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Abstract
We give rigorous proofs and generalizations of partial fraction expansions for string
amplitudes that were recently discovered by Saha and Sinha.

Keywords String scattering amplitude · Partial fraction

Mathematics Subject Classification 11Y60 · 33E20 · 81T30

1 Introduction

Veneziano [8] interpreted the function

B(x1, x2) + B(x1, x3) + B(x2, x3)

as a scattering amplitude for strongly interacting mesons. Here,

B(x1, x2) = �(x1)�(x2)

�(x1 + x2)

is the beta function. Soon afterwards, Virasoro [9] and Shapiro [7] found other com-
binations of beta functions with similar properties, such as

�(x1)�(x2)�(x3)

�(1 − x1)�(1 − x2)�(1 − x3)
, (1)

where x1 + x2 + x3 = 1. These findings were crucial for the early development of
string theory, where the Veneziano and Virasoro–Shapiro amplitudes are associated
with open and closed bosonic strings, respectively. Related expressions appear in
supersymmetric string theory; for instance, tree level scattering in type II theories is
related to (1) with x1 + x2 + x3 = 0 [2, Eq. (7.4.56)].
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As a function of x1, the beta function has poles at the non-positive integers and can
be written as an infinite partial fraction

B(x1, x2) =
∞∑

k=0

(1 − x2)k
k! · 1

x1 + k
, Re(x2) > 0. (2)

The identity (2) is a special case of Gauss’ summation formula for the hypergeometric
function 2F1 [1, Thm. 2.2.2]. Here we use the standard notation

(a)k = �(a + k)

�(a)
=

{
a(a + 1) · · · (a + k − 1), k ≥ 0,

(a − 1)−1(a − 2)−1 · · · (a + k)−1, k < 0.

An unattractive feature of (2) is that the variables x1 and x2 play a different role
on the right-hand side. In [5], Saha and Sinha used physics arguments to obtain more
symmetric expansions of string amplitudes. To give an example, the case α = β =
p = 0 of [5, Eq. (4)] can be written

B(x1, x2) =
∞∑

k=0

1

k!
(
1 − λ + (λ − x1)(λ − x2)

λ + k

)

k

(
1

x1 + k
+ 1

x2 + k
− 1

λ + k

)
.(3)

Here, λ is a “field redefinition parameter”, subject only to the convergence condition
Re(λ) > 0. If λ = x2, the symmetry between x1 and x2 is broken and we recover (2).
Another interesting case is the limit λ → ∞. Since

1 − λ + (λ − x1)(λ − x2)

λ + k
= 1 − k − x1 − x2 + (x1 + k)(x2 + k)

λ + k
,

this limit is

B(x1, x2) =
∞∑

k=0

(−1)k(x1 + x2)k
k!

(
1

x1 + k
+ 1

x2 + k

)
.

This is a special case of a well-known 4F3 summation [1, Cor. 3.5.3].
As noted by Saha and Sinha, special cases of their identities give intriguing new

formulas forπ and othermathematical constants. For instance, the case x1 = x2 = 1/2
of (3) is

π =
∞∑

k=0

1

k!
(
1 − λ + (λ − 1/2)2

λ + k

)

k

(
4

2k + 1
− 1

λ + k

)
.

For λ = ∞, this is the well-known Madhava series

π

4
=

∞∑

k=0

(−1)k

2k + 1
,
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whereas the case λ = 1/2 is the identity

π

2
=

∞∑

k=0

(2k − 1)!!
k!2k(2k + 1)

,

which can be obtained by letting x = 1 in the Taylor series for arcsin(x).
Saha and Sinha also gave several expansions related to closed strings. For instance,

the case α = 1/3, β = 2/3 of [5, Eq. (A3)] gives the following expansion of the
Virasoro–Shapiro amplitude (1):

�(x1)�(x2)�(x3)

�(1 − x1)�(1 − x2)�(1 − x3)
=

∞∑

k=0

(ηk)
2
k

(k!)2

⎛

⎝
3∑

j=1

1

x j + k
− 1

1
3 + k

⎞

⎠ . (4)

Here, x1 + x2 + x3 = 1 and

ηk = 1 − k

2
+

√√√√
( 1
3 + k

)2

4
+ (x1 − 1

3 )(x2 − 1
3 )(x3 − 1

3 )

1
3 + k

.

Since

(
1 − k

2
+ √

a

)2

k
= (−1)k

(
1 − k

2
+ √

a

)

k

(
1 − k

2
− √

a

)

k

=
k−1∏

j=0

(
a −

(
1 − k

2
+ j

)2
)

, (5)

the terms in (4) are rational functions of the parameters.
The purpose of the present work is to give independent and rigorous proofs of the

mathematical results of [5]. We also give generalizations, which we hope may have
some interest for physicists. For instance, when x1 + x2 + x3 = s is an integer and
Re(λ + 1) > 0, we show that

�(x1)�(x2)�(x3)

�(1 − x1)�(1 − x2)�(1 − x3)
=

∞∑

k=0

(−1)s+1(ξk)
2
k+s−1

(k!)2

⎛

⎝
3∑

j=1

1

x j + k
− 1

λ + k

⎞

⎠ ,

(6)

where

ξk = 2 − s − k

2
+

√(
s + k − 2λ

2

)2

+ (x1 − λ)(x2 − λ)(x3 − λ)

λ + k
.
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As mentioned above, the cases s = 0 and s = 1 are of special relevance in physics.
In [5], (6) is only obtained for the fixed value λ = s/3. In particular, the case s = 1
and λ = 1/3 is (4).

Our method is to obtain infinite partial fractions as limit cases of finite partial
fractions for symmetric rational functions. One source of inspiration was Schlosser’s
work [6, §7], which is the only place where I have seen series remotely similar to (3).
The matrix inversions used by Schlosser are in fact closely related to partial fractions
[4], so there may be more direct connections that remain to be explored.

2 Partial fraction expansions

As a warm-up, we consider the identity (2), where we write x1 = x , x2 = a. One way
to derive it is to start from the finite truncation

�(x)

�(a + x)
· �(a + x + n)

�(x + n + 1)
= (a + x)n

(x)n+1
.

It has the partial fraction expansion

(a + x)n
(x)n+1

=
n∑

k=0

Bk

x + k
, (7)

where

Bk = lim
x→−k

(x + k)
(a + x)n
(x)n+1

= (−1)k(a − k)n
k!(n − k)! .

The identity (7) can be recognized as a special case of the Pfaff–Saalschütz 3F2
summation [1, Thm. 2.2.6].

We now let n → ∞ in (7). Using that

�(a + n)

�(b + n)
∼ na−b, n → ∞, (8)

it is straight-forward to formally obtain (2) in the limit. To make this rigorous one can
apply Tannery’s theorem if Re(x2) > 1, and then extend the identity analytically to the
larger domain Re(x2) > 0. This is discussed for more general series in the Appendix.

To obtain an analogous proof of (3), we start from

�(x1)�(x2)

�(x1 + x2)
· �(x1 + x2 + n)

�(x1 + n + 1)�(x2 + n + 1)
= (x1 + x2)n

(x1)n+1(x2)n+1
.

We then apply a partial fraction expansion for symmetric rational functions in two
variables. For (3), we need to work with three variables. In the remainder of this
section, we discuss the general case of r variables.

123
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Recall that the ring of symmetric polynomials is generated by the elementary sym-
metric polynomials, which may be defined by the generating function

r∏

j=1

(t + x j ) =
r∑

m=0

tr−mem(x). (9)

Thus, to compute the value of a symmetric polynomial at a point x = (x1, . . . , xr ),
it suffices to know em(x) for 1 ≤ m ≤ r . With this in mind, we can formulate the
following rather general partial fraction expansion.

Theorem 1 Let P be a symmetric polynomial of r variables, which is of degree at most
n + 1 in each variable. Let Q0, . . . , Qn be symmetric polynomials that are of degree
exactly 1 in each variable. Then,

P(x)∏n
j=0 Q j (x)

− P(y)∏n
j=0 Q j (y)

=
n∑

k=0

P(tk)∏n
j=0, j �=k Q j (tk)

(
1

Qk(x)
− 1

Qk(y)

)
, (10)

where tk denotes the vector defined up to permutations by

em(tk) = Qk(y)em(x) − Qk(x)em(y)
Qk(y) − Qk(x)

. (11)

By (9), we can equivalently write (11) as

(Qk(y) − Qk(x))
r∏

j=1

(u − t j ) = Qk(y)
r∏

j=1

(u − x j ) − Qk(x)
r∏

j=1

(u − y j ), (12)

where tk = (t1, . . . , tr ). That is, the components of tk are the solutions to

Qk(x)
r∏

j=1

(u − y j ) = Qk(y)
r∏

j=1

(u − x j ), (13)

considered as an equation in u.

Proof Sincewe are proving a rational function identity, wemay assume that all param-
eters are generic. Define λm and μm by

em(x) = λme1(x) + μm, (14a)

em(y) = λme1(y) + μm, (14b)

that is,

λm = em(x) − em(y)
e1(x) − e1(y)

, μm = e1(x)em(y) − em(x)e1(y)
e1(x) − e1(y)

.

123
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Considering λm and μm as constants, we can view any symmetric polynomial in x as
a function of the single variable e1(x).

For fixed k, let us write Qk = Q and tk = t. Note that

Q(x) =
r∑

m=0

Amem(x) (15)

for some coefficients Am . Multiplying (11) with Am and summing over m gives

Q(t) = 0. (16)

It is also clear from (11) and (14) that

em(t) = λme1(t) + μm . (17)

The equations (16) and (17) determine t uniquely. Hence, t depends on x and y only
through the parameters λm and μm . To make this explicit, we write

0 =
r∑

m=0

Amem(t) =
r∑

m=0

Am(λme1(t) + μm).

Solving this for e1(t) and using again (17) gives

em(t) = −λm

∑r
j=0 A jμ j∑r
j=0 A jλ j

+ μm . (18)

We are now reduced to a partial fraction expansion in one variable. Let L and R
denote the two sides of (10) and S = ∏n

j=0 Q j . Using (14a),we canwrite SL as a poly-
nomial in e1(x) of degree at most n + 1. By (18), the coefficient P(tk)/

∏
j �=k Q j (tk)

can be treated as a constant. Hence, SR is also a polynomial in e1(x) of degree at most
n + 1.

To complete the proof, it suffices to check that SL and SR agree for n+2 indepen-
dent values of x, subject to (14a). By (14b) and (17), we can take these as t0, . . . , tn, y.
By (16), if x = tk , only the first term on the left and the k-th term on the right contribute
to the value of SR. It is then straight-forward to check that SL = SR. The identity for
x = y is obvious. This completes the proof. 	


Let us now consider the limit case of Theorem 1 when y1, . . . , yl are fixed and
yl+1, . . . , yr → ∞, where 0 ≤ l ≤ r − 1. If P is of degree at most n in each variable,
then all terms in (10) that explicitly depend on y tend to zero. In particular, the left-
hand side is independent of y1, . . . , yl , so we can consider these as free parameters.
If Q is as in (15), we write

Q̂(y1, . . . , yl) = lim
yl+1,...,yr→∞

Q(y1, . . . , yr )

yl+1 · · · yr =
l∑

m=0

Am+r−l em(y1, . . . , yl).

123
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Then, the equation (11) degenerates to

em(tk) = em(x) − Qk(x)

Q̂k(y)
em+l−r (y), (19)

where we should interpret ek(y) as 0 for k < 0.

Corollary 2 Let P and Q j be as in Theorem 1, but assume that P is of degree at
most n in each variable. Let y1, . . . , yl be generic scalars and let tk be defined up to
permutations by (19). Then,

P(x)∏n
j=0 Q j (x)

=
n∑

k=0

P(tk)∏n
j=0, j �=k Q j (tk)

· 1

Qk(x)
. (20)

Returning to Theorem 1, suppose that Qk(x) = ∏r
m=1(xm − bk) for some scalars

bk . Then, (13) reduces to

r∏

j=1

(bk − x j )(u − y j ) =
r∏

j=1

(bk − y j )(u − x j ),

which has one obvious solution u = bk . We write the full vector of solutions as
tk = (bk, b′

k, . . . , b
(r−1)
k ). Differentiating (12) in u and then substituting u = bk gives

after simplification

1

Qk(x)
− 1

Qk(y)
= 1

∏r−1
j=1(b

( j)
k − bk)

⎛

⎝
r∑

j=1

1

x j − bk
−

r∑

j=1

1

y j − bk

⎞

⎠ .

Thus, (10) can be written

P(x)∏n
j=0

∏r
m=1(xm − b j )

− P(y)∏n
j=0

∏r
m=1(ym − b j )

=
n∑

k=0

P(bk , b′
k , . . . , b

(r−1)
k )

∏n
j=0, j �=k(bk − b j )

∏n
j=0

∏r−1
m=1(b

(m)
k − b j )

⎛

⎝
r∑

j=1

1

x j − bk
−

r∑

j=1

1

y j − bk

⎞

⎠ . (21)

Taking as before the limit yl+1, . . . , yr → ∞, when P has degree at most n in each
variable, gives

P(x)∏n
j=0

∏r
m=1(xm − b j )

=
n∑

k=0

P(bk , b′
k , . . . , b

(r−1)
k )

∏n
j=0, j �=k(bk − b j )

∏n
j=0

∏r−1
m=1(b

(m)
k − b j )

⎛

⎝
r∑

j=1

1

x j − bk
−

l∑

j=1

1

y j − bk

⎞

⎠ . (22)

123
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Here, tk = (bk, b′
k, . . . , b

(r−1)
k ) is given by (19), which in this case reads

em(tk) = em(x) −
∏r

j=1(x j − bk)
∏l

j=1(y j − bk)
em+l−r (y) (23)

or, equivalently,

r∏

j=1

(b( j)
k − u) =

r∏

j=1

(x j − u) −
l∏

j=1

y j − u

y j − bk

r∏

j=1

(x j − bk). (24)

We will only need the cases (r , l) = (2, 1) and (r , l) = (3, 1) of the results above.
However, we find it instructive and potentially useful to state them in greater generality.

3 Expansions of open string amplitudes

To prove (3) and some related results, we start from the case (r , l) = (2, 1) of (22).
Writing y1 = λ, it has the form

P(x1, x2)∏n
j=0(x1 − b j )(x2 − b j )

=
n∑

k=0

P(bk, b′
k)∏n

j=0, j �=k(bk − b j )
∏n

j=0(b
′
k − b j )

(
1

x1 − bk
+ 1

x2 − bk
− 1

λ − bk

)
.

(25)

By the case u = λ of (24),

(b − λ)(b′ − λ) = (x1 − λ)(x2 − λ),

which gives

b′ = λ − (λ − x1)(λ − x2)

λ − b
.

We now specialize to the case bk = −k and P(x1, x2) = (x1 + x2 + a)n . After a
straight-forward computation, we arrive at the rational function identity

(x1 + x2 + a)n

(x1)n+1(x2)n+1

=
n∑

k=0

(−1)k

k!(n − k)!

(
λ − (λ−x1)(λ−x2)

λ+k + a − k
)

n(
λ − (λ−x1)(λ−x2)

λ+k

)

n+1

(
1

x1 + k
+ 1

x2 + k
− 1

λ + k

)
.

(26)
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Next, we multiply both sides of (26) by �(n + 2 − a) and let n → ∞. Formally
using (8), it is straight-forward to obtain the following result. However, this involves
an interchange of limit and summation that needs to be justified.We provide the details
in the Appendix.

Corollary 3 Assuming Re(a + λ) > 0,

�(x1)�(x2)

�(x1 + x2 + a)

=
∞∑

k=0

(−1)k

k! ·
�

(
λ − (λ−x1)(λ−x2)

λ+k

)

�
(
λ − (λ−x1)(λ−x2)

λ+k + a − k
)

(
1

x1 + k
+ 1

x2 + k
− 1

λ + k

)
.

(27)

When a is an integer, (27) can be written

�(x1)�(x2)

�(x1 + x2 + a)

=
∞∑

k=0

(−1)a
(
1 − λ + (λ−x1)(λ−x2)

λ+k

)

k−a

k!
(

1

x1 + k
+ 1

x2 + k
− 1

λ + k

)
.

This is [5, Eq. (4)], although it is only stated there under the additional assumption
a ≤ 1. The case a = 0 is the example (3) given in the introduction.

If one is interested in formulas for π one can specialize x1 = 1/2+m, x2 = 1/2+n
and use

�

(
1

2
+ m

)
= (1/2)m �(1/2) = (2m − 1)!!

2m
√

π.

This gives a family of identities

π = (−1)a(m + n + a)!2m+n

(2m − 1)!!(2n − 1)!!
∞∑

k=0

1

k!

(
1 − λ + (λ − 1

2 − m)(λ − 1
2 − n)

λ + k

)

k−a

×
(

2

2m + 2k + 1
+ 2

2n + 2k + 1
− 1

λ + k

)
,

parametrized by three integers m, n and a with m ≥ 0, n ≥ 0 and m + n + a ≥ 0 and
a continuous parameter λ with Re(λ) > −a.

4 Asymmetric expansions of closed string amplitudes

Saha and Sinha gave two types of expansions for amplitudes related to closed strings.
We start with the first type [5, Eq. (A2)], which is symmetric in the variables x1 and x2

123
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but where x3 plays a different role. Taking the Virasoro–Shapiro amplitude (1) as an
example, we will treat x1 and x2 as variables, but x3 as determined from the relation
x1 + x2 + x3 = 1. The left-hand side then has some poles of the form x1 = x2 = −k
(for k a non-negative integer) and others of the form x1+x2 = k+1.Wewill therefore
start from symmetric rational functions of the form

P(x1, x2)∏n
j=0(x1 − b j )(x2 − b j )(c j − x1 − x2)

.

We will apply (20) with (r , l) = (2, 1) and write y1 = λ. We then have n+1 terms
that can be written as in (25), with the additional denominator factors

∏n
j=0(c j −bk −

b′
k). Let us write the vector t corresponding to a factor Q = c − x1 − x2 as (c+, c−).
The equations (19) reduce to

c+ + c− = c, c+c− = x1x2 + (c − x1 − x2)λ.

Hence,

c± = c+ + c−

2
±

√
(c+ + c−)2 − 4c+c−

4
= c

2
±

√
c2

4
+ λ(x1 + x2 − c) − x1x2.

This leads to the identity

P(x1, x2)∏n
j=0(x1 − b j )(x2 − b j )(c j − x1 − x2)

=
n∑

k=0

P(bk , b′
k)∏n

j=0, j �=k(bk − b j )
∏n

j=0(b
′
k − b j )(c j − bk − b′

k)

(
1

x1 − bk
+ 1

x2 − bk
− 1

λ − bk

)

+
n∑

k=0

P(c+
k , c−

k )
∏n

j=0(c
+
k − b j )(c

−
k − b j )

∏n
j=0, j �=k(c j − ck)

· 1

ck − x1 − x2
,

which holds for P a symmetric polynomial of degree at most 2n + 1 in each variable.
Specializing bk = −k, ck = s+k and P(x1, x2) = (t−x1)n(t−x2)n(u+x1+x2)n

gives after simplification

(t − x1)n(t − x2)n(u + x1 + x2)n
(x1)n+1(x2)n+1(s − x1 − x2)n+1

=
n∑

k=0

(−1)k

k!(n − k)!
(t + k)n

(
t − λ + (λ−x1)(λ−x2)

λ+k

)

n

(
u + λ − (λ−x1)(λ−x2)

λ+k − k
)

n(
λ − (λ−x1)(λ−x2)

λ+k

)

n+1

(
s − λ + (λ−x1)(λ−x2)

λ+k + k
)

n+1

×
(

1

x1 + k
+ 1

x2 + k
− 1

λ + k

)

+
n∑

k=0

(−1)k

k!(n − k)!
(t − c+

k )n(t − c−
k )n(u + s + k)n

(c+
k )n+1(c

−
k )n+1

· 1

s + k − x1 − x2
. (28)

123
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If we formally let n → ∞, we obtain the following result. To make this rigorous, we
again need some estimates that are given in the Appendix.

Corollary 4 Assuming Re(2λ − s + t + u) > 0, we have

�(x1)�(x2)�(s − x1 − x2)

�(t − x1)�(t − x2)�(u + x1 + x2)

=
∞∑

k=0

(−1)k

k!
�

(
λ − (λ−x1)(λ−x2)

λ+k

)
�

(
s − λ + (λ−x1)(λ−x2)

λ+k + k
)

�(t + k)�
(
t − λ + (λ−x1)(λ−x2)

λ+k

)
�

(
u + λ − (λ−x1)(λ−x2)

λ+k − k
)

×
(

1

x1 + k
+ 1

x2 + k
− 1

λ + k

)

+
∞∑

k=0

(−1)k

k!
�(c+

k )�(c−
k )

�(t − c+
k )�(t − c−

k )�(u + s + k)
· 1

s + k − x1 − x2
, (29)

where

c±
k = s + k

2
±

√
(s + k)2

4
+ λ(x1 + x2 − s − k) − x1x2.

As an example, let s = t = 1 and u = 0 in (29) and reintroduce the variable
x3 = 1− x1 − x2. After simplification, this gives the following asymmetric expansion
of the Virasoro–Shapiro amplitude (1):

�(x1)�(x2)�(x3)

�(1 − x1)�(1 − x2)�(1 − x3)

=
∞∑

k=0

(
1 − λ + (λ−x1)(λ−x2)

λ+k

)2
k

(k!)2
(

1

x1 + k
+ 1

x2 + k
− 1

λ + k

)

+
∞∑

k=0

(
1−k
2 +

√
(1+k)2

4 − λ(x3 + k) − x1x2

)2

k

(k!)2 · 1

x3 + k
,

where x1 + x2 + x3 = 1 and Re(λ) > 0. By (5), the terms are rational functions of
the parameters. If we instead let s = 0 and t = u = 1 we recover [5, Eq. (A2)].

5 Symmetric expansions of closed string amplitudes

To obtain symmetric expansions for closed string amplitudes, such as (4), we start
from

(u − x1)n(u − x2)n(u − x3)n
(x1)n+1(x2)n+1(x3)n+1

123
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and apply (22) with (r , l) = (3, 1). We will write y1 = λ and t+, t− instead of t ′, t ′′.
It follows from (23) that

t + t+ + t− = x1 + x2 + x3

and from the case u = λ of (24) that

(t − λ)(t+ − λ)(t− − λ) = (x1 − λ)(x2 − λ)(x3 − λ).

This leads to the explicit formula

t± = t+ + t−

2
±

√(
t+ + t− − 2λ

2

)2

− (t+ − λ)(t− − λ)

= e1(x) − t

2
±

√
(e1(x) − t − 2λ)2

4
−

∏3
j=1(x j − λ)

t − λ
.

The resulting special case of (22) is

(u − x1)n(u − x2)n(u − x3)n
(x1)n+1(x2)n+1(x3)n+1

=
n∑

k=0

(−1)k

k!(n − k)!
(u + k)n(u − η+

k )n(u − η−
k )n

(η+
k )n+1(η

−
k )n+1

⎛

⎝
3∑

j=1

1

x j + k
− 1

λ + k

⎞

⎠ , (30)

where we write η±
k = (−k)±. If we let n → ∞, we obtain the following result. As

before, we provide some further details in the Appendix.

Corollary 5 If Re(λ + u − e1(x)) > 0 then

�(x1)�(x2)�(x3)

�(u − x1)�(u − x2)�(u − x3)

=
∞∑

k=0

(−1)k

k!
�(η+

k )�(η−
k )

�(u + k)�(u − η+
k )�(u − η−

k )

⎛

⎝
3∑

j=1

1

x j + k
− 1

λ + k

⎞

⎠ , (31)

where

η±
k = e1(x) + k

2
±

√
(e1(x) + k − 2λ)2

4
+

∏3
j=1(x j − λ)

λ + k
.

If we assume that u − e1(x) = a is an integer, (31) can be written as

�(x1)�(x2)�(x3)�(a + s)

�(a + s − x1)�(a + s − x2)�(a + s − x3)

123
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=
∞∑

k=0

(−1)k

k!
(1 − η+

k )k−a(1 − η−
k )k−a

(a + s)k

⎛

⎝
3∑

j=1

1

x j + k
− 1

λ + k

⎞

⎠ , (32)

where x1 + x2 + x3 = s. The special case λ = s/3 of (32) is [5, Eq. (A3)]. The case
a + s = 1 is the identity (6) given in the introduction.

As another example, the case x1 = x2 = x3 = 1/2, a = 0 of (32) can be written

π2

2
=

∞∑

k=0

(−1)k(ξ+
k )k(ξ

−
k )k

k!(3/2)k
(

6

2k + 1
− 1

λ + k

)
, Re(λ) > 0,

where

ξ±
k = 1

4
− k

2
± 2k + 1

4

√
k + 2 − 3λ

k + λ
.

When λ = 1/2, this reduces to Euler’s identity

π2

8
=

∞∑

k=0

1

(2k + 1)2
.

The series obtained by formally letting λ → ∞ is divergent.
The reader may ask why we did not use (22) in the more general case l = 2. We

would then replace (30) with

(u − x1)n(u − x2)n(u − x3)n
(x1)n+1(x2)n+1(x3)n+1

=
n∑

k=0

(−1)k

k!(n − k)!
(u + k)n(u − (−k)′)n(u − (−k)′′)n

((−k)′)n+1((−k)′′)n+1

⎛

⎝
3∑

j=1

1

x j + k
−

2∑

j=1

1

y j + k

⎞

⎠ .

(33)

The problem is that, when n → ∞, the left-hand side behaves as n3u−2e1(x)−3 and
the terms on the right as n3u−2e1(t)−3, where t = (−k, (−k)′, (−k)′′). Hence, to take
a termwise limit, we need e1(x) = e1(t). However, (23) gives

e1(t) = e1(x) −
∏3

j=1(x j + k)
∏2

j=1(y j + k)
.

This forces y1 or y2 → ∞, which is precisely the case l = 1 studied above. We
also note that, in the special case y1 = x1, y2 = x2, it follows from (24) that t =
(−k, x1, x2). Then, (33) reduces to

(u − x3)n
(x3)n+1

=
n∑

k=0

(−1)k(u + k)n
k!(n − k)! · 1

x3 + k
,

123
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which is just a restatement of (7) (with a = 1 − u − n). In hypergeometric notation,
the series on the right is a multiple of

3F2

(−n, u + n, x3
u, x3 + 1

; 1
)

.

The asymptotics as n → ∞ of this type of series is well studied, see e.g. [3, §7.4]. It
is conceivable that a similar analysis of the series (33) would lead to some interesting
asymptotic expansions of string amplitudes.

Appendix A Limit transitions

We have obtained our main results, Corollary 3, Corollary 4 and Corollary 5, by a limit
transition from finite to infinite series. It requires some work to make this rigorous. In
the present Appendix, we explain this in detail for Corollary 3 and then briefly discuss
the necessary modifications for the other two results.

We start from Stirling’s formula

�(z) ∼ √
2π zz−

1
2 e−z,

which holds if |z| → ∞ with arg(z) < π − δ for any fixed δ > 0. It implies that (8)
can be strengthened to

�(z + a(z))

�(z + b(z))
∼ za(z)−b(z), (A1)

which holds in the same sense, assuming that a(z) and b(z) are bounded.
As we have already noted, if we multiply both sides of (26) with �(n + 2− a) and

then let n → ∞ we obtain (27), provided that we are allowed to interchange limit
and summation on the right-hand side. To justify this, we will use Tannery’s theorem,
which states that if |akn| < Mk , where Mk is independent of n and

∑∞
k=0 Mk < ∞,

then

lim
n→∞

∞∑

k=0

akn =
∞∑

k=0

lim
n→∞ akn .

We need to find such an estimate when akn is supported on k ≤ n and given by

akn = (−1)k�(n + 2 − a)

k!(n − k)!
(λ + a − εk − k)n

(λ − εk)n+1

(
1

x1 + k
+ 1

x2 + k
− 1

λ + k

)
,

where

εk = (λ − x1)(λ − x2)

λ + k
.
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Note that εk → 0 quickly enough so that

kεk → 1, k → ∞. (A2)

It will be useful to write

akn = �(λ − εk)

�(λ + a − εk)�(1 − λ − a + εk)
· �(n + 2 − a)�(λ + a − εk + n)

�(n + 1)�(λ + 1 − εk + n)

× �(1 − λ − a + εk + k)

�(k + 1)
· (−n)k

(1 − λ − a + εk − n)k

(
1

x1 + k
+ 1

x2 + k
− 1

λ + k

)
.

(A3)

The first factor in (A3) has a finite limit as k → ∞ and is hence bounded by a constant.
By (8), the second factor is bounded by a constant times n1−a(n − εk)

a−1. However,
this is itself a bounded quantity, so the second factor is bounded. By (A1) and (A2),
the third factor is

�(1 − λ − a + εk + k)

�(k + 1)
= O(k−λ−a+εk ) = O(k−Re(λ+a)). (A4)

We write the fourth factor as

(−n)k

(1 − λ − a + εk − n)k
=

k−1∏

j=0

(n − j)

(λ + a − εk − 1 + n − j)
. (A5)

Assuming that Re(λ + a) > 1, we have Re(λ + a − εk − 1) > 0 for large enough k.
Then, each factor in (A5) is bounded in modulus by 1. Hence, (A5) is bounded by a
constant. The final factor in (A3) is O(k−1). This all shows that

|akn| ≤ Ck−1−Re(λ+a),

with C independent of k and n. We can then apply Tannery’s theorem and deduce
Corollary 3 under the assumption Re(λ + a) > 1.

To weaken the assumption to Re(λ + a) > 0, we consider the series in (27) as a
function of a. If we can show that it converges locally uniformly in Re(λ+a) > 0, the
general case of Corollary 3 follows by analytic continuation. The terms in the relevant
series are formed by the first, third and last factor in (A3). It is clear that the bound on
the first factor can be made locally uniform in a. By (A4), if Re(λ + a) > ε > 0, the
second factor is O(k−ε). Since the final factor is O(k−1), each term can be estimated
with Ck−ε−1, where C is locally bounded as a function of a. This completes the proof
of Corollary 3.

Let us now turn to Corollary 4. Formally, (29) is obtained by multiplying (28) with
ns−2t−u+3 and letting n → ∞. In the first sum on the right of (28), the resulting terms
can be factored as

�(λ − εk)

�(λ + u − εk)�(1 − λ − u + εk)�(t − λ + εk)

123
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× ns−2t−u+3�(n + t)�(λ + u − εk + n)�(t − λ + εk + n)

�(n + 1)�(λ + 1 − εk + n)�(s + 1 − λ + εk + n)

× �(1 − λ − u + εk + k)�(s − λ + εk + k)

�(k + 1)�(t + k)
· (−n)k

(1 − λ − u + εk − n)k

× (t + n)k

(s + 1 − λ + εk + n)k
·
(

1

x1 + k
+ 1

x2 + k
− 1

λ + k

)
. (A6)

In particular, we have a factor of the form (A5) but with a replaced by u. Under the
assumption Re(λ + u) > 1, it can be estimated by 1, for large enough k. In order to
estimate

(t + n)k

(s + 1 − λ + εk + n)k
=

k−1∏

j=0

t + n + j

s + 1 − λ + εk + n + j
,

wewill assume thatRe(λ−s+t) > 1.Note that ifRe(a) > Re(b), then |n+a| > |n+b|
if n is large enough. If we choose k large enough so that Re(λ − s + t − εk) > 1 and
then n large enough so that |t + n + j | > |s + 1− λ + εk + n + j | for all j , we have

∣∣∣∣
(t + n)k

(s + 1 − λ + εk + n)k

∣∣∣∣ ≤
∣∣∣∣

(t + n)n

(s + 1 − λ + εk + n)n

∣∣∣∣

=
∣∣∣∣
�(t + 2n)�(s + 1 − λ + εk + n)

�(t + n)�(s + 1 − λ + εk + 2n)

∣∣∣∣ ∼ 2Re(λ−s+t−εk )−1, n → ∞.

Hence, this factor can be estimated by a constant. The remaining factors in (A6) can
be treated exactly as in (A3).

Turning to the second term on the right-hand side of (28), we note that

c±
k = s + k

2
±

(
s + k

2
− λ + O(k−1)

)
, k → ∞.

Hence,

c+
k = s − λ + δk + k, c−

k = λ − δk,

where kδk → 1 as k → ∞. We write the terms as

�(λ − δk)

�(t − λ + δk)�(t − s + λ − δk)�(1 + s − t − λ + δk)

× �(s + u + n)�(t − λ + δk + n)�(t − s + λ − δk + n)ns−2t−u+3

�(n + 1)�(1 + s − λ + δk + n)�(1 + λ − δk + n)

× �(s − λ + δk + k)�(1 + s − t − λ + δk + k)

�(k + 1)�(s + u + k)

× (−n)k

(1 + s − t − λ + δk − n)k
· (s + u + n)k

(1 + s − λ + δk + n)k
· 1

s + k − x1 − x2
,

123
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where each factor can be treated as before, under the same assumptions Re(λ+u) > 1
and Re(λ − s + t) > 1. The analytic continuation to Re(2λ − s + t + u) > 1 works
as for Corollary 3.

Finally, we turn to Corollary 5. Writing s = e1(x), we have

η+
k = s − λ + δk + k, η−

k = λ − δk,

where kδk → 1, k → ∞. We need to multiply (30) with n2s+3−3u before letting
n → ∞. The terms on the right can be factored as

�(λ − δk)

�(u − λ + δk)�(u − s + λ − δk)�(1 + s − u − λ + δk)

× �(u + n)�(u − λ + δk + n)�(u − s + λ − δk + n)n2s+3−3u

�(n + 1)�(1 + s − λ + δk + n)�(1 + λ − δk + n)

× �(s − λ + δk + k)�(1 + s − u − λ + δk + k)

�(k + 1)�(u + k)

× (−n)k

(1 + s − u − λ + δk − n)k
· (u + n)k

(1 + s − λ + δk + n)k
·
⎛

⎝
3∏

j=1

1

x j + k
− 1

s + k

⎞

⎠ .

We then proceed exactly as for Corollary 4.
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