practice. While many secondary studies on
the physical reconfiguration of modular robots and robot swarms (see Sec. 2) exist, to the best
of our knowledge, there is no systematic overview of available technologies for designing
reconfigurable robotic systems. To improve the situation, the state of the art in robot software
reconfiguration needs to be assessed—the first motivation for our study.
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Reconfiguration can be even more difficult in practice. Static configuration already adds
substantial complexity to the design of a software system (Berger et al. 2013), where reusable
software components are selected and integrated during deployment according to the spe-
cific requirements of the robot embodiment, task, and environment. Empowering the robot
with the ability to dynamically self-reconfigure at runtime according to context changes
requires to face additional challenges. For instance, developers need to (i) define triggers of
reconfiguration, (ii) declare constraints among the configuration options, consistent with the
domain knowledge and the actually implemented system, and (iii) assure that reconfiguration
is not only timely, but also puts the system into the desired, and valid state of operation. To
improve the situation, the state of the practice in robot software reconfiguration needs to be
assessed—the second motivation for our study.

It can be argued that tool and framework builders should enhance the reconfiguration
mechanisms to benefit practitioners, who could then build more reliable and safe reconfig-
urable robotics software (Dalal et al. 1993). However, to the best of our knowledge, there are
no studies or at least experience reports that address the practical implementation of dynamic
reconfiguration. This lack of empirical data impedes the development of effective reconfig-
uration methods and tools, as well as the scoping of research projects and the selection of
relevant research directions.

To address these shortcomings, we present a comprehensive review of the literature on
reconfiguration of robotic software systems (state-of-the-art) and an in-depth analysis of
reconfiguration support in robotic frameworks, as well as the implementation of reconfigu-
ration in robotic (sub-)systems (state-of-practice). Our research questions are:

RQ1: What are the motivations for developing dynamically reconfigurable robotic software
systems?

We aim at understanding the needs of reconfiguration in robotics, e.g., for enhancing
performance, robustness, and reusability. To this end, we analyze the literature on robotic
software reconfiguration.

RQ2: What software parts of a reconfigurable robot control system are reconfigured and at
what granularity?

When talking about reconfiguration in robotics, it is often not clear which parts of a
robotic system are adapted to needs using reconfiguration or maybe other mechanisms. We
aim at understanding what is commonly considered in reconfiguration and at which granu-
larity, e.g., entire components or single software functionalities. To this end, we address this
question from two perspectives, first by analyzing the literature on robotic software recon-
figuration, and second by also reviewing robotic frameworks in terms of the granularity of
reconfiguration that they support.

RQ3: What mechanisms exist and how they are used for developing reconfigurable robotic
software systems?

We aim at understanding the mechanisms used for specifying and performing the recon-
figuration, together with implementation practices. To this end, we analyze the literature on
robotic software reconfiguration, we review robotic frameworks and their support for recon-
figuration, and we analyze how researchers and practitioners implement reconfiguration in
their robotic (sub-)systems to answer RQ3.

Based on the academic literature, robotic frameworks, and robotic (sub-)system imple-
mentations, we address reconfiguration from two perspectives: (i) an academic perspective
based on our systematic literature review (SLR) and (ii) a practitioner’s perspective based
on how robotic frameworks address reconfiguration and how reconfiguration is implemented
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in real robotic (sub-)systems. We synthesize the individual perspectives to identify discrep-
ancies and common perceptions of software reconfiguration in robotics, thereby providing
a comprehensive view of reconfiguration. Additionally, we contrast the state of practice in
reconfiguration of robotic systems with reconfiguration in other domains and derive impli-
cations for researchers and practitioners.

2 Background and related work

In this section, we first introduce background and related work on reconfiguration in robotics,
and thereafter, an overview of six robotic frameworks.

2.1 Overview of reconfiguration in robotics

A firstinitial search for systematic literature reviews and surveys on reconfiguration of robotic
systems (via ACM Digital Library, Scopus, and IEEE Explore) by March 2024 revealed that
the terms “reconfigurability” or “reconfigurable” or “reconfiguration” have been used in
the robotics literature with different meanings depending on the type of robotic system.

The common ground on which all studies agree is that reconfigurability implies an ease
of modification and an absence of irreversible or rigid commitments in some aspects of
the robotic system (mostly related to its embodiment) and the potential to assume different
arrangements of the constituent elements.

In the last 30 years, surveys have been published on three classes of reconfigurable sys-
tems. Robots composed of multiple identical modules can be mechanically assembled to
form systems with different physical shapes (e.g., a snake robot or a spider robot) and can
autonomously reconfigure their shape for adapting to different environments (Dudek et al.
1993; Yim et al. 2007; Moubarak and Ben-Tzvi 2012; Ahmadzadeh and Masehian 2015;
Chennareddy et al. 2017; Alattas 2018). Robots composed of modules with specialized func-
tionalities can self-reconfigure to perform different tasks (Liu et al. 2016). Swarms of mobile
robots (e.g., swarms of UAVs) that can reconfigure the swarm topology resulting from coali-
tion formation during the execution of cooperative tasks (Abukhalil et al. 2015; Shlyakhov
et al. 2017).

The Robotics 2020 Multi-Annual Roadmap (MAR) (SPARC 2016) provides a more gen-
eral definition of configurability, as “the ability of the robot to be configured to perform a task
or reconfigured to perform different tasks.” This may range from the ability to re-program
software modules and components to being able to alter the configuration of sensing and
other electronic systems and the mechanical structures of the system.

Moreover, the MAR distinguishes reconfiguration from the concept of adaptability, which
is defined as “the ability of the system to adapt itself to different work scenarios, different
environments and conditions” and implies that the system performs optimization against
some performance criteria.

Interestingly, two secondary studies investigated the intriguing relationship between
reconfigurability and adaptability and are specifically relevant for our investigation because
they introduce the concept of dynamic reconfiguration. More specifically, Fornari and de San-
tiago Junior (2019) define a Dynamic Reconfigurable System as “a system whose subsystems
can be modified or have their configurations changed during operation; dynamic reconfigu-
ration enables real-time systems adaptation.” The paper focuses on two specific aspects: the
reconfiguration of the computing hardware (mostly FPGAs) and, although only marginally,
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the reconfiguration of the robot control system (e.g., the autonomous navigation system).
Tan et al. (2020) define self-reconfigurable robots as “machines that can change their mor-
phologies as per prescribed requirement or are adaptable to the environments with provided
level of autonomy.” In turn, autonomous reconfigurability is described as “the extent to which
a self-reconfigurable robot can sense its environment, plan its configuration based on that
environment, and act to transform into specific configurations upon that environment with
the intent of achieving some goal.”

In the context of this paper, we focus on automated runtime reconfiguration of the software
control system of autonomous robots. In order to clarify the scope of the paper, it is useful
to refer to concepts and definitions that we have found in some works included in our study.

Stewart et al. (1997) argue that the need for dynamic reconfiguration stems from the need
to change control algorithms on the fly to support more intelligent control strategies.

Jamshidi et al. (2019) propose a technique to enable self-adaptation of robots operating
in dynamic and uncertain environments, using configuration change as the main mechanism
to enact adaptation. In their paper, robotics software is considered as a highly-configurable
system, in which system characteristics (e.g., usage of sensors) are treated as configuration
options.

Macdonald et al. (2004) explain that robot software reconfiguration requires specific mech-
anisms for component deployment. In some cases, state information (e.g., map data or sensor
data history) must be transferred to a newly deployed software component during robot oper-
ation without service disruption.

Pham et al. (2000) discuss three forms of software adaptation in robotic systems: paramet-
ric fine tuning, algorithmic change, and task migration to remote computational resources in
a distributed environment.

2.2 Robotic Frameworks

During the last twenty years, several research and development projects have produced a vari-
ety of component-based robotic frameworks (see the surveys of Brugali et al. 2007 and Elkady
and Sobh 2012) that in many cases build on state-of-the-art middleware infrastructures (e.g.,
CORBA OMG 2012 and DDS OMG 2015). These frameworks provide domain-specific soft-
ware abstractions that are amenable to robotics experts and hide the complexity of middleware
mechanisms for real-time execution of concurrent control activities, synchronous and asyn-
chronous communication between components, dynamic wiring of component interfaces,
remote configuration of component properties, and runtime loading of plug-in functionality.
In the following, we briefly introduce some of these frameworks.

GenoM (Fleury et al. 1997) is a component-oriented software framework developed by
the LAAS CNRS robotics group. Components interface hardware devices or encapsulate
common robotics algorithms. GenoM components are collections of control services, which
manage incoming requests, implement specific algorithms, and execute services. The frame-
work is at the basis of the LAAS Architecture (Alami et al. 1998), one of the most relevant
examples of robot architectures that enforces software quality attributes, such as modularity,
maintainability, and usability.

The Claraty (Volpe et al. 2001) framework has been developed with the specific goal of
improving the modularity, interoperability, and reusability of the control software operating
the large variety of NASA/JPL autonomous robots for planetary exploration. The framework
provides mechanisms for encapsulating perception capabilities, robot action, and control
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loops that are encapsulated into software components, which can be activated by the deci-
sional level.

OROCOS is one of the oldest open-source frameworks in robotics, under development
since 2001. Professional industrial applications and products use it since 2005. Its focus
has always been to provide a hard real-time component framework, the so-called Real-Time
Toolkit (RTT), that is as independent as possible from any communication middleware and
operating system.

YARP (Metta et al. 2006; Fitzpatrick et al. 2008) is a multiplatform and multiprotocol
communication framework for robotic research. Available protocols are tcp, udp, multicast,
shared memory, and protocols for interfacing with ROS. Typical YARP applications con-
sist of several intercommunicating modules distributed on different machines that exchange
messages according to a port-based publisher/subscriber protocol. YARP is the reference
software platform for the iCub humanoid robot designed by the Italian Institute of Technol-
ogy to help developing and testing embodied Al algorithms. The iCub robot is currently used
by more than thirty research institutions worldwide.

RobMoSys (RobMoSys 2023) is a EU-funded research project that provides interfaces,
methods, and tools for the model-driven development of robotic systems. It enables the
management of interfaces between different robotics-related domains, roles, and levels of
abstractions. Its interfaces can either be implemented by concrete frameworks or wrappers
around low-level implementations mapping them to the RobMoSys APIs. For our study on
software reconfiguration, we consider the SmartSoft framework (Schlegel and Worz 1999;
Schlegel et al. 2013) as a reference implementation of RobMoSys. While the RobMoSys
ecosystem, like many tools developed by academia, suffers the problem of sustainability
after the completion of the project, the SmartSoft framework has reached the Technology
Readiness Level (TRL) 6 and is used in industrial projects in collaboration with several
companies, including Bosch, REC, and FESTO.

ROS (Open Robotics 2007) is a mature open-source robotics middleware that provides
a framework for robotic software. It allows implementing modular robotic applications in
multiple programming languages and provides services to realize the interaction of modules.
Many state-of-the-art algorithms have been developed for ROS, and major robotic systems,
such as the self-driving vehicle software Autoware.auto, are implemented using ROS. The
transition from ROS to ROS 2 (Macenski et al. 2022) was accompanied by the definition of
a more standard structure of ROS packages (e.g., the navigation stack), which use behavior
trees to orchestrate the behavior of many concurrent functionality and their runtime recon-
figuration. What is still missing are reference architectures that guide application developers
in the integration of ROS packages in whole applications.

Malavolta et al. (2021) mined robotics software repositories to extract guidelines for
building robotic systems. Although the extracted guidelines do not explicitly address recon-
figuration, they cover aspects necessary for building reconfigurable systems. First, there are
guidelines that focus on increasing component cohesion and reducing component coupling,
which are essential for reconfiguration. Second, extracted design guidelines focus on com-
ponents that provide interfaces to adjust their operation, such as changing the frequency at
which sensors collect data. Third, guidelines focus on providing status and health information,
which can be seen as potential triggers for reconfiguration. Finally, some guidelines focus on
separating the monitoring of such health information from the functional implementations.
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3 Methodology

Since we want to study how automated robot reconfiguration at runtime is addressed by the
scientific community and contrast it with how itis implemented by practitioners, we decided to
study three different types of artifacts to answer the research questions. Asillustrated in Fig. 1,
we studied the state-of-the-art and the state-of-practice on reconfiguration in the robotics
domain in three phases. Thereby, we applied two research methodologies (systematic reviews
and repository mining), as described by Ralph et al. (2023), depending on the investigated
artifacts:

(i) Literature: Systematic Review of the literature on the automated reconfiguration of
robotic software systems at runtime.
(i) Frameworks: Systematic Review of robotic frameworks and their support for recon-
figuration.
(iii) Implementations: Repository Mining to analyze how reconfiguration is implemented
in open-source robotic (sub-)systems.

Specifically, we conducted the systematic literature review (SLR) to capture the scien-
tific perspective on automated software reconfiguration at runtime in robotics and to extract
theoretical foundations for the subsequent studies. We focused at identifying the reasons for
reconfiguration, the expected lifespan of a configuration, and the granularity of reconfigura-
tion, along with the means for specifying reconfiguration. Based on the robotic frameworks
mentioned in the papers surveyed in the SLR and additional literature, we identified the most
used frameworks for analysis in phase (ii) and which ones to investigate in phase (iii).

Taking into account the observations from the SLR, we synthesized a conceptual model
as a basis for systematically analyzing robotic frameworks. Conceptual models are means for
systematically capturing and communicating common knowledge about a domain (Gemino
and Wand 2004), therefore, being a suitable means to build a common basis according to
which we can classify and compare robotics frameworks. Based on the identified conceptual
model, we then analyzed and classified robotics frameworks in phase (ii).

Our goal in phase (iii) is to determine what role automated reconfiguration plays in the
software of robotic (sub-)systems and what practices are used to implement it. To enable this
analysis of concrete implementations of reconfiguration in robotic (sub-)systems (iii), during

Analysis of R ) ]
recgnﬁg}(lraﬁon in Systematic Reasons, Time, Granularity, 1 RQI,
non-robotics (i) | literature review |-~ Lifespan, Specification and ( RQ2,
(SLR) Validity of Reconfiguration J RQ3

domains

v b b
{ Conceptual model for } {Mosl popular}
framework analysis frameworks

A d
Reconfiguration
RQ2,
(i) Framve)rk '{ elements & How robotics JRQ?
analysis differs from other domains ;
{ Main libraries }
and APIs
N S
System Granularity,
(iii) arz;lysis """""""" *  Implementation, [ RQ3
L - | Practices

Fig.1 Overview on our research methodology
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Fig.2 Selection process of the primary studies

140 papers

the analysis of robotic frameworks (ii), we also focused on identifying the main libraries used
in robotics that can be used to implement reconfiguration.

Our replication package provides all raw data, scripts that have been used, and results (Peld-
szus et al. 2024a).!

3.1 Systematic Literature Review

The goal of our SLR is to capture the academic perspective on reconfiguration in robotics
and what techniques exist to address reconfiguration. While we do not expect the academic
perspective to perfectly match practice, we do expect it to at least cover the practical aspects,
but also to provide a broader range of techniques and considerations that may not yet be
practical.

As described in Sec. 2, most publications dealing with robot reconfiguration mainly focus
on reconfigurable hardware whereas software aspects related to the reconfiguration of robots
are not treated as main concerns. Nevertheless, the software configuration of a robot control
system is highly affected by its mechanical structure, task, and operating environment (Garcia
et al. 2022). While some papers (e.g., Stueben et al. 2021) present case studies that motivate
the runtime reconfiguration of the robotic systems, they do not give a systematic overview.
For this reason, we defined a generic search string based on only three keywords:

("reconfigur*" OR "re-configur*") AND (robot*)

The search string was customized for the IEEE Xplore, Scopus, and ACM DL and applied
to the title and abstract. Following the process shown in Fig. 2, the results were automatically
filtered according to quality criteria to exclude studies not written in English, short papers (<
3 pages), posters, and workshop summaries.

Even though the keyword search was limited to the fields “Title” and “Abstract,” it resulted
in a high number of studies. The searches returned 2,185 results on IEEE Xplore, 4,940 results
on Scopus, and 140 results on the ACM DL. We implemented a script to merge the results
and remove the duplicates, which returned a total of 5,194 results.

We aimed at analyzing how the software reconfiguration of robots is implemented. Con-
sequently, we selected those papers that fulfill the following inclusion criteria:

I1: Studies focusing on the software of robotic systems;

12: Studies that present examples of robots that perform complex tasks, i.e., that require the
integration and configuration of a variety of functionalities (e.g., perception, control,
planning);

13: Studies that consider changing the configuration of robotic systems at runtime.

In addition, we applied the following exclusion criteria to exclude works that primarily focus

on parts other than the software of a robotic system, or robotic systems that do not themselves

include significantly complex robotic control software:

1 Replication package at Zenodo: https://doi.org/10.5281/zenodo.14013818
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El: Studies focusing on single-purpose robotic demonstrators, microrobots, and robotic
devices (e.g., arobot hand), since they controlled from the outside or do not run software
on their own, and therefore, their software cannot be reconfigured directly;

E2: Studies that do not deal with robot control (e.g., papers solely focusing on reconfig-
urable computer architectures and communication networks, the mechanical design of
metamorphic robotic systems);

E3: Studies that focus only on algorithms (e.g., for coalition formation of multi-robot systems
or kinematic calibration of configurable robots) and do not include reconfiguration of
the individual robots involved,;

E4: The software part of reconfiguration plays only a minor role and other aspects such as
hardware reconfiguration are the main focus.

A significant portion of the 5,194 papers that resulted from the high yield and low precision
associated with our generic search string was filtered out by scanning the title and abstract.
This step was performed by the second author with 20 years of experience in robotics research
at a reading rate of three studies per minute. This step identified 642 full papers. Thereafter,
we applied the inclusion and exclusion criteria based on the introduction and conclusion of
the paper, resulting in 78 primary studies for analysis.

These papers were then randomly divided into three groups for review and classification
of the full papers. Each group was then classified by a different author according to criteria
relevant to reconfiguration. If the classification of a paper was in question regarding one
of the criteria, it was analyzed by at least three authors. Disagreements were resolved by
involving all authors, who discussed and reached agreement. We carried out this step over a
period of 4 weeks, with a weekly meeting where we discussed between two and four concrete
classifications per meeting.

During this full paper review, we excluded 46 of the primary studies based on the content
of the full paper. This exclusion was because they were duplicates of other included papers,
e.g., a paper is also included as an extended journal version (6 papers), or the content did not
include a contribution to automated software reconfiguration at runtime, although we had
first expected that based on the introduction and conclusion (42 papers).

Based on the primary studies, we performed then one iteration of backward snowballing,
resulting in 1,040 papers cited by the primary studies. As for the primary studies, we again
filtered these papers based on title and abstract using the exclusion criteria from above,
resulting in 125 potentially relevant papers. These 125 potentially relevant papers were then
filtered based on the full paper, resulting in an additional 21 papers for analysis. As before, in
each step of the snowballing process, we randomly divided the papers into three groups, each
of which was reviewed by a different author. Because of our experience with the classification
of the primary studies, we did not need to have group discussions for the remaining papers.

Overall, the review process resulted in a total of 78 papers that were analyzed in detail
to answer the research questions. Table 1 gives an overview of the papers identified in the
initial search, and Table 2 of the papers identified via backward snowballing.

3.2 Robotic frameworks review

We selected and analyzed common frameworks used in robotics to identify at what granular-
ity reconfiguration is technically supported (RQ2) and what interfaces frameworks provide
to robotics software developers that can be used for implementing reconfiguration (RQ3).
For all frameworks, we investigated how configurable software parts can be specified and
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Table 1 Papers identified in the D

SLR’s initial search Paper
P1 Berge-Cherfaoui and Vachon (1994)
P2 Hayes-Roth et al. (1995)
P3 Schneider et al. (1995)
P4 Stewart et al. (1997)
P5 Budenske and Gini (1997)
P6 Vos and Motazed (1998)
P7 Fayman et al. (1998)
P8 Boluda et al. (1999)
P9 Gafni (1999)
P10 Lindstrom et al. (2000)
P11 Karuppiah et al. (2001)
P12 Kubota et al. (2001)
P13 Zhang et al. (2001)
P14 Cobleigh et al. (2002)
P15 Kim et al. (2003)
P16 Bi et al. (2003)
P17 Inohira et al. (2003)
P18 Kim and Kim (2004)
P19 Roh et al. (2004)
P20 Lee et al. (2005)
P21 Lee and Kang (2006)
P22 Kim and Park (2006)
P23 Yu et al. (2006)
P24 Maeda (2006)
P25 Kim et al. (2006)
P26 Brandstotter et al. (2007)
P27 Scheutz and Kramer (2007)
P28 Braman et al. (2007)
P29 Morris (2007)
P30 de Cabrol et al. (2008)
P31 Lee et al. (2008b)
P32 Nilsson and Bengel (2008)
P33 Lee et al. (2008a)
P34 Santos et al. (2009)
P35 Xiao (2012)
P36 Benmoussa et al. (2013)
P37 Marques et al. (2013)
P38 Goldhoorn and Joyeux (2014)
P39 Scala et al. (2014)
P40 Szlenk et al. (2015)
P41 Frost et al. (2015)
P42 Shaukat et al. (2016)
P43 Meészaros and Dobrowiecki (2017)
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Table 1 continued D Paper
P44 Doose et al. (2017)
P45 Brugali et al. (2018)
P46 Jamshidi et al. (2019)
P47 Ramachandran et al. (2019)
P48 Murwantara (2020)
P49 Cardoso et al. (2019)
P50 de la Cruz et al. (2020)
P51 Brugali (2020)
P52 Céamara et al. (2020)
P53 Bozhinoski et al. (2021)
P54 Pane et al. (2021)
P55 Stueben et al. (2021)
P56 Kozov et al. (2021)
P57 Nordmann et al. (2021)
backward snowbaling o the SLR 12 Paper
P58 Ferrell (1994)
P59 Lee et al. (1994)
P60 Firby et al. (1995)
P61 Stewart and Khosla (1996)
P62 Pham et al. (2000)
P63 Wills et al. (2001)
P64 Macdonald et al. (2004)
P65 Kramer and Scheutz (2006)
P66 Parker and Tang (2006)
P67 Yoo et al. (2006)
P68 Calisi et al. (2008)
P69 Edwards et al. (2009)
P70 Tajalli et al. (2010)
P71 Inglés-Romero et al. (2012)
P72 Hartmann et al. (2013)
P73 Iftikhar and Weyns (2014)
P74 Gherardi and Hochgeschwender (2015)
P75 de Leng and Heintz (2016)
P76 Aguado et al. (2021)
P77 Nordmann et al. (2021)
P78 Bozhinoski et al. (2022)
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encapsulated, how these can interact with each other, and how reconfiguration is planned
and executed.

3.2.1 Framework selection

To increase the relevance of the frameworks selected for the review, we considered obser-
vations from the SLR in the selection process. In our SLR, 24 different frameworks were
mentioned but only Chimera (a robot programming environment from the 90s Stewart et al.
1990), real-time CORBA (an OMG standard for real-time management of objects from the
2000s Schmidt and Kuhns 2000), and ROS (Open Robotics 2007) were mentioned more than
once. The first two were not mentioned in papers after 2006. For this reason and for their age,
we considered them as dated and, did not investigate them in depth. Consequently, besides
ROS, we selected alternatively the most popular robotic frameworks based on existing sur-
veys on software engineering practices in the service robotics domain (Garcia et al. 2020a, b).
ROS is used by 88.5% of the survey participants, followed by its successor ROS2 (22.4%)
and OROCOS (18.6%). After a larger gap in popularity, YARP and SmartSoft follow with
4.5% and 3.8%. As SmartSoft is a collection of concepts and tools for RobMoSys (Lotz et al.
2013b), an abstract framework for the model-based development of robotic systems (Rob-
MoSys 2023), we decided to consider SmartSoft as one example for a practical realization
of RobMoSys.

In summary, we selected the following frameworks for an analysis: (i) ROS (and ROS2),
(i) OROCOS, (iii) YARP, and (iv) RobMoSys (incl. SmartSoft).

3.2.2 Conceptual model

The first step in actually investigating the robotics frameworks is to identify the concepts
we will use to investigate the frameworks. To this end, to systematically derive the relevant
concepts and ensure their completeness, we have created a conceptual model for software
reconfiguration in robotics. This conceptual model will serve as a means to identify relevant
concepts that frameworks must support to enable reconfiguration and to systematically ana-
lyze the frameworks concerning them. We proceeded in the creation of the conceptual model
as follows.

We started the synthesis of the conceptual model from an existing schema (Berger et al.
2014), which was proposed in a study on variability mechanisms in software ecosystem
platforms (e.g., Linux kernel, Eclipse plugins, and Android apps), and adapted it to the
robotics domain based on insights from the SLR and further literature (Mens et al. 2003;
Fritsch et al. 2008; Eddin 2013; Krupitzer et al. 2015; Mens et al. 2016; Tan et al. 2020).
Therefore, we first compared this model with our observations on the scientific understanding
of reconfiguration in robotics and excluded aspects that are not applicable from this initial
model. Thereafter, we added further concepts that we observed in the SLR based on the
additional literature.

3.2.3 Review process

Using the derived conceptual model, we classified the robotic frameworks based on their
documentation and scientific publications about them. The first and second authors of this
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Table 3 Data sources used during the frameworks review

Wikis Websites Publications
ROS (ROS2) wiki.ros.org WWW.T0S.0rg Quigley et al. (2009);
Estefo et al. (2019);
docs.ros.org Cousins et al. (2010);
Gerkey (2014)
OROCOS docs.orocos.org 0rocoS.0rg Bruyninckx (2001)
YARP wiki.icub.eu/wiki/YARP yarp.it Metta et al. (2006)
Paikan et al. (2015)
RobMoSys robmosys.eu/wiki robmosys.eu Lotz et al. (2013a)
(SmartSoft) wiki.servicerobotik-ulm.de smart-robotics.sourceforge.net Schlegel and Worz
(1999) Schlegel et al.
(2021)

paper independently read the documentation provided for the robotic frameworks, mainly
wikis, the websites of the robotic frameworks, and related publications, and recorded relevant
references for each part of the conceptual model. Table 3 lists the sources investigated during
the frameworks review. For the identification of the features of these frameworks that are
relevant for our investigation, we also analyzed tutorials (e.g., by Brugali and Scandurra
2009 and Brugali and Shakhimardanov 2010), experience reports (e.g., by Brugali 2020),
and secondary studies (e.g., by Ahmad and Babar 2016 and Albonico et al. 2023).

Thereafter, the two authors discussed and consolidated their findings. For aspects for
which no agreement was achieved, the authors again independently investigated the available
resources and then continued with the consolidation. Full agreement was achieved after four
iterations. Based on the classifications, we then compared the robotic frameworks with each
other and also with the findings from the SLR.

3.3 Investigation of robotic (sub-)systems

To identify what mechanisms are used in practice and how they are used (RQ3), we mined data
from robotic software repositories. In doing so, we focused on robotics (sub-)systems that
contain usages of the interfaces of robotic frameworks that we identified in the frameworks
investigation as being suitable to implement reconfiguration although this might not be their
main purpose. We realized that among the identified robotic frameworks, only ROS (Quigley
et al. 2009) is mature enough to serve as a convincing basis for the in depth evaluation of
robotic (sub-)system implementations. This is also supported by the findings from our SLR
and the survey of Garcfa et al. (2020b).

To select suitable ROS (sub-)systems, we use a list of open-source ROS (sub-)systems
repositories that has been created by Malavolta et al. in 2021 when studying general guidelines
for developing robotic (sub-)systems (Malavoltaetal. 2021). They define a ROS-based system
as “a system that contains robotic capabilities built using the ROS framework.” To identify
suitable ROS-based systems, Malavolta et al. mined GitHub, GitLab, and Bitbucket and
did extensive quality assessments to identify deployable ROS (sub-)systems that implement
huge parts of their logic on their own and are not only wrappers for libraries or toy examples.
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Fig.3 Conceptual model of reconfiguration in robotics

Thereby, implementing the logic of the system does not prevent it from using libraries such
as the ROS navigation stack? to realizing this logic.

To systematically investigate how reconfiguration is implemented, we use the APIs of ROS
that we identified in the frameworks review as being suitable to implement reconfiguration
as entry points for our software inspections. Starting from these entry points, we inspected
how the API is used to understand how reconfiguration is implemented in the robotic (sub-
)systems. Since, many APIs allowed to register callback functions, we followed the calls in
both directions forward and backwards to visit all relevant code parts.

4 Conceptual model of reconfiguration

For investigating robotic frameworks, we created a conceptual model of reconfiguration in
robotics according to which we classified the investigated robotic frameworks. Figure 3 shows
the identified concepts as well as their relations. Although this conceptual model is partially
based on findings from our SLR, we present it here prior to the detailed discussion of the
findings of that SLR to allow for a discussion of findings from all three types of artifacts
reviewed together.

We started to create the conceptual model for reconfiguration in robotics from an existing
conceptual model proposed in a study on variability mechanisms in software ecosystem
platforms (Berger et al. 2014). Then, based on the insights from the performed SLR, we
excluded all aspects that do not apply to reconfiguration in robotic systems. For example, we
conclude that in robotics, decisions to bind a feature as active or inactive are only temporal
and made dynamically. For this reason, we excluded the decision lifecycle and binding-
related aspects from our framework. As we focus on open-source robotic frameworks, we
also dropped the aspect of platform openness.

2 ROS Nav2: https://navigation.ros.org/
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While the reduced conceptual model captures what can be reconfigured, how reconfig-
urable assets are specified, and how these can interact, it does not capture how reconfiguration
is specified and executed, yet. In our SLR we have seen that decision making is an essential
part of reconfiguration, and there are various ways of specifying it. In an investigation of
self-adaptation in robotic systems (Krupitzer et al. 2015), such specifications have been cate-
gorized into four kinds of decision criteria for specifying reconfiguration triggers and actions
(Models, Rules/Policies, Utility Functions, and Goals), introduced in detail in Sec. 4.5. To use
the same naming as the existing literature, we added the decision criteria to our conceptual
model. Also, we identified three fundamental change types realized by reconfiguration mech-
anisms in the literature (Fritsch et al. 2008; Krupitzer et al. 2015), namely changing parameter
values, software structure, and functionality, which we introduce in detail in Sec. 4.5. There-
after, we iteratively confirmed and adjusted our conceptual model based on additional related
literature (Mens et al. 2003; Fritsch et al. 2008; Eddin 2013; Krupitzer et al. 2015; Mens et al.
2016; Tan et al. 2020). Finally, we tailored the definitions toward reconfiguration in robotic
systems.

4.1 Configuration space (RQ2)

For answering what parts of the software of a robotic system can be reconfigured and at
what granularity (RQ2), it is essential to identify what are the reconfigurable elements in the
robotic frameworks, how these are specified, and what dependencies might exist (Mens et al.
2003; Eddin 2013). The Code Base refers to the structuring of these reconfigurable elements
of the robotic system.

To allow consistent and domain-independent investigation of the supported granularity, in
this work, we use the following three levels of granularity that are oriented on the naming from
a prior study investigating variability in software ecosystem platforms (Berger et al. 2014)
and the observations from the SLR: (i) A Composite Unit represents a larger software entity,
which can function independently of other units and usually aggregates and controls further
smaller units, (ii) reconfiguration takes place on the granularity of a single class or function
that usually cannot function independently (Basic Unit), e.g., using a different perception
mechanism provided by the same composite unit, and (iii) the value of a configuration attribute
of a Unit parameter, e.g., a parameter of a method or an environment variable, is changed.
Manifests provide information about these reconfigurable entities such as their identifier or
parameters required at reconfiguration, e.g., to identify a composite unit that is suitable for
a specific task.

4.2 Configuration space model (RQ2)

For safe reconfiguration, it is essential to know the space in which a reconfiguration of the
code base can take place and what are valid configurations (Svahnberg et al. 2005). To this
end, these reconfigurable elements are represented using the notation of features (Kang 1990)
that serve as an abstraction of the code base, therefore, providing a conceptual view on what
elements of a robotic system can be reconfigured (RQ2). Thereby, multiple features can have
dependencies among each others, e.g., one feature requiring or excluding another feature,
which can limit what can be reconfigured. Therefore, besides the reconfigurable elements,
one has to know all possible combinations of these (Mens et al. 2016). Features and their
dependencies are usually specified in a Configuration space model (Berger et al. 2013).
We are particularly interested in the languages supported by the frameworks for specifying
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Configuration space models, as they are the main artifact used by developers for specifying
the configuration space and could be analyzed by tools.

4.3 Encapsulation (RQ2)

For reconfiguration in terms of turning features on or off, reconfigurable assets must be
well encapsulated and allow one to access reconfigurable elements. To this end, different
Interface mechanisms (Berger et al. 2014; Tan et al. 2020) can be used to interact with
reconfigurable elements. These can range from well-defined APIs to system-wide messaging
services. Besides knowing which mechanisms the different robotic frameworks provide to
allow communication among the reconfigurable elements, we also have to know in which
way the interfaces of reconfigurable elements are specified so that developers can use the
Interface specification.

4.4 Interactions (RQ3)

To understand reconfiguration, particularly, in terms of the mechanisms that can be used for
implementing reconfiguration (RQ3), the management of interactions is essential. To allow
interaction at runtime, the statically defined interface usages have to be bound to the concrete
running instances and have to be updated at each reconfiguration. For executing the bindings,
a reconfigurable system needs a Run-time Manager that performs this binding (Berger et al.
2014). Consequently, we are interested in how the robotic frameworks implement interaction
binding.

While the already considered interface mechanisms are a static view on specifying interac-
tion, we also need to know the Interaction mechanism using which dynamic interaction with
reconfigurable assets is realized. Interactions among basic units require Interaction binding
for identifying and binding the concrete target, which can happen at different times ranging
from static binding to dynamic binding (Fritsch et al. 2008).

4.5 Trigger & logic (RQ3)

Reconfiguration consists of three essential steps: planning, decision, and execution (Tan et al.
2020). These steps must be implemented using appropriate mechanisms (RQ3), which, in
the best case, are provided by robotics frameworks.

A reconfiguration trigger is a set of conditions that, if true, activate one or more recon-
figuration actions (Soria et al. 2009). We need to know what logic can be used to specify
reconfiguration triggers (Mens et al. 2003; Krupitzer et al. 2015) and how the reconfigu-
ration will be executed (Mens et al. 2003). We are interested in what support the robotics
frameworks provide to developers for specifying Decision Criteria to define when and how
to reconfigure a robotic system.

As also confirmed by our SLR, decision criteria can be defined in various ways (Krupitzer
etal.2015): (i) model-based specification of the reconfiguration, e.g., a statemachine, (ii) rule-
based triggering of reconfiguration, (iii) goal-based reconfiguration, and (iv) frameworks,
which offer utility functions that simplify the implementation of reconfiguration.

The reconfiguration itself can then be realized in different ways. In the literature (Mens
etal. 2003; Fritsch et al. 2008; Krupitzer et al. 2015), we can find three different Change types
of reconfiguration at runtime that correspond to a robots environment and the three software
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granularities in the asset base: (i) changing parameter values to permanently influence the
internal control flow of units (parameter), (ii) changing a functionality while keeping its
interface, and (iii) structural reconfiguration (structure), which changes the running system’s
structure, e.g., by loading or unloading a composite unit.

This conceptual model allows us to systematically capture how reconfigurable elements are
specified, how these interact with each other, how the reconfiguration logic can be specified,
and which reconfiguration support robotic frameworks provide.

5 Motivations for reconfiguration (RQ1)

First, we want to get a better understanding of what scientists see as the reasons that can be
addressed by reconfiguring robotic systems. We assume that understanding their motivations,
allows us to reason better on why they address reconfiguration as they did. To this end, we
only investigated the academic literature on reconfiguration to answer RQ1.

5.1 Reasons for reconfiguration in the academic literature

Of the 78 papers, 27 papers (34.62%) mention more than just one reason for reconfiguring
robotic systems. On average 1.45 reasons are mentioned per paper. Figure 4 shows the most
popular reasons and their relative frequencies among all mentioned reasons. Only P4 and
P67 mention no reason for reconfiguration.

Environmental changes & task execution: As expected, reconfiguration mainly takes place
to allow operation in dynamic environments (43.59%) and executing tasks (42.31%). There
seems to be a significant correlation between these two reasons, since 15 papers, which
is by far the most common combination in our sample, mention both of them at the same
time (P1, P3, P17, P22, P30, P33, P41, P51, P56, P59, P68-69, P73-74, and P77). Reconfiguration is needed
(i) between tasks that require different hardware and software configurations of a robot
and (ii) in a single task execution to successfully fulfill the task. An additional 19 papers
need reconfiguration to react to environmental changes (P12, P14, P20-21, P25, P29, P31, P36-37,
P39, P52-53, P57, P62-65, P72, and P78) and 16 papers for changes as part of task execution (P2, p5,
P10, P15-16, P18, P24, P34-35, P38, P40, P43, P48, P50, P66, and P70).

Fault handling & resilience: Reacting to events such as a sensor returning constantly faulty
data, is the third most frequently mentioned reason for reconfiguration (32.05%). In this
case, the aim is usually to reconfigure the system so that it does not use the faulty sensor

O Modular systems

B Resource limitations
@ Safety

O Task execution

@ Environmental
changes
B Fault handling &
resilience
0,00%  10,00%  20,00%  30,00%  40,00%  50,00%
percentage of the works considering reconfiguration for the given
reason (a single work can target multiple reasons)

Fig.4 Reasons for reconfiguring a robotic system
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any longer by replacing it with a spare sensor, i.e., in software switching to a different
SeNsor (P1, P6-7, P11, P13, P26-28, P42, P46-47, P49, P54, P57-62, P64, P69-70, P75-77).

Modular systems: More than 11% of all papers claim to need reconfiguration for developing
modular systems (P3, P13, P19, P23, P30, P32-33, P43, and P70). To this end, they consider modularity
at development time and hardware modularity at runtime, e.g., a robot that can change
the actuators it uses, which triggers the reconfiguration of the running software. While
we consider the second also as reconfiguration, in our understanding, building a software
system at development time from different modules is not reconfiguration, but general
design-time variability (Chen and Babar 2011; Apel et al. 2013; Berger et al. 2020).
Related to this, papers P23 and P70 mention, besides other reasons, also maintenance
or updates at runtime as a reason for reconfiguration, e.g., a human having to manually
perform ad-hoc reconfigurations to allow a robot to complete its task.

Resource limitations: As one would expect due to the ever-increasing computational
capabilities, it seems that limited resources, often considered as the main driver for recon-
figuration, have become a much less relevant challenge in the last decade. Still, a significant
number of papers mention limited resources as a reason for reconfiguring a robotic system,
but it is mainly the older papers considered in our SLR that mention this reason. First,
in the two oldest papers (P8 and P9), which are all from 1999, it is due to generally limited
computing capacities. Later, in P24 from 2006 and P71 from 2012 the resource limitation
is due to more sophisticated tasks, such as speech-based interaction with robots. The most
recent paper of these (P47), discusses limited resources in terms of network capacity for
teams of interacting robots.

Safety: Finally, responding to safety issues is mentioned as a reason for reconfiguration by
four papers (P44-45, P55, and P71), which notably is the only mentioned reason in all papers
except P71.

5.2 Discussion of reasons for reconfiguration

In summary, the main driver for reconfiguration in the literature is robots performing complex
tasks in diverse environments, which includes both reconfiguration to respond to environ-
mental changes during task performance, as well as adapting the configuration of the robot
according to task needs (64.1% mention one of these two reasons). Orthogonal to this,
reconfiguration is also needed to ensure proper operation by enabling fault handling and
increasing the robustness (which is partly closely related to reconfiguration due to environ-
mental changes) of the robots.

6 Reconfigurable elements of robotic systems (RQ2)

We answer RQ2 both from the academic perspective, as represented by the academic lit-
erature, and from the perspective of robotics frameworks. We first present our analysis of
the academic literature with respect to RQ2, then our analysis of robotics frameworks, and
finally discuss the observations of both together.

6.1 Academic literature on what parts of a robotic system can be reconfigured

Based on the discussions above, we identified three aspects relevant for discussing what
software parts of a robotic system can be reconfigured.
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1) Granularity at which a robot is reconfigured: Since reconfiguration can be thought
of in completely different dimensions, ranging from changing the hardware a robot uses to
small differences in how it will behave, we want to assess what granularity of reconfiguration
is considered in the academic literature on automated reconfiguration of robotics software
at runtime. Again, we expect to extract a baseline that can be used in a comparison with
reconfiguration of robots in practice.

2) How long is the intended lifespan a configuration before reconfiguring the robotic sys-
tem again: We assume that robotic systems are not only configured once but are reconfigured
more or less frequently according to relevant circumstances. Therefore, we aim at assessing
how often reconfiguration is expected to take place and how long a robotic system will stay
in a configuration before it is reconfigured again.

We classified the investigated papers according to these aspects to capture the academic
perspective on RQ2. In what follows, we present these classifications.

6.1.1 Granularity of reconfiguration

The investigated papers use many different terms for naming reconfigurable entities of robotic
systems. On one side, there are domain-specific terms, such as ROS node due to the considered
robotic framework. On the other side, commonly used names, such as component, are used
differently among the papers. This resulted either in different terms being used for referring
to the same granularity or one term referring to different granularities in multiple papers.
To compare granularities across multiple papers, we assigned them to four categories based
on the semantics described in each paper. We oriented the definition of these categories on
definitions from the literature (Berger et al. 2014).

Figure 5 shows what percentage of the considered papers supports which level of gran-
ularity. Thereby, a single paper can support multiple levels. However, with an average of
1.18 levels per paper, the papers that consider multiple levels (P3, P36, P41, P51, P58, P60-62, P67—
68, P73, and P78) are a minority. Overall, the literature seems to focus on reconfiguration at a
coarse-grained level.

Composite unit: More than half of the papers (57.69%), support reconfiguration of larger
software entities, which can function independently of other units, such as loading or
unloading entire components of the system (P14, P7, P13-22, P25, P27, P31, P33, P36-38, P40—42, P44,
P47-48, P51-53, P57, P61-67, P69-71, P75, and P77-78).

Basic unit: In more than a fourth of the papers (26,92%), reconfiguration takes place on
the granularity of a single class or function, e.g., using a different perception mechanism
provided by the same composite unit (P35, P8-9, P12, P23, P26, P49-51, P54-56, P58-62, P68, and P72-74).

Unit parameter: The fine-grained reconfiguration of concrete parameters, such as changing
the value of a field that represents a state, is considered by 30.77% of the papers (p3, 6,
P10-11, P24, P28-30, P32, P34-35, P39, P43, P45-46, P51, P58, P60, P62, P67-68, P73, P76, and P78).

@ hardware
B composite unit
@ basic unit

O unit parameter
0,00%  10,00% 20,00% 30,00% 40,00% 50,00% 60,00%
percentage of the works supporting the granularity
(a single work can support multiple granularities)

Fig.5 Granularity at which a reconfiguration is supported by the techniques presented in the literature
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6.1.2 Lifespan of configurations

In the literature, configurations are typically meant to be alive for a relatively long time. Still,
reconfiguration is considered to happen rather often and is not seen only in exceptional cases.
We identified six different lifespans of configurations, whose popularity is shown in Fig. 6.

Stable: The configurations are stable for a very long time, and reconfiguration is only per-
formed due to exceptional events at runtime. These events are usually errors, such as
sensors returning implausible values when hardware fails (p26, P28, P47). Also included in
this category are reconfigurations that require a reboot of the robot (p4) or a manual trig-
ger by the user (P4, P19, P32, and P47), for example by manually attaching or detaching some
hardware. Further cases comprise the generation of reconfigurations that require the robot
to be placed in a non-dynamic state, such as stopping movements before executing a
reconfiguration (p4).

Long: The configuration is changed in the case of major environmental changes that are likely
to occur, but do not occur frequently (P21, P25, P37, P63-65, and P78), or when a new configuration
is required to perform a mission that may include multiple tasks (P2, P15, P16, P18, P24, P43,
P18, and P66). Five papers (P17, P22, P30, P68, and P74) consider major environmental changes as
well as new mission requirements. In summary, we assume that a configuration will be
used for the duration of an entire mission. Failures that are likely to occur in practice, but
not frequently, may also lead to reconfigurations whose target configuration will be alive
for a long time (P11, P13, P42, P46, P49, P58, P64, and P75). Similarly, this lifespan also applies to
some types of resource constraints (P§ and P24) and runtime maintenance (P23).

Medium: Already smaller environmental changes (P12, P14, P20, P29, P31, P39, P52-53, P57, and P72)
are likely to be addressed by reconfiguration, or reconfiguration is needed within a mission
to execute the tasks of which the mission consists (Ps, P10, P35, P38, P40, P50, and P70). Both of
these two variants are considered at the same time by eleven papers (P1, P3, P33, P41, P51, P56-57,
P59, P91, P69, and P77). Three papers (7, P27, and P54) consider faults that are likely to occur more
often; and six papers (P57, P59, P61, P69-70, and P77) consider them in addition to environmental
changes or mission requirements. Also, resource limitations (P9) or safety reasons (P44-
45, and P55) are considered to trigger a reconfiguration that results in a configuration that is
assumed to be alive for a medium time. Accordingly, we define the scope of a configuration
with a medium lifespan to be of the lifespan of a single task.

Short: To execute a single task of a mission already multiple reconfigurations might be
needed. Configurations have a relatively short lifespan and are reconfigured quite fre-
quently. P60 reconfigures for each step of an executed task; in P71 every minor change
will be addressed by reconfiguring the robot; and in P73 a model used in a MAPE-K
feedback loop is frequently updated.

None: The configuration is constantly changing, and therefore, has no lifespan. In most
cases, this is realized by continuously updating parameters (P6, P34, and P76). In P6, feedback
in the form of parameter reconfiguration is added to a linear time-invariant system model;

O Stable (Fault or manual change)
@ Long (Mission scope)
O Medium (Task scope)
@ Short (Task step scope)
B None (Continious changes)
0,00% 10,00%  20,00% 30,00% 40,00%  50,00%

expected lifespan of a configuration at runtime

Fig.6 Lifespan of configurations
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in P34 the parameters of a time-division multiple access protocol are reconfigured; and in
P76 the parameters of a force allocation matrix are reconfigured, which is used to define
how the thruster configuration affects the dynamics of the UX-1 robot, an under water
robot for exploration of flooded mine tunnels (Ferndndez et al. 2019).

Stable: The configurations are stable for a very long time, and reconfiguration is only per-
formed due to exceptional events at runtime. These events are usually errors, such as
sensors returning implausible values when hardware fails (p26, P28, P47). Also included in
this category are reconfigurations that require a reboot of the robot (p4) or a manual trig-
ger by the user (P4, P19, P32, and P47), for example by manually attaching or detaching some
hardware. Further cases comprise the generation of reconfigurations that require the robot
to be placed in a non-dynamic state, such as stopping movements before executing a
reconfiguration (p4).

Long: The configuration is changed in the case of major environmental changes that are
likely to occur, but do not occur frequently (P21, P25, P37, P63-65, and P78), or when a new
configuration is required to perform a mission that may include multiple tasks (P2, P15, P16,
P18, P24, P43, P18, and P66). Five papers (P17, P22, P30, P68, and P74) consider major environmental
changes as well as new mission requirements. In summary, we assume that a configuration
will be used for the duration of an entire mission. Failures that are likely to occur in practice,
but not frequently, may also lead to reconfigurations whose target configuration will be
alive for a long time (P11, P13, P42, P46, P49, PS8, P64, and P75). Similarly, this lifespan also applies
to some types of resource constraints (P8 and P24) and runtime maintenance (p23).

Medium: Already smaller environmental changes (P12, P14, P20, P29, P31, P39, P52-53, P57, and P72)
are likely to be addressed by reconfiguration, or reconfiguration is needed within a mission
to execute the tasks of which the mission consists (P5, P10, P35, P38, P40, P50, and P70). Both of
these two variants are considered at the same time by eleven papers (P1, P3,P33, P41, P51, P56-57,
P59, P91, P69, and P77). Three papers (P7, P27, and P54) consider faults that are likely to occur more
often; and six papers (P57, P59, P61, P69-70, and P77) consider them in addition to environmental
changes or mission requirements. Also, resource limitations (p9) or safety reasons (44—
45, and P55) are considered to trigger a reconfiguration that results in a configuration that is
assumed to be alive for a medium time. Accordingly, we define the scope of a configuration
with a medium lifespan to be of the lifespan of a single task.

Short: To execute a single task of a mission already multiple reconfigurations might be
needed. Configurations have a relatively short lifespan and are reconfigured quite fre-
quently. P60 reconfigures for each step of an executed task; in P71 every minor change
will be addressed by reconfiguring the robot; and in P73 a model used in a MAPE-K
feedback loop is frequently updated.

None: The configuration is constantly changing, and therefore, has no lifespan. In most
cases, this is realized by continuously updating parameters (6, P34, and P76). In P6, feedback
in the form of parameter reconfiguration is added to a linear time-invariant system model;
in P34 the parameters of a time-division multiple access protocol are reconfigured; and in
P76 the parameters of a force allocation matrix are reconfigured, which is used to define
how the thruster configuration affects the dynamics of the UX-1 robot, an under water
robot for exploration of flooded mine tunnels (Fernandez et al. 2019).

In summary, reconfiguration in the literature is considered to be executed quite frequently,
but not continuously. Configurations are mostly considered to be alive for a long time, having
an entire mission as scope (38.16%); or for a medium time with an entire task of a mission
as scope (44.74%). Considering the most frequent granularity, which is the reconfiguration
of composite units, the time needed to execute a reconfiguration could be a major reason that
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stands against more frequent reconfiguration. This reason was also mentioned in some of the
papers, among others in detail in P4.

6.2 Reconfigurable elements in robotics frameworks

We investigated the robotics frameworks to determine which elements of a robotics system
they support in terms of reconfiguration. We based this analysis on our conceptual model
introduced in Sec. 4. Table 4 shows a summary of the four major robotic frameworks we
analysed according to the introduced conceptual model.

6.2.1 Configuration space

All frameworks provide structures for specifying reconfigurable assets and realize the three
different element kinds that can be part of the Code Base. Most frameworks provide multi-
ple realizations of basic units. ROS, OROCOS, and YARP realize basic units as shared or
dynamically loadable libraries. With plugins and nodelets, ROS implements two kinds of
composite units. Plugins allow us to load additional functionalities into the executed meth-
ods. In contrast to this, nodelets can be executed in separate threads in parallel to the current

Table 4 Reconfiguration elements in robotic frameworks

ROS/ROS2

OROCOS

YARP

RobMoSys (SmartSoft)

Asset Base

Basic units

dynamic libraries (ROS
plugin/nodelet)

dynamic libraries (plugin
services)

dynamic libraries (YARP
plugin services), static
library (YARP module)

service

P
2 Composite units executable programs dynamic libraries c++ executable programs component
2 (ROS node) (component) (component)
2 Unit parameters ROS parameter data flow port YARP port component parameter
=
£ Configuration model
€ Features node, plugin/nodel plugin component, plugin component
S Language N/A N/A N/A Variability Modeling
Language (VML)
Manifest (Schema) XML-based DSL (launch XML deployment file XML-based DSL (YARP component model,
file, plugin description file) manager.ini, plugin system con figuration model
manifest)
Interface mechanism IDL-based messages TaskContext API, IDL-based messages provided/requires services
(node), base class API IDL-based component (programs), base class API
- (nodelet/plugin), services (RFModule)
2 ROS parameters
4
Z Interface specification Documented interfaces Documented interfaces in Documented interfaces SmartMARS Metamodel
? (message types and the Orocos Component (communication objects +
g package descriptions) in Library communication patterns)
public repositories
Run-time Manager ROS master, DDS OROCOS YARPserver, SmartEventServer,
DeploymentComponent 'YARPmanager SmartParameterMaster
2 Characteristics
= publis ibe, data- flow, data- flow, publish/subscribe,
] client/server, parameters client/server client/server client/server
:: Binding mode dynamic dynamic dynamic dynamic
Decision Criteria
Models state machine (ROS state machine behavior trees dynamic statecharts
SMACH)
behavior trees (py_tress_ros
& BehaviorTree.CPP)
g Rules/Policies N/A N/A N/A VML: ECA rules
,_°~. Goals N/A N/A N/A SmartTCL (Task
3 Coordination Language)
;5: Utility function ROS APIs RTT:APIs YARP APIs N/A
&6
'E Change Type
Parameter dynamic_recon figure RTT::TaskContext (data YARP::0s::BufferedPort SmartParameterMaster/

Functionality

Structure

pluginlib (plugin)
roslaunch (node), pluginlib
+ nodelet (plugin/nodelet)

flow port)
N/A
RTT::Scripting (plugin)

N/A
YARP::dev::DriverCreator

Client (parameter)
N/A

Smart Task (component)
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execution. In RobMoSys, basic units are the provided services, which are specified as models
according to a metamodel of RobMoSys. Depending on the concrete implementation, e.g.,
SmartSoft, the code for a service can be generated and loaded dynamically.

The composite units are realized in ROS and YARP as executable programs that use
the frameworks for inter-unit communication and for accessing basic units. In OROCOS,
composite units provide the basic infrastructure to make a system out of pieces of code that
can interact via data and events. RobMoSys services are gathered in components.

Unit parameters are realized differently across the frameworks. In ROS, composite units
can have parameters that are managed globally and must be actively accessed by the composite
units. OROCOS and YARP are based on input and output ports of composite units that are
explicitly connected with each other, data directly flows between composite units according
to their linking. In RobMoSys, components have a model-based parameter specification.

6.2.2 Configuration space model

In all frameworks, the composite units realize features that can be turned on or off as they
are considered in the literature (Kang 1990). In ROS, OROCOS, and YARP, even the basic
units are features.

All frameworks work with XML-based Manifests (Schema) for specifying the reconfig-
urable elements (features). Thereby, the Manifests can be distributed over multiple files,
e.g., one per composite unit. However, only RobMoSys provides a detailed metamodel that
defines the syntax of the Manifest (Schema). Similarly, among the robotic frameworks, only
RobMoSys provides an explicit model of the configuration space, despite its importance for
safe reconfiguration. This model can be specified using the Variability Modeling Language
(VML) (Schlegel et al. 2013). For ROS, there are at least third-party extensions that provide
such capabilities, such as HyperFlex (Brugali and Gherardi 2016).

6.2.3 Encapsulation

All robotic frameworks provide suitable interface mechanisms to realize well-encapsulated
reconfigurable assets. Except for RobMoSys, the only explicitly specified Interface mecha-
nism is an abstract class that must be implemented by the reconfigurable assets. RobMoSys
provides a metamodel for describing communication objects and communication patterns,
e.g., publish/subscribe or client/server. However, while the interfaces are clearly defined,
this does not necessarily imply that their semantic usage is equally simple. For example,
interfacing with the ROS navigation stack can require non-trivial sequences of messages.

Except for RobMoSys, all frameworks rely on manual documentation of the interfaces.
ROS and OROCOS encourage developers to provide such Interface specification by making
it an essential part of public ROS repositories, and of the OROCOS component library. In
practice, however, the documentation of packages is often outdated and not maintained. It
is well-known that good documentation is needed for effectively working with software
(Aghajani et al. 2019), and, therefore, this lack in up-to-date documentation is a significant
challenge for the implementation of robotic systems.

6.3 Discussion of reconfigurable elements

Three distinct levels of granularity were identified at which robotic systems can be reconfig-
ured. The first level comprises concrete configuration parameters that can be assigned values.
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The second level encompasses basic units that provide concrete functionalities but are not
independently executed. The third level encompasses composite units that provide larger
software entities that can comprise multiple basic units and are executable on their own.
While the majority of literature focuses on the structural reconfiguration of robotic systems,
primarily at the granularity of composite units, robotic frameworks offer only limited sup-
port for this granularity concerning reconfiguration. Technically, the frameworks facilitate
the structuring of robotic systems according to different relevant granularities for reconfigura-
tion. However, they lack the means to explicitly specify configurable elements and possible
constraints on them. This represents a significant challenge to their reconfiguration since
possible interactions are not explicitly captured and, therefore, difficult to handle.

7 Reconfiguration mechanisms (RQ3)

To answer RQ3, we conducted an investigation of all three kinds of artifacts. First, we present
the investigation of the academic literature that represents the state-of-the-art concerning
RQ3. Then, we present the corresponding state-of-practice, in terms of robotic frameworks
and robotic (sub-)systems. Finally, we answer RQ3 concerning all three artifacts.

7.1 Academic literature on reconfiguration mechanisms

We reviewed the academic literature on reconfiguration for the following three aspects of
reconfiguration mechanisms needed to develop reconfigurable robotic systems.

1) Specification of the reconfiguration logic: Reconfiguration is a multi step process,
before actually executing a reconfiguration, the robotic system must identify the need to do
so and plan on how to react. The latter two steps must be implemented in some way in a
robotic system and we are interested in identifying the techniques that have been proposed
in the scientific literature.

2) Ensuring the validity of reconfigurations: To allow safe and secure operation of robotic
systems, it is essential that they are always in a valid configuration. Invalid configurations
can cause security issues (Peldszus et al. 2018) as well as safety issues. Unfortunately, it has
been shown that already statically ensuring the validity of configurations is challenging (Yin
et al. 2011). Therefore, we are interested how this issue can be addressed in the robotics
domain.

3) Cost of reconfiguration: The different mechanisms for specifying, validating, and exe-
cuting reconfigurations usually come with some cost for executing these tasks. However, in
what form these cost arise, what dimensions of cost must be considered for reconfiguration,
and their impact are unclear so far.

7.1.1 Specification of reconfiguration

In the investigated papers, we found seven different approaches to specifying the recon-
figuration logic of a robotic system. Figure 7 shows the approaches and how often these
were implemented in the investigated papers. Only 6 papers do not explicitly consider the
specification of the reconfiguration logic (33, P43, P51, P63-64, and P75), which is indicated by
n/a.
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Fig.7 Specification of reconfiguration logic

Learning: In 4 papers, no explicit specification of the reconfiguration logic is needed, since
the papers focus on automatically learning when and how to reconfigure the robot (p41-42,
P52, and P72).

Model: The reconfiguration space and task or mission requirements are explicitly modeled.
There are techniques that rely on two connected models. First, a model that captures
the possible configuration space, i.e., alternative configurations for various situations are
explicitly defined or the configuration space is specified using feature models (Kang 1990).
Second, a model of the tasks or missions to be executed that is connected to needed
elements from the latter model via explicit references. Some central unit selects the best
configuration based on the current task and situation (P2, P5, P8-10, P16-18, P20-22, P25, P27-29,
P39, PS0, P53, P56, P59, P61, P66, P70, P73, P76-78). P38 express the configuration logic as executable
models, such as a state machine, avoiding the need for some central unit for selecting target
configurations; and P49 uses a mathematical model.

Rule: The reconfiguration is explicitly specified in rules, whose application conditions are
monitored at runtime and the respective rule is executed as soon as the condition applies
(P15, P24, P31, P35-36, P40, P48, P54, P57-58, P60, P68-69, P71, and P74). The rule then changes to
a specific configuration; or a specific reconfiguration action will be executed, such as
replacing a composite unit. Rules are typically encapsulated in separate artifacts that can
be maintained without touching the implementation of the robotic system. In addition,
domain-specific languages are often used to facilitate the specification of these rules.

Optimization problem: Six papers treat the reconfiguration as an optimization problem of
the kind of finding the best configuration that fulfills some given criteria (P1, P26, P30, P46-47,
and P55). For example, in P26 the developers define a multi-dimensional constraint problem
for which an optimal solution in terms of a target configuration must be identified. In
contrast to the papers that are based on models of the robotic system, which are likely to
select a new configuration also based on the outcome of some optimization problem, in
these papers, the optimization problem is hard coded and is not based on the interpretation
of a model.

Algorithm: In another six papers (P6-7, P11-12, P34, and P45), the reconfiguration logic is realized
as an algorithm determining the conditions that trigger a reconfiguration. The algorithms
considered in this category are typically fixed reconfiguration algorithms for specific
reconfiguration tasks, e.g., error detection algorithms to detect a faulty component and
reconfigure the system (usually by disabling the faulty component and enabling a backup).
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These algorithms cannot be tailored to project-specific needs by developers but are
intended to be used as they are for a specific reconfiguration task.

Hard-coded logic: In eight papers (P13-14, P19, P32, P37, P62, P65, and P67), the reconfiguration logic
is a hard-coded part of the implementation of the robotic system and typically consists
of if-then statements. Unlike fixed algorithms, the logic is tailored towards the specific
robotic system and is maintained as part of the source code of the robotic system.

Manual selection of configuration: Finally, four papers (P34, P23, and P44) do not consider the
specification of when and how to reconfigure. These papers focus on automatically recon-
figuring into a target configuration. For example, manual triggers, such as attaching a tool
(e.g., a screwdriver) to the robot serve as a trigger to perform a automated reconfiguration
into a specific configuration (e.g., loading the software modules needed to work with the
screwdriver). While the target configuration is given manually, the system is configured
automatically, among others involving activities such as bringing the system into a safe
state before changing its configuration (P4).

Altogether, basing the reconfiguration logic on models of the robotic systems is the most
popular way of specifying the reconfiguration logic with 37.18% of the papers. The relatively
similar, but much simpler specification of the reconfiguration logic in reconfiguration rules
follows with 19.23% of the papers. The reconfiguration logic being hand-written in code
is considered by 10.26% of the papers. All other specifications of the reconfiguration logic
account for only between 5.13% and 7.69% of the papers and could be considered less
relevant or at least less popular for the development of dynamically reconfigurable robotic
systems.

Both rule- and model-based reconfiguration are built on user-defined specifications of the
logic itself or of the system. For these papers, we found mostly Domain-Specific Languages
(DSLs) (Wasowski and Berger 2023) for defining when and how to reconfigure. These DSLs
range from providing simple mappings between tasks and composite units to languages that
support complicated conditions that are solved to determine a suitable configuration within the
robot’s configuration space. Unfortunately, many papers only mention a type of specification
that is not detailed in the paper. Usually these specifications are mappings between goals
or tasks and reconfigurable assets of the robot that are suitable for achieving the goal or
performing the task.

7.1.2 Validity of reconfigurations

While all of the 78 reviewed papers describe approaches that enable reconfiguration, only 28
of them explicitly consider ensuring that a reconfiguration will result in a valid configuration
of the robot. Figure 8 shows the identified validation approaches and how often these appear
in the investigated papers.

M Trial and error

@ Fixed valid configurations

O Valid by construction

B Checked against specification

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00%
percentage of the works that validate target configurations using the given
approach

Fig.8 Assurance of target configuration validity
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Checking against specification: In 14 papers (P7, P45, P48, P51-52, P55, P61, P66, P69-70, P72-74, and
p77), the validity of a reconfiguration is checked against a specification before executing
the reconfiguration. In four of these papers (28.57% of the cases) this specification is a
feature model (Kang, 1990) (P45, P48, P55, and P74), in another four cases it is an architecture
specification (P52, P72, P74, and P77), in three cases the checking is performed against a state
machine containing the reconfiguration logic (p51, P70, and P73), and in another three cases
general well-formedness rules are used (ps1, P66, and P69). In P7, the validity is only checked

in regard to whether application-specific timing constraints are met, which differs from
the other papers in this category.

Fixed valid configurations: Six papers (P46, P53, P63, P65, P76, and P78) use a fixed configuration
space that only contains valid configurations. Either the reconfiguration algorithm can
only chose from a predefined set of valid configurations (P46, P53, P76, and P78), or the recon-
figuration space consists only of simple replacements that are always valid (P63 and P65).

Valid by construction: Four papers (4, P56, and P59-60) ensure the validity of target configu-
rations by the way they construct their reconfiguration mechanism. Compared to using a
fixed number of valid configurations to choose from, in these papers, additional constraints
to be fulfilled by possible target configurations must be considered, and the reconfiguration
logic cannot just choose any valid configuration to fulfill the task. In P4, the reconfiguration
of a robotic system realized based on port-based objects, which are composite units that
have defined numbers of input and output ports using which they can be connected with
each other. Validity is achieved when all input ports of port-based objects are connected
to output ports. In P59 and P60, validity must be manually verified at development time,
while in P56, validity is encoded in the optimization problem to be solved at runtime,
resulting in only proposing valid reconfigurations.

Trial and error: P12 proposes a trial-and-error-based reconfiguration method. This method
involves attempting various configurations until the robot has reconfigured into a config-
uration that allows the execution of an intended task.

Overall, since below a third of all investigated papers consider checking the validity
reconfigurations, validity seems to be a minor concern in the robotics community so far,
although it is essential for the huge configuration spaces proposed in many papers. Much
work in this direction has already been done in the product line community, e.g., when
focusing on finding optimal configurations (Henard et al. 2015; Guo and Shi 2018; Pereira
et al. 2021). Nevertheless, the more recent papers considered in our SLR already seem to
integrate such results (P45, P48, P51, P52, P55, P56, P70, P72-75, and P77), the oldest of which (p70) dates
from 2010.

Besides this, nine additional papers consider the validity of reconfiguration, but these are
practically infeasible for more complex reconfiguration scenarios. In particular, this com-
prises the papers that work with a fixed pool of valid configurations (p46, P53, P63, P65, P76,
and P78), a constructive approach that limits the number of possible configurations (p4), or
completely manual verification (P59 and P60). However, these papers were mainly published
between 1997 and 2006 and might represent a dated view on the validity of reconfigurations.
Still, four of these papers (P46, P53, P76, and P78) were recently published between 2019 and 2022.

Nevertheless, we see a trend towards systematic validity checks against the design-time
specification of the configuration space and task requirements, as 56% of the papers dealing
with target configuration validation (mainly the more recent ones) check the validity of
reconfigurations against such specifications.
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7.1.3 Cost of reconfigurations

Roughly, one third of all investigated papers (36.62%) consider the cost related to reconfig-
uration in some form. In 51.85% of the papers, this cost arises from additional computations
necessary for performing computations. All other papers do not explicitly mention a source
of cost. The papers capture the cost in two different dimensions, were only P39 considers
both dimensions:

Time: With 18 papers, the majority considers the cost in terms of time needed for recon-
figuration (P9, P17, P38-39, P42, P44, P47-50, P52, P56, P61, P64, P66, P69-70, and P78). Among others,
taking too long for reconfiguration could lead to violating real-time constraints or having
to interrupt the operation.

Resources: Three papers name the resource usage caused by a reconfiguration. P73 reports
a static memory overhead due to running a reconfiguration engine. P27 and P39 generally
mention that the usage of computing resources could impact the performance of a robotic
system since they are partially blocked during reconfiguration.

Among the papers that consider the cost of reconfiguration, 11 papers do not further specify
where these cost arise (P9, P20, P22-23, P27, P38, P44, P50, P61, and P75-76). The other papers identify
two sources of cost:

Planning: The majority (13 papers) consider the cost of planning of how to reconfigure the
robotic system (P17, P39, P46-49, P52, P56, P63, P66, P69-70, and P73). The cost of planning a reconfig-
uration depends on the configuration space and the number of possible reconfigurations as
well as the way how possible configurations are computed. Calculating an optimal solution
in a large configuration space might not scale (P46, P49, P56, P63, P66, P69, and P73). However,
assuming a sufficiently small configuration space, an optimal solution is still feasible,
since the authors measured for P52 on average 5.57s generating reconfigurations followed
by another 5.94s for model checking them ro generate an optimal target configuration.
Faster planning can be achieved by accepting non optimal target configurations or restrict-
ing the reconfiguration problem (P17, P47, P49, and P70) or incremental reconfiguration planning
(p39). If the planning is designed well, the time for planning can be reduced to times below
six seconds (P70) or even 0.66 seconds (P47).

Execution: Only three papers consider the costs of actually executing a planned reconfigu-
ration (P42, P64, and P78). P42 and P78 actually measured the cost of executing a structural
reconfiguration of composite units, with the latter measuring 0.47 seconds to change a con-
figuration and the other 4.2 seconds. In summary, the cost of executing a reconfiguration
is not negligible, but can be relatively low.

7.2 Reconfiguration mechanisms of robotics frameworks
To capture the state-of-practice concerning RQ3, we investigated what reconfiguration mech-
anisms robotics frameworks provide. Again, we based this analysis on our conceptual model

introduced in Sec. 4, and Table 4 also contains the classifications of the robotics frameworks
concerning reconfiguration mechanisms.

7.2.1 Interactions

All frameworks provide means to implement runtime interactions, e.g., data exchanges or
calling functionality, among reconfigurable elements that are orchestrated by one or more
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Runtime Manager. RobMoSys uses SmartEventServer for publish/subscribe communication
and SmartParameterMaster for parameter-based communication. ROS has a centralized ROS
master, while ROS2 uses a decentralized data distribution service (DDS). In YARP, every
component periodically retrieves incoming messages from central framework entities.

The robotic frameworks provide different Interaction mechanisms, allowing reconfig-
urable assets to interact at runtime. They mainly use message-based communication; e.g.,
ROS nodes can publish and subscribe to messages based on topics, and composite units can
subscribe to others in RobMoSys. Furthermore, ROS, YARP, and RobMoSys offer clien-
t/server communication. In contrast, the communication in OROCOS is purely parameter
based and the entire control flow is handled by the framework. In all robotic frameworks,
Interaction binding takes place when the source code statements implementing interactions
are executed (late dynamic).

7.2.2 Trigger & logic

Only RobMoSys provides a wide variety of possibilities for specifying Decision Criteria
in terms of reconfiguration triggers and reconfiguration logic. ROS, OROCOS, and YARP
provide some kind of behavior model that is not explicitly intended to specify reconfiguration.
Instead, reconfiguration is mainly implemented in the composite units using the framework’s
utility functions (equivalent to the hard-coded specification of reconfiguration triggers and
logic that we found in the literature (see Sec. 7.1.1)). Consequently, developers are obliged
to consider and address all potential side-effects, such as the time required for startup or
shutdown of a component, and any intermediate states that may arise from this. In this
regard, the frameworks offer minimal support in addressing these challenges.

Of the Change types in our conceptual model, all frameworks support reconfiguration of
the structure of arobot’s software, which is also the most commonly observed change type in
the SLR, and parameter reconfiguration. Only ROS supports the Change type of functionality
reconfiguration through its pluginlib.

In ROS, parameter reconfiguration is implemented in the dynamic_reconfigure library.
While ROS does not provide explicit support for structural reconfiguration, launching and
terminating composite units is implemented in the roslaunch library, which can also used for
structural reconfiguration at runtime. Loading basic units is implemented in pluginlib/nodelet
depending on the concrete realization of the basic unit that should be instantiated. OROCOS
offers the API TaskContext for accessing and changing parameters and the API Scripting
for structural reconfiguration in terms of loading plugins. A component called DriverCre-
ator manages the loading of components in YARP. In the SmartSoft implementation of
RobMoSys, parameter reconfiguration is managed by a SmartParameterMaster and Smart-
ParameterClient, while components are organized by the service SmartTask. However, the
intention of RobMoSys is to approach reconfiguration using model-based techniques, where
reconfiguration is specified in models rather than implemented in code; models are then
executed to realize the behavior and reconfiguration of the robotic system.

In conclusion, the specification of reconfiguration triggers and logic, as well as their
execution in robotic systems, is where we see the biggest mismatch between what is proposed
in the literature and what robotic frameworks provide. With the exception of RobMoSys,
no framework provides the means to explicitly specify the reconfiguration space, nor to
specify concrete reconfigurations. To some extent, behavioral models, e.g., using statecharts
or behavior trees (Colledanchise and Ogren 2018), could be used to specify reconfiguration.
However, their main purpose is to describe actual behaviors in terms of self-adaptation. As
part of this, reconfigurations could be triggered, for example, in the implementation of an
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action node in a behavior tree. In this case, however, the actual reconfiguration must still
be implemented using the reconfiguration-related APIs of the frameworks. In the end, the
intended method is to hard-code the reconfiguration mechanisms using the reconfiguration-
related APIs of the frameworks, e.g., for launching and terminating composite units from
code. This pure focus on source-code APIs of the frameworks is somewhat contradictory to
the significant focus on specifying reconfiguration using DSLs and reference architectures
for reconfigurable robots observed in our SLR. However, one can clearly see that RobMoSys
originates from an academic research project, as it provides exactly such specification formats
for decision criteria. However, these libraries are not explicitly defined in any framework with
a focus on reconfiguration, but are intended for launch-time configuration.

7.3 Reconfiguration in ROS (sub-)systems

To investigate how reconfiguration is actually implemented in practice and to derive best
practices for implementing reconfiguration, we investigated the source code of open-source
robotics (sub-)systems. To this end, we started the investigation with a list of 115 open-source
ROS-based (sub-)systems of Malavolta et al. (2021). One of these repositories was no longer
publicly accessible. We filtered the accessible repositories for all (sub-)systems that use one of
the identified ROS libraries (see Sections 6.2 and 7.2) suitable to implement reconfiguration.
Since the libraries have to be explicitly imported, this was easily done by name matching.
We kept all (sub-)systems whose source files contain one of the following library names:
(i) roslaunch, (ii) nodelet, (iii) pluginlib, and (iv) dynamic_reconfigure. This resulted in 48
(sub-)systems that potentially contain implementations of reconfiguration. Table 5 shows a
list of the investigated (sub-)systems and which libraries they use. In some cases, one of the
keywords was used in comments of the source code, e.g., in a description of how to manually
launch the (sub-)system using roslaunch. We provide all details on the (sub-)systems and our
findings in our replication package (Peldszus et al. 2024a).

To get a better overview of these (sub-)systems, we extracted their ROS versions. We
identified 104 (sub-)systems that are based on ROS and 10 (sub-)systems based on ROS2
in the dataset of Malavolta et al. (2021). After filtering these (sub-systems) as described
above, only moveit2 remained as ROS2-based (sub-)systems that potentially implements
reconfiguration.

We then studied the selected (sub-)systems in-depth, analyzing how reconfiguration is
implemented (RQ3). For each match location, we first checked whether the match could be
part of a reconfiguration or not, e.g., because the match was in a comment. Thereafter, we
started our in-depth investigation from each code line in which one of the libraries is used.
First, we inspected each usage in detail and identified the purpose for which the library is used
at that location. Afterwards, we did both a forward navigation along the dependencies, i.e.,
method calls and field accesses, and looked at all the code that was referenced from that loca-
tion, as well as a backward navigation. This allowed us to determine how the reconfiguration
was triggered and executed.

7.3.1 Observations

Figure 9 summarizes how often we found which kind of reconfiguration in the investigated
robotic (sub-)systems. Of the 48 (sub-)systems investigated in-depth, 17 systems contain
no reconfiguration at all. The libraries are used purely for launching the (sub-)systems and
sometimes for launch-time configuration. Table 5 shows in detail which (sub-)systems contain
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1 void CameraTrigger::onlinit() {

2 .

3 //setup dynamic_reconfigure server

4 dynamic_reconfigure:Server<camera_trigger_paramsConfig> ::CallbackType cb;
5 cb =boost:bind(&CameraTrigger:configCallback, this, _1, _2);

6 m_dynReconfigServer.setCallback(cb);

;

8

}...

10 void CameraTrigger::configCallback(const camera_trigger_paramsConfig &config, uint32_t) {
11 m_triggerFPS = config.camera_trigger_frequency;

13 //send new FPS to arduino

14 m_port.lock();

15 m_port.writePort("#fps:" + std::to_string(m_triggerFPS) + "\r\n");
16 m_port.unlock();

17 }

Listing 1 Parameter Reconfiguration in “AutoRally”

which kind of reconfiguration. In what follows, we describe implementations of reconfigu-
ration we found.

The majority (28 robotics (sub-)systems) uses parameter reconfiguration, mostly to recon-
figure low-level parameters close to the hardware. For example, Listing 1 shows a code excerpt
of the “AutoRally” implementation in which parameter reconfiguration is used to update the
frequency of a camera. In lines 2 to 5, the dynamic_reconfigure server is configured by reg-
istering a call back method at the server. This method is shown in lines 10 to 17 and simply
changes the frequency of the camera and writes it to the hardware. We found no (sub-)system
in which parameter values are changed from within the implementation, but these are provided
for assignment by external entities. Surprisingly, only a few (sub-)systems check assigned
parameter values, e.g., whether these are within a plausible range. While most (sub-)systems
assign the updated parameters immediately to local variables, we still frequently observed
locks or flags indicating changes to avoid changing ongoing executions. For example, in
“evapi_ros,” the configuration of controllers is only updated when the configuration values
are changed. Listing 2 shows the implementation of this behavior. Whenever the callback
method registered with dynamic_reconfigure is called, a flag is set in line 3. During the main
execution loop in lines 9 through 17, this flag is checked and only if there are changes, the
individual controller configurations are updated.

Nine (sub-)systems contain reconfiguration at the level of basic units. Functionalities are
dynamically enabled, which is usually done by reacting to parameter reconfiguration or pro-
viding services. For example, as shown in Listing 3, “micros_swarm_framework” provides

none I
composite unit I
basic unit G
parameter I

0,00%  10,00% 20,00% 30,00% 40,00% 50,00% 60,00%
percentage of the investigated (sub-)systems

Fig.9 Granularity of reconfiguration implemented in the investigated ROS (sub-)systems
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24
25
26
27
28

// Callback function to change pid parameters at runtime.

void CallbackReconfigure(evarobot_controller:ParamsConfig &config, uint32_t level) {
b_is_received_params = true;
g_d_wheel_separation = config.wheelSeparation;
...// copying all remaining values of the config

}

int main(int argc, char sxargv) {
while (ros:ok() ) {

//If new parameters are set, ... and controller parameters are updated.

if (b_is_received_params) {
controller1.UpdateParams(g_d_p_1,9_d_i_
controller2.UpdateParams(g_d_p_2,g_d_i
b_is_received_params = false;

}

}

Listing 2 Use of Update Flags to Indicate Changes during Parameter Reconfiguration in “avapi_ros”

AppManager:AppManager():app_loader_("micros_swarm", "micros_swarm::Application") {
ros:NodeHandle nh;
app_load_srv_ = nh.advertiseService("app_loader_load_app", &ZAppManager:loadService, this);
app_unload_srv_ = nh.advertiseService("app_loader_unload_app", &AppManager::unloadService, this);

}...

bool AppManager:loadService(app_loader:AppLoad::Request &req, app_loader::AppLoad::Response &resp) {
std::string app_name = req.name;
std::string app_type = req.type;

bool app_exist = recordExist(app_name);
if(app_exist) {

return false;
}
else {
boost:shared_ptr<micros_swarm:Application> app;
try {
app = app_loader_.createlnstance(app_type);
}
catch(pluginlib::PluginlibException& ex) {
ROS_ERROR(...);
}

return true;
}
}

Listing 3 Reconfiguration of Basic Units in “micros_swarm_framework”

services for loading and unloading apps, which are tightly coupled to the framework and,
therefore, are classified as basic units by us. In line 3, the method for loading services, which
is defined in lines 8 to 28, is advertised as a ROS service. When this service is called, this
method will load an app using pluginlib (line 20) if it is not already running. However, only two
(sub-)systems dynamically load plugins or nodelets (the realization of basic units in ROS) as
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void AutoRallyChassis::onlnit() {

runstopSub_ = nh.subscribe("/runstop", 5, &AutoRallyChassis::runstopCallback, this);

}...

void runstopCallback(const autorally_msgs::runstopConstPtr& msg) {
runstops_[msg—>sender] = xmsg
}

void AutoRallyChassis:setChassisActuators(const ros:TimerEvent&) {

//check if motion is enabled (all runstop messages = true)
if(runstops_.empty()) {

chassisState—>runstopMotionEnabled = false;
}else{

chassisState—>runstopMotionEnabled = true;

int validRunstopCount = 0;

for(auto& runstop : runstops_) {

.
}
}

Listing 4 Reconfiguration of Basic Units in “AutoRalley” based on Variables to Enable or Discable Units

part of the reconfiguration. The other system (cob_environment_perception®) creates algo-
rithm objects configured for their intended use case, but classloading takes place already at
the responsible node’s instantiation. The rest enables or disables basic units by using variables
that are checked in conditions to decide whether the basic unit, e.g., a functionality, should be
executed or not. For example, Listing 4 shows how “AutoRalley” allows us to write messages
to the topic “/runstop” to enable motion. During initialization, the corresponding topic is
subscribed (line 3) and a callback function registered, which writes all received messages
into class-scope variable. During execution, this information is processed to decide whether
the basic unit implementing movement is enabled or disabled (lines 8-19).

Only three (sub-)systems provide reconfiguration on the level of composite units to some
limited extent. The supported reconfiguration is far behind what is considered in the liter-
ature and provided by frameworks such as RobMoSys. Further, two of these subsystems
are ultimately the same subsystem (moveit), in its two implementations for ROS and ROS2,
respectively. The other subsystem is ros_control that provides a service to load controllers
using pluginlib. In principle, this allows structural reconfiguration, but the logic has to be
implemented in another subsystem using ros_control. The corresponding code is essentially
the same as the one shown in Listing 3, with the exception of independently executable
composite units being loaded.

7.3.2 Best practices for reconfiguration

From our insights on the implementations of reconfiguration in robotics (sub-)systems,
we derived best practices for implementing reconfiguration. Since only parameter recon-

3 https://github.com/ipa320/cob_environment_perception/blob/indigo_dev/cob_3d_registration/ros/src/
registration_nodelet.cpp
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boost:recursive_mutex parameter_server_mutex_;

// The callback method registered with dynamic_reconfigure

void cbParameter(const SafetyLimiterConfig& config, const uint32_t) {
boost:recursive_mutex::scoped_lock lock(parameter_server_mutex_);
hz_ = configfreq;
timeout_ = config.cloud_timeout;
...// setting of further config values

}

Listing 5 Lock-based Parameter Reconfiguration in “neonavigation”

figuration is widely implemented, we focus on best practices for implementing parameter
reconfiguration.

Patterns for parameter reconfiguration Any robotic (sub-)systems that includes parameter
reconfiguration must implement its reconfiguration logic. Depending on how many different
parts of the implementation need to be reconfigured to react to a parameter reconfiguration,
we observed two best practices for implementing the reconfiguration logic. To implement an
easily comprehensible reconfiguration logic, it is essential to choose the identified practice
that best suits the robotic system.

The first one is called Reconfigure callback, reconfiguration logic is implemented in a
callback method that is registered at the ROS API dynamic_reconfigure. In particular, for
simple reconfigurations that can be applied immediately to the robotic system, we observed
many examples in which this is a simple, but perfectly suitable practice. The example in
Listing 1 can be seen as one instance. However, for more complex systems, particularly,
systems in which reconfiguration has to be applied in multiple parts, following this pattern
does not scale.

The second pattern addresses the cases in which the first one does not scale. It is called
Message-based and concerns letting single working parts of the implementation subscribe
a topic and to broadcast the new values. It is used when many different and probably inde-
pendently working parts are affected by a parameter reconfiguration. Using this practice, the
logic specific to an individual part of the robotic system can be located in this part, avoiding
overly complex implementations of the callbacks.

Processing of updated values Itis essential to be able to update parameter values in the run-
ning system without having a negative impact on the current execution. We mostly observed
two ways to implement the processing of updated parameter values: Stateless execution and
stateful execution. Both serve as best practices for specific task characteristics as outlined in
what follows.

In stateless execution, the reconfigured parameters are applied each time the reconfigured
functionality is executed. Typically, the functionality is executed in a loop, and the parameter
values are copied to variables that are in the scope of the loop at the beginning of each iteration.
This way there is no interference during execution and the implementation is simple and
easily comprehensible. However, the values are only updated at the beginning of an iteration,
making this practice suitable for frequently executed, short-running tasks.

For tasks that need updating parameters also during task execution, another practice that
considers the state of the running execution is needed. In stateful execution, the object whose
functionality can be reconfigured using parameter reconfiguration, maintains an internal state
besides the parameters. Thereby, the parameters can potentially interact with the internal state
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class CameraWrapper : public UEventsHandler {
// Callback registered at dynamic_reconfigure
void callback(rtabmap_legacy:CameraConfig &config, uint32_t level) {}
if(camera) {
camera—>setParameters(config.device_id, config.frame_rate, config.video_or_images_path, config.pause);
}
}

void setParameters(int deviceld, double frameRate, const std::string & path, bool pause) {
if(cameraThread_) {
rtabmap::Cameralmages * imagesCam = dynamic_cast<rtabmap::Cameralmages x>(camera_);

imagesCam—>setimageRate(frameRate);

if(pause && !cameraThread_—>isPaused()) {
cameraThread_—>join(true);

} else if(Ipause && cameraThread_—>isPaused()) {
cameraThread_—>start();

telse{..}

}
}
}

Listing 6 Parameter Reconfiguration in “rtabmap_ros” Pausing or Resuming Execution of the Reconfigured
Camera If Needed

of the object, requiring a mechanism to notify the object about changed parameters. In the
(sub-)systems, we found three different realizations of this practice: (i) Change Flag — the
object frequently checks a change flag and, if necessary, the reloading of parameter values is
triggered, as shown in Listing 2; (ii) Lock — the object provides direct access to the internal
configuration values, and a locking mechanism controls the execution while updating live
parameters, such as neonavigation realizes it using the C++ boost library as shown in Listing
5; and (iii) Callback — a callback method is provided to stop the current execution and to
trigger continuing the execution with the new parameters, such as the implementation of
parameter reconfiguration of rtabmap_ros shown in Listing 6 that resumes the camera threat
if it has been paused. Actually starting and stopping the camera is offered via two services.
However, due to the complex execution logic, the latter mechanism is mainly suitable for
continuous or long-running tasks.

Soundness check of new values To avoid faulty reconfigurations, it is essential to check
new, potentially externally provided, values for validity. Although this is a well-known best
practice (OWASP 2021), we only rarely found such checks in the parameter reconfiguration
implemented in the robotic (sub-)systems we studied. Given the importance of sound param-
eter values for safe execution, this best practice is related to the validation of reconfigurations
that we considered in the SLR. Since the frameworks do not provide support for checking the
validity of reconfiguration, this must be implemented in the robotic (sub-)system itself. Here,
we observed two aspects in the robotic (sub-)systems that need to be considered for prop-
erly implementing soundness checks concerning the individual characteristics of a robotic
system, namely Time of Check and Checked Properties.

The new values assigned to unit parameters may be checked at different times, depend-
ing on the execution characteristics of the functionalities that use these parameters. We
have observed two common practices: (i) immediate checking — new parameter values are
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checked immediately by simple runtime checks to prevent them from being inadvertently
processed unchecked; and (ii) on-demand checking — if the new parameter values are not used
immediately, the checks are performed on demand to avoid unnecessary checks. On-demand
checking is particularly appropriate when there is only one entity that reads them. Depending
on the likelihood that parameters will change again between reconfiguration and the next use
of that parameter, immediate checks or on-demand checks may be more suitable. For unit
parameters that are reconfigured more often than they are used, on-demand checks are more
suitable, while frequently used but infrequently reconfigured unit parameters can be checked
more efficiently with immediate checks.

One challenge in implementing soundness checks is to determine what to check. While
the properties to check can be application-specific, we identified two practices that should
be mostly applicable and that are frequently checked in the (sub-)systems implementing
soundness checks of new values: (i) value range — it should be always checked if the new
parameter values are within the expected value range; and (ii) consistency — when having
multiple parameters, it is essential to check if these are consistent and expected relations
among the unit parameters are fulfilled; the same might apply if the parameter value has to
relate to the current system state.

7.4 Discussion of reconfiguration mechanisms

The majority of the literature focuses on approaches for specifying structural reconfigura-
tion using domain-specific languages (DSLs) and executing them at runtime. During this
execution, constraints on the validity of target configurations are usually checked or only
valid configurations are computed by design. In contrast, robotic frameworks only provide
low-level application programming interfaces (APIs) for loading or unloading assets and
changing parameter values. Consequently, the necessary logic for implementing the struc-
tural reconfiguration considered in the literature must be handwritten by the developers of
robotic systems. Academic robotic frameworks can provide wrappers around more low-level
frameworks that allow specifying the reconfiguration logic using models. However, in robotic
(sub-)systems, we did not observe such reconfiguration, but only the frequent use of parameter
reconfiguration. A particular challenge arises from ensuring the validity of reconfigurations
and avoiding invalid target configurations and or intermediate states. While the frameworks
provide no support in this sense, we identified concrete practices for implementing recon-
figuration safely. Further academic work, such as GenoM (Fleury et al. 1997), specifically
focuses on generating code with corresponding validations. However, this work was not
covered by our literature review and not observed in practice.

8 Discussion

We now discuss our results. In particular, we relate the outcomes of our three data sources, the
SLR, the frameworks, and the robotic (sub-)systems. But, we also discuss our observations
with respect to the state-of-the-art of reconfiguration in other domains.

8.1 State-of-the-art vs state-of-practice

From the analysis of the state-of-the-art as captured by our SLR, we identified several tech-
niques to structural reconfiguration. As shown in Fig. 5, the most popular granularity for
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reconfiguration is composite unit, followed by unit parameter, and basic unit. Thereby, the
configurations have primarily a lifespan at the scope of a task or mission (see Fig. 6). How-
ever, the frameworks do not provide advanced support in terms of reconfiguration triggers
and logic for this kind of reconfiguration, only low-level APIs that allow manual implementa-
tion of structural reconfiguration. Probably related to this limitation, in robotics, ROS-based
(sub-)systems, as shown in Fig. 9, structural reconfiguration is almost completely absent,
and only parameter reconfiguration is used intensively. The low-level APIs provided by ROS
are primarily used for implementing parameter reconfiguration. Thereby, the best practices
concerning safety derived by us are only applied in few robotics (sub-)systems.

One explanation for this discrepancy could be that these reconfigurations are not neces-
sary in real-world settings and in non-academic setups. Another explanation could be that the
required advanced reconfiguration support is only now entering the robotics domain, e.g., in
projects such as RobMoSys, but is not widely available. Also, current robotic systems have
not yet reached the complexity envisioned by the scientific community. However, we expect
them to do so in the near future, and this will trigger the need to provide sophisticated reconfig-
uration support to robotic system designers. We believe that robots will increasingly become
multi-purpose, i.e., able to perform various tasks, with the consequent need of customization
and reconfiguration capabilities. Moreover, they will be increasingly required to be used in
uncontrolled environments, often shared with humans. This is visible also in the various
competitions and challenges organized in robotics conferences and forums. The demand for
autonomy, run-time reconfiguration, and deployment of software also after production, as
well as the use of Al solutions, will often need to deal with requirements of compliance
to security and safety standards. This is indeed another dimension of complexity that the
community will need to face; the compliance to safety and security standards will become
incremental and continuous as it is already happening in the automotive domain (Santilli
et al. 2024). Finally, the programming and use of robots should become more accessible
to end-users without knowledge in robotics or ICT. This will be a need both for industrial
and service robots. In fact, according to our experience, small and medium enterprises are
sometimes reluctant to use robotics solutions for automating their tasks because they miss
the capabilities to program and configure robots according to their (evolving) needs.

In the related domain of autonomous driving, we already found such an example of
composite unit-level reconfiguration in the open-source driving system Autoware.auto (The
Autoware Foundation 2023). In this system, different motion planners are used based on
the current driving scenario, such as lane following, lane changing, or parking. The recon-
figuration mechanism is a custom implementation of this project, and they use behavior
trees (Colledanchise and Ogren 2018) as an executable model for specifying the reconfigura-
tion logic. Considering the assumed complexity of reconfiguration in the reviewed literature,
this example is still relatively simple and is the only example of coarse-grained reconfig-
uration that we found in this system, but may indicate a future need for more complex
reconfiguration.

Another driver for reconfiguration in robotics could be machine learning (ML). Today,
many ML-enabled system, i.e., robotic systems, employ complex data processing pipelines
involving multiple ML models, e.g., for multi-stage perception of the environment (Peldszus
et al. 2024c). In this context, particularly due to the size of models and the numerous tasks
implemented in robotic systems using ML, i.e., the number of ML models used. Particularly
large language models (LLM), such as GPT, Llama, Claude, or Qwen, need multiple gigabytes
of memory to be executed. For example, we measured that a Qwen2.5-72b LLM (Yang et al.
2024) with 3.5 bits per word and 24k tokens context length already needs 40GB of GPU
memory. Due to this huge memory demands it is infeasible to execute all models in parallel
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but it may be necessary to reconfigure the robotic system, i.e., which model is loaded. This
could be a main driver for structural reconfiguration at the granularity of composite units or
even base units in practice. Also, this could lead to resource limitations, which we observed
in our SLR to be not being a main reason for reconfiguration any longer, to become more
relevant again.

One of the obstacles to the more widespread adoption of reconfiguration may be the
additional complexity it introduces and the necessity to address it in all phases of develop-
ment. Among other things, this added complexity is particularly challenging for testing. In
a previous interview study we conducted to validate a reactive security monitor capable of
reconfiguring the monitored system (Peldszus et al. 2024b), e.g., to put it into a safe mode
in case of detected malicious actions, a security engineer from a large automotive supplier
pointed out the testing challenges. Standards such as SOTIF, which can be relevant to any
robotic system, require companies to test all possible operating modes for safety, which can
be challenging in the context of reconfiguration, since all possible configurations must be
tested in combination with all points in time at which reconfigurations can occur.

8.2 Reconfiguration in other domains

The reconfiguration mechanisms provided by robotic frameworks, especially the non-
academic ones, are currently limited. However, state-of-the-art frameworks in many domains
allow sophisticated reconfiguration, e.g., the Linux kernel, the Debian Linux distribution, the
Eclipse IDE (OSGi), and the Android operating system (Berger et al. 2014). Others, such as
the eCos operating system, only support compile-time configuration, but come with sophis-
ticated DSLs and configuration tools that may be suitable for reconfiguration.

The investigated robotic frameworks have a well-defined asset base, but with the exception
of RobMoSys, they lack a clear specification of the reconfiguration space. The Linux kernel
and eCos can serve as inspiration with their feature-model-like DSLs to specify the config-
uration space. Robotic systems would benefit from explicit configuration space modeling
also for the reconfiguration at runtime, e.g., to analyse possible configurations and potential
conflicts that could occur at runtime (Franz et al. 2021) or to analyse security vulnerabili-
ties (Peldszus et al. 2018). Positively, with the RobMoSys project, researchers have already
been working on providing such methods and tools to the robotic domain.

Robotic frameworks provide more interfaces for interaction among the assets than state-
of-the-art software ecosystems (Berger et al. 2014) that mainly rely on the programming
language-specific interface specifications and focus on direct source code interactions among
the assets. The focus on pure source code interfaces in the state-of-the-art software ecosys-
tems allows mainly static and dynamic linking as interaction mechanisms. Only Eclipse and
Android, which support sophisticated class or module loading, need an interaction manager
at runtime. Such a manager or even multiple managers are provided by all robotic frame-
works. In the end, the interaction management in the robotic frameworks is comparable to
Eclipse’s services and extension points.

When it comes to the reconfiguration mechanisms, the software ecosystems are com-
parable to the investigated robotic frameworks. In the Linux kernel, kernel modules are
dynamically loaded when these are accessed. The same applies to plugins in Eclipse, which
can be dynamically loaded by OSGi once any of the contained Java classes is accessed. Like
most robotic frameworks, none of the software ecosystems provides techniques for explicitly
specifying reconfiguration. However, unlike the robotic frameworks, reconfiguration is also
not considered one of the core aspects in them.
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9 Threats to validity

A threat to the validity of the SLR could arise from the fact that the initial paper selection
depends primarily on the second author. To mitigate this threat, we tended to consider a
paper as potentially relevant rather than discarding it. In addition, we performed a snowballing
iteration that allowed important but initially erroneously discarded papers to be reconsidered.
In fact, of the 5,089 initially excluded papers, 48 papers were reconsidered in this way, and
we decided to look at 24 of them in more detail using multiple authors, but only included 6
papers for classification.

The focus on ROS (sub-)systems in the review of how reconfiguration is implemented in
practice represents a threat to external validity. However, ROS could be considered represen-
tative because it is the only widely used robotic middleware. Although our investigation of
robotic frameworks has revealed that ROS and even ROS2 do not provide advanced recon-
figuration techniques, our investigation shows that reconfiguration is actually implemented
in ROS systems. Therefore, ROS might not be the perfect example for investigating recon-
figuration in practice but we also lack better practically adopted frameworks, which yet have
to be developed.

Since ROS2-based systems are underrepresented in the sample of robotic systems studied,
our results apply only to ROS-based systems. However, we did not find any major improve-
ments in ROS2 regarding reconfiguration during our framework review, nor did we find any
differences between moveit and moveit2 regarding reconfiguration. This suggests that our
findings may also apply to ROS2-based systems, but it remains for future work to confirm
this hypothesis.

A further threat is that we only considered open-source systems and we did not consider
bespoke or industrial frameworks. In a follow-up study, it would be interesting to investigate
also these frameworks since they could have better reconfiguration mechanisms and/or make
use of a custom middleware.

A possible source of bias arises from the backgrounds of the authors and might threaten
internal validity. We mitigated this bias by including a diverse set of authors, including authors
from the software engineering domain, and authors whose expertise is in robotics. Moreover,
as a template basis for our comparison, we used the categorization from Berger et al. (2014).
Two related threats are that this template might give mainly a software viewpoint, as opposed
to ahardware viewpoint, and that it might be outdated. For mitigation, we adapted the template
based on our SLR and secondary literature.

Finally, while we provided justification for our conceptual model based on the papers
considered in our SLR, we did not perform additional evaluation, independent of the SLR,
for it. Such an evaluation, e.g., based on expert opinions, could provide further valuable
insight. However, we are confident that the conceptual model in its present form serves its
purpose for this paper, to compare how available state-of-practice frameworks implement
the reconfiguration of robots described in the state-of-the-art literature.

10 Conclusion
We determined the state-of-the-art and the state-of-practice of automated runtime software

reconfiguration in robotics. We analyzed the former by surveying the literature on recon-
figuration in robotic systems, inspecting 78 relevant papers in detail. We analyzed the latter
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Table 6 Implications for researchers and practitioners

Implications

Academics: In the summary of RQI above, we highlight that reacting to safety issues is a not so common
motivation for developing dynamically reconfigurable robotic software systems. However, since often robots
need to work in collaboration with humans and/or in safety critical domains, there is the need of rigorous
software enginering approaches in robotics. Due to the identified significant mismatch between the state-
of-the-art and state-of-practice, it is essential to further collaborate with practitioners. On one side, this is
necessary to guarantee that academic research is aligned with industrial needs, and, on the other side, to enable
technology transfer from academia to industry.

Practitioners: Robots will be multi-purpose and need to deal with high levels of uncertainty, e.g., in the
environment, reflected in sensor performance and reliability. This will probably lead to more complexity and
variability in robots and, consequently, requires structural and more sophisticated reconfiguration techniques.
It will become increasingly important to decouple the specification of reconfigurability from the applica-
tion logic. Available DSLs we surveyed in the state-of-the-art could become relevant. Moreover, explicitly
specifying the configuration space of robotic systems allows configuration tools and configuration editors,
and increases the reliability of reconfigurable robotic systems. The need of structural and more sophisticated
reconfiguration techniques may require to mitigate the identified discrepancies between the state-of-the-art and
state-of-practice concerning reconfiguration. Robotic frameworks could be extended to (i) explicitly support
context reconfiguration, (ii) provide support for reconfiguration triggers and logic, taking inspiration from aca-
demic frameworks that provide more sophisticated languages for specifying reconfiguration, and (iii) provide
more advanced APIs than those low-level provided by ROS so to enable derived best practices concerning
safety.

by reviewing how four major robotic frameworks support reconfiguration and how recon-
figuration is realized in 48 real robotic (sub-)systems. Based on our analysis of robotic
(sub-)systems, we derived best practices for implementing parameter reconfiguration. Table 6
provides an answer to the research questions and Table 7 draws take away messages for both
academics and practitioners. We identified a significant mismatch between the state-of-the-art

Table 7 Summarized answers to our RQs

Answers to the research questions

RQ1: What are the motivations for developing dynamically reconfigurable robotic software systems?

Researchers consider reconfiguration of robotic systems mostly to deal with changes in dynamic environments
and due to the execution of various tasks by a single robot. Further, the reconfiguration as measure for reacting
to hardware or software faults is also a popular motivation. Less common motivations relate to limited resources
and to react to safety issues. Finally, reconfiguration is frequently used as synonym for other concepts, such
as, deployment-time variability.

RQ2: What aspects of a robotic system can be reconfigured?

While literature mainly focuses on the structural reconfiguration of robotic systems, robotic frameworks support
this granularity only to a limited extent and require developers to implement the entire reconfiguration logic.
Academic robotic frameworks can provide wrappers around more low-level frameworks that allow specifying
the reconfiguration logic using models. So far, only parameter reconfiguration has been widely used in robotic
(sub-)systems.

RQ3: What mechanisms are used for developing dynamically reconfigurable robotic software systems?

The literature mainly focuses on approaches for specifying structural reconfiguration using DSLs and exe-
cuting them at runtime. Instead, robotic frameworks provide low-level APIs for loading or unloading assets
and changing parameter values. The logic for implementing the structural reconfiguration considered in the
literature has to be handwritten by the developers of robotic systems. However, in robotic (sub-)systems, we
did not observe such reconfiguration, but only the frequent use of parameter reconfiguration.
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and state-of-practice in reconfiguration of robotic systems. As future work, we plan to further
investigate the discrepancies we identified to unleash their reasons and to identify research
directions and strategies to fill this gap. This mainly concerns structural and more sophisti-
cated reconfiguration approaches that we believe will be needed in robotics in the near future.
Since the observed discrepancies might already stem from the motivation for reconfigura-
tion, we will follow up on the motivations for reconfigurations for which until now we only
captured the academic perspective by interviewing developers of robotic systems.
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