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VERSAL DEFORMATIONS: A TOOL OF LINEAR ALGEBRA∗

ANDRII DMYTRYSHYN†

Abstract. A versal deformation of a matrix A is a normal form to which all matrices A+E, close to A, can be reduced by

similarity transformation smoothly depending on the entries of A+E. In this paper, we discuss versal deformations and their

use in codimension computations, in investigation of closure relations of orbits and bundles, in studying changes of canonical

forms under perturbations, as well as in the reduction of unstructured perturbations to structured perturbations.
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1. Introduction. To investigate and understand the properties of a matrix, we may need to transform

this matrix to a simpler form, e.g., the Jordan canonical form (JCF) or the Weyr canonical form. However,

the reduction to these forms may be an unstable operation, meaning that both the corresponding canonical

form and the reduction transformation can be highly sensitive to small changes in the entries of the matrix.

In the following, we recall the JCF and illustrate its sensitivity.

Let A be an n×n matrix over the field of complex numbers, denoted by C, and GLn(C) be the group of

n × n nonsingular complex matrices with the product operation. Recall that the similarity transformation

is defined as follows:

A 7→ S−1AS, where S ∈ GLn(C).

By a similarity transformation, any matrix can be reduced to its JCF, i.e., for a matrix A, there exists a

nonsingular matrix S, such that S−1AS = Jcan, where

(1.1)

Jcan = J(λ1)⊕ J(λ2)⊕ · · · ⊕ J(λn),

J(λi) =

ti⊕
j=1

Jki,j (λi), λi 6= λj , ki,1 ≥ ki,2 ≥ · · · ≥ ki,ti , and

Jki,j (λi) =


λi 1 0

λi
. . .

. . . 1

0 λi

 , (the size is ki,j × ki,j),

for more details, see, e.g., [31, Chapter 3]. The JCF of a matrix is well known, and it has been studied with

various purposes. In examples 1.1 and 1.2, we compute the JCF of some matrices.
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Example 1.1. Consider the following perturbation of the diagonal matrix

A(ε, δ) =

λ 0 0

0 λ 0

0 0 λ

+

0 ε 0

0 0 δ

0 0 0

 =

λ ε 0

0 λ δ

0 0 λ

 .
What is the JCF of A(ε, δ)? In the case of εδ 6= 0 (but possibly being very small), a simple computation

gives us the following JCF:1 0 0

0 ε−1 0

0 0 ε−1δ−1

−1 λ ε 0

0 λ δ

0 0 λ

1 0 0

0 ε−1 0

0 0 ε−1δ−1

 =

λ 1 0

0 λ 1

0 0 λ

 = J3(λ).

While, in the case of ε 6= 0 and δ = 0, we obtain1 0 0

0 ε−1 0

0 0 1

−1 λ ε 0

0 λ 0

0 0 λ

1 0 0

0 ε−1 0

0 0 1

 =

λ 1 0

0 λ 0

0 0 λ

 = J2(λ)⊕ J1(λ).

The above shows that a small change in one entry of the matrix, i.e., δ being arbitrarily small but nonzero

versus δ = 0, causes a big effect on the JCF (J3(λ) versus J2(λ)⊕ J1(λ)).

Example 1.2. Consider a perturbation of J3(0) and compute its JCF using a matrix S(ε):

S(ε)−1

λ 1 0

0 λ 1

ε 0 λ

S(ε) =




λ1 0 0

0 λ2 0

0 0 λ3

 , if ε 6= 0,


λ 1 0

0 λ 1

0 0 λ

 , if ε = 0.

In this example, the perturbation changes both the sizes of the Jordan blocks and the values of the eigenvalues.

As can be seen from examples 1.1 and 1.2, the reduction to the JCF is an unstable operation: the computed

canonical form and the reduction transformation depend discontinuously on the entries of the original matrix.

To put it simply, small changes in the entries of an original matrix can cause a big change in its JCF and

the transformation that reduces the matrix to this JCF. So reduction of a matrix to its JCF is an ill-posed

problem. As a consequence of the ill-posedness of the reduction to the JCF, V.I. Arnold introduced a normal

form, with the minimal number of independent parameters, to which an arbitrary family of matrices Ã close

to a given matrix A can be reduced by similarity transformations smoothly depending on the entries of Ã.

He called such a normal form a miniversal deformation of A [1, 2, 3].

The rest of the paper is organized as follows. In Section 2, we recall the necessary definitions. In Section

3, we explore the use of miniversal deformations in codimension computations. The characterization of

closure relations for bundles of matrices and investigation of possible changes in the JCF (eigenstructures)

of matrices in response to small perturbations are discussed in Section 4. Section 5 provides an algorithm

for the reduction of unstructured perturbations to structured perturbations for monic matrix polynomials.
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The main goal of this paper is to present, as simply as possible, various known uses of miniversal

deformations, but the paper also contains some new developments. Namely, our proof of Theorem 4.1,

about the characterization of closure relations for bundles of matrices, has not appeared in the literature

before. Neither has Algorithm 1, but it solves a problem that is a partial case of an already solved problem,

see Section 5 for more details. The advantage of using Algorithm 1 (when possible) is that it deals with

matrices (rather than matrix pencils) and thus requires less memory and computations.

2. Versal deformations of the JCF. In this section, we present a formal definition of (mini)versal

deformations and a theorem that provides miniversal deformations of the JCF. We also present illustrative

examples.

Definition 2.1. A deformation of a matrix A ∈ Cn×n is a holomorphic map A : Λ → Cn×n in which

Λ ⊂ Ck is a neighborhood of ~0 = (0, . . . , 0) and A(~0) = A.

On the set of deformations, we have an equivalence relation induced by similarity, which is defined as

follows.

Definition 2.2. Two deformations A(~ε) and B(~ε) of a matrix A are called equivalent if the identity

matrix In possesses a deformation I(~ε) such that

B(~ε) = I(~ε)−1A(~ε)I(~ε),

for all ~ε = (ε1, . . . , εk) in some neighborhood of ~0.

Using the equivalence relation from Definition 2.2, we are able to find a deformation such that any other

deformation can be “induced” from it.

Definition 2.3. A deformation A(δ1, . . . , δk) of a matrix A is called versal if every deformation B(~ε) =

B(ε1, . . . , εl) of A is equivalent to a deformation of the form A(ϕ1(~ε), . . . , ϕk(~ε)), in which all ϕi(~ε) are power

series that are convergent in a neighborhood of ~0 and ϕi(~0) = 0.

If a versal deformation A(δ1, . . . , δk) of a matrix A has a minimal number of independent parameters, i.e.,

k is minimal, then it is called miniversal.

For constructing the miniversal deformations of the JCF, we need to define the following m×n matrices

0←mn =


∗
∗
...

∗

0m,n−1

 if m ≤ n and 0↓mn =

 0m−1,n

∗ ∗ . . . ∗

 if m ≥ n,

where the stars denote all possibly nonzero entries. Further, we will usually omit the indices m and n.

Consider a matrix in JCF Jcan, see (1.1), and define

(2.2)

Jcan +D = (J(λ1) +D1)⊕ (J(λ2) +D2)⊕ · · · ⊕ (J(λn) +Dn), where

J(λi) +Di =


Jki,1(λi) + 0↓ 0↓ 0↓ . . . 0↓

0← Jki,2(λi) + 0↓ 0↓ . . . 0↓

0← 0← Jki,3(λi) + 0↓ . . . 0↓

...
...

...
. . .

...

0← 0← 0← . . . Jki,ti (λi) + 0↓

 .
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Theorem 2.4 below shows that any miniversal deformation of a matrix in JCF can be taken to the shape

defined in (2.2).

Theorem 2.4 ([1, 29, 33]). Let Jcan be a matrix in JCF. All matrices Jcan + E that are sufficiently

close to Jcan can be reduced by transformations

Jcan + E 7→ S(E)−1(Jcan + E)S(E),
S(E) is analytic at 0

and S(0) = I,

to the form Jcan + D, defined in (2.2). The nonzero entries of D (i.e., entries at the positions of the stars

∗) depend holomorphically on the entries of E (thus we often write D(E) instead of D).

To illustrate the result of Theorem 2.4, we consider the following three examples.

Example 2.5. Theorem 2.4 tells us that the perturbed matrix

Jcan + E = J3(λ)⊕ J2(λ)⊕ J1(λ)⊕ J2(µ) + E

=



λ 1 0

0 λ 1

0 0 λ

λ 1

0 λ

λ

µ 1

0 µ


+



ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18

ε21 ε22 ε23 ε24 ε25 ε26 ε27 ε28

ε31 ε32 ε33 ε34 ε35 ε36 ε37 ε38

ε41 ε42 ε43 ε44 ε45 ε46 ε47 ε48

ε51 ε52 ε53 ε54 ε55 ε56 ε57 ε58

ε61 ε62 ε63 ε64 ε65 ε66 ε67 ε68

ε71 ε72 ε73 ε74 ε75 ε76 ε77 ε78

ε81 ε82 ε83 ε84 ε85 ε86 ε87 ε88


,

can be reduced, by a transformation Jcan + E 7→ S(E)−1(Jcan + E)S(E), to the form

Jcan +D(E) = J3(λ)⊕ J2(λ)⊕ J1(λ)⊕ J2(µ) +D(E)

=



λ 1 0

0 λ 1

0 0 λ

λ 1

0 λ

λ

µ 1

0 µ


+



0 0 0

0 0 0

δ1 δ2 δ3

0 0

0 0

δ4 δ5

0

0

δ6
δ7 0 0

δ8 0 0

0 0

δ10 δ11

0

δ12

δ9 0 0 δ13 0 δ14

0 0

δ15 δ16


,

and δi = ϕi(~ε).

In Example 2.6, we consider the case of a perturbed 2 × 2 Jordan block. We present explicitly the

functions δi = ϕi(~ε) in the miniversal deformation of the block and the transformation S(E).

Example 2.6 (Reduction to a miniversal deformation for a 2×2 Jordan block). We present a reduction

of a perturbed 2× 2 Jordan block J2(0) + E to its miniversal deformation J2(0) +D(E). Define:

J2(0) + E =

[
0 1

0 0

]
+

[
ε11 ε12

ε21 ε22

]
and S(E) =

[
1 0
−ε11
1+ε12

1
1+ε12

]
.
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1 % Creating a fully perturbed 3x3 Jordan block

2

3 syms E [3 3];

4 J3 = [0 1 0; 0 0 1; 0 0 0];

5

6 AE = J3 + E

7

8 % Setting the first row to [0 1 0]

9

10 S1 = [1 0 0;

11 -AE(1,1)/AE(1,2) 1/AE(1,2) -AE(1,3)/AE(1,2);

12 0 0 1];

13

14 A1=inv(S1)*(AE)*S1;

15

16 % Setting the second row to [0 0 1]

17

18 S2 = [1 0 0;

19 0 1 0;

20 -A1(2,1)/A1(2,3) -A1(2,2)/A1(2,3) 1/A1(2,3)];

21

22 A2 = inv(S2)*(A1)*S2;

23

24 % Simplyfying the expressions in the third row

25

26 AD = simplify(A2)

Figure 1. Matlab code for reduction to miniversal deformation of perturbed J3(0).

Then

J2(0) +D(E) =S(E)−1(J2(0) + E)S(E) =

[
1 0

ε11 1 + ε12

] [
ε11 1 + ε12

ε21 ε22

][
1 0
−ε11
1+ε12

1
1+ε12

]

=

[
0 1

ε21(1 + ε12)− ε11ε22 ε11 + ε22

]
=

[
0 1

−det(J2(0) + E) trace(J2(0) + E)

]
.

In terms of Definition 2.3, we have

A(δ1, δ2) = A(ϕ1(~ε),ϕ2(~ε)) =

[
0 1

ϕ1(~ε) ϕ2(~ε)

]
=

[
0 1

ε21(1 + ε12)− ε11ε22 ε11 + ε22

]
,

i.e., δ1 = ϕ1(~ε) = ε21(1 + ε12)− ε11ε22 and δ2 = ϕ2(~ε) = ε11 + ε22.

It is possible to directly generalize Example 2.6 to a single Jordan block of any size, since we can easily

see what elementary operations with rows and columns of the matrix are needed to eliminate the unwanted

entries. Such a reduction can also be done in Matlab using symbolic computations, see Example 2.7. For

the general case (many Jordan blocks), we refer to [33, pp. 5–7].

Example 2.7 (Reduction to a miniversal deformations for a 3 × 3 Jordan block). In this example,

we present a Matlab code that performs a reduction of a perturbed 3 × 3 Jordan block to its miniversal

deformation. Running the code in Figure 1 results in the output presented in Figure 2.
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1 AE =

2 [e1_1 , e1_2 + 1, e1_3]

3 [e2_1 , e2_2 , e2_3 + 1]

4 [e3_1 , e3_2 , e3_3]

5

6 AD =

7 [ 0, 1, 0]

8 [ 0, 0, 1]

9 [e3_1 - e1_1*e3_2 + e1_2*e3_1 - e2_1*e3_3 + e2_3*e3_1 + e1_1*e2_2*e3_3 - e1_1*e2_3*e3_2 -

e1_2*e2_1*e3_3 + e1_2*e2_3*e3_1 + e1_3*e2_1*e3_2 - e1_3*e2_2*e3_1 , e2_1 + e3_2 - e1_1*

e2_2 + e1_2*e2_1 - e1_1*e3_3 + e1_3*e3_1 - e2_2*e3_3 + e2_3*e3_2 , e1_1 + e2_2 + e3_3]

Figure 2. Perturbed J3(0) (denoted AE) and its miniversal deformation (denoted AD). The expressions in the last row

of AD are the coefficients, with the opposite signs, of the characteristic polynomial of AE.

Besides the miniversal deformations, Examples 2.6 and 2.7, as well as the reduction process in [33], give

us an idea of how to construct the transformation matrix in the general case (i.e., for matrices of any size),

see also the algorithms in [15, 16, 37, 38] and Section 5.

As one may notice, looking at the definition of versality (see also the characterization in Lemma 3.1,

presented in Section 3), a versal or even a miniversal deformation of a matrix is not unique. For example,

the perturbed matrix Jcan + E from Example 2.5 can also be reduced by a similarity transformation to

Jcan + D̃(E), where

J3(λ)⊕ J2(λ)⊕ J1(λ)⊕ J2(µ) + D̃(E)

=



λ 1 0

0 λ 1

0 0 λ

λ 1

0 λ

λ

µ 1

0 µ


+



δ3 0 0

δ2 δ3 0

δ1 δ2 δ3

0 0

δ5 0

δ4 δ5

0

0

δ6
δ7 0 0

δ8 δ7 0

δ11 0

δ10 δ11

0

δ12

δ9 0 0 δ13 0 δ14

δ16 0

δ15 δ16


,

and δi = ϕi(~ε). Note that the number of different functions δi in D̃(E) is the same as in D(E) (D(E) is

given in Example 2.5), but D̃(E) has fewer nonzero entries, see more on the miniversal deformations of the

shape D̃(E) in [1, 24].

This paper focuses on versal deformations of the JCF of complex matrices. Nevertheless, we also name

other known results concerning miniversal deformations and their applications for matrices and matrix

pencils in the remarks throughout the paper.

Remark 2.8 (Known deformations for matrices and matrix pencils). The notion of miniversal defor-

mations has been extended to

• matrices under similarity over various fields, see [4, 28, 29];

• matrices of bilinear forms (A 7→ STAS, det S 6= 0), see [15];

• matrices of sesquilinear forms (A 7→ SHAS, det S 6= 0), see [16];

• general matrix pencils under strict equivalence (A − λB 7→ RAS − λRBS, det S 6= 0, det R 6= 0),
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see [24, 29, 32];

• general matrix pencils under contragredient equivalence (A − λB 7→ R−1AS − λS−1BR, det S 6=
0, det R 6= 0), see [29];

• structured matrix pencils under congruence (A− λB 7→ ST (A− λB)S, det S 6= 0, AT = ±A,BT =

±B), see [9, 11, 15, 16].

We also refer the reader to the introductions of [15, 16] for more information.

In the rest of the paper, we discuss the use of miniversal deformations for solving various problems, namely:

codimension computations, characterization of closure relations for orbits and bundles, and reduction of the

unstructured perturbations to structured perturbations.

3. Codimension computation via miniversal deformations. The set of matrices similar to an

n×n matrix A forms a manifold in the complex n2 dimensional space. This manifold is the orbit of A under

the action of similarity:

O(A) = {C−1AC : C ∈ GLn(C)}.

The vector space

T (A) := {XA−AX : X ∈ Cn×n},

is the tangent space to the similarity orbit of A at the point A, since

(I − εX)−1A(I − εX) = (I + εX + ε2X2 + ε3X3 + . . . )A(I − εX)

= A + ε(XA−AX)︸ ︷︷ ︸
order 1 in ε

+ ε2X(I − εX)−1(XA−AX)︸ ︷︷ ︸
order 2 in ε

,

for all n-by-n matrices X and each ε ∈ C. Lemma 3.1 shows that the tangent space plays an important role

in the characterization of versal deformations.

Lemma 3.1 (Section 2.3 in [1]). Let A and E be n× n matrices. Then

A+D(E) is versal if and only if Cn×n = T (A) +D(C),

where T (A) is the tangent space to O(A) at the point A, and D(C) is a space of matrices of the form D(E)

(see (2.2) and Theorem 2.4), where the functions ϕi(~ε) are replaced by complex numbers.

The dimension of the orbit of A is the dimension of its tangent space at the point A. The codimension

of the orbit A is the dimension of the normal space of its orbit at the point A, which is equal to n2 minus the

dimension of the orbit. Lemma 3.1 implies that the codimension of the orbit of A is equal to the minimal

possible dimension of the space D(C), and the latter is also equal to the minimal number of independent

parameters in the matrices from D(C). Therefore, miniversal deformations automatically provide us the

codimensions of orbits. Summing up,

codim(O(A)) = # {functions ϕi(~ε) in the miniversal deformation of A},

where #Ω is the number of elements in the set Ω. Note that the codimension of the orbit of A is also equal

to the number of linearly independent solutions of the matrix equation XA−AX = 0, for more details, see

e.g., [8].
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A bundle B(A) is a union of matrix orbits with the same Jordan structures except that the distinct

eigenvalues may be different. Bundles appear naturally in various applications and have been studied exten-

sively, see, e.g., [7, 14, 25]. Since the eigenvalues in bundles may vary, they become additional parameters

resulting in the following codimension formula:

codim(B(A)) = codim(O(A))−# {different eigenvalues of A}
= # {functions ϕi(~ε) in the miniversal deformation of A}
−# {different eigenvalues of A}.

(3.3)

From (3.3) we can conclude that the blocks corresponding to eigenvalues of algebraic multiplicity 1 contribute

nothing to the codimension of the corresponding bundle. Example 3.2 illustrates this and shows how easy

it can be to compute the codimensions via miniversal deformations.

Example 3.2. Consider Aq = J3(λ1)⊕J1(λ2)⊕ ...⊕J1(λq), i.e., Aq has q−1 blocks J1(λk), k = 2, . . . , q.

A miniversal deformation of Aq is

Aq +Dq =

 λ1 1 0

0 λ1 1

δ1 δ2 λ1 + δ3

⊕ [λ2 + δ4]⊕ · · · ⊕ [λq + δq+2].

By counting the number of δi’s in Aq+Dq (it is equal to q + 2) and subtracting from it the number of different

eigenvalues of Aq +Dq (it is equal to q), we obtain that codim(B(Aq)) = 2 for any value of q. Note that the

dimensions of the bundles B(Aq) are equal to q2 + 2q + 2 and thus are different for different q.

It is possible to compute the codimension of the similarity orbit of a matrix using the Matrix Canonical

Structure Toolbox for Matlab (MCS Toolbox) [17]. The toolbox was created to simplify working with

canonical forms, and it can compute codimensions for various cases, see Remark 3.3 for more details.

Remark 3.3 (MCS Toolbox). MCS Toolbox’s functionality includes computation of the codimensions

of orbits and bundles for

• matrices under congruence, and *congruence, for the theoretical results, see, e.g., [5, 6, 15, 16];

• matrix pencils under strict equivalence [8];

• controllability and observability matrix pairs [26];

• symmetric matrix pencils under congruence [11, 22];

• skew-symmetric matrix pencils under congruence [10, 21].

Summary of codimension computations. The number of functions ϕi(~ε) in a miniversal de-

formation of a matrix is equal to the codimension of the similarity orbit of this matrix. Therefore,

computing a miniversal deformation automatically provides us with the codimension.

4. Closure relation of orbits and bundles. The problem of describing the change of the JCF

under arbitrarily small perturbations is equivalent to the problem of describing what similarity orbits are

in the closure of a given similarity orbit. More precisely, O(A) ⊂ O(B) is equivalent to the fact that for

every positive ε > 0 there is a perturbation E, with ‖E‖F < ε, and a nonsingular matrix S such that

S−1(A + E)S = B. Recall that ‖ · ‖F denotes the Frobenius norm of a matrix. If we allow the values of

the distinct eigenvalues of A + E to vary, i.e., S−1(A + E)S = BE and BE ∈ B(B), then the problem of
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describing the change of the JCF (up to the values of the distinct eigenvalues) of A + E is equivalent to

deciding whether the bundle B(A) is in B(B). Notice that we perturb only a single matrix A but make a

conclusion about the whole O(A) or B(A) belonging to O(B) or B(B), respectively. For the orbits, this

conclusion is indeed straightforward, but for the bundles, it requires some explanations. In [7], De Terán

and Dopico considered such a question about closure relations for bundles of matrix pencils. Moreover, their

arguments may be applied to the case of closure relations for bundles of matrices, see [7, Section 4.1]. In

Theorem 4.1, we provide a new proof of the latter case using miniversal deformations.

Theorem 4.1. If A ∈ B(B) and B ∈ B(C) then A ∈ B(C).

Proof. Without a loss of generality, we may assume that B is in its JCF:

(4.4) B = J(λ1)⊕ J(λ2)⊕ · · · ⊕ J(λn), where J(λi) =
⊕
j

Jki,j (λi), λi 6= λj .

There is also a nonsingular matrix P such that

(4.5) P−1AP = J(µ1)⊕ J(µ2)⊕ · · · ⊕ J(µn), where J(µi) =
⊕
j

Jki,j (µi), µi 6= µj .

We emphasize that the values n and ki,j , for all i, j in (4.4) and (4.5), are the same, since A ∈ B(B) (i.e., A

and B have the same JCF up to the values of the eigenvalues).

Since B ∈ B(C), there is a perturbation D of B, such that B + D ∈ B(C) and D is in the shape of a

miniversal deformation (2.2), i.e.,

B +D = (J(λ1) +D1)⊕ (J(λ2) +D2)⊕ · · · ⊕ (J(λn) +Dn).

The JCF of B+D is a direct sum of the JCF of the direct summands J(λi) +Di. Therefore, let S = ⊕n
i=1Si

be a nonsingular matrix that reduces B +D to its JCF, i.e.,

(4.6)

S−1(B +D)S = S−1
(
(J(λ1) +D1)⊕ (J(λ2) +D2)⊕ · · · ⊕ (J(λn) +Dn)

)
S

=
n⊕

i=1

S−1
i (J(λi) +Di)Si =

n⊕
i=1

(
S−1
i (J(0) +Di)Si + λiI

)
.

We also apply the similarity transformation with this matrix S to P−1AP +D and obtain:

(4.7) S−1(P−1AP +D)S =

n⊕
i=1

S−1
i (J(µi) +Di)Si =

n⊕
i=1

(
S−1
i (J(0) +Di)Si + µiI

)
.

Note that since D can be chosen with arbitrarily small entries, we can assume that the direct summands

S−1
i (J(0)+Di)Si +λiI and S−1

j (J(0)+Dj)Sj +λjI have no eigenvalues in common for i 6= j, as well as that

the direct summands S−1
i (J(0) +Di)Si + µiI and S−1

j (J(0) +Dj)Sj + µjI have no eigenvalues in common

for i 6= j. Therefore, (4.6) and (4.7) show that the JCFs of B +D and P−1AP +D only differ in the values

of the eigenvalues (the eigenvalues of each S−1
i (J(0) +Di)Si are shifted with λi and µi, respectively). Thus,

P−1AP +D ∈ B(C) and, since D is arbitrarily small, we have P−1AP ∈ B(C). Therefore, A ∈ B(C).

For the necessary and sufficient conditions for a matrix A (or, by Theorem 4.1, a bundle B(A)) being in

the closure of another bundle, see, e.g., [24, 34, 35]. The closure hierarchies of bundles (and also orbits) can be

represented as graphs, the so-called stratification graphs [10, 18, 19, 20, 25]. The construction of such graphs
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
λ 1

λ 1

δ1 δ2 λ+ δ3 δ4 δ5
δ6
δ7

λ 1

δ8 λ+ δ9

 ∼





λ 1

λ 1

λ 1

λ 1

λ


if only δ4 6= 0,



λ 1

λ 1

λ 1

λ

λ


if only δ5 6= 0,



λ1

λ2

λ3

λ 1

λ


if only δ1 6= 0.

Figure 3. We state what ~δ = (δ1, . . . , δ9) can be chosen to show that J5(λ), J4(λ)⊕J1(λ), and J1(λ1)⊕J1(λ2)⊕J1(λ3)⊕
J2(λ) are in an arbitrarily small neighborhood of a matrix J3(λ) ⊕ J2(λ). (A ∼ B means that S−1A(~δ)S = B for some ~δ and

nonsingular S.)

is a way to study qualitatively how small perturbations can change the JCF of a matrix and find out what

JCF matrices may be in an arbitrarily small neighborhood of a given matrix. Miniversal deformations may

simplify the construction of such graphs since they allow us to take into account all possible perturbations

of a matrix while working with the matrix, where only a few entries are perturbed, see Example 4.2. Note

also that codimensions (discussed in Section 3) play an important role in the investigation of the closure

relation for orbits and bundles due to the fact that a given orbit (or bundle) has only orbits (or bundles)

with higher codimensions in its closure. Thus, the codimension count provides us with a necessary but not

sufficient condition for one orbit (or bundle) being in the closure of another orbit (or bundle).

Example 4.2. To investigate what JCFs matrices in an arbitrary small neighborhood of J3(λ) ⊕ J2(λ)

may have, i.e., what the JCF of any matrix J3(λ) ⊕ J2(λ) + E (25 parameters, that are the entries of E)

may be, it is enough to investigate what the JCF of any matrix J3(λ)⊕ J2(λ) +D(E) (9 parameters, see the

matrix to the left in Figure 3) may be. For example, matrices with the JCFs of the form J5(λ), J4(λ)⊕J1(λ),

and J1(λ1)⊕ J1(λ2)⊕ J1(λ3)⊕ J2(λ) are in an arbitrarily small neighborhood of a matrix J3(λ)⊕ J2(λ), see

Figure 3.

In Remark 4.3, we provide a few examples of how various miniversal deformations were used for showing

which canonical forms matrices and matrix pencils have, or cannot have, in an arbitrarily small neighborhood

of a given matrix or matrix pencil.

Remark 4.3 (Changes of canonical forms under perturbations). Miniversal deformations can be used

for studying changes of other (than JCF) canonical forms under arbitrarily small perturbations. Here we list
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a few examples of such usage:

• In [9, Example 2.1], miniversal deformations of skew-symmetric matrix pencils are used to show that

in an arbitrarily small neighborhood of a matrix pencil with canonical form L1 ⊕L0 there is always

a matrix pencil with canonical form H2(λ), with λ 6= 0. For the definitions of canonical blocks Lk

and Hn(λ) and more details on this, see [9].

• In [14, Theorem 2.3], miniversal deformations of matrices of bilinear forms are used to show that

there is a small neighborhood of a matrix with the canonical form
 0 1 0

−1 0 0

0 0 0

 that does not contain a

matrix with the canonical form
0 1 0

λ 0 0

0 0 0

.

• In [27], miniversal deformations of matrix pencils are used to calculate the Kronecker canonical form

of pencils that are close to any given matrix pencil, i.e., the authors develop a qualitative perturbation

theory of matrix pencils through miniversal deformations.

Summary of closure relations of orbits and bundles. Miniversal deformations can be used

for studying when a closure of an orbit (or a bundle) contains another orbit (or bundle). Such a

closure relation for orbits or bundles corresponds to changes in the canonical forms (eigenvalues,

their multiplicities, and minimal indices) of matrices under arbitrarily small perturbations.

5. Reduction to structured perturbations. (Mini)versal deformations have or may be forced to

have a certain structure, e.g., blocking and sparsity. Therefore, the theory of versal deformations provides

a possibility to take into account all the possible perturbations of a given matrix while considering only

perturbations of the shape of the versal deformations, i.e., considering only particularly structured matrices.

This property of versal deformations may be used in various ways. In particular, in this section, we show

how to reduce a perturbation of a monic matrix polynomial linearization to a linearization of the perturbed

polynomial, or in other words, how to find which perturbations of the matrix coefficients of a monic matrix

polynomial correspond to a given perturbation of the entire linearization. The perturbed polynomial must

remain monic, i.e., the identity matrix in front of λd is not perturbed. We also derive the transformation

matrix that, via similarity, transforms the perturbation of the linearization to the linearization of the per-

turbed polynomial. The described reduction is possible since the linearization of a perturbed polynomial is

a versal deformation for the perturbation of the matrix polynomial linearization [19, 23, 39].

Let P (λ) = λd+Ad−1λ
d−1+· · ·+A1λ+A0, where Ai ∈ Cn×n, for i = 0, . . . d−1, be a matrix polynomial.

To compute the eigenvalues of P (λ), it is enough to compute the eigenvalues of

(5.8) CP =


−Ad−1 −Ad−2 . . . −A0

In 0 . . . 0
. . .

. . .
...

0 In 0

 ,

since this matrix is a linearization of the polynomial P (λ), see e.g., [36] (note also that (5.8) is similar to
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the first companion matrix of P (λ) [30, p.13, Theorem 1.1]). Notably, a full perturbation of CP , i.e.,

CP + E = CP +


E11 E12 . . . E1d

E21 E22 . . . E2d

...
...

. . .
...

Ed1 Ed2 . . . Edd

 ,
does not preserve the block structure of CP . Therefore, we also define the structured perturbation

CP+F (E) = CP +


Fd−1 Fd−2 . . . F0

0 0 . . . 0
...

...
...

0 0 . . . 0

 .
CP+F (E) preserves the block structure of CP and perturbs only the blocks that correspond to the matrix

coefficients of the matrix polynomial P (λ). As mentioned before, this structured perturbation is actually a

versal (but not miniversal) deformation of CP and thus it is always possible to find a nonsingular matrix

S := S(E), such that S−1 · (CP + E) ·S = CP+F (E), see e.g., [13, 19, 23, 39]. Below we present an algorithm

for finding this structured perturbation.

Define a split of a matrix M = [Mij ] into a sum of its structured and unstructured parts, Ms and Mu,

respectively, as follows:
M11 M12 . . . M1d

M21 M22 . . . M2d

...
...

. . .
...

Md1 Md2 . . . Mdd

 =


M11 M12 . . . M1d

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

+


0 0 . . . 0

M21 M22 . . . M2d

...
...

. . .
...

Md1 Md2 . . . Mdd

 ,

and Ms :=


M11 M12 . . . M1d

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 , Mu :=


0 0 . . . 0

M21 M22 . . . M2d

...
...

. . .
...

Md1 Md2 . . . Mdd

 .
The idea of the algorithm is based on performing similarity transformations on CP + E that decreases the

norm of the unstructured part of the perturbation, i.e., the norm of Eu:

(I −X)−1(CP + E)(I −X) = (I +X +X2 +X3 + . . . )(CP + E)(I −X)

= CP + (E +X(CP + Es)− (CP + Es)X)s

+ (E +X(CP + Es)− (CP + Es)X)u︸ ︷︷ ︸
we set it to zero, i.e., we find X that eliminates Eu;

+ XEu − EuX +O(X2).︸ ︷︷ ︸
spoils the unstructured part again;

Note that the norm of the unstructured part actually decreases since the norm of X is small ((I −X) is a

small perturbation of I and the norm of E is small). We repeat the above procedure until the norm of the

unstructured part becomes sufficiently small. This is formalized in Algorithm 1 below.

In [12], an algorithm that performs such a reduction for general (possibly non-monic) matrix polynomials

and their first companion linearization is presented. Therefore, we refer the interested readers to [12] for

more details and analysis of such algorithms.
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Algorithm 1 (Recovering a perturbation of a monic matrix polynomial from a perturbation of its lineariza-

tion)

Let CP be a linearization of a monic matrix polynomial P (λ) and E1 be a full perturbation of CP . Let also

I be the identity matrix.

Input: A monic matrix polynomial P (λ), a perturbed matrix CP + E1, and a tolerance parameter

tol;

Initialization: S := I;

Computation: While ‖Eu
i ‖F > tol

– find the minimum norm least-squares solution to the Sylvester matrix equation:(
Xi(CP + Es

i )− (CP + Es
i )Xi

)u
= −Eu

i ;

– by solving a system of linear equations with multiple right-hand sides, extract the new pertur-

bation Ei+1: (I −Xi)Ei+1 = Ei(I −Xi)− CPXi +XiCP ;

– construct the new perturbation CP +Ei+1 of the matrix CP (note that the perturbed lineariza-

tion CP + Ei+1 remains similar to the original one CP + E1);

– update the transformation matrix: Si+1 := Si(I −Xi);

– increase the counter: i := i+ 1;

Output: A structurally perturbed linearization CP+F (E) := CP + Ek, where Ek is a structured

perturbation (since ‖Eu
k ‖F < tol) and the transformation matrix is S.

We note also that the construction of the transformation matrices in Algorithm 1 is similar to the

construction of the transformation matrices for the reduction to miniversal deformations of matrices in [15,

16].

Reduction to structured perturbations. The theory of versal deformations provides a possibility

to take into account all the possible perturbations of a given matrix while working only with its versal

deformations. And since versal deformations have or may be forced to have a certain structure, e.g.,

blocking, sparcity, then we only need to investigate particularly structured matrices.
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