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ABSTRACT

Gradients negatively affect performance in large-scale bioreactors; however, they are difficult to predict at laboratory scale.

Dynamic microfluidics single-cell cultivation (dAMSCC) has emerged as an important tool for investigating cell behavior in rapidly

changing environments. In the present study, dMSCC, biosensors of intracellular parameters, and robustness quantification were

employed to investigate the physiological response of three Saccharomyces cerevisiae strains to substrate and pH changes every

0.75-48 min. All strains showed higher sensitivity to substrate than pH oscillations. Strain-specific intracellular responses included

higher relative glycolytic flux and oxidative stress response for strains PE2 and CEN.PK113-7D, respectively. Instead, the Ethanol

Red strain displayed the least heterogeneous populations and the highest robustness for multiple functions when exposed to
substrate oscillations. This result could arise from a positive trade-off between ATP levels and ATP stability over time. The present
study demonstrates the importance of coupling physiological responses to dynamic environments with simultaneous character-

ization of strains, conditions, individual regimes, and robustness analysis. All these tools are a suitable add-on to traditional

evaluation and screening workflows at both laboratory and industrial scale, and can help bridge the gap between these two.

1 | Introduction

During bioprocess scale-up, a cell factory is transferred from con-
trolled, small laboratory volumes (ranging from high-throughput
plates to bench-top reactors) to large, heterogeneous industrial
conditions (~100,000 L reactors) (Wehrs et al. 2019). Therefore,
mimicking key conditions at a small scale during strain develop-
ment is crucial to avoid setbacks due to poor growth or suboptimal
titers, rates, and yields (TRY) at industrial scale (Crater and
Lievense 2018). In a large-scale bioprocess, numerous and complex
perturbations affect TRY metrics (Olsson et al. 2022). For example,
insufficient mixing leads to gas (Baeten et al. 2020), substrate

(Larsson et al. 1996), and pH (Spann et al. 2019) gradients (Lara
et al. 2006; Nadal-Rey et al. 2021). Cells experience such gradients as
changing environments within seconds to minutes (Haringa
et al. 2018), resulting in increased metabolic costs (Minden
et al. 2022), decreased productivity (Gao et al. 2016), and population
heterogeneity (Delvigne and Goffin 2014). Laboratory scale-down
reactors (Neubauer and Junne 2016; Takors 2012) or pulse-feeding
experiments (Anane et al. 2019; Minden et al. 2022) are used to
simulate dynamic environments, though their temporal resolution
is limited to minutes, at best. Modeling approaches assessing
metabolic regimes (Haringa et al. 2016) or predicting metabolite
(Zieringer et al. 2021) and product (Haringa et al. 2018) levels offer
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insights into cellular responses in a large-scale fermenter. However,
a priori knowledge of the microorganism (substrate saturation
constant, TRY, etc.), sophisticated modeling algorithms, and com-
putation intensity (Haringa 2023) are required.

Microfluidics allow for manipulation and control of small volumes
of fluids within short time frames (Whitesides 2006). Dynamic
microfluidic single-cell cultivation (dMSCC) implements media
switches within a few seconds (Blobaum et al. 2023; Taduber
et al. 2020), allowing for real-time monitoring of cell growth and
intracellular responses. dMSCC has been applied to study the
response of Corynebacterium glutamicum and Saccharomyces
cerevisiae to substrate (Henrion et al. 2023; Tduber et al. 2020) or
pH (T4uber et al. 2022). A dMSCC setup and automated pipeline
have been recently adapted for yeast cultivation to assess multiple
oscillation frequencies simultaneously, thereby increasing through-
put (Blobaum et al. 2024). In that proof-of-concept study, a single
laboratory yeast strain was investigated in 0 and 20 g/L glucose
oscillations. However, investigation of multiple strains and condi-
tions is needed to better understand common yeast physiological
responses to dynamic industrial conditions.

Microorganisms for industrial applications are often selected
based on overall TRY performance rather than their ability to
withstand different challenges or exhibit a stable, “robust”
performance (Olsson et al. 2022). Robustness (the ability of a
system to maintain a stable performance) is often neglected due
to lack of reliable means to measure it (Olsson et al. 2022). A
recently developed robustness quantification method has
revealed robust cellular functions (such as specific growth rate,
ethanol yield, etc.) and performance-robustness trade-offs in S.
cerevisiae strains exposed to extracellular stresses (Trivellin
et al. 2022). Moreover, the method is highly versatile due to the
mathematical implications behind the quantification method.
Besides exploring the stability of functions in face of different
extracellular perturbations, the robustness formula can also
measure the stability of functions over time and the degree of
population heterogeneity (Torello Pianale et al. 2023).

The present study applied dMSCC and robustness quantification to
compare the physiological responses of three S. cerevisiae strains to
substrate and pH dynamics over oscillation frequencies, time, and
populations. Growth and morphology characterizations were cou-
pled with intracellular measurements of ATP, glycolytic flux, and
oxidative stress using fluorescent biosensors (Pianale and
Olsson 2023). Overall, this study offers a novel insight into the
physiological response of various yeast strains to industrially rele-
vant dynamic environments. Importantly, it shows how physiology-
robustness analysis can be instrumental in achieving more efficient
strain screening, engineering, and scale-up.

2 | Results and Discussion

2.1 | Experimental Setup: Selecting Strains,
Conditions, and Oscillation Frequencies

2.1.1 | Strain Selection

Three S. cerevisiae strains were selected for this study (Figure 1).
The laboratory strain CEN.PK113-7D is widely used for

physiological studies and has a background in wild and industrial
strains (Nijkamp et al. 2012). Industrial strains of Ethanol Red and
PE2 are used for first-generation bioethanol production (Lino
et al. 2018) and have been extensively characterized (Argueso
et al. 2009; Demeke et al. 2013; Pereira et al. 2014).

2.1.2 | Selection of Substrate Dynamics

Substrate gradients in bioprocesses induce different metabolic
regimes (starvation, overflow-metabolism, etc.) and cellular
responses. Lifeline simulations (i.e., analysis of gradients from a
cell's perspective) mimicking the late stage of industrial yeast
fed-batch production suggested that cells experienced substrate
limitation, overflow metabolism (substrate excess) or severe
starvation depending on their location in the bioreactor
(Minden et al. 2022; Sarkizi Shams Hajian et al. 2020). Substrate
oscillations cause osmotic stress (Devantier et al. 2005) at both
excessive (>100g/L) or insufficient substrate concentrations
(Nadal-Rey et al. 2021). In the present study, 50 g/L glucose was
selected to mimic the elevated substrate content and osmotic
stress of industrial operations. At the opposite end, to determine
a desirable glucose-limiting concentration, CEN.PK113-7D was
grown at 5mg/L to 20g/L glucose (Figure 2A). Eventually,
10 mg/L glucose was selected as it kept metabolic activity above
the maintenance threshold (ensuring at least one doubling) and
provided energy to synthesize the required biosensors.

2.1.3 | Selection of pH Conditions

Medium pH may also be subjected to oscillation in microbial cul-
tures (Calsamiglia et al. 2002; Cortés et al. 2016) following the
addition of agents and titrants (Brunner et al. 2017; Spann
et al. 2019). Moreover, contamination from lactic acid bacteria is not
unusual in yeast bio-productions, lowering the pH (T. O. Basso
et al. 2014; Franchi et al. 2003; Makanjuola et al. 1992;
Narendranath et al. 1997) and ethanol yields (Narendranath and
Power 2005). CEN.PK113-7D was grown at pH 3-5 to identify
suitable conditions for subsequent experiments. Cell viability
remained 100% at pH 5 and 4 but dropped to 75% at pH 3.5 and
below 50% at pH 3 after 8 and 16 h (Figures 2B and S1). Most cells
grown at pH 3 completed only one doubling before dying (data not
shown). Therefore, pH 5 was selected as the optimal condition for
growth and to resemble industrial settings. Instead, pH 3.5 was
chosen as the stress condition, as it was able to negatively affect
yeast cells while guaranteeing growth and avoiding excessive
mortality.

2.14 | Oscillation Frequency Selection

Previously, CEN.PK113-7D was exposed to symmetric oscillation
frequencies of 1.5, 6, 12, 24, and 48 min (Blobaum et al. 2024), that
is, cells were alternately exposed to relaxing and stressing media in a
repeated and uniform cycle. These frequencies affected events at
different biological timescales, ranging from RNA synthesis to
replication (Nguyen et al. 2021; Shamir et al. 2016). In this present
study, pH and substrate, respectively, were oscillated every 0.75, 1.5,
and 6 min to mimic mixing and gradients in industrial bioreactors.
In large-scale bioreactors, such changes occur from seconds
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FIGURE 1 | Experimental overview of the setup. Each dMSSC chip (top right panel) is composed of six microfluidic structures (Blobaum
et al. 2024). Each oscillation structure (on the right) is composed of 6 arrays of 23 chambers for cell growth. Strains CEN.PK113-7D, Ethanol Red, and
PE2 were grown in substrate and pH dynamic environments with oscillations ranging between 0.75 and 48 min. Each strain carried a biosensor for

ATP levels, glycolytic flux, or oxidative stress response. The mechanism of action of biosensors is detailed in Figure 3 and in Supporting Information
Text (Additional File S1).
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FIGURE 2 | Selection of experimental conditions. (A) Number of doublings by CEN.PK113-7D grown at different glucose concentrations
(n = 4-8 cells across three replicates). Doublings considered the initial cells inoculated in each chamber only. (B) Percentage of alive and dead CEN.PK113-7D
cells after 1, 8, and 16h in MSCC static cultivation at various pH. Values are based on triplicates (three individual chambers) and correspond to the
mean =+ standard deviation.

to minutes (Haringa 2023; Haringa et al. 2017; Ho et al. 2022; Once the conditions were selected, growth (growth curves and
Minden et al. 2022). Additionally, oscillations every 24 and 48 min budding ratio), morphological descriptors (cell area and circu-
were also included to assess the physiological effects of longer larity), and intracellular parameters (relative ATP levels, gly-
oscillations in the order of large-reactor mixing times (Lara  colytic flux, and oxidative stress response) of the selected strains
et al. 2006) and their differences compared to faster oscillations =~ were monitored using biosensors and live-cell imaging in
(Figure 1). dMSCC chips (Figures S2 and S3).

1658 of 1942 Biotechnology and Bioengineering, 2025

35S 1T SUOWILWOD dAIREa.D a|ceal|dde a3 Ag peusenob e sajoliie YO ‘8sn JO Sa|nJ 10} Akeiq i aUlUQO AS|IAA UO (SUOIPUOD-PpUE-SLLLIB)WI0D AS | IM Are.q 1 Ul |uo//:Sd1Y) SUOHIPUOD pUe SWB | 83Ul 89S *[G202/80/ST] Uo AriqiauluQ A8|IM ‘Bulupsieg susiels Aq #8682 10/200T OT/I0p/od A |1m Alelq 1 pul|uo's leuino Bous 1os eanA feue//sdny wodj papeojumod ‘2 ‘G202 ‘0620260T



2.2 | Substrate Dynamics Have Greater Impact
Than pH on Growth and Morphology

2.21 | Effect of Oscillating Environments on Growth

Growth was assessed as budding ratio, that is, the number of
new buds per cell at any given time with respect to the previous
timepoint (Equation 1) (Blobaum et al. 2024). Ethanol Red ex-
hibited the highest budding ratio under both substrate and
pH oscillations, albeit not statistically higher compared to the
other two strains (Figure 3A). The budding ratio was higher

>

N

Budding Ratio
(buds/cell)

Area (um?)

upon pH than substrate oscillations (Figures 3 and S4).
S. cerevisiae is notoriously resistant to low pH (Carmelo
et al. 1996), explaining the absence of growth impairment by
any pH oscillation (Figure S5). Moreover, in the pH-dynamic
setup, substrate (i.e. glucose) was not a limiting factor as it was
sufficient to maintain internal homeostasis and stable growth.
Previously, 24-min substrate oscillations caused the greatest
reduction in budding ratio and specific growth rate (Blobaum
et al. 2024). Here, the budding ratio declined the most with
oscillations of 1.5 and 6 min in CEN.PK113-7D and of 6 and
24min in industrial strains (Figures 3B and S5). These
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FIGURE 3 | Growth and morphology response in dynamic environments. (A) Violin plots highlight the performance of each function (budding ratio,

area, and circularity) for each cell of a specific strain under all tested dynamic environments. Positive control data (static environment) are not included but are
found in Figure S5. Red dots denote the mean performance across cells in all replicates and frequencies. Student's t-test was performed to assess differences
between each pair of strains; **p <0.01, ****p <0.0001. (B) Detailed overview of the budding ratio in strains exposed to substrate and pH dynamic
environments and positive control (pH 5 for pH oscillations, 50 g/L glucose for substrate oscillations). Standard deviation refers to data distribution across five

replicates.
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differences might be due to discordant glucose concentrations:
20 and 0g/L in the previous screening versus 50g/L and
10mg/L in the current one. The absence of glucose in the
previous screening caused inevitably different responses com-
pared to the present setup. More than 500 genes have been
found to be differentially expressed between starving and
calorie-restricted (i.e., enough substrate for metabolic activity,
but not reproduction) cells (Gulli et al. 2019). The present setup
better mimicked the challenges posed by large-scale processes,
such as high osmotic stress caused by variations in substrate.

2.2.2 | Morphological Assessment of Yeast Cells in
Oscillating Environments

Yeast morphology can be used as an indicator of cell health and can
identify specific physiological states. In the brewing industry, the
size and shape of yeast cells have been shown to impact fermen-
tation efficiency and the quality of the final product, leading to off-
flavors or reduced alcohol yield (Powell et al. 2003). In filamentous
fungi, morphology has been shown to correlate with productivity
(Wucherpfennig et al. 2011). Previous dMSCC analysis revealed
feast-starvation frequency-dependant morphological changes in
CEN.PK113-7D (Blobaum et al. 2024). Here, two morphological
parameters, namely cell area and circularity, were investigated in
substrate and pH dynamic environments. PE2 and Ethanol Red
cells were bigger than CEN.PK113-7D cells (Figures 1 and 3A),
possibly due to higher ploidy (Fukuda 2023). In particular, Ethanol
Red presented the biggest cells, whereas PE2 had the highest var-
iation in cell area and circularity (Figures 3A, S2, and S3). Notably,
PE2 size was the least affected by any substrate oscillation
(Figures S4 and S5), although it showed a substantially high-
er degree of population heterogeneity in regard to cell morphology
during the screenings (both as size and shape) among all the strains
tested (data not shown). Overall, substrate oscillations resulted in
bigger and rounder cells than pH oscillations (Figures 3A and S5).
Altering the surface-to-volume ratio by changing morphology shape
and size might be a strategy to regulate nutrient uptake (Turner
et al. 2012). Instead, a less round and smaller phenotype in pH os-
cillations may result from cell wall alterations and deformations
caused by low pH (de Lucena et al. 2012, 2015; Ribeiro et al. 2022).

2.3 | Fluctuating Environments Induce Strain-
Specific Intracellular Parameter Responses

2.3.1 | Biosensor Selection

One advantage of using dMSCC is its combination with fluorescent
biosensors to monitor the response of desired intracellular param-
eters in dynamic environments (Blobaum et al. 2024). Here, the
selected strains were engineered with biosensors of intracellular
ATP levels, glycolytic flux, and oxidative stress response using the
ScEnSor Kit (Pianale and Olsson 2023) (Figure 4A and Supporting
Information Text in Additional File S1). While the ATP biosensor
(QUEEN-2m) had a response time of a few seconds to detect
changes in ATP levels (being a circularly-permuted biosensor)
(Blobaum et al. 2024; Takaine 2019), the oxidative stress and gly-
colytic flux biosensor (GlyOx) had a response time in the order of
tens of minutes (being based on transcription, translation, and

maturation of fluorescent proteins to detect the desired parameters)
(Pianale and Olsson 2023). However, these biosensors were still
useful for grasping general trends in physiological behaviors
through all the oscillation frequencies tested. Moreover, biosensors
with response times slower than environmental oscillations are still
able to spot differences as the biosensor response shifts to a new
steady state (Nguyen et al. 2021). More in-depth considerations are
available in the Supporting Information Text in Additional File S1.
For all biosensors, relative changes to the positive control were
computed using Equation 2 and represent the fold increase/
decrease for each parameter (Figures S6 and S7). Some considera-
tions should be made for these biosensors.

2.3.2 | ATP Levels and Glycolytic Flux

Relative ATP levels dropped significantly (to < 1) when cells were
exposed to substrate oscillations while remaining similar to the
control (~1) in pH oscillations (Figures 4B, S6, and S7). As with the
budding ratio, this result can be explained by constant substrate
content and, therefore, stable ATP production encountered during
pH dynamics. The relative glycolytic flux was also higher during
pH as opposed to substrate oscillations (Figures 4B and S7). Ethanol
Red manifested significantly higher relative ATP levels than
CEN.PK113-7D and PE2 in response to substrate dynamics,
whereas the opposite was true for pH oscillations (Figure 4B).
Ethanol Red is more resistant to substrate fluctuations and can
adapt more easily to such conditions than CEN.PK113-7D (Minden
et al. 2022, 2023a, 2023b), which is slower at mobilizing the storage
carbon pools (mainly trehalose) (Minden et al. 2022, 2023a;
Thevelein 1984), due to a mutation in the CYRI gene (Nijkamp
et al. 2012). The greater metabolic flexibility of Ethanol Red might
also be suggested by its higher relative glycolytic flux in short
oscillations (0.75 and 1.5min) compared to CEN.PK113-7D, but
lower in longer ones (6 and 24 min) (Figures 4C and S6). Interest-
ingly, PE2 was the only strain to increase the relative glycolytic flux
(< 1) when exposed to both substrate and pH oscillations; while
CEN.PK113-7D displayed the opposite trend (> 1) and Ethanol Red
showed no difference or a slight decrease with respect to control
conditions (Figure 4B). Such discrepancies might be caused by
strain-specific expression or substrate affinity of hexose transporters
(Maier et al. 2002; Nadai et al. 2021), or by strain-specific metabolic
responses (Onetto et al. 2021; Trivellin et al. 2024). Given its toler-
ance of low pH (Coradini et al. 2021; Della-Bianca et al. 2014), PE2
responded better to pH oscillations in terms of ATP levels and
glycolytic flux but displayed the lowest oxidative stress response
(Figure 4B).

2.3.3 | Substrate Oscillations Lower the Oxidative
Stress Response

Substrate oscillations dampened the oxidative stress response
(<1), particularly in CEN.PK113-7D (Figure 4B); whereas
pH oscillations had comparable oxidative stress levels compared
to the control condition (~1), thus causing higher relative oxi-
dative stress response compared to substrate oscillations for all
the strains (Figures 4B and S7). The observed divergence could
be related to differences in respiratory metabolism or regulation
by the stress-responsive transcription factor Yaplp. Reactive
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Biosensor mode of action and response in dynamic environments. (A) Overview and mechanisms of action of biosensors for ATP

(QUEEN-2m, a circularly-permuted fluorescent protein), glycolytic flux (GlyRNA, a fructose-bis-phosphate (FBP)-sensitive aptameric biosensor), and
oxidative stress (OxPro, an oxidative stress-sensitive synthetic-promoter-based biosensor). (B) Relative ATP, glycolytic flux, and oxidative stress of the
three selected strains upon substrate (left) and pH (right) dynamics. Violin plots highlight single-cell performance. Positive control data (static

environment) are not included (see Figure S6). Red dots denote the mean performance across cells in all replicates and dynamic oscillation

frequencies. Student's t-test was performed to assess differences between each pair of strains; ****p <0.0001. (C and D) Relative glycolytic flux in

Ethanol Red (C) and relative oxidative stress response in CEN.PK113-7D (D) exposed to substrate and pH dynamic environments and a static positive

control (pH 5 for pH oscillations, 50 g/L glucose for substrate oscillations). Standard deviation refers to data distribution across five replicates.

oxygen species are generated during respiration. In the presence
of oxygen, yeast cells have a respiro-fermentative (overflow)
metabolism when the substrate is abundant and a respiratory
metabolism when it is low (Pfeiffer and Morley 2014). During

pH oscillations and at 50 g/L glucose in substrate oscillations,
an overflow metabolism was guaranteed. Instead, 10 mg/L
glucose triggered a respiratory metabolism (not necessarily at full
capacity), which allowed maintenance but limited replication. This
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FIGURE 5 | Intracellular parameter performance and robustness relationship. (A) Visual representation of robustness types. For a desired

function (e.g., ATP levels) and set of conditions (e.g., different oscillation frequencies), it is possible to use the robustness quantification method to

measure the stability of a function across conditions R(c), populations R(p), and over time R(t). (B-D) Correlation between performance (x-axis) and
robustness types (y-axis) for relative ATP levels (B), glycolytic flux (C), and oxidative stress response (D). For each intracellular parameter, robustness
across conditions, R(c) (top), over time, R(t) (middle), and across populations, R(p) (bottom), are shown. Standard deviation represents the
distribution across five oscillation frequencies only (no positive static control included) with five replicates each.

may have generated fewer reactive oxygen species and, conse-
quently, a lower oxidative stress response. Alternatively, the dis-
crepancy might be related to the synthesis of methylglyoxal, a toxic
metabolite produced during glycolysis, which activates Yaplp and
triggers the oxidative stress response (Maeta et al. 2004). A constant
glucose concentration in pH oscillations might have triggered me-
thylglyoxal synthesis and a baseline oxidative stress response.
Instead, low glucose periods in substrate oscillations might have
decreased methylglyoxal synthesis and the stress response. Inter-
estingly, only in CEN.PK113-7D, pH oscillations boosted the oxi-
dative stress response (Figure 4B), particularly at 0.75, 1.5, and
6min (Figures 4D and S6). Activation of the oxidative stress
response in laboratory strains has been documented at pH 3.5
(Kapteyn et al. 2001) and 2.5 (de Lucena et al. 2015). On the con-
trary, the industrial strain JP1 was shown to trigger only a general
stress response at low pH (De Melo et al. 2010).

2.4 | Robustness Analysis Highlights Different
Aspects of Function Stability

Robustness quantification, especially at a small laboratory scale, can
facilitate the physiological characterization and selection of micro-
organisms for industrial purposes. Using the Fano-factor-based
equation developed by Trivellin and collaborators (Trivellin
et al. 2022), robustness quantification can inherently grasp and

condense in a single number the dispersion of a data set, allowing
for the study of function stability across different conditions, times,
and populations (Blobaum et al. 2024; Torello Pianale et al. 2023)
(Figure 5A).

2.4.1 | Robustness Across Conditions

The robustness of functions over different oscillation frequencies
(0.75-48 min, static control environments not included), referred to
as R(c), was computed for each strain and oscillation type (pH and
substrate) (Figure 5A-D, top). A higher R(c) indicates that strain
performance is less affected by oscillation frequency (Figure 5A).
Relative ATP levels and their R(c) were higher under pH than
substrate oscillations. Overall, higher ATP levels seemed to correlate
with higher R(c) (Figure 5B, top). On the one hand, PE2 displayed
an increase in glycolytic flux but the lowest R(c) for this parameter
(Figure 5C, top). On the other hand, CEN.PK113-7D exhibited the
greatest drop in glycolytic flux but an elevated R(c), suggesting a
poorly consistent reduction (Figure 5C, top).

2.4.2 | Robustness Over Time

To determine performance stability, Equation 3 can be used to
compute the robustness of a function over time, referred to as
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R(t). Accordingly, limited dispersion over time compared to the
mean corresponds to a high R(t) (Blébaum et al. 2024; Torello
Pianale et al. 2023) (Figure 5A). Here, relative ATP levels over
time were more stable in pH than substrate oscillations
(Figure 5B, middle and Figure S8), in line with performance
results (Figures 4B and S7). Similar to R(c), Ethanol Red
achieved the highest ATP levels and corresponding R(t) in
substrate oscillations, but the lowest in pH oscillations
(Figure 5B, middle); whereas PE2 did so for pH oscillations
(Figure 5B, middle). Longer oscillation frequencies (24 and
48 min) resulted in more stable ATP levels over time, regardless
of oscillation type (Figure S9), owing to optimized energy pro-
duction and usage (Thomsson et al. 2003; N. Zhang and
Cao 2017). PE2 was the only strain with lower R(t) for relative
glycolytic flux in pH oscillations. Interestingly, substrate oscil-
lations stabilized the glycolytic flux over time in spite of less
stable ATP levels (Figure S9). Lastly, CEN.PK113-7D exposed to
pH oscillations manifested the highest increase in oxidative
stress response but with the lowest stability over time
(Figure 5D, middle and Figure S8A).

2.4.3 | Robustness Across Populations

Population heterogeneity arises from the existence of pheno-
typically diverse subpopulations within an isogenic bulk pop-
ulation. Phenotypic heterogeneity might be due to intrinsic
(e.g., stochastic gene expression/noise) or extrinsic (e.g., gradi-
ents) factors (Gasperotti et al. 2020). Stemming from Equa-
tion 3, robustness across populations, referred to as R(p),
indicates how homogeneous a function is across a population.
Elevated R(p) denotes low population heterogeneity; low R(p) a
higher one (Figure 5A). In dynamic environments, Ethanol Red
exhibited the lowest population heterogeneity (Figures 5
and S10), echoing previous results on lignocellulosic hydroly-
sates (Torello Pianale et al. 2023). CEN.PK113-7D exposed to
pH oscillations displayed the highest R(p) for relative glycolytic
flux but the lowest R(p) for oxidative stress (Figure 5C,D, bot-
tom and Figure S10). All strains exhibited less population het-
erogeneity when exposed to substrate than pH oscillations
(Figure 5, bottom and Figure S10). This could be due to two
factors. First, the lower impact of pH oscillations on strain
performance limited the effect of extrinsic factors on population
heterogeneity. Second, the reduced ability to synthesize mac-
romolecules and scarce energy availability caused by substrate
oscillations might limit the effect of intrinsic factors, as all cells
would switch to “survival mode” and show less heterogeneity.
The latter could be picked by transcriptome or metabolome
differences, especially in log-phase growing cells (Pinheiro
et al. 2022).

3 | Conclusions

In the present study, we employed dMSCC to investigate the
physiological response of three yeast strains to changes in
substrate and pH. Strains, conditions, and individual regimes
were compared. Strain-specific trends in oscillating environ-
ments included an increased oxidative stress response in
CEN.PK113-7D and increased relative glycolytic flux in PE2.

Substrate oscillations appeared to be more detrimental than
pH ones. Fast and slow oscillation frequencies caused distinct
responses within each strain. Finally, robustness investigation
confirmed Ethanol Red as a strain with low population het-
erogeneity and stable functions when subjected to substrate
oscillations.

The detailed level of resolution in the screenings and high
throughput offered by the semi-automated pipeline used might
have several practical applications. For one, they may facilitate
an understanding of common physiological responses to
changing environments (fast or slow). This approach might be
advantageous when selecting and improving industrial strains,
as it offers the possibility to characterize strains based on spe-
cific requirements (performance, intracellular parameters or
robustness features) in either static or dynamic environments.
Such ability will help overcome the bottlenecks caused by gra-
dients and heterogeneities encountered during scale-up.

4 | Materials and Methods
4.1 | Strains, Media and Cultivation Conditions

The S. cerevisiae strains used in this study were the laboratory
CEN.PK113-7D (MATa URA3 HIS3 LEU2 TRP1 MAL2-8c
SUC2) (Entian and Kotter 2007) and industrial bioethanol-
producing Ethanol Red (Société Industrielle Lesaffre, Division
Leaf) and PE2 (L. C. Basso et al. 2008). Biosensors monitoring
intracellular ATP (Takaine 2019), glycolytic flux (Ortega
et al. 2021), and oxidative stress response (J. Zhang et al. 2016)
were integrated into the genome using the ScEnSor kit (Pianale
and Olsson 2023) (Addgene repository ID #1000000215).

Synthetic-defined minimal Verduyn (“Delft”) medium was
used as a base for all screenings. The medium contained
5g/L (NH,),SO,, 3g/L KH,PO,, 1g/L MgS0O,-7H,0, 1 mL/L
trace metal solution, and 1 mL/L vitamin solution (Torello
Pianale et al. 2022). The glucose concentration and pH were
adjusted based on the screening performed. In substrate
oscillations, pH was adjusted to 5, and glucose was switched
between 10 mg/L (stress) or 50 g/L (relaxing medium). In
pH oscillations, glucose was set at 20 g/L, while pH was
adjusted to 3.5 (stress) or 5 (relaxing medium).

All cultivations were performed at 30°C. Pre-cultures were
inoculated with 10 uL of cells from a cryostock in 10 mL Delft
medium supplemented with 50 mM succinate buffer (5.9 g/L
succinic acid and 3.54 g/L NaOH) in a 100-mL baffled flask. Pre-
cultures were grown for 16h at 120 rpm (shaking throw of
25 mm), diluted to ODgyo = 0.3, and added to the microfluidic
chips. In the screening, cells were adapted for 4 h in a relaxing
medium, followed by 12 h of symmetric oscillations at different
frequencies (0.75, 1.5, 6, 12, or 48 min). A pressure-driven pump
(Line-up EZ series, Fluigent) maintained the desired dynamic
flow profiles of relaxing medium (100 mbar) and stress medium
(70 or 220mbar). This, in combination with the oxygen-
permeable material used for the chip, guaranteed a constant
presence of oxygen in the cultivation chambers avoiding oxygen
limitation.
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4.2 | dMSCC and Image Analysis

The dMSCC was as described previously (Blobaum et al. 2024).
Briefly, the polydimethylsiloxane (PDMS) microfluidic chips
included six cultivation structures, one dedicated to the positive
control (static environment, relaxing medium) and five oscillation
experiments. Each structure (Figure 1A, right panel) bore 7 arrays
of 23 monolayer-growth chambers, 6 were exposed to dynamic
conditions and 1 was for the negative control (static environment,
stressful medium). Each monolayer-growth chamber has dimen-
sions of 4 X 90 x 80 um (height X width x length), while the chan-
nels have a height of 14 um.

Chip fabrication followed a previously reported protocol
(Blobaum et al. 2023). The microfluidic chip was molded
from a silicon wafer. Inlets and outlets connecting media
were punched using a biopsy puncher. The PDMS chip and
the glass slide were cleaned with isopropanol and activated
in a plasma oven. The activated surfaces bonded upon
contact.

For live-cell imaging, the chip was positioned on an inverted
automated microscope (Nikon Eclipse Ti2) equipped with an
LED-based light source for episcopic fluorescence (Sola SE II
Set, Lumencor) and a 100 X oil objective (CFI P-Apo DM
Lambda, Nikon). The temperature in the incubator cage (OKO-
H201, OKO Lab) was kept at 30°C. Phase-contrast and fluo-
rescent images (see acquisition settings in Table 1) were cap-
tured every 8 or 10 min for QUEEN-2m or GlyOx biosensors,
respectively.

A previously published pipeline (Blobaum et al. 2024) based
on Fiji (Schindelin et al. 2012) was used for image handling
and analysis. Briefly, an image pre-processing step was used
to load, stabilize, tilt, and cut the images. Next, rolling ball
background subtraction was performed to allow optimal
fluorescence quantification. Yeast cell segmentation was
performed using the trained model “Yeast Segmenta-
tion_v2.2” (available via GitHub, github.com/lucatorep/
Robustness_Microfluidics), a StarDist 2D model (Schmidt
et al. 2018) previously trained using the StarDist 2D Zer-
oCostDL4Mic notebook (von Chamier et al. 2021), and an
augmentor algorithm (Bloice et al. 2017). Finally, fluorescent
quantification and morphological analysis of yeast cells were
performed.

TABLE 1 | Filter details and setup used in this study.

4.3 | Data and Statistical Analysis

Data and statistical analysis were carried out in R (R Core
Team 2020). Statistical significance was defined as follows:
*p <0.05, **p <0.01, ***p <0.001, and ****p <0.0001.

The budding ratio was used to quantify growth of strains in
dMSCC chips according to Equation 1 (Blobaum et al. 2024).

(no. buds); ()

Budding ratio = 1)

(no. cells);(_1)

[T

Here, the number of new buds at a given time point “n” was
divided by the number of cells at the previous time point
1.7

Biosensor output for each strain was computed as a ratio
between uvGFP and GFP for QUEEN-2m, CFP and RFP for
GlyRNA, and YFP and RFP for OxPro (Blobaum et al. 2024;
Pianale and Olsson 2023; Torello Pianale et al. 2022). Subse-
quently, the relative intracellular parameter computations were
carried out using Equation 2.

Fluo
Relative intracellular parameter , = lkina 1}
tm Fi ZMOPC

@)
Here, each fluorescence ratio at any given timepoint, Fluoy), is
divided by the overall mean fluorescence ratio of the positive
control during the 12h of screening, Fluopc. This allows com-
parison without constructing calibration curves for each strain
and biosensor.

Robustness was quantified using Equation 3 (Trivellin et al. 2022).

3

L
—.

When computing R(c), o and x refer to the standard deviation
and mean (respectively) of a function (relative ATP levels,
glycolytic flux, and oxidative stress response) across multiple
oscillation frequencies (each in five replicates) for one single
strain; while m refers to the mean of a function across all
conditions and strains. Therefore, R(c) identifies how stable a

Excitation DM Emission Filter Exposure
Channel wavelength (nm) (nm) wavelength (nm) brand (ms) Intensity (%)
Phase — — — — 100 15-25
contrast
RFP? 562/40 593 640/75 Nikon 60 10
YFP* 500/24 520 542/27 Nikon 100 10
GFP° 472/30 495 520/35 Nikon 400 25
CFP? 420/40x 455 470 Long Pass Custom 80 10
uvGFP® 390/40 425 520/35 AHF 800 25

“Required for GlyOx.
PRequired for QUEEN-2m.
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function is in the face of different oscillation frequencies for
each strain.

When computing R(t), o and x refer to the standard deviation
and mean (respectively) of the biosensor signal output
(function) throughout the screening for each strain replicate in
each oscillation frequency replicate; while m refers to the mean
of a function across all strains. Therefore, R(t) identifies how
stable a function is over time in each oscillation frequency.

When computing R(p), o and x refer to the standard deviation and
mean, respectively, of a function (relative ATP levels, glycolytic flux,
and oxidative stress response) across all cells at each time point of a
condition; while m refers to the mean of a function across all time
points and conditions. Therefore, R(p) describes how homogeneous
a function is across a cell population.

A visual representation of data analysis pipelines and a
description of the concepts used can be found in our previous
publications (Blobaum et al. 2024; Torello Pianale et al. 2023).
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