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This paper presents a novel digital twin framework employing batch incremental learning for geometry
assurance. Addressing quality issues caused by part and process variation, the method evaluates three critical
tasks: part matching, locator adjustments, and joining sequence. The proposed framework utilizes deep
learning architectures, each trained on recursive simulation data. Employing incremental learning, the mod-
els adapt to new batch characteristics while maintaining predictive accuracy. A spot welded assembly dem-
onstrated the proposed approach efficiency, achieving prediction accuracies with errors as low as 0.02 mm

for part matching and 0.1 mm for locator adjustments.
© 2025 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Process-induced geometric variation of parts and subassemblies
can lead to subsequent geometric variation of assembled products,
which can eventually result in rejects and rework. Traditionally, top-
down tolerancing activities have been a cumbersome iterative pro-
cess to control geometric variation [1]. Geometry assurance is defined
as a set of activities performed to secure geometric quality during the
concept, verification and production phases. Early in the concept
phase, part sensitivity and Monte Carlo based variation simulation
are performed on immature shell CAD geometries [2,3]. Later, during
the verification phase, FEM based variation simulation evaluates fix-
turing and joining operations. Matching and trimming activities are
performed, and the parts and processes are adjusted to adopt the
new concepts. In the production phase, the inline and offline mea-
surement data is tracked to assure that final requirements are met.
For automatic control and adjustments of the assembly processes,
digital twins play a pivotal role [3,4]. The next section introduces the
overview of the digital twins in the geometry assurance context.

1.1. Digital twins for geometry assurance

A digital twin (DT), which serves as a digital replica of a physical
process or product, integrates real-time data from sensors and simu-
lations to monitor, predict, and optimize manufacturing outcomes,
and thereby, controls the manufacturing setup [5]. The development
of DT aims to establish a bi-directional information flow between the
physical system and the digital replica. Utilizing computational tech-
niques, the parts and processes are monitored and optimized [6].
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In assembly processes, DTs are used to model complex interactions
between geometric constraints and joining processes. Previous studies
have shown applications of DT to predict assembly variation and control
spot welding processes to ensure geometric quality across production
batches [7,8]. Furthermore, a DT based on skin model shapes has been
introduced, representing the product through the manufacturing pro-
cesses [9]. Deep learning and digital twin have been combined within
DTs to establish a closed loop in process quality improvement for
remote laser welding showing >96% acceptance rate in a zero defect
manufacturing context [3]. In this paper, the geometry assurance DT
presented in [4] is augmented by physics-based Al models in order to
predict geometric errors in assemblies between production batches.

1.2. Self-compensating assembly line

The DT for a self-compensating assembly is designed for individual-
ized adjustments on each assembly. This DT can use point cloud mea-
surement data of all incoming parts to establish the input variation of
incoming parts, i.e., non-ideal parts, as compared to the nominal CAD
geometry, i.e., ideal parts. For incoming components prior to the assem-
bly process, matching of the components, also referred to as selective
assembly, takes place prior to positioning in the fixture [10]. When the
parts are positioned in the fixture, the locators are adjusted to compen-
sate for the existing error [11,12]. After this adjustment, the sequence of
the joining is optimized to reduce the geometric deviation for each indi-
vidual part in the batch [13]. After the assembly is released from the fix-
ture, the assembly is scanned, and the DT model is calibrated to update
the model representation [14]. Previous studies have heavily focused on
optimization perspectives in the DT context. The optimization loops for
large batches are computationally intensive and not suitable for real-
time adjustments. Less emphasis has been placed on learning batch
information from the optimization loops in the DT. Given that the DT
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model can also represent the physics of the process, e.g., FEM, and addi-
tionally with the introduction of simulations used for training deep net-
works, there is a possibility to train and update a network from the
recursive optimization loops [15]. In this paper, we introduce a generic
approach to enhance the geometry assurance digital twin by embedding
the physics-based deep learning networks. The details of the model
setup, optimization routines, the data generation processing for the Al
models, and the architecture of the models are presented. A spot welded
assembly is used to showcase the functionality and efficiency of the
trained models for prediction geometry improvements for test batches.

1.3. Scope of the paper

To address the current limitations in computational efficiency and
real-time response of the DT across batches, this paper proposes a generic
approach for augmenting the geometry assurance digital twin with phys-
ics-based networks trained on the recursive simulation data. This data is
generated during the initial optimization phases, on early production
batches. The trained networks are intended to generate a real-time
response of the DT for a future batch of components to be assembled.

2. Augmented DT with physics-based incremental learning

The augmented geometry assurance DT with physics-based incre-
mental learning, is composed of three model layers: Process, Part and
Deep Learning Models, Fig. 1. The physical assembly cell, including the
parts and fixtures during the joining operations, are visualized and
marked as 1 and 2 in Fig. 1. Initially, the point cloud data of scanned
parts, i.e.,, non-ideal parts, are fed into the Part Model. Furthermore, the
fixturing and joining positions and parameters are fed into the Process
Model. The operational data are recursively updated in Part and Process
Models to determine required adjustments for the existing errors. The
physics of the assembly process, i.e., simulations of the exerted forces
during the assembly, are integrated into both Part and Process Models
and are used to determine fixture adjustments, update the robot pro-
grams for the joining operations and position the matched parts of the
batch in the fixture. The control signals are sent to the physical cell for
automatic adjustments. The Part and Process Models are connected to
the central analysis module, steering the information flow. The focus of
this paper is on the following three geometry assurance tasks to adjust
the geometric deviation and improve batch quality: part matching, loca-
tor adjustments and joining sequence optimization, as discussed in Sec-
tion 1.3. Incremental deep learning models are integrated into the DT
and are trained in parallel. The networks utilize the initial batches of
optimization data for the three tasks and incrementally improve by
incorporating new observations from the follow up batch optimization
data. Next, the details of each optimization task are presented, and the
network architectures are introduced.

2.1. Physics-based assembly simulation

The simulation in the DT considers an assembly of multiple parts,
joined by a welding process. Here spot welding is utilized, however, the
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Fig. 1. Overview of the geometry assurance DT augmented with Physics-based incre-
mental learning. Parts and fixtures are marked with 1 and 2.

approach is applicable to other joining processes, such as self-pierced riv-
eting or laser welding [2,3,16]. The method of influence coefficients
(MIC) is the foundation of the assembly model [17]. MIC is an exact
method of building linear relationships between the part deviation, rep-
resented as the scanned geometries, and acting forces on the assembly.

Ku=f,+fc+fw (1)

Here, K is the global stiffness matrix, « is the displacement vector,
fu f. and f,, are the forces at the clamping, contact and welding
points, respectively. The response of the assembly to these forces is
saved in a sensitivity matrix. During the assembly process, contact
modelling is utilized to impose no penetration constraints in the
adjacent areas. Moreover, considering small displacements, elastic
material, and assuming that the local deformations at the position of
the weld relative to the total assembly deviation, the spot welding
process is introduced by imposing zero contact gap with a stiff beam
element [18]. The contact model determines the response of the
assembly with respect to the introduced weld points and imposes
nonlinearity to the response of the assembly. The contact equilibrium
problem is modelled as:

min. %ff Sf. +fID, subject to — Sf,<D.f, >0, 2)

where S is the compliant matrix, and D is the deviation vector in the
contact nodes. The constraints enforce no penetration condition, and
the force is always positive at the contact points. The contact model
is efficiently solved through the augmented Lagrangian method [19].
To derive the assembly displacement after welding in a given
sequence, the contact and welding forces are calculated at each weld-
ing step. Then using updated S the aggregated deformation after
welding in a sequence is derived. Considering this process as the gov-
erning physics during the assembly in the DT, the following three
optimizations of the assembly parameters are performed.

2.2. Part matching for batch optimization

The optimal matching of geometric deviations between multiple
parts within an assembly to be spot welded is considered in the DT.
Each part exhibits distinct deformation as the result of part
manufacturing processes and the inconsistencies between the
batches. The primary objective is to determine an optimal permuta-
tion =:{1,2,...,N}—{1,2,...,N}, where N is an integer number
representing the number of instances of each part in the batch, that
matches each instance of parts such that the resulting assembly mini-
mizes the root mean square (RMS) displacement across all nodes
after welding. Here, the mean () and standard deviation represented
by (60) for the batch 1 to N is considered as the objective for minimi-
zation. This optimization problem can be formulated as:

mrin' [Wl Pu (.Tl') + Wz(pﬁa(]r)} ’ (3)

where ¢, () represents the RMS of the mean displacements and
vg,(m) denotes the RMS of the six standard deviations of the displace-
ments across all nodes for the given permutation . The weights w;
and w; are assigned to balance the contributions of the mean and var-
iation of components in the cost function. To solve this combinatorial
optimization problem, we employ a simulated annealing algorithm,
which iteratively explores permutations by swapping pairs of instan-
ces and evaluates their associated costs using the simulation software
RD&T [20]. The simulation software processes each permutation by
generating an input file, executing the deformation analysis, and out-
putting the resulting displacements. The algorithm seeks to identify
the permutation that yields the lowest combined RMS values, thereby
ensuring the minimal overall displacement of the welded assembly.

2.3. Locator adjustment

As the sheet metal parts can be considered as compliant in one
plane, therefore, they are located and securely held by a N-2-1
assembly fixture locating scheme, which locks the main six degrees
freedom (3—2-1) and the extra clamps (N > 3) in the normal direc-
tion to the surface geometries, respectively [21,22]. Since the adjust-
ments, also referred to as shims, often occur in the normal direction,
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realized through adjustable shims, the problem is defined as adjust-
ing the clamps in the normal direction. The optimization problem
was formulated to minimize the RMS of mean displacement through-
out all the nodes in the assembly for each instance of the batch. This
is denoted as t,(u). Here, u is a vector of scalar adjustments on the
position of the clamps. In this study, a Bayesian optimization frame-
work is deployed to identify the optimal configuration for the adjust-
ments. The problem is formulated as:

muin. tu(u)foru = [u;...u;), ande <u; < pfori=1,2,...,z. (4)

Here « and g are the allowable adjustments for each fixture point,
defined as +2 mm in line with common industrial practice.

To solve this optimization problem, the Gaussian Process based
Bayesian optimization algorithm is utilized and implemented via the
scikit-optimize library in Python. The algorithm iteratively explored
the z-dimensional search space, initially performing ten random
evaluations to establish a probabilistic model of the objective func-
tion. Subsequently, it conducted up to fifty evaluations, balancing
exploration and exploitation to efficiently converge towards the opti-
mal locator adjustments. During each iteration, the FEM based varia-
tion simulation software RD&T was invoked to simulate the assembly
response to the current set of adjustment values, providing the nec-
essary 7, (u) feedback for the optimization process.

2.4. Joining sequence optimization

The sequence of joining operation is to be optimized so that total
assembly displacement 7, (Q) is minimized for each instance of parts
in the batch. The optimization problem for an assembly with w weld
points is formulated as:

inn‘r,l(Q)forQ: {1, ..., w} = {w, ..., 1}, (5)
where Q is a permutation of joining points from 1 to w. Similar to the
locator adjustment problem, the RMS of the displacements in all the
nodes is the objective of the optimization. To solve this problem, a
stepwise heuristic algorithm with a greedy approach, introduced in
[23], is utilized. The algorithm creates all the combinations of the first
elements in the sequence Q. The simulation software then provides
the objective value for the provided solutions, the minimum value is
identified, and the corresponding sequence elements are set. This
process is then continued until the sequence is complete.

2.5. Incremental learning framework

Utilizing each of the optimization routines, as detailed in Sections 2.2 to
2.4, an incremental learning framework is proposed to estimate the assem-
bly response achieved for a given batch with the specific task. The pro-
posed incremental learning framework is designed to predict the assembly
geometric mean («) and standard deviation (6o) of displacements across
multiple batches of components. Rather than training a model solely on a
fixed, initial dataset, the framework incrementally updates the model
parameters as new batches of part data become available.

This approach enables the prediction model to adapt to part distribu-
tions, process variation, and changing assembly conditions over time.
The incremental training procedure entails two primary phases. During
the initial training phase, the model is first trained on a large historical
dataset composed of several assembly batches. These initial batches pro-
vide sufficient data diversity, allowing the model to learn a robust repre-
sentation of the assembly process and the influence of specific tasks on
resultant geometric quality. The model is optimized using a gradient
based optimizer and a mean squared error loss function. During the
incremental update phase, new batches of part and assembly data
become available. To incorporate these new data without retraining the
model from scratch, the previously saved model parameters are
reloaded and fine-tuned on the incoming batches. The same data pre-
processing steps are applied to ensure consistency. This incremental
training phase typically requires fewer training steps due to initializa-
tion with tuned parameters. The overview of the network architecture
utilized for incremental learning is visualized in the lowest column in
Fig. 1, named Deep Learning Model.

The network architecture is adapted to each specific task in the pro-
posed DT. For matching, since the problem is binary and a batch compo-
sition is essentially independent of permutations for each part
combination in a batch, a set transformer architecture is utilized to
address the permutation invariance [24]. Two encoder attention blocks
are built to aggregate all elements in the set of part instances in a batch.
After encoding, a pooling layer condenses the variable set representa-
tion into a fixed embedding. The pooled embedding is passed through
two layers of fully connected networks. Each network maps the latent
embedding to the predicted RMS mean displacement and RMS 6o.

For the locator adjustments, a feed forward neural network model is
employed. The model is designed as a multi-layer perceptron (MLP)
composed of fully connected layers and nonlinear activation functions.
The architecture takes as input a feature vector derived from each
assembly batch and generates a single continuous value corresponding
to the predicted assembly RMS of mean displacements.

For joining sequence, the problem is binary, and each assembly batch
of w welds has w! possible permutations of welding sequences. For this
task, a decision tree regressor is designed to represent each sequence out-
come for the batches. After training the network given the batch RMS
mean displacements and the given sequence input, modelled as a binary
vector of 6 elements, provides the output displacement.

3. Case study

To further develop the method and evaluate its performance, this
study considers an assembly of two parts connected with three weld
points. The parts are of steel material with a stiffness of 210 GPa, and
both have a 1.5 mm thickness. The assembly has 3 weld points and
173 contact points. Each part is held in the fixture with a 4—2—1 posi-
tioning system, including 4 clamping points subject to adjustments.
Fig. 2 visualizes the assembly model for this case. The position of the
weld points and the locating elements are marked with spheres and
filled arrows, respectively.

Fig. 2. The reference assembly held in the inspection fixture and welded.

To represent the batch of components, it is considered that each
part in each batch is subject to errors, where the source of errors is
different across the batches. Inside batches, the errors are in the
same area but in different magnitudes. To represent this error, forces
are applied to a set of six points. These points remain in the same
position in each batch, but the magnitude is scaled to differ to dis-
place the points for a random value within the range +1 mm. The
position of the force sources changes from batch to batch. For gener-
alization, we consider that the occurrence of the source of forces and
their placements are ambiguous and, thereby, randomly defined. For
the reference assembly, 105 batches are generated, where, in each
batch, there are 100 instances for each part. Deformed shapes of the
two parts are created and utilized as the geometry input.

4. Results and discussion

The proposed method is set up for the case study, and the three
optimization routines are established and solved for 100 batches of
parts. This batch data provides the models with 10,000 data points
on each part in the assembly. Dataset and DataLoader classes for effi-
cient batch sampling, memory management, and GPU parallelization
with Adam optimizer are utilized within Python pytorch on a Nvidia
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GeForce RTX 4090 device. The models are trained end to end with a
learning rate of 103, and early stopping or validation checks ensure
generalization. After an initial training with 75 batches, with 75%
train data and 25% validation set, the learned parameters are stored.
For incremental updates, the previously trained weights are reloaded,
and the same model architecture is fine-tuned on batches 76—100.
Batches 101 to 105 are utilized as unobserved data for further testing
the predicted models on new batches.

4.1. Evaluation metrics and validation

Performance is evaluated by comparing predicted displacement
metrics against ground truth values obtained from DT task optimiza-
tions in [4] with simulated data. Root mean square error (RMSE) vali-
dation sets and unobserved batches are monitored to ensure the
incremental updates improve or maintain prediction accuracy, as
shown in Table 1. Additionally, the prediction plots of the unobserved
test data are presented in Fig. 3.

Table 1
Prediction results.

Prediction error Train/Test data Unobserved data

Batch 1-100 Batch 101-105
RMSE Mean Variation (60)  Mean Variation (60)
Matching 0.9509  0.02572 0.02079  0.0102
Adjustments 0.1011  0.2269 04118 0.3653
Joining sequence  0.0719  0.1092 0.2356 0.1121
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Fig. 3. Predicted and simulated results for batches 101-105.

4.2. Task predictions

For the matching task, the method demonstrates effective perfor-
mance in capturing the mean value associated with the test batches,
achieving an RMSE of 0.02 mm, as shown in Table 1 and Fig. 3. All the
reported values are prediction errors compared to the baseline optimi-
zation routines in Sections 2.2—2.4. This prediction for the variation
measure has been less accurate, with a RMSE of 0.01 mm. However, the
main fluctuations between the batches are captured, although the pre-
dictions suffer from scaling errors. This is due to the relatively small var-
iation among batches in the observed data, with a difference within
0.01 mm. Given that the prediction error is also within 0.01 mm for the
60 value, this error is expected to improve incrementally by learning
from batches where matching influences total batch variation.

For the locator adjustment task, the augmented DT resulted in a
mean RMSE of 0.10 mm on the validation set and a further 0.4 mm
on the unobserved data, as presented in Table 1. Fig. 3 further visual-
izes the generalizability of the model on the unobserved data follow-
ing the batch differences. However, the accuracy of the prediction
within the batch has been less precise. Providing the model with
larger inside batch adjustment values, currently 50 iterations per
instance, further increases the inside batch predictions.

For the joining sequence task, the augmented DT predicts the unob-
served batch data with an RMSE of 0.2 mm. This has been 0.07 mm for
the validation set during the training phase. Since the model here is a
shallow network, the generalizability of the method to unobserved data
has been less precise, as seen in Table 1. However, as visualized in Fig. 3,
the model follows the differences across batches. It is to be noted that
due to the nature of the sequencing problem, representing a sequential
model with a small number of sequences available is challenging. There-
fore, shallow separate sequence models are utilized in this case study.
Increasing the number of incremental datasets in the case study enhan-
ces the model accuracy for sequence output predictions.

5. Conclusions

This study introduced an augmented geometry assurance digital
twin, integrated with physics-based incremental learning models to
predict geometric responses to part matching, locator adjustments, and
joining sequences in self-compensating assembly lines. The augmented
DT leverages recursive optimization routines and deep learning archi-
tectures to predict assembly geometric outcome, enabling real-time
compensation for existing deviations. The results demonstrated the
effectiveness of the method in achieving high accuracy for predicting
geometric mean and variation metrics, particularly for part matching
and locator adjustment tasks. Incremental updates further improved
model generalization on unobserved data, supporting the potential of
the proposed framework in dynamic, batch level geometry assurance.
The developed augmented DT successfully applied to a case study and
showcased the adaptability of deep learning models to assembly error
compensation tasks with complex constraints.

Despite promising results, challenges such as scalability for join-
ing sequence analysis remain. Also, integrating the online inspection
data to model the simulation inaccuracies and adjust accordingly can
further enhance augmented DT’s accuracy.

Future research directions can focus on enhancing the robustness
of the proposed framework to handle diverse joining operations. Fur-
thermore, generalizing the method to detect the impact of batch to
batch variation of stamped parts on assembly quality can be studied.
Novel architectures, i.e., graph neural networks and physics informed
architectures, also hold potential for future work.
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