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Abstract
In compressed sensing a sparse vector is approximately retrieved from an under-
determined equation system Ax = b. Exact retrieval would mean solving a large
combinatorial problem which is well known to be NP-hard. For b of the form
Ax0 + ε, where x0 is the ground truth and ε is noise, the ‘oracle solution’ is the
one you get if you a priori know the support of x0, and is the best solution one
could hope for. We provide a non-convex functional whose global minimum is
the oracle solution, with the property that any other local minimizer necessarily
has high cardinality. We provide estimates of the type ‖x̂ − x0‖2 � C‖ε‖2 with
constants C that are significantly lower than for competing methods or theo-
rems, and our theory relies on soft assumptions on the matrix A, in comparison
with standard results in the field. The framework also allows to incorporate a
priori information on the cardinality of the sought vector. In this case we show
that despite being non-convex, our cost functional has no spurious local minima
and the global minima is again the oracle solution, thereby providing the first
method which is guaranteed to find this point for reasonable levels of noise,
without resorting to combinatorial methods.
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1. Introduction

1.1. Background

We consider the classical compressed sensing problem of minimizing the cardinality card
(x) = ‖x‖0 of an approximate solution to an underdetermined equation system Ax = b, i.e.

argmin
x:‖Ax−b‖2<η

card(x), (1)

where η > 0 is some allowed tolerance of the error and x0 lies in Rn or Cn. Problem (1) is
NP-hard [36] and a popular approach is to replace card(x) with the convex function ‖x‖1, i.e.

argmin
x:‖Ax−b‖2<η

‖x‖1. (2)

This method goes back (at least) to the 70s (see the introduction of [37] for a nice historical
overview) but received increasing attention in the late 90s due to the work by Chen et al [21]
on what they called basis pursuit, which amounts to solving

argmin

{
λ‖x‖1 +

1
2
‖Ax − b‖2

2

}
(3)

for a suitable choice of parameter λ, playing the role of η in (2). In fact, (3) is the dual problem
of (2) in the sense that for each η there is a λ such that the solution of (2) and (3) coincides.
The method received massive attention after the works of Donoho, Candés and coworkers in
the early 2000, and the term compressed sensing was coined. In [14], Candés et al proved the
surprising result that, given a k-sparse vector x0 and a measurement

b = Ax0 + ε, (4)

where ε is Gaussian noise, solving (2) yields (for a suitable choice of η) a vector x̂ that satisfies

‖x̂ − x0‖2 < Ck‖ε‖2, (5)

where Ck is a constant. Arguing that it is impossible to beat a linear dependence on the noise
(even knowing the true support of x0 a priori), the estimate (5) led the authors to conclude that
‘no other method can significantly outperform this’. The result holds given certain assumptions
on the matrix A, related to the restricted isometry property (RIP) of A, which in a separate
publication (theorem 1.5, [15]) was shown to hold with ‘overwhelming probability’.

These results give the impression that the theory is more or less complete and that improve-
ments only can be marginal. However, what is not so well known is that the mentioned results
usually do not apply to regular applications of the framework. For example, that ‘statement
A(n)’ holds with ‘overwhelming probability’ only entails that the probability of A(n) being
false decays exponentially with the size n of the application, hence a statement can hold with
‘overwhelming probability’ and at the same time be false for most moderately sized appli-
cations (in some applications the dimension of the signals, in our case n, is modest. See for
instance [29]. For a more extensive survey on compressed sensing applications, see [42]). In
addition other assumptions need to be fulfilled for the ‘overwhelming probability’-results to
kick in, for example theorem 1.5 in [15] requires (according to the text below the theorem)
that k/n is of magnitude 10−4, which rules out most applications independent of whether n
is large or not. While the theory has been improved since 2005, the main problem that the
results often do not apply to standard applied settings, remains. For example the recent works
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[1, 2, 12] provide asymptotic theorems about when compressed sensing works in concrete
setups. Moreover, in [47] it was even shown that the method fails with probability tending to
1, as a function of n, if the ratio of k, n and m (the amount of measurements) is held fixed.

In addition to all this, whereas very strong recovery results were reported e.g. in [13, 20,
23] for the case of exact data b = Ax0, in the presence of noise the method gives a well known
bias (see e.g. [26, 35]). The �1 term not only has the (desired) effect of forcing many entries
in x to 0, but also the (undesired) effect of diminishing the size of the non-zero entries. This is
clearly visible even in the one-dimensional situation; the function R � x �→ λ|x|+ 1

2 |x − x0|2
has its minimum shifted toward 0 from the sought point x0. This has led to a large amount of
non-convex suggestions to replace the �1-penalty, see e.g. [4, 7–10, 37, 20, 26–28, 33–35, 41,
48, 50, 53, 54]. However, among these there is no clear winner and still �1−methods seems to
be the standard choice among engineers, maybe also due to its simplicity. A fairly well-known
non-convex alternative is the minimax concave penalty (MCP) by Zhang, which was coined
nearly unbiased since the results in [52] imply that the method does find the oracle solution
with probability tending to one under the assumptions of that paper. The ‘oracle solution’ is
sort of the holy grail of compressed sensing, and aside from Zhang’s work and this publication,
there seems to be no reliable methods (with proofs) of how to find it.

1.2. Quadratic envelopes

In this paper we analyze two different methods to find the oracle solution, one which actually
coincides with Zhang’s MCP-penalty and a more intricate (and reliable) one that assumes a
priori knowledge of the sparsity level k. In fact, these two are the tip of an iceberg of possible
methods based on the ‘quadratic envelope’, which we now introduce. Consider the general
problem of minimizing

K(x) = f (x) + ‖Ax − b‖2
2 (6)

where f is some non-convex penalty and x is a vector in some linear space, not necessarily
Rn. The standard non-convex example mentioned in most introductions to papers on com-
pressed sensing is f(x) = μ card(x) for some trade off parameterμ > 0. However, if the desired
cardinality k is known a priori, we can take f to be the indicator function ιPk of the set
Pk = {x : card(x) � k} in which case (6) reduces to

argmin
card(x)�k

‖Ax − b‖2. (7)

In [17] quadratic envelope Q2( f ) was introduced, where Q2 is the quadratic biconjugate
and f : V → R ∪ {∞} can be any functional on a separable Hilbert space V ; apart from the
name, this transform was introduced already in [16] and goes back to the work of Larsson,
Olsson [32]. It is defined as

Q2( f )(x) = sup
α∈R, y∈V

{α− ‖x − y‖2 : α− ‖ · −y‖2 � f } (8)

see figure 1 (taken from [17]) for an illustration. An explicit form forQ2 is not always possible,
but it is for the two functions that this paper examines, see (24) and (51). The quadratic envelope
has also the property that Q2( f )(x) + ‖x‖2

2 is the lower semi-continuous convex envelope of
f (x) + ‖x‖2

2. The relationship between

Kreg(x) = Q2( f )(x) + ‖Ax − b‖2
2 (9)
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Figure 1. Illustration of a non-convex function f (red) and its quadratic envelope Q2( f)
(black). The black graph lies slightly below for illustration only.

and the original functional in (6) was investigated in [17]. The inequality Kreg � K is
immediate by (8) and will be used throughout.

Given that ‖A‖op < 1 (which always can be achieved by rescaling), the main result of [17]
is that the set of local minimizers to (9) is a subset of the local minimizers of (6), and most
importantly that the global minimizers coincide3.

In the particular case of f(x) = μ card(x), which is the first instance considered in this paper,
the functional (9) has previously been introduced by Zhang [52] under the name MCP and inde-
pendently by Soubies et al [46] under the name CE�0. It also shows up in earlier publications,
for example (2.4) in [26], but it seems like [52] is the first comprehensive performance study
and [46] the first publication where the connection with convex envelopes appears. For this
choice of f , the value of the contributions of the present paper is mainly theoretical, which
goes much beyond what was previously known. In particular we show that the global min-
imizer with the MCP-penalty (i.e. Q2(card)) is the oracle solution (for an appropriate range
of the parameter μ); hence it follows that the MCP is actually unbiased, not merely nearly
unbiased as claimed in [52].

To clarify what we mean by this, we note that it is easy to prove that the error in the oracle
solution depends linearly on the noise, and hence the expectation of the error will be zero as
long as the expectation of the noise is zero. In this sense any method finding the oracle solutions
will be unbiased, which justifies the title of the paper.

The second penalty under consideration in this paper, Q2(ιPk ), is a new object that has only
appeared previously in earlier publications by the authors of the present article. It also has the
capacity of finding the oracle solution and the benefit that it does not rely on an appropriate
parameter choice μ, as long as the model order is known. In contrast to the MCP-penalty (and
most other previously studied sparsity priors) it is not separable but assigns a penalty that

3 For the functionals considered in this paper the condition ‖A‖op < 1 can be substantially relaxed, as we will explain
further below.
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depends on the number of non-zero elements. This leads to significant differences with respect
to the optimization landscape and the distribution of stationary points that we will study in
this paper. In this article we provide theoretical results of the type (5) for the two concrete
functionals Q2(card) and Q2(ιPk ). A more extensive discussion of previous results concerning
MCP/CE�0 is found in section 2.1, as well as other related results on non-convex optimization.

1.3. Contributions

A clear drawback with non-convex optimization schemes is that algorithms are bound to get
stuck in local minima, and in concrete situations it is hard to determine whether this is the case
or not. In the present article we give simple conditions which imply that the global minima of
(9) for f(x) = μ card(x) is the oracle solution, and moreover that any local minima necessarily
has a high cardinality unless it is the global minima. Hence, if a sparse local minima is found
one can be sure that it is the oracle solution. In the case of f = ιPk we take this one step further
and give conditions under which (9) has a unique local minimizer, which hence must be the
oracle solution and also the solution to the original problem (7).

To be more precise, when the ‘measurement’ b has the form b = Ax0 + ε and x0 is a sparse
vector, we significantly improve the state of the art in compressed sensing in a number of ways.
Firstly, the conditions on A hold in greater generality, in the sense that our counterpart to con-
ditions such as ’small RIP-values’ or ‘small mutual coherence’ (see e.g. [30]) hold to a much
greater extent than existing theory for other approaches such as �1-minimization or iterative
hard thresholding (IHT). Secondly, since the global minimizer of our functionals is the oracle
solution, we obtain an estimate corresponding to (5) where the involved constants are signifi-
cantly smaller than Ck (or other constants with a similar role found in the references). Thirdly,
we show numerically that forward–backward splitting (FBS) finds this in scenarios when com-
petitors fail, thereby providing novel robust completely unbiased algorithms for compressed
sensing (at least in the setting when A has normalized Gaussian random columns).

In section 2 we present highlights from the theory, show some numerical results and com-
pare with the traditional �1-method (3). In section 2.1 we give a brief review of the field. The
remainder of the paper, sections 3–5, are devoted to developing the theory.

2. Main results and innovations

Again, we will investigate minimizers of (9) for the two penalties Q2(μ card) and Q2(ιPk ). We
present key findings in sections 2.2 and 2.3. First we give a brief review of the field.

2.1. Brief review of related results

Needless to say, we are not the first group to address the shortcomings of traditional �1-
minimization by use of non-convex penalties. In fact, even before the birth of compressed
sensing, the shortcomings of �1-techniques were debated and non-convexalternatives were sug-
gested, we refer to [26] for an overview of early publications on this issue. Moreover, shortly
after publishing the celebrated result (5), Candés, Wakin and Boyd suggested an improvement
called ‘reweighted �1-minimization’ [37] which also became a big success. They provide a
theoretical understanding of this algorithm as minimizing the non-convex functional

f (x) =
∑

j

log(ε+ |x j|)

where ε is a parameter chosen by the user. Figure 2 shows the functions card(x), |x| and
log(0.1 + |x|) − log(0.1) as well as Q2(card). As is clear to see, log(0.1 + |x|) − log(0.1)

5
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Figure 2. Illustration of penalties.

is closer to card(x) than |x|, which may explain the better performance by reweighted �1-
minimization reported in [37, 23]. The functional Q2(card) is even closer to card(x), and while
this certainly is one reason behind the superior theoretical results reported in this paper, there is
still the issue of getting stuck in stationary points. In [46] the authors provide a macro algorithm
to avoid non-local minima. In the same vein, Zhang [52] proposes to iteratively update relevant
parameters to reach the desired global minima with higher probability.

Favorable results for Q2(μ card)/MCP were reported in the recent paper [34], which com-
pares the use of MCP with �1 and reweighted �1 (called LSP in [34]) as well as SCAD (intro-
duced in [26] which has similar performance as MCP). The numerical results in this paper
seems also to reconfirm this, despite not employing any algorithm ensuring that we do not
converge to an undesired stationary point.

The first theoretical justification of using MCP/Q2(μ card) is corollary 1 of [52], which
roughly speaking contains an algorithm which finds the global minimum of MCP with high
probability, and shows that the probability that this differs from the oracle solution is low. The
result is based on very technical assumptions involving constants c∗, c∗, d∗, d0, γ, σ,w0, β∗ and
p̃1, and so it seems hard to verify if this result applies in a concrete situation.

A more recent theoretical justification to support the use of MCP is given in [34] which,
under a number of assumptions, prove that (9) with Q2(μ card) does have the oracle solution
as a unique stationary point with high probability, and provide an estimate of the type (5), see
corollary 1. However, as with the results of Zhang, this result relies on a number of constants
whose values are difficult to estimate, so it is hard to know when exactly the theorem applies.
In addition we note that in many practical cases the MCP formulation has local minima, see
our experimental evaluation, indicating that the assumptions made to ensure uniqueness are
very restrictive. We believe that the corresponding theory in the present paper is much more
transparent, with conditions that are more general and comparatively easy to verify, as well as
stronger conclusions. We postpone further discussion of this to section 2.5.

The papers [4, 7, 8, 38, 39] considers (6) for the cases f(x) = card(x) as well as
f (x) = ιPk (x), and [4] show in particular that the FBS-algorithm applied to (6) converges to a
stationary point, but a further analysis of this point is not present. In fact, it seems to us that

6
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these papers fail to recognize that the oracle solution often is the global minimizer of both (10)
and (15), which follows from the results of this paper (see corollaries 2.1 and 2.3 respectively).

Many other non-convex penalties have been proposed over the years [9, 10, 37, 20, 26–28,
33–35, 41, 48, 50, 52–54], and we make no attempt to review them here. The introduction of
[34] contains a recent overview. A common denominator seems to be that the penalty function
is separable, i.e. has the form p(x) =

∑
j pj(x j) where pj are functions on R (except the recent

contribution [48]). The penalty Q2(ιPk ) is not of this form. In fact, Q2(ιPk ) is the simplest of a
vast field of possible penalties introduced in [32] that can be more tailormade to the problem
at hand, neither of which is separable.

2.2. Sparse recovery via Q2(μ card)

We return to the first problem of minimizing (9) for f = μ card(x) i.e.

Kμ(x) :=μ card(x) + ‖Ax − b‖2
2 (10)

where the parameter μ controls the tradeoff between sparsity and data-fit. Motivated by
section 1.2 we propose to regularize Kμ with

Kμ,reg(x) = Q2(μ card)(x) + ‖Ax − b‖2
2. (11)

The graph of Q2(card) is depicted in figure 2.
We will study uniqueness of sparse minimizers of both (10) and (11), in the sense that we

give concrete conditions such that if there exists one local minimizer x′ of (11) with the property
that card(x′) � m (in a manner to be made precise), then

• x′ is automatically a global minimizer and also a solution to (10)
• Any other stationary point x′′ of (11) satisfies card(x′′) � card(x′).

To state our results, we remind the reader that A satisfies a RIP for integer k, if any k columns
of A behaves approximately as an isometry, in the sense that

(1 − δk)‖x‖2
2 � ‖Ax‖2

2 � (1 + δk)‖x‖2
2

for all k-sparse vectors x ∈ Rn, k ∈ N, and some constant 0 � δk < 1. Classical results from
compressed sensing literature usually require that the numbers δk are small, something which
we have found is hard to fulfill in practice. For example, the famous estimate (5) holds under
the assumption that δ3k + 3δ4k < 2. This condition was later improved to the simpler estimate

δ2k <
√

2 − 1 ≈ 0.4, (12)

(see [11]) which is the estimate currently reproduced in textbooks on the subject, such as [30].
Our numerical evaluation (see section 2.4) shows that this condition is usually not satisfied for
a Gaussian random matrix A (with normalized columns) of size 100 × 200 (a common size
for many applications), except for k = 1. The statement that RIP holds with overwhelming
probability [15] is therefore somewhat misleading.

We base the theory of this paper on the lower restricted isometry property (LRIP), basically
constituting the lower estimate of the RIP (introduced in [6]). More precisely, we define

1 − δ−k = inf

{
‖Ax‖2

2

‖x‖2
2

: x �= 0, card(x) � k

}
(13)

for k = 1 . . . n. We say that A satisfies LRIP with respect to the property Pk = {x : card(x) � k}
if δ−k < 1. In other words A is LRIP with respect to this property if and only if any k chosen

7
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columns of A are linearly independent. Clearly δ−k � δk and for Gaussian matrices inequality
typically holds, which is further discussed in section 2.4.

To give the reader an early insight into key findings, we state a simplified version of the
main result of section 4, theorem 4.9 (for the particular case N = 2k).

Corollary 2.1. Suppose that A has columns in the unit ball of Rn or Cn, that b = Ax0 + ε
and set card(x0) = k. Assume that the noise is small enough that the open interval(

‖ε‖2

1 − δ−2k

,
(1 − δ−2k)min j∈supp x0 |x0, j|

2

)
is non-empty. Then for any μ with

√
μ in the above interval, we have that

(a) Then there exists a unique global minimum x′ to Kμ,reg as well as Kμ, and it is the oracle
solution.

(b) We have that supp x′ = supp x0

(c)

‖x′ − x0‖2 �
‖ε‖2√
1 − δ−k

,

(d) card(x′′) > k for any other stationary point x′′ of Kμ,reg.

Moreover, if the above estimates hold for some N � 2k we can state that x′′ has cardinality
higher than N − k. In other words, either the algorithm finds the oracle solution or one with
substantially higher cardinality. Although the theorem gives conditions on how to pick μ, the
involved quantities are generally not exactly known. For some matrix families good estimates
exist e.g. [6]. For other problems one has to proceed by trial and error (as with all to us known
CS-methods). However, in our experience, the method is very robust and finds the oracle solu-
tion for a range of μ-values, as opposed to e.g. traditional �1-minimization (3) which gives a
different solution for each λ.

Note that the conditions on ‘noise’ ε and ‘ground truth’ x0 are very natural; if the noise is
too large or if the non-zero entries of x0 are too small, there is no hope of correctly retrieving
the support. Also note the absence of a condition forcing δ−2k to be ‘small’, in sharp contrast to
other results in the field such as (12) or δ3k < 1/

√
32 in [7] (conditions that are very hard to

satisfy, see section 2.4). On the contrary, as long as δ−2k < 1, corollary 2.1 holds, and in order
for it to apply for some μ one needs that the signal to noise ratio, measured as

SNR =
min j∈supp x0 |x0, j|

‖ε‖2
, (14)

has to be sufficiently large, (more precisely larger than 2

(1−δ−2k)2
, for then the interval in the

corollary is non-void).

2.3. Sparse recovery via Q2(ιPk
).

We now discuss the situation when the model order, i.e. the amount k of non-zero entries, is
known. This problem is also known as the k-sparse problem and studied e.g. in [7]. For sim-
plicity we restrict attention to Rn, corresponding results for Cn are similar but the assumptions
on A are slightly more technical (see section 5.1). As pointed out earlier the NP-hard problem
(7) can be written

Kk(x) = ιPk (x) + ‖Ax − b‖2
2 (15)

8
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Figure 3. Two dimensional illustrations of the functions Q2(card) (left) and Q2(ιP1 )
(right).

(where the subindex k separates the notation from (10)) which we regularize with

Kk,reg(x) = Q2(ιPk )(x) + ‖Ax − b‖2
2. (16)

Figure 3 shows Q2(ιP1 ) as a function of two variables (in the positive quadrant). The penalty
assigned is zero for all vectors with no more than one non-zero variable. For comparison we
also plot Q2(card). Note that Q2(card) is constant in the region where both variables are larger
than

√
μ. This shape makes it likely that Kreg has local minimizers of high rank. In contrast

Q2(ιP1 ) has large gradients in this area which as we shall se makes it possible to exclude such
stationary points for Kk,reg.

We first present a result where b is not necessarily given by Ax0 + ε.

Corollary 2.2. Let A have columns in the unit ball such that no pair is orthogonal,
and assume that n � m + k + 2. Any local minimizer x′ of Kk,reg then satisfies card(x′) � k.
Moreover, set z′ = (I − A∗A)x′ + A∗b, let z̃′ contain the elements of z′ sorted by decreasing
magnitude, and assume that

|̃z′k+1| < (1 − 2δ−2k)|̃z′k|. (17)

Then x′ is the unique global minimum of Kk and Kk,reg.

A similar result also holds in the situation of the previous section. The interesting point to
note is that there is a simple verifiable condition on whether a solution to (7) has been found,
given that some estimate of δ−2k is available (see e.g. theorem 9.26 of [30] or [6]).

Corollary 2.2 is a combination of theorems 5.1 and 5.4. We now consider the case when
b = Ax0 + ε and we wish to retrieve x0, where card(x0) = k. By theorem 5.5, we have (for A
as in the previous corollary);

Corollary 2.3. Assume the SNR (as measured in (14)) is greater than 3√
1−δ−2k

. Then the ora-

cle solution is a unique global minimizer x′ to Kk,reg with supp (x′) = supp (x0) and moreover
it satisfies ‖Ax′ − b‖2 � ‖ε‖2 and

‖x′ − x0‖2 � ‖ε‖2√
1 − δ−k

.

9
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Finally, if the SNR is also greater than⎛
⎝ 1

1 − 2δ−2k

+
1√

1 − δ−k

⎞
⎠ ,

Corollary 5.6 says that Kk,reg has no local minimizers (except for the oracle solution). An
interesting point to note is that minimizing Kk can be seen as finding one among

( n
k

)
pos-

sible minimizers (see the proof of theorem 5.5). However,
( n

k

)
is typically a large number,

for example if k = 10 and n = 1000 it is around 2 × 1023. The above corollary states that all
but one of these, the relevant one, disappears when regularizing with Q2(ιPk ), which is rather
amazing, in the authors humble opinion. However, this clearly demands that δ−2k < 0.5, to be
compared with the state of the art assumption δ2k <

√
2 − 1 ≈ 0.4 for when standard com-

pressed sensing results kick in [30]. In which situations is it likely to assume that either of
these hold? We try to shed some light on this in the next section.

2.4. On the size of RIP/LRIP-constants

RIP-values are notoriously difficult to estimate, which makes it hard to compare theorems in
compressed sensing. For example, the currently best known estimate for (5) was proven in [11],
and is reproduced in textbooks such as [30]. It says that Ck = 8.5 if δ2k = 0.2, but how likely
is that to happen? In [30] very intricate estimates in this direction are give in theorem 9.27,
which claims that the 2k-RIP constant δ2k of a random Gaussian matrix A/

√
m is4

� 2

(
1 +

1√
2 ln(e · n/2k)

)
η +

(
1 +

1√
2 ln(e · n/2k)

)2

η2

with probability 1 − ε if

m � 2η−2(2k ln(e · n/2k) + ln(2ε−1)).

Now let us suppose we are interested in a very sparse signal, k = 10, and n = 1000. Then(
1 +

1√
2 ln(e · 1000/20)

)
≈ 1.32

and

(
1 + 1√

2 ln(e·1000/20)

)2

≈ 1.74. The equation 1.74η2 + 2 × 1.32η = c gives the positive

solution

η(c) ≈ (
√

1.74c + 1.322 − 1.32)/1.74.

For c = 0.2, η ≈ 0.072. Therefore we would need m � 37 878, independently on the proba-
bility degree ε; this is absurd since we would like m � n = 1000.

Of course, there is the possibility that the estimates for δ2k are poor and that the reality is
different. To test this we computed values of δj and δ−j for matrices of various size. The test
matrices where generated by first drawing elements from i.i.d Gaussian distributions and then

4 Constructing the matrix like this gives expected value of the column norms equal to 1, so is very similar to normalizing
the columns, as done in the examples of this paper.
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Table 1. m = 25, n = 50.

j 2 3 4 5 6

δ j: 0.66 1.04 1.36 1.65 1.88
δ−j 0.66 0.79 0.87 0.92 0.95

Table 2. m = 100, n = 200.

j 2 3 4

δ j 0.39 0.61 0.80
δ−j 0.39 0.52 0.62

Table 3. m = 250, n = 500.

j 2 3 4

δ j 0.28 0.43 0.55
δ−j 0.28 0.38 0.44

normalizing the resulting columns. Note that this gives a matrix with columns drawn from a
uniform distribution on the sphere. The results presented below where averaged over 5 trials.

From table 1 we can note several interesting things. For example, δ−j is usually a bit smaller
than δj, and whereas the latter can become larger than 1 the former cannot, by definition. In fact,
by the definition it is easy to see that δ−j = 1 if and only if there are j linearly dependent columns
in the matrix. This means that with probability 1, we always have δ−j < 1 for j � m whereas
δ−j = 1 for all j > m. In particular, corollary 2.1 is applicable with probability 1 whenever
k � m/2.

The second thing to note is that we do not present very many values, which is related to
the computational time. If we were interested in computing δ20 for a matrix with n = 1000, as
discussed initially, we would need to perform

( 1000
20

)
≈ 4 × 1041 SVD’s. In fact, even comput-

ing δ7 for n = 50 requires around 109 SVD’s, (which is not impossible but we skipped it since
the numbers are very poor anyway). For this reason, the typical sizes of δj’s remain a mystery,
which likely is a reason behind the widespread belief that these numbers often are decent. To
shed some light for larger matrices, we now compute for j up to 4 and m = 100 as well as 250
(with n = 2m) (tables 2 and 3).

The most striking thing to note is that the numbers are still terribly poor, even for m = 250.
It certainly came as a surprise to the authors that none of the classical results on compressed
sensing applies in the 250 × 500 setting, unless k = 1 and in this case the constant Ck is approx-
imately 14 (based on our five trials average). Here a strength of the results of this paper becomes
apparent, because even for an extremely poor value like δ−k = 0.95 we have that the constant
in the error estimate ‖x′ − x0‖2 � 1√

1−δ−k

‖ε‖2 equals 4.5, almost half the value you get for Ck

when δ2k = 0.2 in [11], as reported initially.
In fact, despite the difficulty in estimating the constants, it is not impossible to compare the

quality of estimates. If we set fC(x) = 4
√

1+x
1−(1+

√
2)x

and fCGO(x) = 1√
1−x

then the constant Ck in
(5), as defined in [11], is given by fC(δ2k) whereas the corresponding constant in corollaries 2.1
and 2.3 is given by fCGO(δ−k ). The functions fC and fCGO are displayed in figure 4. Clearly the
latter constant is vastly better by just comparing these graphs, and this conclusion is further
strengthened by noting that δ−k � δk � δ2k.

11
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Figure 4. fCGO in red and fC in blue.

A fourth thing to note from the tables is that the δk’s do decrease with m, as predicted
by the theory, and once we hit m = 250 all reported numbers are below 0.5, the requirement
for corollary 2.3 to kick in. However, note that once corollary 2.3 applies the error estimate
immediately gets a very favorable constant, since 1/

√
1 − 0.5 =

√
2 ≈ 1.4. On the other hand,

the �1-results by [11] still only applies for k = 1 and then the constant Ck equals 13.96.
How much better does it then get in the asymptotic regime? The best estimates of this

we have found is in [6], which gives advanced probabilistic estimates as well as extensive
numerical evaluations using sophisticated methods to estimate RIP/LRIP-values. In particular
figure 2.3 and 2.4 are enlightening, where it is shown that for m

n = 0.5, one needs to have k
well below 1% of m to have any hope of achieving δ2k = 0.4, which is what is required in
(12). More precisely, following [6] we need L(0.5, 2k

m ) and U(0.5, 2k
m )5 to be below 0.4, which

happens around k/m ≈ 1.5 × 10−3. It is also clear that RIP-values are consistently higher with
a notable difference. Based on this, it seems safe to conclude that for a large amount of settings
where �1-methods are used, there is very limited theoretical evidence for their applicability, at
best.

2.5. What’s in a theorem?

The so called ‘oracle solution’, i.e. the one you would get if an oracle told you the true support S
of x0 and you were to solve the (overdetermined) equations system ASx = b where AS denotes
the m × k matrix whose columns are those with indices in S (and then expand x to Rn by
inserting zeroes off S). This is clearly the best possible solution one could hope for (as argued
also in [14]).

5 L and U are the asymptotic RIP bounds. Informally speaking, and here we quote [6] verbatim, ‘for large matrices
from the Gaussian ensemble, it is overwhelmingly unlikely that the RIP asymmetric constants L(k, m, n) and U(k, m, n)
will be greater than L(δ,ρ) and U (δ,ρ)’. δ and ρ are such that n/N → δ and k/n → ρ as n →∞. L(k, m, n) is what we
called δ−k for an m × n matrix and U(k, m, n) is its natural upper-counterpart.

12
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Figure 5. ‖x′ − x0‖2 (left) and ‖x′ − xS‖2 (right) versus ‖ε‖2 for the 5 methods (3), (10),
(11) and (15), (16) minimized using with FBS. The methods based on Q2(card) and
Q2(ιPk ) work perfectly down to SNR ≈ 4.

Corollaries 2.1 and 2.3 claim that the oracle solution is a unique global minimizer of the
respective functional, not necessarily that a given algorithm will find this global minimizer. In
our experience, working either with FBS or ADMM, the algorithms do find the oracle solution
in very difficult scenarios when one initializes at zero6, but we do not have a proof for this. We
can prove that FBS converges to a stationary point and that the stationary points in corollary
2.3 are not local minima, except for the oracle solution, see section 6.

What is the value of these observations and how do they compare with the existing literature?
For example, [8] studies the minimization of (15) itself (which, if we apply FBS, leads to
IHT for k-sparsity, denoted IHTk), and it actually guarantees that IHTk converges to within
5‖ε‖ of the oracle solution. They do not prove that they have found the oracle solution, but
combined with corollary 2.3 it follows that this is indeed the case (for SNR’s such that the
corollary applies). On first sight this is a much stronger conclusion, since they actually prove
that their algorithm avoids unwanted stationary points. However, the method performs much
worse in practice, see figure 5. The difference lies in the fact that [8] assumes that δ3k <

1√
32

≈
0.18, whereas corollary 2.3 applies as long as δ−2k < 0.5, which is much more easy to fulfill in
practice.

The strength of a result not only in the conclusion, but in how much one needs to assume.
For example, there are many papers giving conditions under which minimization of (3) or non-
convex alternatives find the true support. If we have a method that would find a vector x′ with
the correct support S (with a bias or not), we can always get this unbiased solution by simply
discarding x′ and follow the above procedure to get the oracle solution. Therefore the issue of
finding the support is maybe more central than having a good estimate of ‖x′ − x0‖2. Conditions
under which LASSO finds the correct support are given e.g. in [47] and for a more general class
of non-convex penalties in [34]. In both cases however, the theorems involve constants whose
size is unknown, and their applicability cannot be verified in a concrete problem instance. To be
more concrete, the latter paper does have a result claiming that MCP finds the oracle solution
with given probability, but apart from involving conditions that are very difficult to verify, the
conclusion contains the statement that MCP has a unique stationary point. This is rarely true

6 Initializing Kreg at the least squares solution is not good. As evidenced by our numerical evaluation in section 6 there
seems to be many local minima nearby.
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Figure 6. Histogram of cardinality for 50 trials of (11) with ‖ε‖2 = 2.5.

(see e.g. [46] or figure 6 below) and hence it follows that these conditions are substantially
more strict than ours. Concrete theorems proving that LASSO finds the true support, such as
those found in [24] are rather weak, see [23] which studies this topic in depth.

We therefore believe that our framework is more generally applicable even for the already
well-studied MCP penalty, and that the relative simplicity and verifiability of the assumptions
makes the theory attractive, in particular combined with superior performance numerically,
at least in the standard synthetic setting (see section 6). Moreover, the penalty Q2(ιPk ) is not
separable, and the underlying ideas of this work are based on the quadratic envelope as a regu-
larizer and extends to a whole class of more advanced sparsifying penalties, of which Q2(ιPk ) is
merely one. We leave further extensions for future work, but remark that the whole machinery
developed here can also be lifted to low rank matrix problems, see [18].

3. Uniqueness of sparse stationary points

We now turn to the heart of the matter, namely uniqueness of sparse minimizers of Kreg as
defined in (9), where f can be any function with values inR ∪ {∞}. We say that x is a stationary
point of a given function g if

lim inf
y→x
y�=0

g(x + y) − g(x)
‖y‖ � 0. (18)

If g is a sum of a convex function gc and a differentiable function gd and we work in Rn, it is
not hard to see that x is a stationary point if and only if −∇gd(x) ∈ ∂gc(x) where ∂gc denotes
the usual subdifferential used in convex analysis, and ∇gd the standard gradient. The same is
true in the complex case, i.e. when working over Cn, upon suitable modification of the concept
of subdifferential and gradient. For convenience we provide the details in appendix A.1.

Set

G(x) =
1
2
Q2( f )(x) +

1
2
‖x‖2

2, (19)

14



Inverse Problems 36 (2020) 115014 M Carlsson et al

i.e. 2G the l.s.c. convex envelope of f (x) + ‖x‖2
2. We have

Kreg(x) = 2G(x) − ‖x‖2
2 + ‖Ax − b‖2

2 (20)

which upon differentiation yields that x′ is a stationary point of Kreg if and only if

(I − A∗A)x′ + A∗b ∈ ∂G(x′). (21)

since ∇
(
‖Ax − b‖2

2 − ‖x‖2
2

)
= 2A∗(Ax − b) − 2x, see the appendix for details. Given any x,

we therefore associate with it a new point z via

z = (I − A∗A)x + A∗b. (22)

This point will play a key role in this paper, in fact, it has already appeared in corollary 2.2.
Suppose now that x′ and x′′ are two sparse stationary points in the sense that x′′ − x′ ∈ PN for
some N less than m.

Proposition 3.1. Let x′ and x′′ be distinct stationary points of Kreg such that x′′ − x′ ∈ PN.
Then

Re 〈z′′ − z′, x′′ − x′〉 � δ−N ‖x′′ − x′‖2
2. (23)

The above proposition will mainly be used backwards, i.e. we will show that (23) does not
hold and thereby conclude that x′′ − x′ /∈ PN.

Proof. We have

z′′ − z′ = (I − A∗A)x′′ + A∗b − (I − A∗A)x′ − A∗b = (I − A∗A)(x′′ − x′),

so taking the scalar product with x′′ − x′ gives

Re 〈z′′ − z′, x′′ − x′〉 = ‖x′′ − x′‖2
2 − ‖A(x′′ − x′)‖2

2 � δ−N ‖x′′ − x′‖2
2,

as desired. Note that it is not necessary to take the real part, but we leave it since scalar products
in general can be complex numbers. �

As we shall see, the point z′ has a decisive influence on the coming sections. To begin with,
it has the following interesting property.

Proposition 3.2. A point x′ is a stationary point of Kreg if and only if it solves the convex
problem

x′ ∈ argmin
x

Q2( f )(x) + ‖x − z′‖2
2.

Note the absence of A in the above formula, which in particular implies that Q2( f )(x)
+ ‖x − z′‖2

2 is the convex envelope of f (x) + ‖x − z′‖2
2.

Proof. As noted in (21), x′ is a stationary point of Kreg if and only if z′ ∈ ∂G(x′). By the
same token, x′ is a stationary point of

Q2( f )(x) + ‖x − z′‖2
2 = 2G(x) − 2 Re 〈x, z′〉+ ‖z′‖2

2

if and only if z′ ∈ ∂G(x′), and since the functional is convex (and clearly has a well defined
minimum) the stationary points coincide with the set of minimizers. �
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4. The sparsity problem

We return to the sparsity problem, and consider f(x) = μ card(x) where μ is a parameter and
card(x) is the number of non-zero entries in the vector x. In this case we have,

Q2(μ card)(x) =
n∑

j=1

μ−
(
max{√μ− |x j|, 0}

)2
. (24)

To recapitulate, we want to minimize (10), i.e.

Kμ(x) = μ card(x) + ‖Ax − b‖2
2 (25)

which we replace by (11), i.e.

Kμ,reg(x) = Q2(μ card)(x) + ‖Ax − b‖2
2. (26)

4.1. Equality of minimizers for Kμ and Kμ,reg

As noted by Aubert, Blanc-Feraud and Soubies (see theorems 4.5 and 4.8 in [46]), Kμ,reg has
the same global minima and potentially fewer local minima than Kμ if

‖A‖∞,col = sup
i
‖ai‖2 � 1, (27)

where ai denotes the columns of A. Below we (essentially) reproduce their statement in the
terminology of this paper. A proof is included in the appendix for completeness.

Theorem 4.1. If ‖A‖∞,col < 1, then any local minimizer of Kμ,reg is a local minimizer of Kμ,
and the (nonempty) set of global minimizers coincide. If merely ‖A‖∞,col = 1, then any global
minimizer of Kμ,reg which is not a global minimizer of Kμ, belongs to a connected component
of global minimizers which includes at least two global minima of Kμ.

4.2. On the uniqueness of sparse stationary points

Next we take a closer look at the structure of the stationary points. Given N such that δ−N < 1, we
will show that under certain assumptions the difference between two stationary points always
has at least N elements. Hence if we find a stationary point with less than N/2 elements then
we can be sure that this is the sparsest one. The main theorem reads as follows:

Theorem 4.2. Let x′ be a stationary point of Kμ,reg, let z′ be given by (22), and assume that

|z′i| /∈
[

(1 − δ−N )
√
μ,

√
μ

1 − δ−N

]
(28)

for all i ∈ {1, . . . , n}. If x′′ is another stationary point of Kμ,reg then

card(x′′ − x′) > N.

Note that we allow δ−N < 0 in the above theorem, in which case the condition on z′ is auto-
matically satisfied. The proof depends on a sequence of lemmas, and is given at the end of
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Figure 7. The function g(x) (left) and its sub-differential ∂g(x) (right), for μ = 1. Note
that the sub-differential contains a unique element everywhere except at x = 0.

the section. Clearly, we will rely on proposition 3.1, which requires an investigation of the
functional G (19) and in particular its sub-differential. Introducing the function g as

g(x) =

⎧⎨
⎩

μ+ |x|2
2

|x| � √
μ

√
μ|x| 0 � |x| � √

μ
. (29)

we get

G(x) =
n∑

j=1

g(x j). (30)

Its sub-differential is given by

∂g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{x} |x| � √

μ

{√μ
x
|x| } 0 < |x| � √

μ

√
μ D x = 0

(31)

where D is the closed unit disc in C or, if working over R, D = [−1, 1]. In the remainder
we suppose for concreteness that we work over C (but show the real case in pictures). Note
that the sub-differential consists of a single point for each x �= 0. Figure 7 illustrates g and its
sub-differential.

The following two results establish a bound on the sub-gradients of G. We begin with some
one-dimensional estimates of g.

Lemma 4.3. Assume that z0 ∈ ∂g(x0) and δ−N > 0. If

|z0| >
√
μ

1 − δ−N
(32)

then for any x1, z1 with z1 ∈ ∂g(x1) and x1 �= x0, we have

Re(z1 − z0)(x1 − x0) > δ−N |x1 − x0|2. (33)
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Proof. By rotational symmetry (i.e. ∂g(eiφx) = eiφ∂g(x)), it is no restriction to assume that
z0 > 0. By 1

1−δ−N
> 1 and (32), we see that z0 >

√
μ, and hence the identity z0 ∈ ∂g(x0) and

(31) together imply that z0 = x0 and in particular that x0 ∈ R and

x0 >

√
μ

1 − δ−N
. (34)

To prove the result we now minimize the quotient

Re(z1 − z0)(x1 − x0)
|x1 − x0|2

(35)

and show that it is larger than δ−N . There are three cases to consider; x1 = 0, 0 < |x1| <
√
μ and

|x1| �
√
μ. The latter case is easy since then z1 − z0 = x1 − x0 and since δ−N < 1, the desired

conclusion is immediate.
For the two other cases we first show that z1 and x1 can be assumed to be real. If x1 = 0

the above quotient is equivalent to 1 − Re(z1/x0) over z1 ∈ √
μD, since x0 = z0 is real and

positive, which is clearly minimized for the real value z1 =
√
μ.

For the middle case, z1 and x1 have the same angle with R. We first hold the radii fixed and
only consider the angle as an argument. Recall z0 = x0 and set R = |z1|/|x1|. Then we have

Re(z1 − z0)(x1 − x0) = R|x1|2 − (R + 1)Re x1x0 + |x0|2

=
1
2

(
(R − 1)|x1|2 + (R + 1)|x1 − x0|2 + (1 − R)|x0|2

)
.

So the quotient (35) only depends on |x1 − x0|2 (for fixed radii), which shows that the quotient
is minimized when x1 is real (which then automatically applies to z1 as well).

Summarizing the above we may thus assume that x1 and z1 are real and x1 ∈ [−√
μ,

√
μ],

which simplifies the quotient (35) to x0−z1
x0−x1

. We now hold x1, z1 fixed and consider x0 as the
variable. Recall that |z1| � |x1|. If these are negative we immediately get that the quotient is
� 1 > δ−N and the proof is done. In the positive case, the quotient is minimized when x0 is
as small as possible (since z1 � x1). By (34) we hence conclude that the minimum of (35) is

strictly greater than

√
μ

1−δ−N
−z1

√
μ

1−δ−N
−x1

. The minimum of this is in its turn clearly attained at x1 = 0 and

z1 =
√
μ. Summing up, we have that

Re(z1 − z0)(x1 − x0)
|x1 − x0|2

>

√
μ

1−δ−N
− z1

√
μ

1−δ−N
− x1

�

√
μ

1−δ−N
−√

μ
√
μ

1−δ−N

= δ−N .

�

Lemma 4.4. Assume that z0 ∈ ∂g(x0) and δ−N > 0. If

|z0| < (1 − δ−N )
√
μ (36)

then for any x1, z1 with z1 ∈ ∂g(x1), x1 �= x0, we have

Re(z1 − z0)(x1 − x0) > δ−N |x1 − x0|2. (37)
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Proof. The proof is similar to the previous lemma. We first note that x0 = 0, x1 �= 0 and that
z0 may be assumed to be in (0, (1 − δ−N )

√
μ) by rotational symmetry. For a fixed radius R = |z1|

|x1 |
the quotient

Re(z1 − z0)(x1 − x0)
|x1 − x0|2

=
Re(z1 − z0)x1

|x1|2
= R − z0

Re x1

|x1|2

is smallest when x1 is real valued and positive (which then also applies to z1 which by (31)
equals max(x1,

√
μ)). The expression in question then becomes R − z0

x1
, which is minimized

by maximizing z0. For any choice of x1, (36) implies that our expression is strictly bigger than

z1 − (1 − δ−N )
√
μ

x1
=

max(x1,
√
μ) − (1 − δ−N )

√
μ

x1
.

Basic calculus shows that the minimum of this quantity is attained at x1 =
√
μ and equals δ−N ,

as desired. �
We are now ready to prove theorem 4.2.

Proof of theorem 4.2. By proposition 3.1 it suffices to verify

Re〈z′′ − z′, x′′ − x′〉 > δ−N ‖x′′ − x′‖2
2, x′′ �= x′. (38)

The claim will follow by contradiction. Suppose first that δ−N > 0. Since ∂G(x) =
∑n

j=1 ∂g(x j),
lemmas 4.3 and 4.4 imply that

Re(z′′i − z′i)(x
′′
i − x′i) > δ−N |x′′i − x′i|2,

for all i with x′′i − x′i �= 0. Since x′′i − x′i = 0 gives (z′′i − z′i)(x
′′
i − x′i) = 0 summing over i gives

the result.
Suppose now that δ−N < 0. By (38) it suffices to prove that Re〈z′′ −z′, x′′ −x′〉 � 0 for all

x′′ �= x′. Fix i in {1, . . . , n}. By rotational symmetry it is easy to see that we can assume that
x′i, z′i � 0. Moreover, for fixed values of |z′′i | and |x′′i | (but variable complex phase) it is easy
to see that Re(z′′i − z′i)(x

′′
i − x′i) achieves min when these are also real, i.e. we can assume that

x′′i , z′′i ∈ R. Since the graph of ∂g is non-decreasing it follows that (z′′i − z′i)(x
′′
i − x′i) � 0 for

all i, as desired.
It remains to consider the case when δ−N = 0, and as above we reach a contradiction if we

prove that Re〈z′′ − z′, x′′ − x′〉 > 0. Again we can assume that x′i, z′i � 0 and that x′′i , z′′i ∈ R.
Then (28) implies that z′i �=

√
μ for all 1 � i � n, which via z′i ∈ ∂g(x′i) also implies that x′i /∈

(0,
√
μ]. If x′′ �= x′ we must have x′′i �= x′i for some i. Using that z′′i ∈ ∂g(x′′i ), examination of

(31) yields that also z′′i �= z′i. With this at hand we see that the left-hand side of (38) is strictly
positive, whereas the right equals 0, which again is a contradiction. �

4.3. Conditions on global minimality

Theorem 4.5. Let A satisfy ‖A‖∞,col � 1, let x′ be a stationary point of Kμ,reg and let z′ be
given by (22). Assume that

|z′i| /∈
[

(1 − δ−N )
√
μ,

1
1 − δ−N

√
μ

]
, 1 � i � n. (39)

If

2 μ card(x′) + ‖Ax′ − b‖2
2 < μN + μ, (40)
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then x′ is the unique global minimum of Kμ and Kμ,reg.

Obviously, it is desirable to pick N as large as possible, which is limited by (39) and the fact
that δ−N increases with N. Also note that δ−N � 0 since 1 − δ−1 � mini{‖ai‖2

2} = ‖A‖2
∞,col � 1

so δ−1 � 0.

Proof. Set k = card(x′) and assume that x′ is not the unique global minimizer of Kμ,reg. Let
x′′ be another. Either Kμ,reg(x) = Kμ(x) for x = x′′ or x′′ is part of a connected component of
global minimizers toKμ,reg including two points that satisfy the equation, by theorem 4.1. Since
one of these must be different from x′, we may assume that Kμ,reg(x′′) = Kμ(x′′). Theorem 4.2
then shows that card(x′′) � N − k + 1. Since Kμ(x′′) = Kμ,reg(x′′) and Kμ(x′) � Kμ,reg(x′) it
follows from (40) that

Kμ,reg(x′′) −Kμ,reg(x′) � Kμ(x′′) −Kμ(x′)

� μ(N − k + 1) − (μk + ‖Ax′ − b‖2
2) > 0.

This is a contradiction, and hence x′ must be the unique global minimizer of Kμ,reg. By theorem
4.1 it then follows that x′ is also unique minimizer of Kμ. �

4.4. Finding the oracle solution

In this final subsection we return to the compressed sensing problem of retrieving a sparse
vector x0 given corrupted measurements b = Ax0 + ε, where ε is noise and x0 is sparse. More
precisely we set S = supp x0 where we assume that #S = k is much smaller than m—the
amount of rows in A (i.e. number of measurements). Here #S denotes the amount of elements
in S and the noise can be of any type, our theory only relies on knowledge of ‖ε‖.

We let x0, j denote the elements of the vector x0. Let AS denote the matrix obtained from A
by setting columns outside of S to 0, and let xor denote the least squares solution to ASxor = b.
Note that this is the so called ‘oracle solution’ discussed in the introduction, which can also be
written xor = (A∗

SAS)†A∗
Sb where (A∗

SAS)† denotes the Moore–Penrose inverse.
Our first result collects some general observations about the oracle solution.

Proposition 4.6. Let A satisfy ‖A‖∞,col � 1 and let c > 0. If

|x0, j| > c +
‖ε‖2√
1 − δ−k

for all j ∈ S then the oracle solution x′ = xor satisfies supp (x′) = supp (x0). We also have
|x′j| > c, j ∈ S, ‖Ax′ − b‖2 � ‖ε‖2, and

‖x′ − x0‖2 � ‖ε‖2√
1 − δ−k

.

Proof. Consider the equation ASx = Ax0 + ε and note that Ax0 = ASx0. The least squares
solution is obtained by applying (A∗

SAS)†A∗
S which gives the solution

x′ = x0 + (A∗
SAS)†A∗

Sε = x0 + η,

where we set (A∗
SAS)†A∗

Sε = η. By construction of the Moore–Penrose inverse, supp η ⊂ S, and
hence

Aη = ASη = PRanASε,
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where PRanAS denotes the orthogonal projection onto the range of AS. In particular,

‖η‖2 �
‖ASη‖2√

1 − δ−k

=
‖PRanASε‖2√

1 − δ−k

� ‖ε‖2√
1 − δ−k

,

which establishes the final inequality in the proposition. Also ‖η‖∞ � ‖η‖2 which implies

|x′j| � |x0, j| − |η j| > c +
‖ε‖2√
1 − δ−k

− ‖ε‖2√
1 − δ−k

= c, j ∈ S. (41)

This also gives supp x′ = supp x0 since by construction we clearly have

supp x′ ⊂ supp x0 ∪ supp η ⊂ S.

Finally, consider Ax′ − b, which equals

Ax′ − b = ASx′ − b = ASx0 + AS(A∗
SAS)†A∗

Sε − (ASx0 + ε)

= (PRanAS − I)ε = −P(RanAS)⊥ε (42)

and hence ‖Ax′ − b‖2 � ‖ε‖2. �
The below proposition shows that the oracle solution is under mild assumptions a local

minimizer of Kμ,reg, which we denote by x′ for notational consistency.

Proposition 4.7. Let A satisfy ‖A‖∞,col � 1. If ‖ε‖2 <
√
μ and

|x0, j| >
√
μ+

‖ε‖2√
1 − δ−k

for all j ∈ S then the oracle solution x′ = xor is a strict local minimum to Kμ,reg with
supp (x′) = supp (x0). We also have |x′j| >

√
μ, j ∈ S, ‖Ax′ − b‖2 � ‖ε‖2, and

‖x′ − x0‖2 � ‖ε‖2√
1 − δ−k

.

Proof. All inequalities follow by applying proposition 4.6 with c =
√
μ, so it remains to

prove that x′ is a local minimum of Kμ,reg = Q2(μ card) + ‖Ax − b‖2
2. To this end, consider

Kμ,reg(x′ + v). Since |x′j| >
√
μ for j ∈ S, the term Q2(μ card) (see (24)) is constant for the

corresponding indices of v, as long as v is small. For v in a neighborhood of 0 we get

Kμ(x′ + v) =
∑
j∈Sc

(
2
√
μ|v j| − |v j|2

)
+ 2 Re 〈v, A∗(Ax′ − b)〉

+ ‖Av‖2
2 +Kμ,reg(x′).

Since x′ solves the least squares problem posed initially, the vector A∗
S(Ax′ − b) = A∗

S(ASx′ − b)
must be 0. With this in mind the above expression simplifies to

2

⎛
⎝∑

j∈Sc

√
μ|v j|+ Re

(
v j 〈a j, Ax′ − b〉

)⎞⎠−
∑
j∈Sc

|v j|2 + ‖Av‖2
2 +Kμ,reg(x′). (43)
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By the Cauchy–Schwartz inequality and (42) we have

| 〈a j, Ax′ − b〉 | � ‖a j‖2‖ε‖2 < ‖A‖∞,col
√
μ � √

μ.

It follows that the term
∑

j∈Sc
√
μ|v j|+ Re

(
v j 〈a j, Ax′ − b〉

)
in (43) can be estimated from

below by ∑
j∈Sc

|v j|(
√
μ− |〈a j, Ax′ − b〉|︸ ︷︷ ︸

:=α j

) � α
∑
j∈Sc

|v j|

where α = min j{α j} > 0 for all j. Hence

2

⎛
⎝∑

j∈Sc

√
μ|v j|+ Re

(
v j 〈a j, Ax′ − b〉

)⎞⎠−
∑
j∈Sc

|v j|2 > 0 (44)

for v in a neighborhood of 0, as long as
∑

j∈Sc |v j|2 �= 0. To have Kμ,reg(x′ + v) � Kμ,reg(x′),
(43) shows that we need the terms in (44) to be zero, or equivalently supp v ⊂ S. But then (43)
reduces to ‖Av‖2

2 +Kμ,reg(x′), and since δ−k < 1 it follows that ‖Av‖2
2 > 0 unless v = 0. In

other words, x′ is a strict local minimizer. �
In the above proposition, there is nothing said as to whether x′ is a global minimum or not.

To get further, let z′ correspond to x′ via (22). We need conditions such that (39) holds for z′,
i.e.

|z′i| /∈
[

(1 − δ−N )
√
μ,

√
μ

1 − δ−N

]
. (45)

We remind the reader that N is a number which preferably is a bit larger than 2k, where k is
the cardinality of x0.

Proposition 4.8. Let A satisfy ‖A‖∞,col � 1. If ‖ε‖2 < (1 − δ−N )
√
μ and

|x0, j| >
√
μ

1 − δ−N
+

(1 − δ−N )
√
μ√

1 − δ−k

, j ∈ S, (46)

then (45) holds.

Proof. Using (42) we get

z′ = (I − A∗A)x′ + A∗b = x′ − A∗(Ax′ − b) = x′ + A∗P(RanAS)⊥ε. (47)

Since A∗P(RanAS)⊥ is 0 on rows with index j ∈ S (being a scalar product of a vector in RanAS

and another in its orthogonal complement), we see that z′j = x′j for such j. Combining this with
the final estimate of proposition 4.6, we see that

|z′j| � |x0, j| − |x0, j − x′j| >
1

1 − δ−N

√
μ, j ∈ S

holds as a consequence of (46). For the remaining z′j, (i.e. j ∈ Sc), we have x′j = 0 so (47)
implies
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|z′j| = |(A∗P(RanAS)⊥ε) j| =
∣∣∣〈P(RanAS)⊥ε, a j

〉∣∣∣
� ‖A‖∞,col‖ε‖2 � ‖ε‖2 < (1 − δ−N )

√
μ, (48)

which establishes (45). �
Putting all the results together and combining with simple estimates, we finally get

Theorem 4.9. Suppose that b = Ax0 + ε where A is an m × n-matrix with ‖A‖∞,col � 1
and set card(x0) = k. Let N � 2k and assume that ‖ε‖2 < (1 − δ−N )

√
μ and

|x0, j| >
(

1
1 − δ−N

+ 1

)
√
μ, j ∈ supp x0.

Then the oracle solution x′ = xor is a unique global minimum to Kμ,reg as well as Kμ, with the
property that supp x′ = supp x0, that

‖x′ − x0‖2 � ‖ε‖2√
1 − δ−k

,

and that card(x′′) > N − k for any other stationary point x′′ of Kμ,reg.

Proof. All the statements follow by theorems 4.2, 4.5 and proposition 4.7, so we just need

to check that these apply. Note that
√

1 − δ−N �
√

1 − δ−k � ‖A‖∞,col � 1 which will be used
repeatedly.

We begin to verify that proposition 4.7 applies, which is easy by noting that ‖ε‖2 � (1
− δ−N )

√
μ <

√
μ and

√
μ+

‖ε‖2√
1 − δ−k

�
√
μ

1 − δ−N
+

(1 − δ−N )
√
μ√

1 − δ−k

�
√
μ

1 − δ−N
+
√
μ < |x0, j|.

Now, to verify that theorem 4.2 applies we need to check the condition (45), which follows
if we show that proposition 4.8 applies. This is almost immediate since the estimate on ‖ε‖2 is

satisfied by assumption and (46) follows by noting that
1−δ−N√

1−δ−k
� 1. By this we also get the first

condition of theorem 4.5 for free. We are done once we also verify (40). To this end, note that
‖Ax′ − b‖2 � ‖ε‖2 < (1 − δ−N )

√
μ by proposition 4.7, so (40) holds if 2μk + (1 − δ−N )2μ �

μN + μ, which is clearly the case since N � 2k. �
As a final remark, a simpler statement is found by setting N = 2k, which gives the loosest

conditions to verify. We spelled this out in corollary 2.1, where we also simplified further by
replacing 1

1−δ−N
+ 1 by 2

1−δ−N
, for aesthetic reasons.

5. Known model order; the k-sparsity problem

Let Pk = {x : card(x) � k} where x is a vector in Cn or Rn. Set f (x) = ιPk (x) and note that the
problem

argmin
card(x)�k

‖Ax − b‖2 (49)

is equivalent to finding the minimum of
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Kk(x) = ιPk (x) + ‖Ax − b‖2
2, (50)

(where we put a subindex k to distinguish from Kμ in the previous section)7. Again, we will
approach this problem by using

Kk,reg(x) = Q2(ιPk )(x) + ‖Ax − b‖2
2.

This is in some ways much simpler than the situation in the previous sections, for example
all local minimizers of Kk are clearly in Pk. On the other hand, Q2(ιPk ) turns out to be rather
complicated. We recapitulate the essentials, which follows by adapting the computations in [3]
(for matrices) to the vector setting. Define x̃ to be the vector x resorted so that (|x̃ j|)d

j=1 is a
decreasing sequence. Then

Q2(ιPk )(x) =
1
k∗

⎛
⎝ ∑

j>k−k∗

|x̃ j|

⎞
⎠2

−
∑

j>k−k∗

|x̃ j|2 (51)

where k∗ is the largest value of l ∈ {1, . . . , k} for which the non-increasing sequence

s(l) =

⎛
⎝∑

j>k−l

|x̃ j|

⎞
⎠− l|x̃k+1−l| (52)

is non-negative (note that it clearly is non-negative for l = 1). For any given vector x this is
clearly computable, although one has to go through a number of cases, but the good thing is
that there is an efficient way to implement the corresponding proximal operator (discussed in
section 6.2) so in practice this is of little importance. Although it is not very clear from the
above expression, Q2(ιPk ) is known to be continuous (see e.g. proposition 3.2 in [17]), and this
will be used without comment below. We first show that the global minima of Kk,reg and Kk

coincide.

5.1. Equality of minimizers for Kk and Kk,reg

As before A is a matrix of size m × n, which we need to impose some additional conditions
on. The theory in the entire section 5 assumes that

(a) n � m + k + 2 (when working over the reals) whereas n � 2m + k + 2 when working in
Cn.

(b) Either ‖A‖∞,col < 1 or ‖A‖∞,col � 1 and all possible scalar products 〈ai, a j〉 are non-zero.

The equivalent of theorem 4.1 now reads.

Theorem 5.1. Under assumption (a) and (b) all local minimzers of Kk,reg lie in Pk (and
hence are minimizers to Kk). In particular the global minimizers exist and coincide.

We note that the conclusion is the same as that of theorem 5.1 in [17], which holds for almost
any penalty f. However, that proof assumes that ‖A‖ < 1 which is unnecessarily strong in the
present setting. For example it would rule out all Gaussian random matrices with normalized
columns. The proof of theorem 5.1 is given in appendix A.3.

7 Admittedly, the notation is not perfect since if k and μ equal the same integer, then the two symbols become the
same, but we hope the reader can live with this.
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5.2. On the uniqueness of sparse stationary points

We now give a condition, similar to (28) in section 4.2, to ensure that a sparse stationary point
is unique, in the sense that other stationary points must have higher cardinality.

Theorem 5.2. Let x′ be a stationary point of Kk,reg with cardinality k, let z′ be given by (22),
and assume that

|̃z′k+1| < (1 − 2δ−2k)|̃z′k|. (53)

If x′′ is another stationary point of Kk,reg then card(x′′) > k.

Again, we allow δ−2k < 0 in the above theorem, in which case the condition on z is automat-
ically satisfied. We begin with a lemma. Recall G given by (19), i.e. 1

2Q2(ιPk )(x) + 1
2‖x‖2

2 in
the present case. We need an expression for ∂G(x) for x ∈ Pk.

Lemma 5.3. If x ∈ Pk then z ∈ ∂G(x) if and only if zj = xj for j ∈ supp x and z j ∈ |x̃k|D
for all other j.

Proof. Since Q2(ιPk ) + ‖x‖2
2 is the l.s.c. convex envelope of ιPk + ‖x‖2

2, we have that
G(x) = 1

2Q2(ιPk ) + 1
2‖x‖2

2 is the double Fenchel conjugate of 1
2 ιPk +

1
2‖x‖2

2. The Fenchel
conjugate of the latter is easily computed to

G∗(y) =
1
2

k∑
j=1

|ỹ j|2.

By the well-known identity z ∈ ∂G(x) ⇔ x ∈ ∂G∗(z) (see e.g. proposition 16.9 in [5]) we have
z ∈ ∂G(x) if and only if

G∗(w) � G∗(z) + 〈x,w − z〉 ,

for all w which means that

z = argmax
z

Re 〈x, z〉 − 1
2

k∑
j=1

|̃z j|2. (54)

By standard results on reordering of sequences (see e.g. chapter 1 in [45]), the maximum is
attained for a z which is ordered in the same way as x. In other words we can choose a permu-
tation π such that |x(π( j))| = |x̃ j| and |z(π( j))| = |̃z j| holds for all j. This in turn implies that
〈x, z〉 =

∑n
j=1 x(π( j))z(π( j)). Combined with x(π( j)) = 0 for j > k, we see that (54) turns into

z =
1
2

argmax
z

−
k∑

j=1

|x j(π( j)) − z j(π( j))|2. (55)

The lemma now easily follows. �

Proof of theorem 5.2. If card(x′′) � k we clearly have x′′ − x′ ∈ P2k and both z′ and
z′′ have the structure stipulated in lemma 5.3. Let I′ = supp x′ and I′′ = supp x′′. Then
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Re 〈z′′ − z′, x′′ − x′〉 can be written

Re

⎛
⎜⎜⎜⎜⎜⎝
∑

i ∈ I′

i ∈ I′′

|x′′i − x′i|2 +
∑

i ∈ I′

i /∈ I′′

(x′i − z′′i )x′i +
∑

i /∈ I′

i ∈ I′′

(x′′i − z′i)x
′′
i

⎞
⎟⎟⎟⎟⎟⎠ . (56)

As before we want to reach a contradiction to proposition 3.1, i.e. we want to prove
Re 〈z′′ − z′, x′′ − x′〉 > δ−2k‖x′′ − x′‖2

2. Note that

‖x′′ − x′‖2
2 =

∑
i ∈ I′

i ∈ I′′

|x′′i − x′i|2 +
∑

i ∈ I′

i /∈ I′′

|x′i|2 +
∑

i /∈ I′

i ∈ I′′

|x′′i |2, (57)

that the first term in (56) and (57) are the same, and that δ−2k < 1. Since the second and third
sums have the same number of terms it suffices to show that

Re(x′i − z′′i )x′i + (x′′j − z′j)x
′′
j > δ−2k(|x′i|2 + |x′′j |2), (58)

for any pair i ∈ I′, i /∈ I′′ and j /∈ I′, j ∈ I′′. This in turn will follow upon showing that

z′′i x′i + z′jx
′′
j � |z′′i ||x′i|+ |z′j||x′′j | < (1 − δ−2k)(|x′i|2 + |x′′j |2).

Since i /∈ I′′ and j ∈ I′′ we have |z′′i | � |z′′j | by lemma 5.3, as well as that z′′j = x′′j . Turning to z′j
we can say more due to assumption (53). More precisely, since i ∈ I′ and j /∈ I′ we have |z′j| <
(1 − 2δ−2k)|z′i| = (1 − 2δ−2k)|x′i|, where again lemma 5.3 was used in the last identity. Summing
up we have

|z′′i ||x′i|+ |z′j||x′′j | < |x′′j‖x′i|+ (1 − 2δ−2k)|x′i||x′′j | = 2(1 − δ−2k)|x′i||x′′j |

� (1 − δ−2k)(|x′i|2 + |x′′j |2),

as desired. �

5.3. Conditions on global minimality

The statements in this section are actually quite a bit stronger than the corresponding ones in
section 4.3. On the other hand, the condition (53) entails that we must have δ−2k < 1/2, which
limits the applicability.

Theorem 5.4. Let A satisfy (a) and (b) and let x′ ∈ Pk be a stationary point of Kk,reg. Let z′

be given by (22) and assume that (53) applies. Then x′ is a unique global minimizer of Kk and
Kk,reg, and Kk,reg has no other local minimizers either.

Proof. By theorem 5.1 there exists x′′ ∈ Pk which is a global minimizer for both Kk and
Kk,reg. Clearly x′′ is then a stationary point, so if x′ �= x′′ this would contradict theorem 5.2, so
we must have x′ = x′′. The same argument works for the local minimizers. �
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5.4. Finding the oracle solution

We now assume that b is of the form Ax0 + ε where ε is noise and x0 is sparse. More precisely
we set S = supp x0 where we assume that #S = k. As before let AS denote the matrix obtained
from A by setting columns outside of S to 0.

In this case, theorem 5.1 is strong enough so that we do not need any longer argument to
establish that xor is a global minimizer, since all local minimizers of Kk,reg are to be found in
Pk. We obtain the following result.

Theorem 5.5. Let A satisfy (a) and (b). If ε �= 0 and

min
j∈S

|x0, j| >

⎛
⎝ ‖ε‖2√

1 − δ−k

+
2‖ε‖2√
1 − δ−2k

⎞
⎠ ,

then the estimates of proposition 4.6 applies and the oracle solution is a global minimum of
Kk and Kk,reg.

Proof. Proposition 4.6 immediately applies with c = 2‖ε‖2√
1−δ−k

. Let J ⊂ {1, . . . , n} have

cardinality k and consider the problem

xJ = argmin
x

‖AJx − b‖2.

Searching over J gives rise to (at most)
( n

k

)
points (since δ−k < 1), among which the minimizers

of Kk are found (see lemma 8.1 for more details). By theorem 5.1 a subset of these are the local
minimizers of Kk,reg, and the global minimizer must be the one that gives the lowest value for
‖AJ x − b‖2. With this notation we have xor = xS and the estimates of proposition 4.6 gives
‖AxS − b‖2 � ‖ε‖2 and

|xS, j| >
2‖ε‖2√
1 − δ−k

, j ∈ S.

If J �= S is another set with cardinality k then xJ and xS must differ in at least one coordinate,
so

‖xS − xJ‖2 >
2‖ε‖2√
1 − δ−2k

, j ∈ S.

But then

‖AxJ − b‖2 = ‖A(xJ − xS) + AxS − b‖2

�
√

1 − δ−2k‖xS − xJ‖2 − ‖ε‖2 > ‖ε‖2.

Thus xS is the one with the lowest value for ‖AxJ − b‖2, which was to be shown. �
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When minimizing Kk,reg in practice, it would of course be good to know if there are local
minima where one can get stuck. To rule out this possibility, we need unfortunately to assume
that δ−2k < 1/2.

Corollary 5.6. If in addition to what is assumed in theorem 5.5 we have

min
j∈S

|x0, j| >

⎛
⎝ 1

1 − 2δ−2k

+
1√

1 − δ−k

⎞
⎠ ‖ε‖2,

then the there are no local minimizers of Kk,reg except the oracle solution.

Proof. Theorem 5.5 clearly ensures that x′ = xor is a stationary point. The desired result
follows from theorem 5.4 once we verify that (53) applies for z′ given by (22). We need
to check that |̃z′k+1| < (1 − 2δ−2k)|̃z′k|. Note that |̃z′k+1| � ‖ε‖2 by the same estimate as (48).
Moreover, since z′ ∈ ∂G(x′), lemma 5.3 implies that |̃z′k| = |x̃′k| so it suffices to show that

‖ε‖2 < (1 − 2δ−2k)|x̃′k|. This in turn holds by applying proposition 4.6 with c = ‖ε‖2

1−2δ−2k

, and the

proof is complete. �

6. Experimental evaluation

In this section we present an experiment designed to validate our main theoretical results.
Our goal is to verify that both the proposed methods are able to recover the oracle solution
when the signal to noise level is sufficiently large. For both our formulation we need to specify
a parameter; μ in case of Kμ,reg and k for Kk,reg. Since we are working with synthetic data
generated by b = Ax0 + ε, with a known vector x0 we can set μ so that the non-zero elements
are large enough to be preserved, and k so that k = supp (x0) (see section 6.1 for a more detailed
description).

In realistic settings where x0 is unknown selecting parameters is more difficult and requires
a precise definition of what constitutes a good solution. This could be based on application
specific prior information about the support or size of the elements. If the size of the correct
support is assumed to be known, then Kk,reg is the convenient choice. On the other hand formu-
lations able to directly specify the sought cardinality are uncommon. Therefore soft penalties
such as λ‖ · ‖1 or Q2(μ card) are often utilized by searching over the parameter until a suitable
cardinality solution is found. The �1-norm has been used in this way for a number of practi-
cal applications e.g. face recognition [51], subspace clustering [25], non rigid structure from
motion [31] and outlier detection [40], diffraction imaging [44], MRI tomography [43] to name
a few.

In [23, 19] solutions of a given cardinality was recovered using Q2(μ card) by searching
over μ. Note however that while it is one-dimensional, the search criterion is not guaranteed
to be unimodal and it is not clear over what range nor at what density one needs to sample in
order not to miss the sought solution.

6.1. Numerical recovery results

In [37] astonishing results are shown in the noise free case. For example in figure 2 (of
that paper) we see how k = 130 non-zero entries are recovered using a matrix A of size
m × n = 256 × 512, (which incidentally is close to the theoretical bound 2k � m in the present
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paper8). However, in the presence of noise, performance seems to drop drastically. In figure 7
(of the same paper) we see an example where performance is evaluated with k = 8, m = 72 and
n = 256.

Here we will present numerical results for the case of k = 10, m = 100 and n = 200. We use
a matrix A with Gaussian randomly generated columns, which are subsequently normalized,
and solve problems (3), (11) and (16) for b = Ax0 + ε for different levels of noise ‖ε‖2 between
0 and 5. The vector x0 has random entries between 2 and 4 in magnitude, and a total magnitude
‖x0‖2 = 11. To solve the optimization problems we use FBS which is known to converge to a
stationary point (by [4] in combination with section 2.4 of [16] or section 6 of [17]).

We compare with �1-minimization (3) as well as two forms of IHT, which arise when apply-
ing FBS to the unregularized problems (10) and (15). In the first case the proximal operator
will simply threshold at

√
μ and in the latter threshold by keeping only the k largest entries.

Convergence of such algorithms are proven e.g. in section 5 of [4], and convergence of the
latter has also been shown in [8] when δ3k < 0.18. For this reason, we also included graphs
for the result of minimizing (10) and (15) (labeled μ card and ι10 in the plots). Each point on
the respective curves is an average over 50 trials, where we have used 1000 iterations and with
a step-size parameter of 0.9/‖A‖2, which is close to the upper theoretical bound given in [4]
(which coincides with the bound for the convex case, see e.g. [22]).

To set the parameter λ for the �1-problem (3) we used the formula

λ =
‖ε‖2√

n

√
2 log(n)

corresponding to the recommendations in section 5.2 of [21]. For (10), (11) we used μ = 1 and
k was set to 10 for (15), (16), which we motivate as follows:

If the value of δ−2k is near 0, then the conditions in corollary 2.1 hold given that
2
√
μ � min {|x0, j| : |x0, j| �= 0} where the latter in our case is 2.05 and ‖ε‖2 �

√
μ, whereas

the conditions in corollary 2.3 hold as long as 3‖ε‖2 � 2.05. In both cases, the estimate for
‖x′ − x0‖2 reads ‖x′ − x0‖2 � ‖ε‖2 which is supposed to hold at least for ‖ε‖2 � 2/3. Despite
the fact that δ−2k ≈ 0 is quite unlikely (as we saw in section 2.4), the graph in figure 5 (left)
indicates that the reality looks even better. Both algorithms find the oracle solution in 100%
of the trial for ‖ε‖2 up to 2.5, and the true bound (for this particular example) seems to be
‖x′ − x0‖2 � 1

3‖ε‖2 for both (11) and (16), whereas the true constant for �1 is around 1 (despite
C10 = ∞ as seen in section 2.4, as δ20 with high likelihood is greater than 0.4 [6]).

The first version of IHT, i.e. minimization of the unregularized functional (10), is similar to
�1 in performance, whereas (15) is slightly better. Comparing with (11) and (16) the benefits
of using the quadratic envelope are undeniable. Note that all 3 methods work for noise-levels
much greater than stipulated by the theory. We also remark that, rather surprisingly, there is
no major difference between (11) and (16) for moderate noise levels. However, both these
methods are designed to find the oracle solution xor, not x0, so to evaluate this performance we
include in figure 5 (right) also the graph of ‖x′ − xor‖2 versus ‖ε‖2. From this we deduce that
both work perfectly until ‖ε‖2 = 2.5, but that (11) deteriorates substantially faster beyond this
point. In other words, in this example both methods based on Q2(μ card) and Q2(ιP10 ) work
as expected down to SNR around 4. In [23] a much more thorough comparison between (3),
the two methods considered here, and other popular techniques such as reweighted �1 [37] and
Huber-fitting [48] is carried out. This paper also optimizes over hyperparameters, as opposed

8 Note indeed that the condition δ−2k < 1 is equivalent to any 2k columns of A being linearly independent, which holds
with probability 1 for Gaussian random matrices as long as 2k � m.
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to fixing them a priori as in this section. We refrain from similar experiments here since this is
a theoretical paper and the above experiment was designed to illustrate and validate the theory,
not to compare optimal performance of algorithms.

Another issue that we have not discussed is the starting point. We have used 0 for all exam-
ples above, and (a bit surprisingly) this seems to work better than using the least squares solu-
tion xLS of Ax = b, which seems to have many local minima near it when we use Q2(μ card).
This is clearly seen in our final graph where we plot a histogram of the cardinality of x′ over
50 trials with the noise level ‖ε‖2 = 2.5, using Q2(card) and xLS as starting point. Concerning
Q2(card) it is interesting to note the following dichotomy, either the cardinality is around 10,
or substantially larger, as predicted by theorem 4.2. For this noise level and starting point xLS,
Q2(ι10) still works perfectly, which is why its performance is excluded; the histogram hits 50
at k = 10, in accordance with corollary 5.6. Combined with figure 5, this underlines that when
k is known, Q2(ι10) is the best penalty.

6.2. Implementation technicalities

Basically anywhere there is a method involving a sparsity inducing ‖x‖1-term, it can be easily
replaced with Qγ(μ card) or Qγ(ιPk ) if the model order is known. We encourage the reader to
try these on his or her particular problem, and to facilitate this we here discuss briefly some
implementational aspects and parameter choices. Code for evaluation of the corresponding
proximal operators is available at the following GitHub repository:

https://github.com/Marcus-Carlsson/Quadratic-Envelopes.

First of all we note that it is often customary to put a factor 1/2 in front of the quadratic
term in (9) and moreover the quadratic envelope depends on a parameter γ which we have
throughout kept fixed at 2. A more general version of (9) would be

Qγ( f )(x) +
1
2
‖Ax − b‖2

2, γ > 0. (59)

To pass between various normalizations, we note that given any α > 0 one has

αQγ( f ) = Qαγ(α f ),

so in particular (11) is equivalent with Q1( μ2 card) + 1
2‖Ax − b‖2

2 and (16) with Q1(ιPk )
+ 1

2‖Ax − b‖2
2, and the entire paper could as well have been written in this setting.

In order for the global minima of f (x) + 1
2‖Ax − b‖2

2 to not move when switching to (59),
the general theory of [17] states that γ should be less than ‖A‖2. In practice, this is too con-
servative. Reformulated in the general context (59), the condition ‖A‖∞,col � 1 turns into

‖A‖∞,col �
√
γ,

so by this we should set γ =
√
‖A‖2

∞,col in general. This is a much more realistic estimate in

practice, but still it is given by a theoretical upper bound. We recall that γ equals the maximum
negative curvature of Qγ( f )(x), and hence lowering the value of γ makes the penalty ‘less non-
convex’, intuitively speaking. We have found that, for the problems considered in this paper,
values of γ as low as 0.3 give better performance (i.e. less chance of getting stuck in local
minima), while still maintaining the property of finding the oracle solution. With that said,
optimal parameter choices will be investigated elsewhere.

Concerning algorithms to minimize (59), we have found no significant difference between
ADMM and FBS. The latter is guaranteed to converge to a stationary point when applied to
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(9) (under mild assumptions). This follows by the main result of [4] combined with section 6
of [17]. ADMM on the other hand, to our best knowledge, still lacks a proof of convergence
at least for the non-separable penalty Qγ(ιPk ), (the separable case, which does apply to (11), is
considered in [49]).

7. Conclusions

With the wealth of papers analyzing sparsity-inducing penalties, is there a need for yet another
one? The existing literature can be divided into two groups, either the results are asymptotic
in nature (hence say little in a concrete setting) or they assume that δ2k (or some analogous
quantity) is sufficiently small. As argued in section 2.4, for the case m = 2n, this forces the
sparsity k to be well below than 1% of n to achieve δ2k ≈ 0.4 or less. On the other hand, in
many concrete applications k is substantially larger, and so there is a vast regime where there
is no theoretical support for that either �1-minimization (3) or IHT gets anywhere near the
ground truth.

The majority of our results, on the other hand, applies as long as any 2k columns of A are
linearly independent, for then δ−2k < 1, with the natural catch that if δ−2k is poor then a large SNR
is needed. This is a significant theoretical improvement; if we are in the range k/n > 0.01, then
�1-minimization (3) is convex and therefore e.g. FBS applied to it is guaranteed to converge
to some point x′1, but by the results of [4, 17], the same is true for (11) and (16), it just may
happen that the convergence point x′2 is not the global minimum. However, whereas there is
no support for the hypothesis that x′1 is anywhere near ground truth, the theorems of this paper
states that if x′2 is the global minimum, then it is the oracle solution which is the best possible
outcome (and else it may not be near ground truth, just like x′1). This gives the two methods
studied here a significant theoretical advantage over �1-minimization, (or IHT or reweighted
�1 as well for that matter). Combined with the numerical section which demonstrates superior
performance in the entire range, this paper challenges the �1-penalty as the penalty of choice
for compressed sensing and sparsity based methods in general.

Finally, this paper studies design of sparsity inducing functionals, not algorithms to find
their global minima or stationary points. We prove that the global minima, under verifiable
conditions, is the oracle solution. The fact that both ADMM and FBS (with 0 as starting point)
seems to converge to the global minima is a numerical observation whose proof we leave as
an open question.

Appendix A

A.1. Appendix to section 3

While it is possible to deal with gradients and subdifferentials in Cn by simply identifying it
with R2n in the canonical way, the calculus becomes more intuitive if avoid this step. Instead,
we say that a function gd : Cn → R is differentiable at a point x is there is a vector v ∈ Cn such
that

lim
‖y‖→0+

gd(x + y) − gd(x) − Re 〈y, v〉
‖y‖ = 0. (60)

In this case we write v = ∇gd(x). For example, consider the function gd(x) = ‖Ax − b‖2.
Upon noting that gd(x + y) = ‖Ax − b‖2 + 2 Re 〈y, A∗(Ax − b)〉+ ‖Ay‖2, it readily follows
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that ∇gd(x) = 2A∗(Ax − b). Similarly, if gc is convex and v is a vector such that

gc(x + y) − gc(x) − Re 〈y, v〉 � 0

for all y, we say that v is in the subdifferential of gc which we denote by v ∈ ∂gc(x).
Let us establish the claim following (18), i.e. that a function g of the type gc + gd for func-

tions as above has a stationary point at x if and only if −∇gd(x) ∈ ∂gc(x). The condition (18)
for stationarity translates to

0 � lim inf
y→x
y�=0

g(x + y) − g(x)
‖y‖ = lim inf

y→x
y�=0

gc(x + y) − gc(x) + Re 〈y,∇gd(x)〉
‖y‖ .

To see this, just add and subtract Re 〈y,∇gd(x)〉 to the numerator and invoke (60). It imme-
diately follows that if −∇gd(x) ∈ ∂gc(x) holds then x is stationary. Conversely, suppose that
x is stationary. If there exists a y such that gc(x + y) − gc(x) + Re 〈y,∇gd(x)〉 < 0, then for
t ∈ [0, 1] we have by convexity that gc(x + ty) � tgc(x + y) + (1 − t)gc(x) so

gc(x + ty) − gc(x) + Re 〈ty,∇gd(x)〉 � t(gc(x + y) − gc(x) + Re 〈y,∇gd(x)〉)

by which it follows that the above lim inf must also be < 0, a contradiction.

A.2. Appendix to section 4.1

The full statement of theorem 4.1 follows by combining the below four lemmas. For concrete-
ness assume that we work over Cn.

Lemma 8.1. Without any restriction on A, the functional Kμ attains its infimum.

Proof. Fix 1 � j � n and consider submatrices A(:, J) of A with m rows and j columns,
J ⊆ {1, . . . , n} and #J = j; J determines which columns of A are selected. Now for each fixed
J, the minimum of ‖A(:, J)x − b‖2

2 is attained and can be computed by solving the normal
equations. Let c j be a corresponding vector in Cn with zeroes off J, such that ‖Ac j − b‖2

2
equals the minimum in question. Among the {cJ}#J= j we denote by c j one that satisfies

‖Ac j − b‖2
2 = min

#J= j
min
x∈C j

‖A(:, J)x − b‖2
2.

If I = inf Kμ(x) we can select a sequence xi ∈ Cn such that Kμ(xi) → I. By construction it
must be

Kμ(ccard(xi)) � Kμ(xi).

Since Kμ(xi) is arbitrarily close to I and the c j are finite, it must exist a j̄—at least one—such
that Kμ(c j̄) = I. �

Lemma 8.2. If ‖A‖∞,col � 1, the functional Kμ,reg attains its infimum, which equals that of
Kμ.

Proof. In the light of the basic inequality Kμ,reg � Kμ and the previous lemma, the two
infima can only be different if there exists a point x0 such that Kμ,reg(x0) < inf Kμ. We prove
by contradiction that this is impossible. In particular Kμ,reg(x0) < Kμ(x0), which implies that
Q2(μ card)(x0) < μ card(x0) since the quadratic terms are the same. This in turn implies (by
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(24)) that there must be some index j such that the corresponding value in Q2(μ card)(x0) is
different from μ card(x0, j), which happens if and only if

0 < |x0, j| <
√
μ. (61)

Let e j equal 1 in coordinate j and zero elsewhere and consider

t �→ Kμ,reg(x0 + t
x0, j

|x0, j|
e j)

for real t such that 0 < |x0, j|+ t <
√
μ. This must be a quadratic polynomial, again by

inspection of (24), which also gives that

d2

dt2
Kμ,reg(x0 + t

x0, j

|x0, j|
e j)

∣∣∣∣
t=0

= −2 + 2‖a j‖2
2 � 0. (62)

Hence this quadratic polynomial attains its minimum over the stated range at an endpoint.
It follows that we can redefine x0, j to equal either 0 or

√
μ, so that the resulting point x1

satisfies Kμ,reg(x1) � Kμ(x0). We can now continue like this for another index j such that (61)
holds (if it exists), and this process must terminate after finitely many steps N. Denoting the
resulting point by xN , we see that it satisfies Kμ(xN) = Kμ,reg(xN) < inf Kμ, a contradiction.
Hence inf Kμ = inf Kμ,reg.

Let x0 be a point where the first infimum is attained. Then Kμ,reg(x0) � Kμ(x0) so we must
have identity and hence the infimum of Kμ,reg is also attained. �

Lemma 8.3. Let ‖A‖∞,col � 1 and let x0 be a global minima of Kμ,reg which is not a global
minima for Kμ. Then it belongs to a connected set of global minima of Kμ,reg including at least
two global minima of Kμ.

Proof. By repetition of the previous proof we conclude that the first and second derivative
of Kμ,reg(x0 + te j) must be equal to 0, so the quadratic polynomial is constant in the range
0 < |x0, j|+ t <

√
μ. Setting t to be one for the endpoints gives two new global minimizers

x1 with either x1, j = 0 or |x1, j| =
√
μ. Either x1 is a minimizer of Kμ or we can continue the

process with another subindex. The result now easily follows. �

Lemma 8.4. Let ‖A‖∞,col < 1, then any local minima of Kμ,reg is a local minima of Kμ. In
particular, the sets of global minimizers coincide.

Proof. Let x0 be a local minimizer of Kμ,reg but not of Kμ. We again repeat the arguments
in lemma 8.2, but this time we get strict inequality in (62), which is impossible. Hence such
minimizers do not exist.

If now x0 is a global minimizer to Kμ,reg then it is a local minimizer of Kμ, which in the
light of Kμ � Kμ,reg means that it is a global minimizer, and the proof is complete. �

A.3. Appendix to section 5.1

The proof will follow after a collection of minor results.

Proposition 8.5. For any m + 2 vectors v1, . . . , vm+2 in Rm, we can always pick two such
that 〈vi, v j〉 � 0.
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We note that the proposition is sharp since the m + 1 vortices of a simplex in R
m do have

negative scalar products.

Proof. This follows from a simple induction argument. It is indeed clear in R. Suppose now
we take m + 2 vectors vi such that 〈vi, v j〉 < 0 if i �= j. If V is the hyperplane perpendicular
to vm+2, the projections v′1, . . . , v′m+1 of v1, . . . , vm+1 on V must also have negative scalar
products (since the projections onto vm+2 always are in the same direction, opposite that of
vm+2, so

〈
v′i , v

′
j

〉
< 〈vi, v j〉). Since V is an (m − 1)-dimensional vector space, the desired result

is immediate by induction. �

Recall that a1, . . . , an denote the columns of A.

Lemma 8.6. Let T ⊂ {1, . . . , n} have cardinality #T � n − k and consider {a j} j∈T . Under
assumption (a) and (b), we can pick indices i, j ∈ T such that ‖ai − aj‖2 < 2.

Proof. We first consider the real case Rm. Then #T � m + 2 by (a) and since ‖ai − a j‖2 =
‖ai‖2 − 2 Re 〈ai, a j〉+ ‖a j‖2, the result is immediate by (b) and proposition 8.5. Finally, since
C

m is isomorphic with R
2m, the corresponding result in the complex case follows analogously,

since now #T � 2m + 2 by (a). �

Armed with the above statements we can now start to characterize global minimizers of
Kk,reg, which is annoyingly difficult. It is even difficult to prove that they exist, so as a first step
we shall restrict attention to a closed ball. Recall that D denotes either the unit disc in C or, if
we work over the reals, the interval [−1, 1].

Lemma 8.7. There exists an R0 > 0 such that for any R > R0, any global minimum x′ of
Kk,reg restricted to (RD)n must satisfy

|x̃′k+1| �
R
2
.

Proof. Introduce

U =

{
x �= 0 : |x̃k+1| �

1
2
|x̃1|
}
.

We first note that Q2(ιPk )(x) > 0 for all x ∈ Pc
k, which follows by the definition (see (8)), so in

particular this holds for all x ∈ U. Define

α = inf
{
Q2(ιPk )(x) : x ∈ U, ‖x‖2 = 1

}
. (63)

Since we are minimizing a continuous (non-zero) positive function over a compact set, α > 0.
Let us write s = sx for the function defined in (52), when there is a need to make the dependence
on x clear. The function s is radially dependent, i.e. stx = tsx for t ∈ R, and hence k∗ is radially
independent. Looking at the expression for Q2(ιPk ) we see that

Q2(ιPk )(tx) = t2Q2(ιPk )(x) t ∈ R.

Note that Kk(0) = Kk,reg(0) = ‖b‖2
2 so the global minimum of Kk,reg is less than or equal to

this. Let R0 be such that α(R0/2)2 > ‖b‖2
2. If x ∈ U satisfies ‖x‖2 > (R0/2), then

Kk,reg(x) � Q2(ιPk )(x) � α‖x‖2
2 > ‖b‖2

2

so it follows that such a point is no global minimizer (at least not on any set containing 0).
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Now let R and x′ be as stated in the lemma. If |x̃′k+1| > R/2 then clearly ‖x′‖2 � R0/2 so
x′ cannot be in U. But then 1

2 |x̃′1| > |x̃′k+1| > R/2 which means that |x̃′1| is outside of RD. This
is impossible, so the proof is complete. �

We define an angle of a complex number z to be any number αz such that z = |z|eiαz . While
this is unique modulo 2π for z �= 0, it can be any number for z = 0. Recall that e1, . . . , en

denotes the canonical basis in Rn (or Cn).

Lemma 8.8. Let x be any vector and let p, q ∈ {1, . . . , n} be different indices such that
|xp| � |x̃k+1| and 0 < |xq| � |x̃k+1| holds. Fix corresponding angles αp and αq and set

x(t) = x + t eiαq ep − t eiαq eq.

Then Q2(ιPk )(x(t)) is twice differentiable at 0 and

d2

dt2
Q2(ιPk )(x(t))

∣∣∣∣
t=0

= −4.

Proof. This is relatively easy to see in the case when |xp| and |xq| are strictly less than |x̃k|,
so we first assume this. Then the two points where t show up in the sequence x̃(t) are beyond
k, assuming t is kept small enough. For any l � 1 we then have that∑

j>k−l

|x̃ j(t)| =
∑
j>k−l

|x̃ j|, (64)

because the left-hand side includes one term like |x̃ p|+ t and one term like |x̃q| − t, which
therefore cancel out. (This is were we used |xq| > 0). Looking at the expression (52) which is
used to determine k∗, we see that all the values sx(t)(l) are unaffected by small t, and hence k∗
is unaffected by t (as long as it is small enough). Now, the first part of the expression (51) for
Q2(ιPk )(x(t)) also contain (64) (for the particular value l = k∗), and hence this is constant. The
second part equals

−
∑

j>k−k∗

|x̃ j(t)|2 = −
∑

j>k−k∗

|x̃ j|2 − 2|xp|t + 2|xq|t − 2t2,

whose second derivative at 0 equals −4, as was to be shown.
Now assume that |xp| or |xq| (or both) equals |x̃k|. The conclusion will follow as above,

once we verify that (i)k∗ is invariant for small t and, (ii) both terms with t in them appear in
{|x̃ j(t)|} j>k−k∗ .

To see (i), let a be the largest integer such that |x̃k+1−a| = |x̃k| and note that sx(1) > 0 since
we have assumed |x̃k+1| > 0. Moreover, by inspection of (52) we have that sx(l) = sx(1) for
all 1 � l � a, so k∗ � a. By this it follows, if we write k∗(t) for the k∗ associated with x(t),
that we also have k∗(t) � a for small t, by continuity. Moreover both terms with t’s show up
in {|x̃ j(t)|} j>k−l for all l � a, so for such l we have that sx(t)(l) is unaffected by small t’s by
the same cancellation effects as in (64). By this we finally conclude that k∗(t) is constant in a
neighborhood of 0, i.e. (i). Since we also know k∗ � a, (ii) follows as well by what was written
above. The proof is complete. �

Proof of theorem 5.1. Let x′ be a local minimizer of Kk,reg, and assume that x′ /∈ Pk.
We first assume that all values x′j are non-zero, and let α j be corresponding angles. The set
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T = { j : |x j| � |x̃k+1|} clearly satisfies #T � n − k, so we can use lemma 8.6 on the matrix
with columns {eiα ja j}n

j=1 to pick two indices p and q such that

‖eiαpap − eiαqaq‖2
2 < 2. (65)

By the choice of T , we also have that lemma 8.8 applies. Let x(t) be as in that lemma. It then
follows that d2

dt2
Kk,reg(x(t)) exists at 0 and equals

−4 + 2‖eiαpap − eiαqaq‖2
2 < 0.

This contradicts the assumption that x is outside Pk, which hence must be false.
We still need to consider the case when some values x′j are 0. In this case we pick xq as in

lemma 8.8 and we let p be any index such that xp = 0. The angle αp can now be chosen such
that (65) holds, which leads to a contradiction as before.

It is now established that all local minimizers of Kk,reg lie in Pk, and clearly they are also
local minimizers of Kk in view of Kk � Kk,reg and the fact that these two coincide on Pk. Next
we turn to prove that they exist. Fix R > R0 as in lemma 8.7 and let x′ be a global minimizer
of Kk,reg in (RD)n. By the lemma we have |x̃′k+1| < R/2, so any perturbation x(t) as considered
in lemma 8.8 stays within (RD)n. With this at hand, we conclude as above that x′ ∈ Pk.

However, on Pk both Kk,reg(x) and Kk(x) coincide with simply ‖Ax − b‖2, the minimum
of which is attained by the proof of lemma 8.1. We conclude that Kk,reg do attain its global
minima, and that Kk,reg and Kk share global minimizers. �
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