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Abstract—Future communication generations are expected to
employ low Earth orbit satellites as a complement to current
terrestrial networks. Due to the relatively high speeds of these
satellites, harsh Doppler shifts are expected to occur during
transmission to a base station on Earth. For use with, e.g.,
internet of things, lower sampling frequencies at the receiver side
might be applied, making the normalized Doppler shifts more
severe. In this work, we consider a mathematical formulation of
the observed Doppler shift by a ground station as a function of
the orbital parameters of the satellite. Based on this description,
we propose a standalone model- and pilot-based procedure
to estimate normalized Doppler shifts that become larger as
the sampling frequency decreases, comprising a simple coarse
estimation followed by a refinement stage, which applies linear
estimators with consecutively longer data blocks. Simulations
show practically unbiased estimates of the strongest observed
Doppler shift during a satellite pass, reaching the Cramér-Rao
lower bound for a wide range of signal-to-noise ratios.

Index Terms—Doppler shift, Satellite communications, model-
based processing.

I. INTRODUCTION

In current communication systems, terrestrial networks
(TNs) play a vital role in serving more than 4 billion
users worldwide [1]. These structures, in 6G and beyond
generations, will not be sufficient to provide service with
progressively higher demands and number of users, especially
in under-covered areas. In this context, non-terrestrial networks
appear as a solution to complement the TNs, contributing to,
e.g., global coverage, high bandwidth and low latency [2]. To
achieve such requirements, the deployment of low Earth orbit
(LEO) satellites is expected to be of great importance due to,
for instance, their capability of serving densely populated areas
and lower delay with respect to satellites at higher altitudes
[3].

The high speed of LEO satellites, however, gives rise to
a strong Doppler effect, which may generate inter-carrier
interference in systems based on orthogonal frequency divi-
sion multiplexing (OFDM), for instance [4]. The normalized
Doppler shifts vary significantly with the satellite position and
the system bandwidth. In addition, they become increasingly
more severe with lower sampling frequencies at the receiver
side. This can be the case, for example, in systems for
applications in internet of things. Estimating Doppler shifts
using relatively simple methods, even in such harsh conditions,
is, thus, of considerable relevance for future networks.

The characterization of Doppler shifts for LEO satellites in
circular orbits transmitting towards a base station on Earth, as
a function of local geometric variables, has been thoroughly
studied in [5], [6]. Furthermore, the Doppler shift as a function
of the satellite orbital parameters has been discussed in [7], [8].
Although these models provide a closed-form representation
of the Doppler shift during a satellite pass, at least knowledge
of the local geometry or the orbital parameters is necessary
for compensation of the Doppler effect.

In [9], the structure of the primary synchronization signal
(PSS) of 5G frames is explored to provide estimates of
Doppler shifts and Doppler rates. For the former, the phase
of the received and PSS signals is explored to estimate
the fractional Doppler, followed by the peak of the cross-
correlation of the compensated PSS and the received signal
to estimate the integer part. Especially in noisy scenarios,
estimating frequencies using the phase of received signals can
be problematic due to unwrapping problems [10]. In addition,
currently there is no standard for synchronization structures
for future 6G systems, so algorithms that take advantage of
PSS within OFDM frames may not be utilized in the upcoming
generations.

We propose a simple method for estimation of Doppler
shifts during a satellite pass, considering a relatively low
sampling frequency at the receiver side. First, we perform
a model-based pre-compensation of the Doppler shift. Then,
based on [11], we estimate the satellite orbital parameters that
yield the Doppler shifts closest to the true ones of the entire
satellite pass. Finally, we refine the estimated parameters by
the well-known simplex method [12].

The paper is organized as follows: in Sec. II we describe
the physical model of the observed Doppler shifts based on
[7], [8]. In Sec. III we present the utilized signal model for
parameter estimation and the challenges involving reducing
the sampling frequency and in Sec. IV we discuss the pre-
compensation of the received signals based on the physical
model for the Doppler shift. In Sec. V we show the results
from our proposed method and compare them to when no pre-
compensation is applied. Finally, in Sec. VI, we draw the main
conclusions from this study.

II. PHYSICAL MODEL FOR DOPPLER SHIFTS

We describe the utilized physical model to characterize the
Doppler shift from a LEO satellite seen by a ground station



Fig. 1. Graphical overview of orbital parameters.

on Earth, based on [7], [8], for any orbit geometry. Using
Kepler’s equations, the orbit of a satellite can be characterized
by 6 parameters, as illustrated in Fig. 1:

• eccentricity (e): shape of the ellipse, describing how
much it is elongated compared to a circle;

• semi-major axis (a): half of the ellipse’s major axis;
• inclination (i): angle between the orbital and reference

(equatorial) planes;
• longitude of the ascending node (Ω): angle measured

from the reference direction to the ascending node (point
where the orbit crosses the reference plane);

• argument of periapsis (ω): angle between the ascending
node and the periapsis (point where the satellite is closest
to the Earth);

• true anomaly (ν): angle between the direction of periapsis
and the satellite position, centered on the focus of the
ellipse.

In order to calculate the Doppler shift from the satellite to
the ground station, it is of interest to describe their velocities
in the same coordinate system. We utilize the Earth-centered,
Earth-fixed (ECEF) frame, which considers both objects fixed
with relation to Earth’s rotation. To have such representation,
we first provide an orbit description using the Earth-centered
inertial (ECI) coordinate system, which does not rotate with
the Earth.

In the following, we provide a formulation of the Doppler
shift for any orbit shape. However, as circular and near-circular
orbits are dominant in LEO constellations, we consider e = 0
[6]. Consequently, any point could be declared as the periapsis.
Therefore, one can set ω = 0 without lack of generality [13].

A. ECI framework

Since the mass of the Earth Me is much larger than that
of the orbiting satellite, the satellite mean angular velocity
is calculated by n ≈

√
GMe/a3, where G represents the

gravitational constant. This is used to compute the mean
anomaly M = M0 + n(t− t0), where M0 is the value of the
mean anomaly at time t = t0 [14]. Without loss of generality,
we consider t0 = 0.

From M , we determine the eccentric anomaly E by the
relation M = E − e sinE. This equation does not have
a closed-form solution, but we approximate it by a trun-
cation as in [7, Eq. (17)], where E = M + e sinM +
1
2e

2 sin (2M)+ 1
8e

3 (3 sin (3M)− sinM). Then, we calculate

ν with tan
(
ν
2

)
=

√
1+e
1−e tan

(
E
2

)
. Based on the aforemen-

tioned expressions, the distance from the satellite to the center
of the Earth is given by r = a(1−e2)

1+e cos ν .
From the described variables, we can calculate the satellite

position in [x y z]T coordinates in the ECI framework at any
time instant with

r2,ECI = r

cos (ω + ν) cosΩ− sin (ω + ν) sinΩ cos i
cos (ω + ν) sinΩ + sin (ω + ν) cosΩ cos i

sin (ω + ν) sin i

 .

(1)
Taking the derivative of Eq. (1) with relation to time, the

respective velocity is

v2,ECI =
na

r

 bl2 cosE − al1 sinE
bm2 cosE − am1 sinE
bn2 cosE − an1 sinE

 , (2)

where

b = a
√
1− e2,

l1 = cosΩ cosω − sinΩ sinω cos i,

m1 = sinΩ cosω + cosΩ sinω cos i,

n1 = sinω sin i,

l2 = − cosΩ sinω − sinΩ cosω cos i,

m2 = − sinΩ sinω + cosΩ cosω cos i,

n2 = cosω sin i.

B. ECEF framework

Having the orbit description in the ECI framework, we start
the ECEF representation (in [x̂ ŷ ẑ]T coordinates) with the
position of the ground station

r1,ECF = rE

cosλ cosϕ
sinλ cosϕ

sinϕ

 , (3)

where rE denotes the radius of the Earth, λ the longitude of
the ground station and ϕ its latitude.

To transform the satellite position from ECI to ECEF
coordinates, we calculate r2,ECF = Tr2,ECI, where

T =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (4)

In Eq. (4), θ = θ0+ωet, where θ0 represents the Greenwich
sidereal time at 0h UT and ωe the Earth’s angular speed.
Differentiating r2,ECF with respect to time, we calculate the
satellite velocity in ECEF coordinates. Using the chain rule,
we have v2,ECF = Tv2,ECI + Ṫr2,ECI, with

Ṫ =

−ωe sin θ ωe cos θ 0
−ωe cos θ −ωe sin θ 0

0 0 0

 . (5)

Defining r̂3,ECF =
r1,ECF−r2,ECF
|r1,ECF−r2,ECF| , the relative velocity be-

tween the ground station and the satellite is calculated by



vr = v2,ECF · r̂3,ECF. Finally, the Doppler shift (in Hz) is given
by fd = fcvr

c , where fc denotes the carrier frequency and c
the speed of light. In our study, a satellite is said to be visible
as long as the absolute value of the angle between −r̂3,ECF and
r1,ECF is at most π/2. The time frame over which a satellite is
visible to a ground station is the so-called “visibility window”.

III. SIGNAL MODEL

We assume line of sight conditions for the transmission of
a pilot signal between a LEO satellite and a ground terminal.
Considering P transmitted pilot signals during the visibility
window, p-th Doppler-shifted received signal is modeled as

yp[n] = ejεejΩd,p(n−(L−1
2 ))x[n] + w[n], (6)

where ε represents a constant phase term, Ωd,p the normalized
Doppler shift frequency, x[n] an all-ones pilot signal vectors
of length L, n = 0, . . . , L − 1 and w[n] ∼ CN (0, σ2

w). We
emphasize that, in this model, the sampling frequency is high
enough so that Ωd,p is approximately constant over the entire
received signal.

Relying on linearized versions of Im{yp[n]}, the parameters
ε and Ωd,p can be estimated using a series of linear estimators
with increasingly longer data blocks, as proposed in [11]. One
of the hyperparameters of this algorithm is ΩW , denoting the
worst-case normalized Doppler shift that can be expected to
happen.

For the aforementioned algorithm, the linearization of
Im{yp[n]} = sin

[
ε+Ωd,p

(
n−

(
L−1
2

))]
+ Im{w[n]} using a

first-order Taylor series provides a reasonable approximation
for a large amount of samples if Ωd,p attains a low value.
However, for decreasing sampling frequencies at the receiver,
Ωd,p becomes higher and the linearization is not valid for many
samples. As a consequence, the variance of the intermediate
linear estimators grows significantly (especially in highly
noisy scenarios) and the overall estimation procedure may not
reach a desirable performance. Nevertheless, if we diligently
compensate yp[n] with some normalized frequency Ωc,p, the
compensation error (Ωd,p−Ωc,p) may be small enough so that
one can estimate it using this algorithm and finally find a good
estimate for Ωd,p.

IV. PRE-COMPENSATION AND REFINEMENT

As described in Sec. II, the Doppler shift for LEO satellites
in circular orbits can be fully characterized by four orbital
parameters, namely a, i, Ω and M0. Estimating them pre-
cisely in single input-single output systems, without any prior
knowledge of the satellite position, may be a difficult task. The
physical model is ambiguous in that different sets of orbital
parameters can produce the same Doppler shifts for a given
visibility window. We are not concerned with estimating the
position of the satellite and, in this section, we take advantage
of that to estimate the Doppler shifts even with incorrect
estimates of the orbital parameters.

A. Orbital parameter estimation under model ambiguity

We first perform a grid search over the parameters a, i, Ω
and M0. For LEO satellites, we consider their ranges to
be a ∈ [rE + 200km, rE + 2000km], i ∈ [0, 180◦],
Ω ∈ [0, 360◦], M0 ∈ [0, 360◦] and compute their Doppler
shifts for the analyzed time frame. We discard the orbital pa-
rameters that yield non-visible orbits within the given visibility
window.

Having all candidate orbital parameters for the considered
visibility window, we compensate all yp[n] signals using the
normalized Doppler shifts Ωc,p yielded by these parameters.
The compensated received signals are written as

yc,p[n] = e−jΩc,p(n−(L−1
2 ))yp[n]

= ejεej(Ωd,p−Ωc,p)(n−(L−1
2 ))x[n] + w′[n]. (7)

With the algorithm mentioned in Sec. III, we can esti-
mate ε and the compensation error (Ωd,p − Ωc,p), provided
that the latter has a sufficiently low value, and correct the
compensation error, finally estimating Ωd,p. Furthermore, the
value of ΩW should be chosen to reflect the worst possible
compensation error. We denote the collection of all estimates
of ε and (Ωd,p − Ωc,p) by ϵ̂ and Ω̂e, respectively.

If the compensation error for all visible received signals is
low enough and ΩW provides a reasonable worst case for it,
we can estimate ε consistently. Consequently, var(ϵ̂) should
be relatively low. Otherwise, the signal model as in Eq. (7)
is not applicable and the estimation procedure provides many
erroneous estimates, so that var(ϵ̂) is high. Thus, we consider
good orbital parameters those that give var(ϵ̂) below some
threshold value, which may depend on the noise level.

Considering all good orbital parameters, the best ones are
those that provide the lowest mean(abs(Ω̂e)). As var(ϵ̂) is
relatively low, the aforementioned signal model is applicable
throughout the entire visibility window and we can rely on
the estimates for the compensation error. Thus, the orbital pa-
rameters that give the lowest mean(abs(Ω̂e)) yield an overall
Doppler shift curve that is, on average, close to the true one.

We restate that, starting from the grid search, the best found
orbital parameters may not be close to the true ones due to
the ambiguity of the physical model. However, the estimated
orbital parameters might yield a Doppler shift curve for the
whole visibility window that is similar to the true one. We
further refine the estimated orbital parameters as follows.

B. Orbital parameter refinement

After finding the best orbital parameters from an initial grid
search, we further refine them based on the received signals.
For this, we apply a derivative-free optimization method, such
as the simplex method [12], for which the objective function
to be minimized is mean(abs(Ω̂e)). The starting point for
this algorithm is the set containing the best orbital parameters
and throughout the optimization we run the estimation routine
discussed in Sec. III, using all yp[n] signals.



TABLE I
SYSTEM SIMULATION PARAMETERS

Variable Value Variable Value Variable Value Variable Value
a 7185km i 98.7503◦ Ω 97.7391◦ M0 70.7613◦

λ −35.255127◦ ϕ −5.812757◦ θ0 274.2853◦ Ts 5s
fc 4GHz L 300 fs,high 18.42MHz fs,low 920.91kHz

Ωd,0(fs,high) 0.03 Ωd,0(fs,low) 0.6 ΩW,high 0.0355 ΩW,low 0.2

V. SIMULATION RESULTS

We demonstrate our proposed algorithm by means of nu-
merical simulations, where we display the true and estimated
Doppler shift curves, with and without the model-based pre-
compensation. We show the performance for a relatively
high versus a relatively low sampling frequency, denoted as
fs,high and fs,low respectively. Then, we evaluate the proposed
technique in terms of bias and mean square error (MSE)
for the strongest (positive) Doppler shift observed during the
satellite pass in different signal-to-noise ratio (SNR) regimes
and compare to the case where no pre-compensation is applied.
The Cramér-Rao lower bound (CRLB), derived in [11], is
also assessed for analysis of the MSE. For all simulations,
we used ε = 1.2 and 15 points for the grid searches in each
dimension. We consider the strongest normalized Doppler shift
(as a function of the sampling frequency) Ωd,0(fs) to happen
when the satellite becomes just visible to the base station [6].
The respective hyperparameters for the normalized Doppler
shift estimation are denoted as ΩW,low and ΩW,high. Finally,
the satellite transmits a pilot signal every Ts seconds. The
simulation parameters are summarized in Tab. I (parameters
based on [8]).

A. Simulated Doppler shifts

The simulated numerical results for the given system pa-
rameters are shown in Fig. 2, using fs,high and SNR = 15dB.
In this case, the linearization mentioned in Sec. III provides
a good approximation of the sine function for all received
signals. It can be seen that the techniques with and without
pre-compensation yield practically unbiased estimates for all
Doppler shifts within the visibility window. We examine the
same situation when using fs,low in Fig. 3.

As expected, we observe that the estimation without pre-
compensation fails at frequencies that yield relatively high
normalized Doppler shifts, as the previously discussed lin-
earization does not provide good approximations at such high
values of Ωd,p. The model-based pre-compensation enables
this linearization, since the compensation error is small enough
such that the estimation procedure as in [11] can be carried
out as usual. As a result, we can give approximately unbiased
Doppler shift estimates for the entire visibility window, even
at reduced sampling frequencies.

B. Statistical analysis

The performance of the discussed approaches for the estima-
tion of Ωd,0, the strongest normalized Doppler shift observed
by the base station, is assessed in terms of bias and MSE

Fig. 2. True and estimated Doppler shifts and best pre-compensation curve
for SNR = 15dB and fs,high.

Fig. 3. True and estimated Doppler shifts and best pre-compensation curve
for SNR = 15dB and fs,low.

for SNR = [−10, 15]dB, using 500 realizations. The analysis
of our proposed method, for both sampling frequencies, is
carried out by applying the estimation procedure in [11] after
the optimized pre-compensation. If the compensation error is
small enough, we can apply the linear estimation method and
reach the CRLB for Ωd,0. In this case, after pre-compensation,
we execute the linear estimation method with ΩW = 0.0355.

In Fig. 4, using fs,high, both methods provide very similar
values in terms of bias and MSE, reaching the CRLB for all
analyzed SNR values. In particular, the value of Ωd,0 is low



Fig. 4. Bias and MSE of different methods using and fs,high and varying
SNR.

Fig. 5. Bias and MSE of different methods using and fs,low and varying
SNR.

enough such that the linearization provides a good approx-
imation. The pre-compensation yields a small compensation
error, which can be estimated with the same variance as when
no pre-compensation is applied. Thus, the pre-compensation
might not be necessary when using high enough sampling
frequencies. The same analysis for fs,low is given in Fig. 5.

Since the value of Ωd,0 is much higher for fs,low, the linear
approximation is no longer valid and the pre-compensation
becomes crucial for proper estimation of Ωd,0. Without this
first step, the estimates are highly biased and the MSE signif-
icantly deviates from the CRLB. With the pre-compensation,
however, we can perform the estimations with practically
unbiased estimates, reaching the CRLB for a wide range of
SNRs.

VI. CONCLUSIONS

In this paper, we extend the linear estimation procedure
described in [11] to efficiently estimate Doppler shifts in
satellite-to-ground communications, while accommodating re-
duced sampling frequencies. We propose a model-based pre-
compensation of the Doppler shift, on the basis of the satellite
trajectory and estimating the unknown orbital parameters.
Even with ambiguous estimates of the orbital parameters,
the pre-compensation can be enough such that the strongest
Doppler shifts can be estimated with very low bias and vari-
ance reaching the CRLB. Therefore, as a standalone technique,
the proposed estimation procedure may be utilized in future
satellite communication systems, without the dependence of,
e.g., global navigation satellite systems.
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