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Trust is essential for social interactions, including those between humans and social artificial agents, such as
robots. Several factors and combinations thereof can contribute to the formation of trust and, importantly in
the case of machines that work with a certain margin of error, to its maintenance and repair after it has been
breached. In this article, we present the results of a study aimed at investigating the role of robot voice and
chosen repair strategy on trust formation and repair in a collaborative task. People helped a robot navigate
through a maze, and the robot made mistakes at pre-defined points during the navigation. Via in-game
behaviour and follow-up questionnaires, we could measure people’s trust towards the robot. We found that
people trusted the robot speaking with a state-of-the-art synthetic voice more than with the default robot
voice in the game, even though they indicated the opposite in the questionnaires. Additionally, we found that
three repair strategies that people use in human-human interaction (justification of the mistake, promise to
be better and denial of the mistake) work also in human-robot interaction.
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1 Introduction
1.1 Trust
Trust is an essential aspect of human-human relationships [19]. Because of its importance, many
definitions of trust have been proposed over the years, spanning from evolutionary theories [3], to
neurobiological correlates [55], to behavioural economics [28]. In general, trust makes someone,
the trustor, knowingly accept vulnerability to a trustee. More formally, trust can be defined as: ‘The
willingness of a party to be vulnerable to the actions of another party based on the expectation
that the other will perform a particular action important to the trustor, irrespective of the ability to
monitor or control that other party’ [45]. From this definition, it emerges that trust is interpersonal
and that the trustor has no control over whether their trust has been well-placed or not, so they
are exposed to some uncertainty. Nevertheless, the trustor has some mental models of how worthy
of trust the trustee is [17], and this will influence their decision to trust them or not. As, in the
near future, it is conceivable that robots will be used as personal assistants to help people with a
wide range of everyday tasks, taking on new roles as social entities, understanding how trust is
built and maintained in Human-Robot Interactions (HRIs) is of paramount importance. In HRI,
one of the most widely used definition of trust is from [41, 50], who define trust as an ‘Attitude
that an agent will help achieve an individual’s goals in a situation characterised by uncertainty
and vulnerability’. This definition implies both the sense of vulnerability identified in [45] and the
acknowledgement that the autonomous agent is a beneficial entity, like in [17].

Moreover, trust is regarded as a multifaceted phenomenon, made of three main components [45]:
Ability, ‘Is the party capable of what they are doing?’; Integrity, ‘Does the party adhere to a set of
acceptable moral principles?’; Benevolence, ‘Does the party act with good intention without ulterior
motives?’. This is particularly important for understanding the main characteristics of a robot that
can convey trust. For this reason, it has been revisited to fit the human-agent context in [38], where
trust is divided into two different categories: performance-based trust, i.e., trust in an agent’s ability
to complete a task satisfactorily and consistently; and relation-based trust, i.e., trust that an agent will
comply with social norms. Following this conceptualisation, the Multi-Dimensional Measure of
Trust (MDMT) scale, consisting of 16 items, has been developed to assess capacity trust (composed
of reliability and capability factors) and moral trust (composed of ethics and sincerity factors) in
HRI [79].

1.2 Trust Repair Strategies
Trust between humans and robots can easily be built, due to factors like automation bias [87] or
novelty effect [84], but it can be equally easily lost. Typically, once a robot commits a violation,
trust is lost and needs to be repaired. The severity of the reaction towards the violation, and in
turn the efficacy of the repair strategy used to re-gain trust, depend on: (i) the type of violation;
(ii) the type of task; (iii) the context risk, i.e., how undesirable a failure by the robot would be in
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Table 1. Repair Strategies Explored in Human-Human and HRI Literature

Strategy Scenario Reference

Apology Human-human
Human-robot [4, 13, 35, 59, 64]

Denial Human-human
Human-robot [4, 13, 29, 35, 59, 64]

Trustworthy action Human-human [4, 8]

Promising to be better Human-human
Human-robot [1, 13, 30, 56]

Providing reasons to trust again Human-robot [56, 57]

Justify the failure Human-human
Human-robot [10, 13, 30, 35, 59, 62]

Human support Human-robot [8]

that particular context; (iv) the severity of the error/violation [8, 10, 81, 83]. Much effort has been
directed into identifying trust-relevant failures leading to violations, and the respective best repair
strategies [15, 72]. Generally, the main violations that robots can commit have been classified as
competence-based and integrity-based violations [4, 64], readily mapped to the aforementioned
dimensions of trust. Competence-based violations refer to mistakes made by the robot that are
task- or hardware-related, like failing to plan or execute an action. Integrity-based violations refer
to mistakes made by the robot (intentionally or not) that go against its human partner’s principles,
like lying or going against established social conventions. The repair strategies adopted by the HRI
community to study how robots could re-gain trust are derived from commonly used strategies in
human-human interactions and are summarised in Table 1.

In [64], both apology and denial repair strategies are used and compared during a competitive
game, with apology ending up being the winning strategy. In fact, in [29] it was shown that having
the robot blame anyone (even itself) for a failure caused the users to lose trust in the system.
Surprisingly, not many studies have analysed how simply taking proactive and correct actions after
a violation influences trust [8]. In [10], justifying the failure, as opposed to ignoring the failure,
allowed the robot to mitigate its negative impact in a collaborative game. Similarly, improving
the situation awareness of the human partners with respect to the failure and the status of the
task being performed by giving support turned out to be an equally winning strategy [8]. The
efficacy of the trust repair strategy seems to depend also on the timing of both the violation and
the implementation of the strategy. In [12, 57], it was shown that recovery happens slower than
the initial trust building and, for this reason, if a failure happens early, trust is heavily negatively
impacted. In addition, [56] showed that trust repair strategies implemented immediately after the
violation were not effective. Most of the existing studies in the literature focus on one, at most two
repair strategies at the time. This is one of the reasons why, although a substantial effort has been
now redirected towards understanding repair strategies, to date, what robots should do to recover
trust after they commit a violation is still uncertain, as findings are inconclusive [14, 15]. For this
reason, in our study we decided to compare three different repair strategies.

1.3 Factors Affecting Trust in Robots
As trust is such a complex construct, many studies exist on investigating the factors that influence
trust in the field of HRI. Some of the most comprehensive investigations aiming to identify char-
acteristics that are fundamental for trust are [21, 22]. In particular, they identify three categories
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that affect the expression of trust: factors associated with the human, the robot and the context in
which the event occurs. These factors can influence each dimension of trust in different ways and a
substantial body of works exists that attempts to understand the mechanics of this relationship.

While robot characteristics like anthropomorphism [50] or robot appearance [88] have been
investigated as means to convey trust, an important robot-based attribute that has just started
to be considered is robot voice [75, 77]. Although there is evidence that voice is a fundamental
vehicle for trust [5, 70], it is still a characteristic that gets overlooked by the community. This
tendency to overlook voice when designing a robot, or an interaction with a robot, is reflected
in the fact that most scholars choose robot voices out of convenience [47], without necessarily
thinking of the implications that these voices will have on users’ perception. However, this might
be problematic because voices can immediately bias people’s impressions of their speakers [46].
Voice characteristics such as gender, pitch, accent, speech rate and—in the case of robot voices—
degree of human-likeness have all been linked to trust and related phenomena (such as persuasion,
attractiveness, agreeableness, sincerity). For example, native accents are often considered more
trustworthy than non-native accents [42] and (in the context of the British Isles) regional countryside
accents are rated as more trustworthy than regional city accents [7]. High pitch and slow articulation
rate can contribute to a voice being perceived as more persuasive [26, 52], although there are
floor and ceiling effects: Voices that are too low or high in pitch and speech rate will have the
opposite effect [78]. In the context of Human-Machine Interaction, joyful voices are considered
more trustworthy than emotionally neutral voices [74]—although this is mediated by the context of
the interaction [73]. Trust in artificial voices has mostly been studied in terms of human-likeness
[36, 48, 75], and findings are not always in agreement, possibly due to recent advancements in
Text-to-Speech (TTS) technology. Until recently, this was an issue of balancing intelligibility and
flexibility, since it was difficult to generate a clear, understandable artificial voice [39]. However,
recent advances in speech synthesis, such as WaveNet, have effectively solved the intelligibility
problem, allowing researchers to focus on designing appropriate voices for robots, without having
to worry about language comprehension [49]. For this reason, in the current study we chose
to compare two different synthetic voices: our robot’s default voice (which has been shown to
not be considered appropriate for the robotic platform [47]) and another synthetic voice that we
generated. Additionally, to the best of our knowledge, no research has investigated the potential
intersectional effects of voice and trust repair strategies for HRI. We investigate this in the current
article. Specifically, motivated by the fact that voice is a characteristics demonstrated to impact
how trustworthy a robot is perceived [61], we investigate whether this perception, conveyed by
the differences in the voice, impacts the effectiveness of repair strategies.

Among the three identified categories of [21, 22], context is lately more and more valued as one
of the factors that mostly influence trust [9, 61] and this contributes to the difficulties in establishing
frameworks and rules surrounding trust in HRI [34]. However, it is clear that, for trust to have an
important impact on HRI, the human and the robot need to engage in a collaborative task [22]. Thus,
we situated our experimental work in a specific context simulating a human-robot collaborative
activity, i.e., a maze solving task.

1.4 Contribution
With our work, we contribute to the empirical literature on trust and trust repair in HRI focusing
on robot-related and context-related factors. We compare two different artificial voices and three
different repair strategies for competence-based violations and explore their effectiveness on the
restoration of trust. To do so, we develop a navigation-based collaborative game (the maze task).
Navigation tasks have been previously used to investigate trust in HRI [56, 57] and whether
unexpected recommendations from a navigation assistant were followed by its human partner
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[71]. In particular, mazes offer an intricate and challenging setting and have been used both in
psychology [20] and HRI [60] as a way to investigate the development of trust.

In particular, we set off to answer the following ResearchQuestions (RQs):

RQ1: What repair strategies are more appropriate for a collaborative navigation task?
RQ2: Are the preferred repair strategies different for different robot voices?
RQ3: Do the selected repair strategies work in a real-life human-robot collaborative task?
RQ4: Do different combinations of voice and repair strategies influence trust (both behaviourally

and perceptually)?
RQ5: Do different combinations of voice and repair strategies influence trust repair after the

robot makes a mistake?

To answer these questions, we designed and carried out one online pilot study and one in-person
study. The pilot study was used to inform the design of the final in-person experiment, to identify
which repair strategy could be used by the robot when it gave a wrong suggestion in a maze-
solving problem. Then, we built a physical maze for a social robot (Softbank Robotics’s Pepper,
shown in Figure 1) to navigate and solve by giving recommendations to participants on which
direction to go, and making mistakes along the way. We manipulated the robot’s voice and the
repair strategy the robot was using to try and re-gain the trust of our participants after it gave a
wrong recommendation.

2 Materials and Methods
We conducted an online pilot study to determine which strategy, from the human-human interaction
literature, where deemed effective for our task and we then conducted an in-person experiment to
study whether this initial result was correct and how it related to a robot characteristic, voice.

2.1 Pilot Study
In the pilot study, we wanted to see what repair strategies people would consider more appropriate
for a robot that made a mistake in a maze navigation scenario. To achieve this, we video-recorded
the Pepper robot saying six different utterances recommending which direction to take at a junction
inside a maze. To increase the believability of the maze context, we edited the videos so that Pepper
would appear over a video of a corn maze (see supplementary materials). After watching each
video, participants were asked to answer the question: ‘Pepper made a mistake. What can Pepper do
to regain your trust?’. They could choose from a list of pre-defined trust repair strategies taken from
the literature. This list included: apology, denial, promise to be better, failure justification, additional
reasons to trust the robot and performing a trustworthy action without explicitly acknowledging
the mistake (see Table 2 for the full wording). Note that here they could select more than one repair
strategy. Participants watched all six videos, in randomised order. We also asked participants for
their gender, age and attitude towards robots.

This study was built on Qualtrics, and participants were recruited using Prolific Academic. We
recruited 50 participants, aged 19–70 (median age = 24 years old), of which 28 women, 21 men
and 1 non-binary person. The experiment lasted approximately 5 minutes and participants were
compensated £1.35. Participants signed a consent form prior to proceeding to the experiment. The
experiment was conducted in accordance to ethical guidelines of the hosting institution (KTH
Royal Institute of Technology).

2.2 Maze Study
For the main study, we built a maze in a room measuring 4 × 5 m (Figure 1). We used sheets of blue
fabric hanging from the ceiling to create the maze walls. The sheets were hanging about 20 cm
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Fig. 1. The maze that was built for the in-person study.

Table 2. List of Trust Repair Strategies and Corresponding Explanations That Participants Could Choose
from in the Pilot Study

Repair strategy Explanation
Implicit improvement Pepper does not acknowledge in any way the mistake and simply

carries on and starts doing the correct thing hereafter.
Apology Pepper says: ‘I’m so sorry I told you to come this way. It’s my

fault’.
Denial Pepper says: ‘I am sure my sensors readings were correct. It

wasn’t my fault. I don’t know how that happened’.
Promising to be better Pepper says: ‘It won’t happen again. I promise to be a better

navigator next time’.
Justifying the failure Pepper says: ‘My sensors must have been wrong. It can be due

to the nature of the maze and the presence of many walls’.
Giving additional information
to trust it again

Pepper says: ‘Following my directions will still be faster than
trying to guess which direction is the correct one at each cross-
roads’.

above the floor, so that the robot’s safety sensors would not detect the sheets as obstacles, causing
the robot to stop. Participants were seated in a room adjacent to the maze room. They were told
that they would collaborate with the robot Pepper (which was placed at the entrance of the maze)
for this task. The task consisted in finding the ‘treasure’ (a basket containing golden fabric) hidden
inside the maze, and then getting back to the entrance as quickly as possible. Specifically, while
the robot physically navigated inside the maze, participants would tell it where to go whenever
there was a junction in the path. We decided to separate the robot from the human (and not have
them inside the maze at the same time) to add an additional element of vulnerability, which, as
mentioned in Section 1, is necessary for trust to emerge [23, 68].

At each junction, the robot told the participants what options were available (e.g., ‘Here, we can go
left, or straight’) and recommended one of the options (e.g., ‘I think we should go straight’). Details
of how participants communicated with the robot are given below (Section 2.4). To increase the
sense of urgency, participants were told that the robot had limited battery autonomy. If participants
managed to find the treasure and go back to the entrance before the robot’s battery ran out, they
were given two supermarket vouchers instead of one (one voucher was worth 50 Swedish crowns).
In total, there were nine junctions where a decision from the human participant was required, and
a variable number of forced choices depending on which direction participants were guiding the
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Fig. 2. The maze layout and the optimal path to the treasure ‘T’. Junctions where participants had to make
a choice are noted as ‘CH’, the forced choices (the walls) are noted as ‘W’. The red ‘CH’ are the junctions
where the robot suggests the wrong path. For example, in ‘CH1’ the robot suggestion was to go right.

robot (i.e., points where the robot was forced to turn towards a certain direction because of walls).
Figure 2 shows the optimal path to the treasure room from the starting point, consisting of six
choices and eight forced choices.

The robot was programmed to make up to three mistakes (depending on the navigation plan
that the participant decided to follow) at fixed points in the maze. This was done to ensure that
participants would hear the robot’s trust repair strategy at least once, since participants could
navigate in the maze as they wished. In particular, the first mistake was programmed to happen
at the very first decision point. A mistake was operationalised as the robot recommending to go
towards a direction that would turn out to be a dead-end. If participants followed the robot after
this wrong recommendation, the robot would navigate to the location and then say ‘Oh no! The
road is closed!’ or ‘Oh no! We went the wrong way!’, followed by one of the three repair strategies:

Justify: ‘My sensors must have been wrong. It can be due to the nature of the maze and the
presence of many walls’.

Promise: ‘It won’t happen again. I promise to be a better navigator next time’.
Denial: ‘I am sure my sensors’ readings were correct. It wasn’t my fault. I don’t know how that

happened’.

The experimental procedure was as follows: First, participants were greeted by the experimenters
and signed a consent form. Then they completed a questionnaire on their attitudes towards robots
(NARS scale). Then they were taken to the entrance of the maze and shown the robot, Pepper
(Figure 1). This was done to ensure that all participants had the same mental image of what the
robot looked like. However, no interaction with the robot happened at this point as it was shown
while being switched off. We explained them that, even if Pepper did not have the complete map of
the maze, it was equipped with sensors that help it navigate in unknown environments. In doing
so, we wanted participants to understand that Pepper did not have any prior knowledge on the
maze but was computing recommendations real-time based on its sensors’ readings. This was done
to try and create a balanced expectation on the robot capabilities and avoid automation bias effects.
Then, demographics data (gender, age, previous experience with robots, spatial orientation skills)
were collected. Participants then completed the maze task, which was followed by a questionnaire
on their trust in the robot (MDMT questionnaire [79], the current state-of-the-art and validated
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questionnaire on human-robot trust). To check the efficacy of our manipulation, we asked two
additional questions: ‘Do you think Pepper was able to regain your trust after its mistake?’ (yes or
no question); ‘What could it have done instead?’ (optional open question). Additionally, we left
the possibility to leave any feedback on the experiment. Finally, participants were debriefed and
given one or two supermarket vouchers, based on their performance in the maze task. The whole
experiment lasted around 30 minutes.

We recruited 60 naive participants using fliers around the university campus and word of
mouth. The experiment followed a six conditions between-subject design, each condition being the
different combination of voice (Pepper or customTTS) and repair strategy (Justify–Promise–Denial),
resulting in 10 participants per condition. Participants (34 men, 24 women, 2 non-binary) were
aged 19–51 (median age = 27); their previous experience with robots was mixed: 7 people reported
never having seen a robot before, 20 people regularly watched media (e.g., films, series) with robots,
21 had interacted with a robot before and 12 reported interacting with robots on a regular basis.
Among people who had previously interacted with robots, 9 had previously interacted with a
Pepper robot. The experiment was conducted in accordance to ethical guidelines of the hosting
institution (KTH Royal Institute of Technology).

2.3 Robot Voice Generation
Pepper comes equippedwith a default synthetic voice, which sounds ‘robotic’ and ‘child-like’ and has
been shown to not match Pepper’s physical characteristics well [47]. Since the release of this robot
and its voice, the speech synthesis technology landscape has been disrupted by the introduction of
WaveNet [80] and Tacotron [85], allowing us to synthesise speech with an unprecedented human
likeness. For this reason, we decided to compare the influence of Pepper’s default voice to another
artificial voice that we generated trained using state-of-the-art TTS technologies. Since Pepper’s
voice is often considered to be feminine, out custom TTS voice was also made to be feminine.

To do so, we relied on the dataset provided for the Blizzard Challenge 2013 [32], comprising of
9,339 utterances extracted from audiobooks, for a total of 19 hours of speech, sampled at 16 kHz,
read by a female American Professional narrator.

The TTS system was trained using a combination of three toolkits. First, MaryTTS [66] was used
to extract the linguistic features from the text. These features comprise phonetic transcription and
elementary prosodic information, consisting of the syllable stress information and the punctuation
associated with the pause. Then, FastPitch [37] was used as the acoustic model. While Tacotron
[85] is a well-known standard, it provides less control than FastPitch. However, voices generated
by FastPitch are judged as equally natural as those produced using Tacotron [40]. Furthermore,
with FastPitch we could manipulate duration and fundamental frequency, allowing us to generate
sentences that had the same duration and speech rate as the sentences generated with Pepper’s
default voice. As a final step,WaveNet [80] was used to generate the signal from themel-spectrogram
produced by FastPitch.

The configuration of these toolkits is identical to the one presented in [40], as we used their
open source implementations and the provided configuration with limited modifications. The main
change relates to the representation used. We used a mel-spectrogram using 80 filters with cutoff
frequencies from 50 Hz for the lower bound and 7,600 kHz for the upper bound. We normalised this
spectrogram using z-score normalisation as it led to more stable results for both neural vocoders.

As previously mentioned, we used video-recordings of Pepper for the online pilot study. As
the videos were not recorded in a sound booth, we post-processed the modern synthetic voice to
avoid the acoustic environment influencing the outcome of the experiments. The post-process was
achieved using pyroomacoustics [63]. The authors tested different configurations and selected the
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Table 3. Acoustic Features of the Two Voices,
Pepper (the Pepper Robot’s Default Voice) and

TTS (Our Custom TTS Voice)

Pepper TTS
Mean F0 332.99 Hz 225.67 Hz
SD F0 91.52 Hz 42.93 Hz
Min F0 122.36 Hz 167.47 Hz
Max F0 499.96 Hz 465.89 Hz
Mean HNR 8.61 dB 14.83 dB
Jitter (local) 2.86% 1.33%
Shimmer (local) 15.84% 7.79%

one closest to reference samples. As the duration was imposed during the synthesis stage, the last
step consisted of replacing the video audio track with the post-processed speech.

Thus, we ended up with two artificial voices (which we henceforth refer to as ‘Pepper’s default
voice’ and ‘our custom TTS voice’). Table 3 shows some of the acoustic features that characterise
these two voices, taken from the same 13-second utterance spoken by both voices: average F0 and
F0 ranges (which correspond to the perceived pitch of a voice [24]) and measures of voice quality
(Harmonics-to-Noise Ratio (HNR), and local jitter and shimmer values; these generally indicate
how ‘clean’ and ‘sharp’ a voice sounds, as opposed to being ‘raspy’ or ‘breathy’ [69]). As can be
seen from the table, our custom TTS voice has an overall lower pitch than Pepper’s voice, while
remaining within the average 145–275 Hz female pitch range [27]. The custom TTS voice also has
a ‘cleaner’, less metallic sound (as shown by the voice quality features). Prosodic elements such as
duration and speech rate were the same for the two voices; specifically, speech rate was about 3.46
syllables/second—which falls within a normal human speaking rate for conversational English [33].

Qualitatively, Pepper’s voice was originally designed to be gender-neutral and child-like (although
it is often perceived as being feminine [47]), and it sounds bright and sharp, albeit having a metallic,
robotic sound to it. Conversely, the custom TTS voice was made to sound more like an adult woman,
with a lower-pitched, husky voice. We wanted a voice that sounded qualitatively different, since
most people associate the Pepper robot to female voices.

2.4 Wizard-of-Oz Implementation
During the initial design phase of the maze for the in-person experiment, we envisaged Pepper
autonomously navigating within the maze accompanying the participants. However, after building
the physical maze we realised that the space left to let both the robot and a person navigate the
maze together was too small and could present a safety hazard. We concluded that it would be safer
for participants to instruct the robot from outside the maze. This decision allowed us to set up a
Wizard-of-Oz experiment in which one of the investigators (the wizard) was teleoperating Pepper
to navigate the maze, removing the risks of errors in the navigation. Participants were completing
the game from a work-station obtained by enclosing a space in the room adjacent to the maze
room, so that they were isolated from the rest of the room and unable to see the wizard and the
maze. The work-station setup included a desktop computer, a keyboard, a tablet computer and a
pair of noise-cancelling headphones (Figure 3).

The tablet computer was used to initiate a Zoom call with Pepper, so that participants could
only see what was immediately in front of the robot during its navigation. Participants had no
other information about the maze. The noise-cancelling headphones were connected to the tablet
to ensure that participants could clearly hear Pepper’s utterances at each junction, while being
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Fig. 3. Participant’s setup for the in-person study.

shielded from other noises in the room. The desktop computer presented a graphical user interface
showing the battery of the robot deprecating over time, a timer, the subtitles to the robot’s utterances
and the means for participants to make their choices, when they had to. Whenever the wizard
navigated Pepper to a junction in the maze, they would activate the TTS engine of the robot, either
reproducing a .mp3 audio file for the TTS condition or simply using the in-built function of the
robot to reproduce the utterance in the original Pepper voice. At this moment, Pepper would tell
participants that it was at a junction and it needed to make a decision on which direction to go, and
it would offer its recommendation. Then, participants were asked to confirm their decision using
the directional arrows on the keyboard connected to the desktop computer. Participants’ computer
was connected to the wizard’s computer via a peer-to-peer socket communication channel so that,
after they selected their choice, the investigator would receive it and navigate the robot accordingly.
The wizarded navigation of the robot was also possible thanks to a socket communication channel
opened between the wizard computer and Pepper. The wizard simply needed to use the directional
arrows on their laptop to generate a message to pass the direction information to the robot, that
then translated it into motion.

3 Results
All analyses were conducted in R version 4.3.2, using packages ‘tidyverse’ (for data cleaning), ‘lme4’
(for regression analyses), ‘ltm’ (for internal consistency metrics), ‘ggplot2’ (for plot generation).

3.1 Pilot Study
In the pilot study, we looked at which repair strategies people considered most appropriate for
a robot making a mistake in a maze navigation scenario (via pre-recorded videos; Section 2.1).
People’s preferences are shown in Figure 4. People’s top three preferences of repair strategy were:
justification of the mistake, promise to be better, denial. These are therefore the strategies that we
implemented in the main in-person study.

3.2 Maze Study
In the main maze study, we looked at a series of behavioural and perceptual measures that gave us
an indication of whether people were trusting the robot, and whether this was dependent on the
robot’s voice and/or repair strategy used.
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Fig. 4. Repair strategies chosen by participants of the pilot study, in the two voice conditions.

Table 4. Mean Reaction Times (SD in Parentheses), Number of Total Trials Played, and Number of
Recommendations Accepted in the Different Voice and Repair Strategy Conditions

Voice Repair strategy Reaction time (ms) # trials # accepted recommendations
Pepper Denial 883.42 (1,108.73) 180 145
Pepper Justify 536.16 (482.02) 167 147
Pepper Promising 734.65 (880.30) 181 158
TTS Denial 598.81 (522.21) 157 141
TTS Justify 523.01 (427.14) 185 161
TTS Promising 612.02 (783.25) 184 146

Specifically, we looked at the time participants spent taking each decision to accept or not
the robot’s recommendations. This was calculated as the time between the end of the sentence
uttered by the robot and the key press indicating which direction participants wanted the robot
to follow. We also looked at the number of times people followed the robot’s recommendation.
Since the maze contained some forced choices, for this metric we only considered the trials for
which participants could actually make a choice. Finally, we looked at participants’ answers on
the MDMT questionnaire and on the manipulation check questions, which they filled out after the
maze task. Summary statistics on the behavioural data can be found in Table 4.

To investigate reaction times, we first removed outliers, i.e., individual trials where participants
spent significantly too much or too little time to make a decision. Following established procedures
[6], we removed trials where participants spent ±2 SDs away from the mean of all trials reaction
times to make a decision. This resulted in the exclusion of 48 trials, for a total of 1,006 analysable
trials. Then we built a series of mixed-effects linear models with reaction time as dependent variable,
voice and repair strategy as independent variables and participant id as random intercept. The
models were built using forward stepwise selection based on the AKAIKE information criterion,
and compared to a baseline model using chi-square tests. We found a significant effect of repair
strategy (j2 (2) = 6.45, p = 0.039), with people on average spending less time making a decision in
the justify repair strategy than in the denial repair strategy, as can be seen in Figure 5 (V̂ = 232.88,
95% CI [49.18, 416.59], C = 2.48).
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Fig. 5. Average reaction times that participant took to make decisions in the maze, divided by the voice and
repair strategy used by the robot.

Fig. 6. Frequency of following the robot’s recommendations in the maze study, divided by the voice and
repair strategy used by the robot.

For the number of times people followed the robot’s recommendation, we fitted mixed-effects
logistic regression models using participants choice (follow or not) as dependent variable, voice
and repair strategy as independent variables and participant id as random intercept. There was
a main effect of voice (V̂ = 0.76, 95% CI [0.07, 1.45], I = 2.15, p = 0.031), with people following
the advice of the robot with the TTS voice more. There was no main effect of repair strategy, but
there was a significant interaction of voice and repair strategy (V̂ = −1.37, 95% CI [−2.31,−0.43],
I = −2.86, p = 0.004), with people following the robot with TTS voice and promising strategy the
smallest number of times, as shown in Figure 6.

Due to the nature of our experimental design, people could have encountered a different number
of robot errors—and thus heard a different number of repair strategy utterances—based on which
route they chose to follow. Of our 60 participants, the vast majority (n = 35) encountered two robot
errors, n = 15 encountered 1, n = 8 encountered 3, n = 1 encountered 4 and n = 1 did not encounter
any error. As an exploratory analysis, we fitted another mixed-effects logistic regression model on
participants’ choice to follow or not the robot, with the additional explanatory variable of number
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Fig. 7. Mean ratings from the MDMT questionnaire, divided by the voice and repair strategy used by the
robot.

of encountered errors. This was done mainly to see whether the addition of this variable removed
the effect of voice from our main model described above, and not to see whether the number of
errors could have influenced participants’ decisions (since this was not a controlled manipulated
variable). Adding this co-variate did not change our main results, and the same main effect of voice
and interaction effect of voice and repair strategy were found.

To examine whether people’s trust and behaviour towards the robot changed after there was
a trust breach—i.e., after the robot made a mistake—we split the game data into before and after
hearing the second repair utterance from the robot, and conducted the same analysis (regressing
the number of times people followed the robot) with the split (before/after the second mistake) as
an additional predictor. We did not consider the reaction times before and after the split because
there would most likely be a confound with people’s progressively getting faster as they learn how
the game works. We split the data after the second repair utterance, and not the first, since the first
one happened at the very first choice in the maze. Only participants who encountered at least two
robot mistakes (n = 44) were included in this part of the analysis.

We found that people followed the robot on average the same number of times before and after
witnessing the second mistake: V̂ = −0.16, 95% CI [−0.60, 0.28], I = −0.72, p = 0.472.

Finally, for the MDMT questionnaire, we first calculated internal consistency scores for each
of the original four subscales of ‘reliable’, ‘capable’, ‘sincere’, ‘ethical’ [79]. We found good to
excellent consistency for each of them (Cronbach’s Alpha = 0.77, 0.93, 0.79, 0.80, respectively).
Then, we conducted ANOVA tests with the two questionnaire scores (capacity and moral trust)
as dependent variables, and robot voice and repair strategy as independent variables (Figure 7).
For capacity trust, there was no main effect of voice or repair strategy, but there was a significant
interaction (� (2, 54) = 6.02, MSE = 1.45, p = 0.004, [̂2

�
= .182), with people giving higher ratings

to the Pepper’s default voice and justify repair strategy combination. Similarly, there were no main
effects for moral trust, but the same interaction was found (� (2, 52) = 3.31, MSE = 2.20, p = 0.044,
[̂2
�
= 0.113). One of the peculiarities of the MDMT questionnaire is that it gives the possibility

to respondents to indicate that a certain item ‘Does not fit’ the robot in question. This is done to
avoid forced and meaningless ratings. If ‘Does not fit’ is checked, the item becomes a missing value.
Hence, our participants had the chance to select ‘Does not fit’ whenever they did not consider an
item relevant. However, this option was rarely selected (only two participants selected ‘Does not
fit’ enough for their Moral Trust scale to result in missing and were thus omitted from the analysis),
and data points were collected consistently for both scales.
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To the manipulation check question ‘Do you think Pepper was able to regain your trust after its
mistake?’ out of our 60 participants 53 (88%) answered positively, while the remaining 7 answered
negatively. Only 18 participants (30%) specified what the robot could have done to regain their trust,
and 30 (50%) left additional comments. To analyse the qualitative data collected through the open
questions, two of the authors independently coded the answers and confronted them to find general
trends. Although not many generalisable concepts were found in the answers, what was clear
from their breakdown was that we could identify two main takeaway messages: (1) participants
understood that Pepper made a mistake; (2) some participants had personal biases or personality
traits that were the main cause for not complying with the robot’s suggestions. In fact, we find
that only three participants commented with variations of ‘I do not think it made a mistake’, while
the rest understood that the robot was sometimes at fault. Thirteen participants suggested that the
robot could have given more information, four participants clearly referred to the fact that Pepper
should have ‘Taken Responsibility’ and ‘Apologise’, four participants wished that Pepper was faster
in both navigating and delivery the repair strategy (i.e., ‘It should move on faster. Just a short sorry
and then continue’). Finally three participants directly stated that their personal attitudes (i.e.,
‘being too stubborn’) were what influenced their choices during the Maze Task.

4 Discussion
With the studies presented here, we looked at whether a robot’s voice influences trust formation
and repair in a collaborative task, and whether a series of repair strategies commonly used in
human-human interaction also work when the trust is broken by a robot.

Stemming from definitions of trust commonly used in the HRI literature [22, 23, 68], we created
a scenario where people and robot had to cooperate to solve a problem, whereby both had access
only to partial information. We also introduced a vulnerability component, which is fundamental
to trust, in that participants’ monetary reward at the end of the study was dependent on how well
they solved the task.

In the post-task questionnaire, we found that participants rated Pepper’s default voice as more
trustworthy than our custom TTS voice. However, this is not reflected in people’s behaviour in the
maze task, where they actually trusted the robot with our custom TTS voice more—as indicated
by the average number of times that people decided to follow the robot’s advice. This apparent
discrepancy actually confirms research in Psychology showing that people’s explicit judgments do
not often correlate with their behaviour [18]; in other words, people don’t do what they say they
would do. A recent experiment in HRI also found that people’s perception of a robot’s competence-
based trust did not correlate with any of the collected behavioural measures [67]. This has important
implications for HRI, because it suggests that different robot characteristics—in this case, voice—
might be more or less appropriate for different contexts and interaction modalities. Based on
our current result, we hypothesise that Pepper’s default voice—which is rather high-pitched and
expressive, almost girlish or child-like—might be preferable in general contexts, where no trust
action is required from the human user. On the other hand, our custom TTS voice—which is lower
pitched and sounds like a rather serious adult woman—might be preferable in contexts where the
human user has to accept a certain risk and needs to perform an action, such as deciding whether to
accept the robot’s recommendation or not. Our results confirm other recent evidence that different
artificial agent features and behaviour might be more effective in different contexts: For example,
[73] showed that smiling, up-beat avatars acting as navigation assistants in a hypothetical lunar
crash scenario were not trusted as much as avatars showing a neutral, ‘serious’ expression. Similarly,
robots that actively nudged people to take action in a simulated evacuation scenario were more
effective than robots that simply awaited human instructions [25]. This also opens new avenues for
future work. Apart from keeping investigating which voice is most appropriate for which context
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(see, e.g., [76]), what would the best course of action be for a robot that needs to interact with
humans in different contexts? Should it change its voice to better fit the current interaction context,
or would this change in a robot’s persona result in an Uncanny Valley?

Given that context is crucial [61], with our online pilot study we wanted to find the repair
strategy/ies that was considered most suitable for our scenario (RQ1). We were also interested in
investigating whether the different characteristics of the robot were influencing the decision on
the repair strategy in any way (RQ2). No effect of voice was found (RQ2), but there was a general
consensus that justifying the failure, promising to do better and even denying the mistake were
acceptable repair strategies in our chosen cooperative context (RQ1). The results on the justification
and promise strategies are consistent with previous findings [10, 65]. However, the positive results
of the denial strategy were unexpected; from previous studies, it had emerged that having the robot
blame anything else but itself leads to a decrease in trust [29], and that denial was the least successful
strategy in repairing trust in a human-robot teaming scenario. Additionally, while previous studies
showed that apology is an acceptable strategy in some contexts [56, 64], it did not fare well in our
joint navigation scenario. This might be because the nature of the trust-requiring tasks in these
studies was different: For example, [64] compared denial and apology in a competitive setting
(whereas our task was cooperative in nature), and in [56] the high-risk evacuation scenario resulted
in the understanding that the strategy was successful at repairing trust if used when the robot asks
the human to trust it again, but not when used immediately after the mistake. Once again, we find
that trust-related variables are highly context-dependent, and this extends to trust-repair strategies
as well. In the maze study, we found some evidence that the justify strategy might have been
more immediately convincing to participants, since they made up their mind more quickly after
hearing this strategy, as compared to the denial strategy (RQ3). Since the repair strategies did not
significantly differ in terms of probability of following the robot’s recommendation however, it is
possible that participants needed less time to think about what to do next, when the robot provided
an explanation for its mistake, even though the following action was not affected. On the other
hand, people hearing the denial strategy might have needed some time to think of a possible reason
behind the mistake, even though their final decision was the same. Thus, the explicit choices that
people made in the pilot study were generally reflected in the behavioural results in the maze task,
in the sense that all repair strategies worked equally well. There was only one exception, in that the
combination of our own TTS voice and the promise repair strategy was particularly unsuccessful
(RQ5). This supports previous research on the topic, which argues that agent features (such as voice
and body shape [47], facial expressions and linguistic content [2], facial and vocal expressivity
[73]) should not be examined in isolation, because their various combinations might be perceived
differently. The promise repair strategy had also already been found to be less effective in HRI in
the case of repeated robot errors [51]. This might be due to the underlying moral implications of
breaking a promise previously made.

Similarly, the repair strategies that were adopted by the robot did not have an overall effect on the
perceived trustworthiness of the robot in the post-game questionnaire. However, Pepper’s default
voice combined with the justify repair strategy gave rise to higher ratings of trust in the MDMT
questionnaire (RQ4). From this, we can infer that the perceived trustworthiness of the robot could
be a factor influencing the effectiveness of the repair strategy but not the other way around. In fact,
what we found with our maze experiment was that no repair strategy was more successful than
the others in boosting the trustworthy perception of the robot and guiding participants towards
trusting the robot after a violation (as the number of times they followed the robot in the experiment
did not depend on the repair strategy).

Finally, we found that people’s behaviour before and after witnessing the robot’s mistakes was
essentially unchanged, as indicated by the number of times people decided to accept the robot’s
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recommendations (RQ5). This means that the trust breach was successfully addressed by the repair
utterances spoken by the robot—as confirmed by participants in their answers to the post-task
questionnaire. Thus, we do not find one trust repair strategy to work better than others overall, but
rather all three investigated repair strategies worked in this cooperative context.

However, even if the mistake and trust repair efforts of the robot were acknowledged, it is still
possible that our participants did not consider the robot’s mistakes to be crucially trust-breaking.
While similar navigation errors were used in previous studies [57, 58], and while we tried to increase
participants’ vulnerability with a potential monetary penalty, our study scenario is low-stakes.
Vulnerability is a fundamental factor for trust to emerge [68] and it is deeply linked to the notion of
risk [54]. For this reason, since the risks for the participants of our study were not high, it is possible
that the trust-breaking moment did not impact them strongly. This might also be the reason why
using the Denial strategy was not detrimental to the perception of the trustworthiness of the robot,
as this strategy has been shown to work best when the exact causes of the trust violations are
unknown [43]. In the future, to be able to generalise our results, a more high-stake scenario should
be designed and tested.

In human-human interaction, denial has been shown to work as a trust repair strategy for
integrity-based trust violations, but not competence-based ones [16, 31]. As an example, in [31],
participants were shown videos of potential job candidates who had committed trust violations at
their previous job (compiling tax declarations incorrectly). The violation was manipulated to be
either competence-based (filling out the wrong form) or integrity-based (knowingly providing the
wrong information). The candidate responded with a trust-repairing utterance (either apologising,
or denying the accusation). Participants then rated the candidate for perceived trustworthiness.
Results showed that apology was a better repair strategy for the competence-based violation while
denial was a better strategy for the integrity-based violation. In our study, while we did not explicitly
tell participants what kind of trust violation the robot committed, the nature of the task pointed
to a competence-based violation scenario, since it was both in the human and robot’s interest to
successfully complete the task. Speculating that participants understood this, we can suggest that
some strategies that worked to repair trust in HRI (such as denial in competence-based violation
scenarios) might not work in human-human interaction [16, 31], or the other way around.

Overall, we found that robot voice influenced trust formation, and henceforth its repair, while
repair strategy did not strongly affect the human-robot trust relationship in this cooperative setting.
This finding contributes to the ongoing research on trustworthy autonomous systems. We confirm
that the literature on trust in HRI is inconclusive not because it does not provide guidelines to
design social robots that could convey trust; on the contrary, it is hard to find a general definition
of a trustworthy robot, as the context in which the robot is to be deployed plays a fundamental role
in how the robot should behave, appear and sound to convey and repair trust. Lastly, we report
findings that suggest that new research efforts should be directed toward understanding what
strategies robots could use to regain trust after they commit a violation. While it is necessary to
get inspired by the human world, it is becoming more and more clear that a simple transposition of
what we do in our everyday interactions does not completely translate to robots when it comes
to trust [14]. For this reason we should start investigating ad-hoc methods for HRI, as previously
suggested by [4].

4.1 Limitations and Future Work
This work presents some limitations that should be acknowledged. One is the low-risk scenario
that we devised for our behavioural trust measurement, which we have addressed above.

Another limitation is the relatively low sample size of our experiment. While the total number
of in-person participants was 60 (a considerable number overall), we ended up having only 10
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participants for each of the experimental conditions, due to the high number of conditions we
tested and the between-subject experimental design. This was due to logistical and institutional
limitations. One user session took roughly 1 hour, and the experimenter needed an additional half an
hour between sessions to deal with potential robot-related issues (charging, switching off to prevent
over-heating, etc.). Furthermore, due to the nature of the hosting institution (which is a technical
university and does not offer, e.g., courses in Psychology), recruitment was cumbersome, since
there is no existing set-up where students can sign up to participate in experiments in exchange
for credits. This means that our population was a bit more varied, but at the cost of availability
and time spent. We do not wish to endorse publishing underpowered studies, but we acknowledge
that conducting user studies with robots in person requires significant efforts in terms of time and
resources, meaning that convenience sampling needs to be adopted, in line with existing norms in
the HRI literature [44, 53, 82, 86].

Also, due to the nature of the maze task, people encountered a different number of decision
points, and witnessed a different number of robot mistakes, depending on the route they chose
to take. This means that their individual experience was not fully controlled and might have led
to a few artefacts in the analyses. However, this was necessary to ensure the ecological validity
of the task. We strove to give our participants an experience as close to reality as possible, taking
inspiration from collaborative scenarios in which humans and robot need to find a solution together
and where humans have real choices over the decisions to be made. For this reason, the path
they could take was not pre-planned, and we believe that this facilitated the observed behavioural
differences. However, as described in Section 3.2, we took this into account in our analyses (by
adding the number of encountered errors as an explanatory variable, and by performing an analysis
only on participants who encountered two or more errors) and we did not find any influence of
these variables on the overall results. However, future studies should seek to confirm and expand
our results with a higher sample size and a more controlled experimental setup.

In addition, due to the physical limitations of the robot (which walks at a slower-than-average
human walking speed) and the room where we built the maze (which is rather small), we could not
have the robot and human collaboratively solve the maze together in the same room. This would
be worth exploring in the future, as the proximity to a physical robot, as well as different robot
embodiments, may play a role in the overall participants’ experience and robot perception [11].

Finally, our work mainly focused on competence-based violations, and the repair strategy was
employed immediately after the robot made a mistake. One additional variable that would be
worthy of investigation in future works is the timing of the repair strategy and how that influences
compliance with the robot recommendations (in line with the work of [65]).
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