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"Did you see, my love, the sun after the cold night,  
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Look, as this bloody night has turned to dawn,  

what knives it has passed through hearts." 
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Sammanfattning

Produktutvecklingsprocessen är idag starkt beroende av modellering och simulering för
att utvärdera hur väl en design uppfyller uppställda krav. Iterativa och simuleringsdriv-
na processer har minskat kostnaderna för fysiska tester, men inte den ledtid som krävs
för att genomföra dessa utvärderingar. Ett exempel är utvecklingen av krockkuddar, där
hundratals manuella digitala prototypcykler genomförs innan fysiska tester påbörjas. För
att hantera detta krävs effektivare metoder för designutvärdering.

Datadriven design har visat stor potential för att påskynda designcykler, men begränsas
av tillgången på data. Storskaliga simuleringar som krävs för att generera labels till dataset
är kostsamma, vilket ofta leder till otillräcklig utforskning av designutrymmet. Dessutom
skapas dataset individuellt och utan systemperspektiv, vilket begränsar möjligheterna till
framtida designändringar. När dataset väl används tvingas designers ofta att följa etable-
rade konventioner, vilket kan leda till mindre träffsäkra analyser.

Denna avhandling undersöker data engineering som en avgörande drivkraft i datadri-
ven design för att stödja designutvärdering. Målet är att identifiera och mildra centrala
problem kopplade till användningen av AI för digital utvärdering, genom att fokusera på
nya sätt att konstruera, extrahera och organisera dataset. Arbetet syftar till att effektivisera
digitala verifieringscykler och minska ledtiden i ingenjörsdriven produktutveckling.

Att extrahera features från alternativa geometriska representationer, såsom den mediala
axeln, föreslås som en metod för att minska beroendet av CAD-parametrisering i pre-
diktiva modeller. Dessa features visade sig vara mer användbara än CAD-parametrar för
prediktiva uppgifter. Därför introduceras konceptet ”sovande parametrar”som dataset-
features med potential att öka kunskapsinnehåll och överförbarhet i produktstrukturen.
Bildregression baserad på designskärmdumpar föreslås som en alternativ metod för att
bygga prediktionsmodeller i designutvärdering. Det storskaliga dataset som krävs för det-
ta genereras med hjälp av dynamisk relaxation. För att möjliggöra analys av designföränd-
ringar används sovande parametrar i ett ramverk kallat Produktdatasetplattformen”, där
komponentdata nyttjas för systemnivåutvärdering. Det visades att detta ramverk möjlig-
gör snabb utforskning av nya designkonfigurationer och påskyndar valideringsprocessen.

Resultaten bidrar till grunden för CAD-CAE-integration genom att erbjuda ett ramverk
för designutvärdering. De föreslagna stöden möjliggör prediktiva insikter som kan stödja
kopplingen mellan funktion och form samt förbättra utvärderingen efter förändring.

Avslutningsvis visar resultaten en väg mot en datadriven metod för designutvärdering som
kan påskynda iterationer och minska ledtiden i ingenjörsdriven produktutveckling.
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Abstract

Today, the design process of products heavily uses modeling and simulation to assess how
well they fulfill the requirements. Iterative and simulation-driven design processes have
reduced testing costs but not the lead time associated with them. One example is the
airbag design process, which involves hundreds of manual and digital prototyping loops
before physical tests are conducted. Addressing these issues requires more efficient design
evaluation. Data-driven design has shown significant potential in accelerating design
cycles; however, it is also hindered by its reliance on the availability of data. The prod-
uct design process establishes parameterization conventions that must be followed when
analyzing. Running large-scale simulations to generate labels in design datasets can be
costly, often leading to underexplored design spaces. The datasets generated are created
individually without a system perspective, which often restricts future design changes.
This thesis investigates data engineering as a critical driver of data-driven design to sup-
port design evaluation. The goal is to identify and mitigate the main problems associated
with data generation by exploring new methods for constructing, extracting, and organiz-
ing features and labels. The thesis aims to streamline digital verification cycles and reduce
engineering design lead time. Extracting features from alternative geometric representa-
tions, such as the medial axis, is proposed to reduce the reliance of data-driven evaluation
methods on model parameterization. Using these parameters is shown to be superior to
CAD parameterization for predictive tasks. Therefore, the concept of sleeping parameters
is suggested as a potentially impactful feature in the dataset, which enhances knowledge
encapsulation and transfer within the product structure. Image regression is proposed us-
ing design screenshots as an alternative method for building prediction models in design
evaluation. The necessary large-scale dataset for this task is created through dynamic re-
laxation. To address design change analysis in design evaluation, the sleeping parameters
concept is used in a framework called Product Dataset Platform, where component-level
data is leveraged for system-level evaluations. It was shown that these solutions, indi-
vidually, enable the rapid exploration of novel design configurations and accelerate the
validation process. The results contribute to the foundation for CAD-CAE integration
by providing a design evaluation framework. The suggested supports enable predictive
capacity that can help map function to form and allow more efficient evaluation after the
design change. The findings show a way to a data-driven design evaluation method that
accelerates design iterations and reduces engineering design lead time.

KeywordsDesign for Data, Data Engineering, Data-Driven Design, Design Automation,
Design Evaluation, CAD/CAE Integration
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Chapter 1

Introduction

Products are evolving in response to rapid technological advancements, shifting societal
expectations, and increasingly competitive markets. The rise of high-level complex prod-
ucts characterized by shorter development cycles, more customization, and higher per-
formance demands requires engineering methods to evolve and effectively use more ad-
vanced techniques (Isaksson and Eckert, 2020; Jiao et al., 2021). This ongoing evolution
underscores the importance of research focused on adapting existing design methods to
meet emerging challenges.

Models have historically served as critical tools for conveying conceptual ideas from the
”designer” to the ”constructor” varying widely from written texts and images to detailed
drawings (Jordan and Hoelscher, 1935). The onset of the information age (see Figure 1.1)
at the beginning of the 1980s brought 3D Computer-Aided Design (CAD) systems and
shifted the focus to complete volume models rather than 2D representations, and trans-
formed design tools and environments (Smit and Bronsvoort, 2009). This evolution,
enabled by digitalization, has progressively reshaped development environments and de-
sign tools and even transformed the interaction between designers and constructors.

1960’s 1970’s 1980’s 1990’s 2000’s 2010’s 2020’s 2030’s

Electronic age Information age Intelligent age

Figure 1.1: Modeling technologies through three main epochs (Wang et al., 2022)
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Engineering drawing, a predecessor to modern 3D modeling, dates back to ancient times,
with fundamental techniques evolving significantly through the Renaissance (Lagenbach
et al., 2015). By the 19th century, engineering drawing had become a critical tool, par-
ticularly with the increased documentation and standardization efforts. In the early 20th
century, it was established as a universal engineering language (Madsen, 2002). The 1960s
marked a turning point with the advent of computer programs. In a way, an emerging
technology (specifically computers) contributed to advances in the field of 2D hand draw-
ing and additionally provided an alternative form of design assistance, thereby initiating
the era of CAD. (Reffold, 1998). However, the first generation of computer-aided tools
was used to automate the paper-based design processes and served as an expensive replace-
ment for the drawing board (Bossak, 1998). Today, hand drawings remain indispensable
for brainstorming and quick communication, but have lost the importance that they once
held in engineering education (Hilton et al., 2016).

The transformation that occurred with the emergence of CAD is comparable to the situ-
ation we face now. The slow and extended transition from manual drawing to computer
modeling reflects a trend in technological adoption within engineering. With the advent
of the intelligent age, Artificial Intelligence (AI)-based technologies are now redefining the
”aid” in computer-aided design (Debney, 2020). Most likely, engineering design meth-
ods are poised for yet another transformation, potentially redefining the concept design
evaluation process and the role of computer-aided design in product realization (Regen-
wetter et al., 2022; Cooper, 2023). The transition from traditional CAD to intelligent
methods seems inevitable, although history reminds us that a complete transition can
take several decades. Despite this, design engineering must be prepared with methods to
accelerate the integration and aid this transition.

Engineering design has an undeniable role in the current industrial revolution (Tatipala
et al., 2021) and will therefore be affected by any future industrial changes as well. After
the third industrial revolution, which aimed to initiate the use of computers for digi-
talization and automation, the latest and fourth industrial revolution, so-called Industry
4.0, is marked by large-scale and integrated digitalized assets such as AI, Big Data, Cloud
Computing, Internet of Things, etc (Keleko et al., 2022). Given this context, this the-
sis becomes highly relevant, as it aims to develop and evaluate methods that effectively
integrate advanced digital tools and AI technologies into contemporary engineering de-
sign practices, thus directly contributing to the successful realization and acceleration of
Industry 4.0 objectives.

As AI models continue to outperform human capabilities on various benchmarks between
1998 and 2024 (Bengio et al., 2024), it underscores the potential for these technologies
to alter engineering practices in coding, mathematics, and specific tasks 1.2. The fig-
ure shows the performance of AI models on various benchmarks, including Computer
vision (MNIST, ImageNet), Speech recognition (Switchboard), Natural language under-
standing (SQuAD 1.1, MMLU, GLUE), General language model evaluation (MMLU,
Big-Bench, and GPQA), and Mathematical reasoning (MATH). It is reasonable to antic-
ipate that it is only a matter of time before a more diverse range of benchmarks (including
design science-related ones) are added to this list of benchmarks in which AI models do
a far better job than humans.

2
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Figure 1.2: Performance of AI models on various benchmarks (Bengio et al., 2024)

Neural scaling laws, which show how AI models improve with bigger sizes, more data,
and more computing power, are likely to face economic limits in the future, but have
held on the technical side until today (Grace et al., 2018; Henighan et al., 2020). This
means AI has gotten smarter by just making models bigger and using more data, which
has been a prominent driver of progress. This rapid advancement of AI technology cre-
ates new opportunities and challenges for engineering design, especially regarding the
role of modeling and simulation (Figoli et al., 2025). This is because models and simula-
tions serve as the primary methods for communicating conceptual ideas from designers
to manufacturers.

Some researchers (Will, 1991) suggest that a major decision on the cost (85%) of a product
is incurred directly due to decisions made before the product design is released to manu-
facturing. This figure is criticized by others (Ulrich and Pearson, 1993), and it seems rea-
sonable to assume that the figure will vary based on different factors, one of which is the
degree of product complexity. It can be argued that design is a key and influential factor
in products, especially those that need to meet today’s complex requirements. Therefore,
high-level technical products like jet engines and airbags, which require putting more
effort into design, have to leverage the potential of AI methods in their development pro-
cess to stay competitive. Researchers in this field should develop and adopt methods like
modeling and simulation to facilitate AI transformation. Given the critical role of mod-
eling and simulation in generating the data necessary for various AI-related activities,
studies like this thesis, which serve as integration points for two developed disciplines,
seem highly important.

1.1 Background

The goal of product development is to achieve economic success, satisfy a need, or ac-
complish both (Pahl and Beitz, 2013), which is achieved by iterating the design process to
meet various dynamic quality, cost, and sustainability requirements. Most of a product’s
economic, environmental, and societal impacts are related to the decisions taken during
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the design process (He et al., 2020). Design iteration is the repetition of decision-making
in the product design process, where these decisions share common characteristics (Smith
and Eppinger, 1997). This is why design iterations are particularly suitable cases for AI-
like adaptable methods that learn from one iteration to the next (Zhou et al., 2023).

Iterations in product development can also be seen as ’bundles of problem-solving cycles’
(Fujimoto, 2000). The focus of Decision-makers is on resolving problems by compress-
ing, simplifying, front-loading, or overlapping iteration cycles, all to achieve a shorter
lead time. The rule of thumb is that problems are easier to address in the early phases,
also known as the design paradox in the literature (Ullman, 1992). It takes more cost and
time to solve problems later in the development projects, while the lack of knowledge
results in lower fidelity in the early simulation models (Clark, 1991). Osborne (Osborne,
1993) reported that iterations accounted for 13 to 70% of the total development effort for
nine projects.

As the literature emphasizes the difference between different lead times (Tiedemann et al.,
2020), it is essential to note the definitions used in this thesis, see Figure 1.3. The Total
Lead time for a product realization process, which is also called time to market, includes
Product Development lead time that includes all activities roughly from the identification
of need to start of manufacturing, which is a critical metric in a company’s ability to
respond to market demands and technological advancements (Clark and Fujimoto, 1989;
Petersen, 2010).

Total
Lead Time

Product Development
Lead Time

Engineering Design
Lead Time

Product Development
Manufacturing and Production
Quality Control and Assurance
Distribution and Logistics
…

Planning and Market Study
Engineering Design
Design Renement
Tooling and Equipment Setup
…

Conceptual Design
System Design
Detail Design
Prototyping
…

Figure 1.3: The Engineering Design, Product Development, and Total Lead Time

Shorter lead times in design highlight the need for quick feedback, as such an approach
improves decision-making during the design process. However, engineering design lead
time when it comes to acceleration is often hindered by the extensive computational
demands of conventional simulation methods, especially when exploring diverse design
alternatives (Edelen et al., 2020). Simulation-driven processes, although essential for de-
sign evaluation, are typically constrained by their sequential nature. A failure at one stage
requires restarting subsequent analyses, if not the whole design, which increases delays
(Karniel and Reich, 2009).

These challenges underscore the potential benefits of integrating AI methods, such as
real-time surrogate modeling and prediction tools, which can rapidly qualify designs and
significantly reduce iterative times. Thus, AI can be particularly beneficial in streamlining
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and optimizing design iterations (Zhou et al., 2023; Yüksel et al., 2023).

Despite this importance, adopting AI methods in product design has not been as success-
ful compared to other sectors like manufacturing (Chui et al., 2023; Perrault and Clark,
2024). Comparing the success of AI adoption in the ”Manufacturing” sector to ”R&D
product/service development” in the McKinsey survey, Figure 1.4 shows 55% of respon-
dents reported a reduction in cost with AI adoption in manufacturing but only 31% in
Product Development (PD). The revenue increase with AI adoption is also reported to
be slightly higher in Manufacturing than in PD.
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Figure 1.4: The benefits from AI adoption in different sectors (Chui et al., 2023)

This distinction can be elucidated by the characteristics of data within the manufacturing
sector, which are inherently more favorable for the application of artificial intelligence.
Such data is quantitative, standardized, and frequently updated, allowing for the effective
monitoring and optimization of production processes (Arinez et al., 2020). Such data
richness enables AI algorithms to identify anomalies, optimize production schedules, and
minimize waste. Conversely, product design involves a higher degree of synthesis and
qualitative data, which are more challenging for AI to interpret and utilize effectively.
Furthermore, cost drivers in manufacturing, such as scrap, inventory management, and
overproduction, are tangible and accessible metrics. In product development, however,
the primary cost drivers are often related to man-hours for product development lead
times. These elements are less quantifiable and involve human factors that AI has yet to
effectively replicate or augment.

While product systems must be created, the processes for manufacturing complex prod-
ucts must be discovered and induced (Browning et al., 2006). This means product devel-
opment uses models to innovate and conceptualize, which involves a greater degree of un-
certainty and complexity. Meanwhile, manufacturing uses models to refine and control,
with a focus on predictability and minimizing variability. These fundamental differences
underscore why AI might be more readily applicable and effective in the manufacturing
sector compared to PD, where the creative and exploratory nature of the work presents
unique challenges.

Since modeling and simulation are one of the primary data generation sources in product
development, addressing the barriers hindering AI adoption in this area is crucial (Diallo
et al., 2017). These include the challenges of integrating AI into the iterative cycles of the
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development process. Additionally, the data derived from models and simulations must
be effectively captured, standardized, and made accessible for AI systems to analyze and
learn from. Improving the compatibility of AI tools with the dynamic and sometimes
unpredictable data generated during modeling and simulation can significantly propel
AI’s utility in PD, leading to more informed design choices and better optimization of
product features and performance (Chiarello et al., 2021a; Hunde and Woldeyohannes,
2022).

There is an ongoing and growing trend in the importance of shortening engineering de-
sign lead time. Digital simulation has successfully reduced the costs of physical testing for
several decades now (Zorriassatine et al., 2003; Liu et al., 2013). The automotive industry
has successfully implemented digital PD tools, such as CAD and Computer-Aided En-
gineering (CAE), over the last few decades. For instance, the lead time from the freeze
of styling to the start of production at Audi Motors has decreased from five years to two
years (Roy et al., 2006), while reports from a decade earlier show a reduced time in the
automotive industry aimed at three years (Griffin, 1997). A recent survey shows the trend
continues to grow now on electric powertrain technology, as they noted that 86% of man-
ufacturers have development cycles at 24-40 months and 4% of them have cycles of 24
months or less (Morley, 2022), which shows a trend toward even shorter cycles, and sim-
ilar reports from Tesla and Volkswagen confirm the trend. Even on the platform side, the
age of platforms (before retirement or substantial overhaul) for various types of vehicles
shows a decreasing trend over the last four decades, as it is illustrated in the Figure 1.5.
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Figure 1.5: The reduced age of platforms in the automotive industry (n.d., 2017)

1.2 Problem Description

A systematic method for structuring problems and systems (VDI-2221, 1987; Wynn and
Clarkson, 2018) serves as a guide that allows this thesis to get focused and dive deeper into
the core of the problem studied. At the beginning of PhD studies, a series of interviews
were performed with case companies, which pointed out that Engineering Design Lead
Time was one of the problems they experienced often in their design process, and there-
fore, it was selected as the overall problem area of the studies that followed. However,
this problem is broad and needs to be further refined. This is because manufacturing
companies that design their products are typically constrained by time factors to explore
the plausible designs with sufficient richness. This is particularly true for companies like
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those studied in this thesis that have a product where design significantly impacts their
total lead time.

Engineering design lead time is a wide problem, where the symptom is that products
sometimes need to be re-designed very late in the process, or do not even perform as
well as they potentially can. One of the contributing mechanisms that enables exploring
design alternatives is indeed the ability to evaluate the design performance, regardless of
where in the process of concept, system, or detail phase design is being assessed. Therefore,
to narrow the scope of the studies, the Design Evaluation, as one of the sub-problems that
had a considerable effect on the case companies’ engineering design lead time, is selected as
the main problem under the study in this research. The overall problem and sub-problem
(main) studied in this thesis are shown in Figure 1.6.

Engineering Design Lead Time

Design 
Evaluation

1 2 3

1 2 3

Feature 
Engineering

Data 
Engineering

Data-Driven Design

Overall problem

Sub-problems

Individual problems

Individual solutions

Sub-solutions

Overall solutions

4

4

(VDI2221 1987)

Figure 1.6: Mapping problem areas of this research to solution space

Since iterations are viewed as beneficial for development and optimization, the remedy
prescribed for design evaluation in this thesis is to reduce the wait time in each iteration
rather than to eliminate them. The reason is that iterations can contribute to a better
final solution, even if the product development lead time makes the requirements change
over time. On the other hand, recognizing that a shorter lead time does not guarantee
a successful product or product development process is essential. However, shorter lead
time does reduce engineering man-hours, which in turn enhances competitiveness for
companies.

Being able to evaluate concepts digitally has significantly reduced the lead time for phys-
ical testing over the last two decades. Nonetheless, this shift has resulted in an increase
in the lead time for the digital evaluation of a product as it has reduced the physical test-
ing costs. Consequently, the digital design evaluation process now increasingly occupies
a larger portion of the overall engineering design lead time and has become one of the
primary challenges in product realization today 1.6.

During the first round of studies with our case companies, a development process model
for their product with two iterations was developed (Arjomandi Rad et al., 2022). It
was concluded that the waste in the form of the waiting times and iterations takes up
a big share of their development process, as shown in Figure 1.7. This model shows
that different forms of waste can be coupled with each other. For instance, reducing
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the number of iterations (which results in less design space being explored) can cause a
reduction in total waiting time. Given that each iteration in the evaluation process may
depend on external input for completion, speeding up the iterations is more critical than
reducing their number.
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CAD
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Time
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Digital 
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Physical
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constrained 

Requirements 
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Produc�on 
ready

Post-process

Pre-process

Design Build Test

Processing

Post-process

Pre-process

Processing

Revise Finalize

Figure 1.7: Development lead time encompasses digital and physical evaluation loops

As shown in the figure, iterative and simulation-driven products undergo iterations on
two loops. The first iteration point occurs just before the gate, where digital models
and simulations are validated in collaboration with the customers (first sync point). This
is the inner loop shown in Figure 1.7, where the designers iterate the work from the
requirements specified and reach a detailed level of the design space. The case company
that was studied in this thesis aims to minimize changes after the first sync point and
use as few iterations as possible on the second iteration loop with a physical test. In
one case, for instance, having 60-80 loops during digital evaluation was reported to be a
common practice. After the digital verification loops refine the design concept, the design
progresses to the next phase in the second loop.

The second loop of iterations occurs during the physical testing and often loops back to
digital iteration, often as a result of the dynamic nature of customer requirements and/or
a lack of correlation between digital and physical tests. Overall, the two loops form a
highly iterative process for the case company, which is a common characteristic among
the groups of products examined in this research. Developers aim for a flawless launch in
high-level technical products by consistently correlating digital design evaluation results
with physical testing. Thus, our case companies’ products with iterative processes take
up to two years to launch (their engineering design lead time). This iteration continues
until a highly reliable product is achieved, as expected in that group of high-precision and
technical products.
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Having years of product development lead time, in the automotive industry, where the
trend is toward shorter cycles, is problematic. During studies with experts in the company,
it was concluded that design evaluation is one of the bottlenecks that vastly affects the
engineering design lead time. With the rise of AI, data-driven methods have proven to
be one of the promising approaches to resolving design evaluation in iterative tasks in
recent years. Therefore, it was natural to further decompose the problem at hand (design
evaluation) into identifying the possible hindrances to prevent leveraging AI in design
evaluation. Throughout our studies, three such individual problems have been identified
(for decomposition see Figure 1.6).

1. Models depend on the initial parameterization convention: The first issue explores
the dependency of the design process on CAD model parameterization, which
often constrains design flexibility due to its reliance on initial parameterization
conventions. The digital evaluation cycles are dependent on designers for data
gathering, pre-processing, and post-processing, and therefore can be facilitated by
running as many activities as possible in real-time in a transdisciplinary environ-
ment. This was an idea that was also pursued in digital twins that create a virtual
environment with assets that carry the footprints of a physical system (Boschert
and Rosen, 2016). A data-driven prediction model can contribute to the goals of
achieving an integrated real-time development process. Yet, these modeling tech-
niques usually use fully defined geometric parameters as low-hanging fruit as their
input in their design process. This dependency can stifle innovation and adapt-
ability in the design phase, as during the design iterations, it reduces the design
space that can be explored. Reducing this dependency and allowing designers to
make modifications beyond the limitations of defined parameters in legacy models,
thereby fostering a more creative and efficient design analysis process.

2. Costly testing methods limit large-scale labeling of datasets: Labeling refers to the
process of assigning ground truth outputs (e.g., CAE simulation results) to input
data (e.g., design geometries or images) that will be used to train a model. Sim-
ulation analysis methods are heavily used in the design phase to test and improve
design variants and respond to changing requirements. Simulations utilize models
to study the behavior and performance of a system, mainly to reduce the chances of
failure in meeting requirements. More detailed models are more effective at reveal-
ing the occurrence and consequences of iterations, but they can be costly. Models
are of a simplified nature and can never capture the full complexity of reality hap-
pening iterations in PD (Wynn et al., 2007), and therefore, the tradeoff between
modeling cost and the level of desired confidence should be a prioritized study.
This is specifically true for the data-driven predictive models with the advent of
deep learning. While many CAE tools are commonly used to evaluate input de-
signs in data-driven methods and calculate the performance of designed outputs,
the growing demand for larger datasets within data-driven methods and the pro-
hibitive cost of methods like finite element impose limitations on such applications.
This gives the second individual problem, the need for evaluation methods that can
expedite the design iteration process without extending the time required for each
iteration. This challenge is associated with creating outputs of the datasets, which
are essential for training machine learning models used in design evaluation. The
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poor scalability of the traditional digital evaluations necessitates cheaper evaluation
methods for comprehensive design analysis and opens up for exploring alternative
methods.

3. Prepared datasets are rigid and prevent design changes: Models in product design
and development range from physical to analytical and aim to answer questions
like ‘How well does it work?’ (Eppinger and Ulrich, 2015). As product de-
velopment progresses, design decisions become more concrete, and the cost and
complexity of changing models increase significantly. Early phases often use flex-
ible, conceptual models allowing rapid exploration and iteration. In later stages,
models become detailed, constrained by technical specifications, manufacturing
considerations, and committed resources, reducing flexibility. Unlike conceptual
or embodiment models, which can quickly adapt based on new ideas or design
changes, data-driven models rely on historical or simulated data that limit flexi-
bility early on. Expanding their flexibility typically requires significant effort to
collect new data, retrain models, or modify prediction frameworks. Creating data-
driven models that are easier to change and modify can be a significant accelerator
for the digital evaluation of design concepts. Therefore, the last individual problem
studied in this thesis examines the rigidity of prepared datasets in the context of de-
sign changes. Typically, datasets are prepared and structured in a way that does not
easily accommodate modifications once design parameters are established, thereby
suppressing the iterative nature of design improvements. Thus, explore methodolo-
gies for preparing modular and flexible ways of building datasets that can support
dynamic design change analysis. This can enhance the applicability of running
data-driven predictors outside of their trained zone to capture the consequences
of radical design changes. However, it should be noted that digital evaluation can
never fully replace physical tests.

Both digital and physical design loops (see Figure 1.7) play a crucial role in creating a
pipeline of raw data that is essential for data-driven design evaluation and analysis. On
the data science side, these pipelines are often directed into repositories for easy storage
and accessibility for future utilization. Later, the data undergoes two loops for analytical
tasks. The first loop focuses on data preparation, which includes steps such as data cleans-
ing, normalization, and transformation, ensuring that the data is accurate and formatted
correctly for analysis. The second loop is dedicated to identifying and fine-tuning the
most suitable AI algorithms for the specific objectives of the project. This involves ex-
perimenting with various algorithms, assessing their performance metrics, and selecting
the ones that best align with the intended outcomes. Only after successfully navigating
through these stages can the refined data and chosen algorithms be implemented within
the overall system. This process illustrates how synergy occurs between design science
and data science, as shown in Figure 1.8 through a classical design study of an engineered
product on the left and a data-driven problem-solving process on the right.
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Figure 1.8: The individual problems that exist in AI adoption in product design

Leveraging advanced data-driven approaches could accelerate the design evaluation pro-
cess in digital testing loops, which in turn could contribute to engineering design lead
time. As shown in Figure 1.6, there could very well be other factors that can be added, and
also other solutions as well to achieve this goal. However, the three individual problems
summarized above are the only hindrances to the application of data-driven methods
in design evaluation that have been studied in this thesis. These issues were identified
through several studies conducted over the past five years in collaboration with industrial
partners involved in the two research projects.

1.3 Aim and Objectives

The overarching aim of this thesis is to enhance the efficiency of the engineering de-
sign process by accelerating digital design evaluation loops, thereby reducing engineering
design lead time without sacrificing the depth and breadth of design exploration. By se-
lecting the data-driven approach as an avenue to explore, the objective is to identify and
mitigate key bottlenecks that hinder the effective implementation of data-driven methods
within iterative product design evaluation cycles.

This approach draws inspiration from historical advancements in engineering analysis,
such as Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). Sim-
ilar to how these computational techniques did not eliminate the need for physical testing
but reduced its frequency and became a tool for designers for faster design space explo-
ration, AI in design evaluation should be viewed as an augmentative tool rather than a
substitutive one. Thus, the thesis supports the exploration of what could be termed the
”next best model,” as illustrated in Figure 1.9. The concept of the next best model re-
volves around employing AI to develop models and methods that might potentially have
a slightly lower confidence level than the most accurate models achievable through ex-
pensive and time-consuming methods, but offer substantial cost benefits. If reduced cost
and increased speed are achieved with these AI-enhanced evaluations, they may be a valu-
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able asset in the iterative design process, providing rapid insights that are economically
feasible and sufficiently accurate for early to mid-stage design decisions.
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Figure 1.9: The cost and value for different models in PD, Adapted for (Sargent, 1988)

The hypothesis is that utilizing data-driven design evaluation methods can provide prac-
tical benefits and actionable insights to designers, contributing to the efficiency and effec-
tiveness of the process. To achieve this overarching aim (Engineering design lead time),
the research pursues three specific objectives, i.e., addressing individual problems to fulfill
the main design evaluation issue:

1. To investigate and propose methods to reduce the dependency on initial CAD
parameterization conventions, thereby increasing design flexibility and innovation
potential during iterative digital evaluation cycles.

2. To develop evaluation methodologies that enable large-scale dataset labeling and
facilitate efficient generation of training data for AI-based predictive models, mit-
igating the prohibitive computational costs typically associated with detailed sim-
ulation methods such as finite element analysis.

3. To explore and establish frameworks for creating flexible and modular datasets
that accommodate dynamic design changes, thereby enhancing the robustness and
adaptability of data-driven models in evaluating product concepts, even when sub-
jected to significant design alterations.

By addressing these objectives, the research intends to provide an approach for more
streamlined integration of data-driven AI techniques into the engineering design process,
ultimately contributing to a more agile, responsive, and competitive product development
lifecycle.
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1.4 Research Questions

The research is guided by specific research questions. These questions are structured to
focus the investigation on critical aspects of integrating data-driven AI techniques within
the engineering design evaluation processes:

RQ1: What are the challenges of data-driven design evaluation in the design process of
iterative and simulation-driven products?

The question is raised to gain a better understanding of what evaluation aspects need to
be addressed, and in particular, in what way a data-driven evaluation approach can be
improved.

RQ2: How can data-driven methods in product development processes be customized
for the design evaluation of iterative and simulation-driven products?

By answering this research question, factors affecting possible solutions will be identified,
and the limitations concerning possible success factors for proposed solutions will be
discussed.

RQ3: What data-driven design supports can be developed for more efficient design eval-
uation?

This question drives the need to develop and test new data-driven approaches while also
providing an initial evaluation of the effectiveness of the proposed methods in relation to
the project’s objectives.

1.5 Scope and Delimitation

This research focuses on the iterative design process, which is a common characteristic
among high-level technical products. The research is also limited to concept refinement
utilizing computer-aided methods to minimize excessive physical testing. The iterations
discussed here are constructive in nature, facilitating improvement, and are not intended
to be eliminated. The focus is not on doing fewer simulations but rather on developing
a smarter approach to building knowledge from modeling and simulation that enables
data-driven AI techniques in design evaluation.

Simulation-driven design encompasses a wide range of knowledge areas involving various
engineering disciplines, including mechanical, electrical, chemical, software, and control
engineering. All these fields utilize simulations in different forms and scales to aid in de-
veloping complex products. In this thesis, the term ”simulation” is used interchangeably
to refer to CAE and FEA. As a result, the case studies in this research exclude other types
of simulations, such as agent-based, discrete event, and multimethod simulations, which
are also commonly used in product development.

The focus of the thesis is on the design process rather than the actual design itself. As
such, the examples presented are merely defined to demonstrate and test the suggested
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methods, and should not be taken as an actual product example. This means that the
data presented should not be interpreted as valid for the actual product design case. This
is partially due to confidentiality matters surrounding the real business conditions, and
partially due to the need to idealise and make assumptions for the purpose of method
testing, rather than product evaluation.

Another delimitation for this research is its concentration on classical modeling tech-
niques despite the surge in generative AI research. This decision is driven by the en-
during relevance and untapped potential of traditional models, which often require less
computational power and offer greater interpretability than their generative counterparts.
Additionally, the data engineering perspective in this thesis can promote advancements
in both traditional models and emerging AI technologies upon its success.
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Chapter 2

Theoretical Framework

The forthcoming sections of this chapter establish a foundation for the theoretical frame-
work that guides this research. The wide scope of methods addressing the design evalua-
tion problem does not allow for discussing all the existing methods here. However, this
chapter propels through some of the methods in data-driven design as a mainstream topic
on top of which this thesis is built. Figure 2.1 presents a word cloud generated from the
text of all included publications in this thesis. The size of each word in the figure reflects
how frequently it is used.

Figure 2.1: Word cloud generated from the text of all included publications
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The chapter is structured to progressively build an understanding of the PD process,
AI, and their intersections in data-driven design methodologies. It begins with a gen-
eral overview of PD, providing background information relevant to understanding the
context and challenges. The next section, 2.2, delves into how design automation and
CAD-CAE integration have been utilized to enhance the efficiency of simulation-driven
processes, addressing gaps and limitations in current integration techniques. Following
these foundational topics, the chapter moves to Artificial Intelligence and Data Science
in section 2.3, introducing core AI concepts and their relevance to data-driven design,
including a discussion on data engineering techniques for data preparation, feature ex-
traction, and preprocessing.

Building on these concepts, the chapter continues with Artificial Intelligence in Design
Science 2.4, structured to cover Data-Driven Design, Meta/Surrogate Modeling, and De-
sign for AI. This progression highlights how AI methodologies are applied to design pro-
cesses, particularly in CAD and CAE contexts. The discussion then transitions to data
engineering in Data-driven Design in section 2.5, focusing on Data Mining and Feature
Engineering methodologies that enhance predictive model performance. The chapter
ends in section 2.6 by addressing Datasets in Data-driven Design, emphasizing the im-
portance of structured datasets, identifying existing gaps, and proposing improvements
to enhance their applicability in AI-driven design methodologies. This coherent structure
ensures that the theoretical framework aligns directly with the research objectives.

2.1 Product Development and Design

Design typically refers to the process of inspiration, ideation, and implementation (Brown,
2008), and engineering design uses this cycle to satisfy requirements and fulfill a need
(Chakrabarti et al., 2011). Engineering design is not a single step but a series of inter-
linked activities that evolve a product and move it from an idea to existence. PD is a
broader term that includes the design process but also extends beyond it to cover the
entire process of bringing a new product to market (Ulrich and Eppinger, 1995).

Since PD is challenging and costly, as it takes a significant amount of time and resources
to gain the necessary knowledge about the forthcoming design. The amount of engineer-
ing and the coordination of engineering resources can be a substantial part of the design
effort and cost. Therefore, modeling PD stages and interactions between them has been
studied for decades. A linear PD process with a handful of methods and guidelines is
described in (Ulrich and Eppinger, 1995) with six phases, depicted in Figure 2.2. Empha-
sizing the generic nature of the exhibited process, the authors argue that each company
needs to adapt these steps based on the company’s context and the project’s challenges.
Also, the process might not follow such a sequential fashion, as many factors could cause
overlapping between phases, step-backs, or iterative activities. In Ulrich & Eppinger’s
model, early phases of design refer to the initial stages of the design process where the
main focus is on understanding the market, identifying customer needs, and concep-
tualizing possible solutions. In this thesis, we utilize this model to distinguish between
different phases of product development, as it is widely accepted among scholars.
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Figure 2.2: Generic PD process model by (Ulrich and Eppinger, 1995)

Another well-known linear PD process, with a narrow focus on the engineering design
and problem-solving aspect of product development, is outlined by Pahl and Beitz. They
define PD as a general decision-making process and propose a practical and procedural
process as illustrated in Figure 2.3. It is mentioned that any process model has to be
considered an operational guideline for activities based on the patterns of technical PD
and the logic of stepwise problem-solving (Pahl and Beitz, 1984). The reason may be that
this model comes from a time when the use of digital support tools was limited; however,
the basic logic remains useful and well recognized in engineering design practice.
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Figure 2.3: Generic PD process model by (Pahl and Beitz, 1984)

In the field of PD, more methodologies distinguish themselves by addressing the com-
plexities of design through structured frameworks. For instance, as closely related to Pahl
and Beitz, the VDI-2221 guideline methodically progresses from conceptual to detailed
design, emphasizing systematic and orderly design stages (VDI, 1993). Ullman’s approach
focuses on iterative refinement, using feedback loops to enhance design based on real-
world testing and evaluation (Ullman, 1992). Axiomatic Design is another model that
applies fundamental design axioms to ensure that solutions meet their objectives while
minimizing complexity (Suh, 1998). Hubka & Eder’s work outlines a theoretical model
that categorizes design activities into classes, enhancing understanding of the design pro-
cess through a structured scientific approach (Hubka and Eder, 1988). David Stauffer
emphasizes the importance of fundamental design principles that guide the development
process, ensuring consistency and quality in engineering outcomes (Stauffer and Ullman,
1991). Reviewing a large variety of these methodologies, Wynn & Clarkson categorize
PD processes into meso, macro, and micro levels, offering a detailed map that guides the
organization of design activities to address diverse project needs effectively (Wynn and
Clarkson, 2018).

Although PD models can give intuition to the flow of work or activities, some of them
are criticized, for instance, for being too rigid to handle, too planned to be innovative
or dynamic, too controlling, and bureaucratic, with too much non-value-added work
(Cooper, 2014). Choosing the best process model for a design process is not trivial and
needs attention to multiple factors. The degree of formalism is one of the factors to
consider when choosing from a wide range of processes (Graner and Mißler-Behr, 2013).
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A structured design method increases design transparency and helps achieve complex
objectives by preventing unnecessary iterations (Heikkinen, 2021).

In this work, PD models have primarily served as tools to study the design processes
within case companies and identify key problem areas in their development. One of the
influential models that inspired Figure 1.7 is the design-build-test design model (Wheel-
wright and Clark, 1992, 1994). All models used have provided a structured lens through
which the complexities and challenges faced by the case company in their design activities
have been analyzed and understood. Furthermore, the insights gained from this analy-
sis have been instrumental in suggesting targeted supports and interventions aimed at
addressing these challenges.

As societal demands and technological capabilities evolve, so too does the field of PD.
Modern PD practices are increasingly addressing more complex, systemic issues that re-
flect broader economic, environmental, and social challenges (Hallstedt et al., 2020). This
evolution necessitates a shift towards more integrated and adaptive PD frameworks that
can handle today’s design problems. Emphasizing, for instance, sustainability (Chatty
et al., 2022) and user-centric approaches (Chou and Wong, 2015), contemporary PD
models integrate cross-disciplinary knowledge and leverage advanced technologies to fos-
ter more resilient and flexible design strategies. Despite the rapid evolution in method-
ologies, it is crucial to recognize that many traditional theories remain highly relevant
to contemporary PD practices. Theories such as the axiomatic design principles (Suh,
1998) and the concept-knowledge theory (Hatchuel and Weil, 2003) continue to serve
as fundamental frameworks upon which modern, digitalized, and automated approaches
are constructed.

As PD continues to evolve, it increasingly intersects with the principles and practices of
System Engineering (SE) (Browning, 2018). This convergence is evident in the holistic
approach both disciplines take to address complex, multi-faceted projects. Systems engi-
neering is evolving to integrate commercially available subsystems and leverage this off-
the-shelf approach to reduce the time to market (INCOSE, 2023). Modern PD models’
shift towards addressing broader product lifecycle considerations, with a focus on more
agile, systemic, and human-centric approaches, mastering interventions, and developing
products within value networks(de Weck et al., 2011; Isaksson and Eckert, 2020). This
highlights the critical role of systems thinking in understanding and managing the inter-
dependencies and complexities inherent in modern PD. These perspectives reinforce the
necessity of adopting a systems-oriented approach in PD to ensure comprehensive and
coherent product strategies that are capable of adapting to evolving technological and
market conditions.

2.2 Simulation-Driven Design

Models provide a simplified version of reality, and simulations are used to validate a
concept, idea, or design. Simulations can be considered where observing or testing the
real-world experiment is expensive or impossible, and where analytical solutions are too
complicated or costly to be validated (Maria, 1997). In this sense, simulations serve not
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only as substitutes for experimentation but also as tools for early exploration and valida-
tion of design alternatives within a virtual environment.

Simulation-Driven Design (SDD), also known as simulation-based design, has been de-
fined as ”a design process where decisions related to the behavior and the performance
of the design in all major phases of the process are significantly supported by computer-
based product modeling and simulation” (Sellgren, 1999). In essence, SDD transformed
traditional design-built-test cycles with an additional step in between for computer-based
analyses/syntheses to form a design-simulate-build-test cycle (Bossak, 1998).

In another view, SDD aims to move simulation technology from the middle and the late
cycles of a design process to the very front cycles and reduce the time it takes for companies
to develop products. For instance, using CFD simulation on jet components, it has been
demonstrated that more intensive use of computational simulations in the early design
phase leads to fewer tests because it enables analytical evaluation of the design (Isaksson
et al., 2000). The activities involved in SDD are inherently generic, meaning they are
broadly applicable regardless of the specific design context. However, while the activities
themselves are context-independent, the methods and data required to execute them are
highly situation-dependent. These elements must be tailored to the particular product,
domain, and stage of development, and therefore cannot be prescribed in a generic form.
The relation between a generic activity and its associated data and methods, with five
steps, is shown in Figure 2.4.
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Figure 2.4: Generic SDD process model with five steps (Isaksson, 1998)

Despite its potential, the expansion of SDD and achieving computational efficiency were
hindered by integration challenges between the design and simulation activities. The state
of Product Data Management (PDM), CAD, and CAE in the 1990s and early 2000s
was perceived as inadequate to satisfy the needs of seamless interoperability (Shephard
et al., 2004), limiting the effective use of simulations in early development stages. Un-
certainties in input parameters or model structures were another concern point in the
field of SDD, since they can propagate through simulations and influence outcomes and
decision-making processes. Du and Chen (Du and Chen, 2000) proposed integrating ro-
bust design principles to handle and mitigate these uncertainties, ensuring reliable design
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decisions. Wall (Wall, 2007) suggested that effective SDD should actively guide design-
ers toward optimized configurations early in the development stages rather than merely
validating predefined solutions.

More recent advancements in simulation-driven approaches emphasize model-centric
communication and the integration of Knowledge-Based Engineering (KBE) systems,
as demonstrated by Sandberg et al., (Sandberg et al., 2013), to facilitate information
exchange and enhance decision-making within PD environments. For instance, the
knowledge-based master model approach allows for concurrent management of design
and analysis models across disciplines, thereby enabling faster iterations and more efficient
exploration of the design space (Sandberg et al., 2017). As these integrated frameworks
aim to streamline cross-functional collaboration and reduce modeling overhead, they
are increasingly complemented by surrogate-based optimization techniques. Simulation-
driven approaches have benefited from surrogate-based optimization techniques, where
expensive high-fidelity models are replaced with computationally efficient surrogates,
thus reducing computational costs without significantly sacrificing accuracy (Koziel and
Leifsson, 2016).

Simulations in PD have grown to be an umbrella term for a diverse range of methods.
For instance, in the mechanical design field, CAE was introduced first in the 1980s as a
way to provide analytical information in a timely manner in the PD process. Over time,
this evolved into the concept of virtual prototyping, where simulations replaced some
of the physical prototyping cycles to evaluate performance earlier and more frequently
(Kojima, 2000). Modern CAE tools simulate a variety of physical phenomena and are
employed not only for validation but also for optimization of both products and processes
(Merkel and Schumacher, 2003). However, the effectiveness of CAE is closely linked to
how strategically and consistently it is embedded into the product development workflow
(Isaksson, 1998; King et al., 2003). Successful implementation requires not only technical
capabilities but also alignment with the design process to ensure timely and actionable
insights.

In this thesis, SDD is utilized at various levels within the conducted case studies. CAE
simulations can be costly and contribute to extended engineering design lead times, which
is the overall problem of this thesis. However, the data needed for any potential support
also comes from CAE simulations. In this context, the studied products are used with
automated CAE simulations to map the design space into the solution space and create
the necessary datasets for further analysis.

2.2.1 Design Automation

Design automation was early defined as ”use of computers to aid in the design of comput-
ers” (Case, 1972), with an initial focus on automating basic calculations and visualizations
in early computer-aided systems in the computer-science society. In the PD context, as
computers started to be used as ”machine elements” in design methodologies and simu-
lations dominated design practice, the Design Automation (DA) stabilized itself as a field
(Ragsdell, 1980) in design optimization and numerical methods. Later, the definition
evolved to a broader one as ”engineering support by the implementation of information
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and knowledge in solutions, tools, or systems, that are pre-planned for reuse and support
the progress of the design process” (Cederfeldt and Elgh, 2005). The definition includes
automating tasks linked to the design process, whether directly or indirectly. This en-
compasses a spectrum of activities, from the creation of individual components to the
comprehensive development of complete products. Since the aim of automating design
is to improve engineering productivity and reduce engineering cycle time in meeting cus-
tomer specifications, DA is a suitable approach for the current research problem area.

To enable effective reuse and flexibility in automated design, modern CAD systems re-
quire tool-independent, generic modeling strategies (Amadori et al., 2012). A useful dis-
tinction in this context is between morphological and topological transformations, as
illustrated in Figure 2.5.
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Figure 2.5: Geometry handling in DA with various stages (Amadori et al., 2012)

Morphological transformations deal with how a design instance changes in form, rang-
ing from fixed geometries to parameterized and script-based models. Topological trans-
formations, on the other hand, involve structural changes, such as adding, removing, or
replacing model instances. From a practical viewpoint, DA boils down to using program-
ming to connect design tools/assets and create information flow that facilitates the design
process. This can go beyond only design and cover up to evaluation steps. For instance, a
design asset like a spreadsheet can be connected to a CAD design tool and plugged into a
CAE simulation tool, where the information flow is supported by allowing the computer
to map design requirement inputs to design objectives. This view, which also reflects how
DA has been used in this thesis, reveals some of the limitations of DA that are related to
the nature of how it works.

For instance, DA deals with part of the costly development work. It helps reduce manual
work, yet the core information processing, such as solving stiffness matrix in FEA, which
is time-consuming, still needs to be performed during the process (Arjomandi Rad et al.,
2022). This is why many designers view design automation primarily as a means to reduce
repetitive tasks and save time in later stages of product development, rather than as a tool
to explore solution spaces and support complex design tasks in early phases. Another
limitation is related to the nature of automation, which tends to support repetitive and
non-creative design tasks and can not handle creative work (Rigger et al., 2018a). DA
is usually applied to a specific process that has been well defined to serve a particular
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purpose. This often involves the use of specialized tools. As a result, there are not many
general-purpose automation tools available. Instead, there are process automation tools,
such as ISIGHT and MODEFRONTIER, which assist users in automating simulation
processes.

While large companies tend to have more resources and may possess some knowledge
of design automation, there is an observation that these designers might not be directly
involved in implementing automation solutions, leading to a disconnect (Rigger et al.,
2018b). On the other side, smaller companies, struggle as development of DA applica-
tions is generally undertaken by domain engineers who may not have formal knowledge
of engineering or software development training, with subsequent development processes
lacking the structure of formalized methodologies, and important principles can be ne-
glected (Van der Velden, 2008). A mapping between approaches in DA finds out that
few methods deal with the generation of different design alternatives and laborious de-
sign tasks (Rigger et al., 2016). This was used to argue that the application of DA has
been limited, most notably in configuration systems such as mass customization.

Today, DA encompasses more sophisticated applications in PD, such as using a knowledge-
based approach for creating complex CAD models (Frank et al., 6 30), integration with
data-driven and design optimization (Gustafsson, 2022), and as support for additive man-
ufacturing (Wiberg et al., 2023). DA frameworks have been developed to automate design
processes for highly customized products (Frank et al., 6 30; Colombo et al., 2008), ex-
plore design alternatives (Gustafsson, 2022), and facilitate data-driven design (Chiu and
Lin, 2018). These systems can significantly reduce design time and costs while improv-
ing product quality (Johansson Joel and Elgh Fredrik, 2013). Implementation strategies
include prototyping to evaluate potential benefits (Entner et al., 2019) and developing
methodologies tailored to SMEs (Colombo et al., 2008). As DA continues to advance, it
promises to enhance design space exploration, integrate manufacturing constraints, and
automate repetitive tasks throughout the PD process.

2.2.2 CAD-CAE Integration

The integration of CAD and CAE systems has been a long-standing challenge due to
differences in design information and intent loss, inconsistency in data models, differ-
ences in mathematical descriptions or geometric representations, and workflows (Khan
and Rezwana, 2021; V. et al., 2011). Traditional visions for CAD-CAE integration in-
clude either enabling CAD design tools to run simulations, enabling CAE simulation
tools to have better design capability, or the master model approach, which provides a
consistent model that serves both design and analysis purposes, letting engineers update
one file that automatically reflects changes across all stages of development (Smit and
Bronsvoort, 2009).

In the conventional sequential up-to-down design process, the idealization of the geomet-
ric model (simplification and modification) is implemented before meshing and simula-
tion (Feng et al., 2020). This hinders integration because the initial design model usually
contains various detailed features for downstream applications, like log history, tolerance
information for manufacturing, and so on, which are redundant information for finite
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element simulations. Multiple approaches have been proposed to address this issue, in-
cluding the development of common data models (G. and Yongsheng, 2010), XML-based
integration methods (Zhang and Li, 2011), and mixed shape representations (O. et al.,
2010). Feature-based multi-resolution and multi-abstraction modeling techniques have
been explored to create unified models for both CAD and CAE (Sang, 2005). Despite
these efforts, challenges persist in maintaining design intent, data consistency, and math-
ematical descriptions across platforms. A holistic approach considering product, people,
tools, and data dimensions has been suggested to systematically address the integration
issues (Deubzer et al., 2005).

The intelligent advisory system called PROPOSE, for design improvements considering
FEA results, is an example of another successful integration system (Novak and Dolšak,
2008). The idea was to encode the knowledge and experiences and build an intelligent
advisory system to help the designer to perform an analysis-based design improvement
process. Regarding any question, the system provides help to the user in the form of
explanation or advice to inexperienced designers as to how to change/improve the design
in critical areas of a structure after stress-strain or thermal analysis. Recently, Heikkinen
et al. proposed a simulation-ready CAD model that essentially integrates pre-processing
with CAD work (Heikkinen et al., 2016). It has been argued that this kind of support can
address time-pressured technology development in small-sized companies, where build-
ing extensive KBE systems are not feasible.

Recent research indicates a growing trend in the field of CAD-CAE towards integrating
AI, ML, and deep learning methods that can be regarded as a new vision in the field. This
integration aims to enhance design processes, automate tasks, and improve performance
evaluation with design data (Hunde and Woldeyohannes, 2022). AI-powered CAD-CAE
frameworks can populate design concepts in latent or coded space and thus benefit from
lower dimensionality. They also facilitate conceptual design by evaluating them with var-
ious inputs, such as images, instead of only depending on parametric models (Yoo et al.,
2021). Moreover, hierarchical data repositories as neutral formats are investigated as a
bridge between CAD and CAE systems (Khan and Rezwana, 2021) that allows for direct
transportation of parametric information to the CAE modeler. In another study, digi-
tal twins are proposed to enhance Machine Learning (ML) predictions regarding cutting
forces and conditions by leveraging data collected from both CAD and CAE environ-
ments (Ozel and Jarosz, 2022). This integration allows for real-time adjustments based
on feedback from the machining process, ultimately refining tool path strategies and im-
proving overall efficiency. The digital twin-based integration of CAD and CAE can also
be viewed as part of the growing trend of AI adaptation in this field.

2.3 Artificial Intelligence and Data Science

Ever since John McCarthy coined the term ”artificial intelligence” in the 1950s, defining
it as ”the science and engineering of making intelligent machines”, the vision has been to
emulate aspects of human intelligence. Artificial intelligence is traditionally compared to
natural intelligence, in the sense that in our body, senses gather data and human reasoning
draws a conclusion from them (de Callataÿ and M, 1986; de Callataÿ, 1992). However,

23



this comparison is up for debate, and there is still no consensus among scholars whether
machines really learn and understand like humans (Mitchell and Krakauer, 2023). This
is mainly due to a lack of knowledge about how the brain works at that level.

The term ML was also popularized in the 1950s by AI pioneer Arthur Samuel as“the field
of study that gives computers the ability to learn without explicitly being programmed.”
Another well-received definition of the term ML is ”a form of applied statistics with
increased emphasis on the use of computers to statistically estimate complicated func-
tions and a decreased emphasis on proving confidence intervals around these functions”
(Goodfellow et al., 2016). This definition highlights the capacity of computers to learn
complex response surfaces, recognize patterns, and make decisions through iterative pro-
cesses, while placing less emphasis on verifying the underlying functions. This focus aligns
well with this thesis, which seeks to utilize machine learning for predictive purposes.

A subset of machine learning is deep learning that focuses on utilizing neural networks
with a high number of layers between the input and output layers to perform tasks
(Schmidhuber, 2015). To understand the relationships between different AI-related fields
(AI, ML, Deep Learning) that enable and employ data-related fields (Data Science, Data
Engineering, Data Analytics), Figure 2.6 illustrates a Venn diagram featuring different
terms’ relations with practical examples relevant to PD and engineering design.
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Figure 2.6: A Venn diagram showing AI and Data Science fields with examples

AI and ML can be positioned within Ackoff’s and Zeleny’s hierarchical framework of
data, information, knowledge, and wisdom (DIKW) (Ackoff, 1989; Zeleny, 1987). ML
algorithms primarily employ raw data (as discrete, unorganized facts) and transform it
into information, as they place the data into meaningful contexts. This process often
enables identification of patterns and relationships that help generate knowledge (the
ability to interpret and apply insights). Although it has been argued that ML models
lack true ”understanding” or consciousness, referring to the definition from (Goodfellow
et al., 2016), the opposite point of view is that the DIKW framework does not require
human-like comprehension, as in this context, knowledge is a functional rather than a
philosophical or conscious awareness. In this view, AI extends beyond the acquisition of
knowledge by operationalizing it in ways that enable decision-making processes, thereby
approaching the realm of wisdom. Through iterative enabling and employing, AI and ML
continually refine their understanding, revealing how data can be systematically elevated
to higher-level insights that guide more informed decisions.
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The concept of data itself is subject to ongoing debate, particularly within interdisci-
plinary research. Ballsun-Stanton adopts the notion that data is not an objective rep-
resentation of reality but a socially constructed concept shaped by context and inter-
pretation (Ballsun-Stanton, 2012). Others describe data as things that flow in machines
(Al-Fedaghi, 2016), or as inputs that help us understand, regulate, and predict the world
(Kitchin and Lauriault, 2014). For the sake of predictive goals in this thesis, the latter is
chosen. On the other hand, there are claims that data science is not a science but rather a
research paradigm closely related to computer science and statistics (Brodie, 2023). Some
others describe it as a significant shift, ushering in the ”fourth paradigm” of science (Hey
et al., 2009). In this thesis, the definitions provided by Hayashi is adapted, in which
Data Science is a comprehensive concept that integrates statistics, data analysis, and their
related methodologies, as well as the results derived from them (Hayashi, 1998). In this
definition of data science, Hayashi discusses three phases for design science activity that
include: design for data, which concerns planning what data to gather, collection of data,
that answers the questions like how to gather the data, and finally analysis of data, as
cornerstones to understand actual phenomena with data.

2.3.1 Data Engineering

Most data scientists reportedly spend up to 80% of their time on data preparation. (Press,
2016), which aligns with reports that consider Data Engineering (DE) as a major time
consuming activity in design science (Liu et al., 2024). This has made DE to emerge as
an independent discipline in response to the growing complexity and volume of infor-
mation faced by organizations. As organizations increasingly rely on data for decision-
making, they face what has been termed the ”information paradox”, where companies
face both a lack of useful information and an overload of unnecessary data (Königer and
Janowitz, 1995). This paradox highlights the challenge organizations face in effectively
leveraging available data to support decision-making without being overwhelmed by it.
The evolution of DE has been categorized into four distinct, but non-chronological gen-
erations (Klettke and Störl, 2022), as shown in Figure 2.7. Each generation builds upon
the capabilities of the previous generation, reflecting increasing levels of automation and
abstraction in data handling.
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Figure 2.7: Four generations of data engineering applied to product development

• The first generation of DE algorithms involves manual efforts focused primarily on
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cleaning, transforming, and preparing data. This manual stage laid the groundwork
for the subsequent standardization and automation of preprocessing tasks.

• The second generation of DE is the data pipelines. Here, data workflows became
standardized and automated, which enhanced the efficiency and reliability of data
handling processes.

• The third generation of DE utilizes intelligent adaptation, which introduces algo-
rithmic recommendations and intelligent workflows. Significant aid from domain
experts is required to navigate complex data landscapes.

• The fourth generation, Automatic data curation, aims at comprehensive automa-
tion of data handling, thus empowering non-technical domain experts to utilize
data without extensive engineering expertise (Klettke and Störl, 2022).

Today, DE serves as a foundational component of data science, encompassing the cre-
ation, optimization, and maintenance of data infrastructure, architecture, and processing
pipelines (Jain, 2003). Within the scope of this thesis, data curation plays a central role by
enabling the construction, extraction, and selection of relevant features from simulation
and design data.

Effective DE helps improve design and manufacturing processes and supports decision-
making by providing clear and timely insights from data (Turney, 2002). The primary
focus of contemporary DE is creating reliable, scalable, and adaptable data pipelines.
Utilizing advanced data management tools such as SQL and NoSQL databases, Apache
Hadoop, and Spark (Jain, 2003). These tools enable organizations to manage growing
data volumes and perform advanced analytics. However, they also introduce challenges,
including handling heterogeneous data types, meeting real-time processing demands, and
ensuring compliance with governance and data quality standards (Achanta and Boina,
2023).

As can also be inferred from Figure 2.7, the latest advancements in data engineering stem
from the integration of AI and big data technologies, particularly in support of machine
learning applications (Roh et al., 2021). As data volumes continue to grow, the impor-
tance of DE in enabling efficient and effective use of data across organizational contexts
remains paramount. In this context, synthetic data generation and simulation-based data
augmentation are emerging as promising solutions to address the scarcity of labeled data,
especially in deep learning contexts (de Melo et al., 2022). These techniques are partic-
ularly relevant to this thesis, where curated datasets derived from simulation outputs are
critical for training predictive models and enabling design automation.

Data engineering has emerged largely outside the engineering design community. How-
ever, these technologies are being applied across various other domains, including medical
diagnosis (Chan et al., 2020) and the construction industry (Baduge et al., 2022), paving
the way for more intelligent and efficient design and engineering processes. As engi-
neering design continues to evolve toward data-driven practices, data engineering offers
essential capabilities for structuring, managing, and extracting value from large volumes
of design and simulation data (Liu et al., 2024). In this thesis, these capabilities are lever-
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aged to support the integration of simulation-driven design, machine learning, and design
automation through systematic and scalable data handling approaches.

2.4 Artificial Intelligence in Design Science

AI has increasingly shaped the methodologies and outcomes in contemporary design sci-
ence. This has been done by enabling organizations to surpass the limitations of tradi-
tional design processes by improving scalability, broadening scope, and enhancing adapt-
ability (Verganti et al., 2020). The earliest forms of AI in design science emerged in the
1960s and 1970s, primarily in the form of rule-based expert systems designed to emu-
late human decision-making and capture expert knowledge. However, this focus did not
intensify until the 1980s, where they aimed to replicate domain expert reasoning. Over
time, AI expanded into other paradigms, such as rule-based, knowledge-based, and data-
driven approaches and has found its way into many applications in fields like engineering
and design (Reddy and Fields, 2022).

To give several examples, AI applications are being integrated to improve the construction
of the design process, considering cognitive design concepts and user behavior (Gameil
et al., 2024). In health communication, AI components have shown promise in creating
more personalized and interactive solutions (Neuhauser et al., 2013). AI tools are being
developed to support the implementation of Axiomatic Design principles, automating
early-stage identification of functional requirements and assisting in design decomposi-
tion (Akay and Kim, 2021). AI-powered design tools streamline workflows, enable gen-
erative design, and facilitate predictive analytics for informed decision-making (Bagnato,
2023). In materials design, AI algorithms are accelerating the discovery of novel materials
with optimized properties (Badini et al., 2023).

The growing prevalence of AI systems has raised concerns about their transparency, inter-
pretability, and trustworthiness (Felzmann et al., 2020). Explainable AI (XAI) methods
have emerged to address these issues, aiming to make AI models more understandable
to various stakeholders (Stoyanovich et al., 2020). In the design realm, the systems en-
gineering paradigm is used to promote the decomposability of engineering designs into
interconnected components (Geyer et al., 2024). This approach employs a hierarchical
component system to create a deep neural network that incorporates interpretable in-
formation and enhances the explainability of predictions. Explainable AI has also been
shown to be capable of shedding light on traditional evolutionary algorithms for design
space exploration. As an intelligent assistant to designers and engineers, the algorithms
help steer the search towards a more desired region, enabling informed decision-making
for sustainable outcomes (Dubey, 2024).

2.4.1 Meta/Surrogate Modeling

While surrogate modeling, or meta-modeling, also has its roots in the 1960s and 1970s, it
originated primarily as a statistical and optimization-driven approach aimed at efficiently
approximating complex engineering simulations (Viana et al., 2021). Over time, however,
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surrogate modeling techniques have evolved to become closely integrated with modern
AI methodologies. Many statistical approximating methods, such as Response surface
methodology, Taguchi methods, Artificial Neural Network (ANN), Inductive learning,
and Kriging, have been used to predict the output of the computation-intensive design
problems (Simpson et al., 2001; Wang and Shan, 2007; Sun and Wang, 2019). These
methods function as substitutes for high-fidelity models, enabling the construction of
predictive approximations that significantly reduce computational cost and engineering
lead time. As illustrated in Figure 2.8, surrogate models serve as an intermediary layer
that uses part of the design inputs and replaces the simulation model to approximate the
output value, facilitating more efficient iteration and exploration during product devel-
opment.
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Figure 2.8: Substitive nature of surrogate models (Golzari et al., 2015)

Despite their growing capabilities, surrogate modeling techniques have largely remained
confined to the computational analysis stage of the product development process. Their
integration into broader phases, such as conceptual design, manufacturing planning,
or knowledge capture, remains limited. As a result, their potential to support cross-
functional decision-making or to encode tacit knowledge from downstream processes is
underutilized (Adler, 2008). This limited scope restricts the broader applicability of sur-
rogate models in facilitating end-to-end data-driven design workflows.

A persistent challenge in surrogate modeling is the curse of dimensionality, which im-
plies that the performance or accuracy of a system is reduced by an increased number of
dimensions. In high-fidelity engineering domains, such as vehicle body structures or air-
craft design, models often involve hundreds of design variables, leading to highly nonlin-
ear and complex response surfaces. Designers expand design dimensions to address such
concerns, resulting in so-called High Dimensional, Expensive, and Black-box (HEB) is-
sues (Shan and Wang, 2010). Another way to attack this problem is to break down the
problem into several subproblems (and train several models) but the drawback is that
each of the subproblems can have a different correlation with output and optimizing
weights is not a trivial practice due to coupled and complex relations and lack of knowl-
edge (Li et al., 2017). While this field has been established for a couple of decades and
is supported by a wealth of published research, there continues to be an opportunity for
further exploration, particularly in addressing challenges related to dimensionality and
parameterization.

One main approach in the literature as a solution for HEB is dimensionality reduction.
Dimensionality reduction approaches focus on simplifying geometric or parametric rep-
resentations while retaining key performance-driving variables. Examples include using
minimal yet effective geometric features in 3D printing processes (Wang et al., 2018) or
simplified geometry for the road wheel design process (Yoo et al., 2021), or simple design
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geometry with only three design parameters as well as a less computationally expensive
CAE method, modal analysis (Du and Zhu, 2018). Alternatively, increasing the number
of training samples has been shown to improve model generalizability, as demonstrated
in studies involving 60,000 automotive hood designs (Ramnath et al., 2019, 2020) and
100,000 design samples for predicting aerodynamic coefficients of transport airplanes
(Secco and de Mattos, 2017).

The integration of surrogate modeling with advanced AI methodologies offers new op-
portunities for handling high-dimensional design spaces. A growing body of research
explores the use of images as input to predict physical or performance responses (Li et al.,
2017; Cunningham et al., 2019). For instance, images of a 2D linear cantilevered beam as
input have been used with Convolutional Neural Network (CNN) to predict the stress
field as a picture in an end-to-end surrogate model (Nie et al., 2020). In another exam-
ple, images of automotive wheels are used in a model to predict modal analysis response
from finite elements (Yoo et al., 2021). These approaches offer a promising direction for
encoding complex geometric variations in a compact form, thereby supporting surrogate
modeling in high-dimensional and nonlinear design scenarios.

In this thesis, surrogate modeling serves as a key enabler for integrating traditional and
modern AI techniques to investigate the barriers between these methods and engineering
design. This approach aims to establish a more efficient data-driven framework for design
science. Traditionally, AI in design has often been viewed as a ”black box” where inputs
are transformed into outputs with little transparency regarding the intervening processes
(Kelliher et al., 2018). This perspective has been critically addressed in this thesis by not
only elucidating the mechanisms of creation of both the input and output of these black
box models but also by enhancing the management and integration of multiple such
models within complex design environments.

2.4.2 Data-Driven Design

The concept of Data-Driven Design (DDD), also known as D3, coined initially in the
realm of software development (Ward, 1978) and often referred to as ’data-driven software
design’ during the 1970s and 1990s, which had the idea of treating the data as the core
driver of system design, ensuring consistent definitions and structures before coding the
logic around them. The aim was to build software that aligns with a specific domain,
guided by insights from experts within that domain (Storer, 1988). The term’s initial
association with PD emerged within the realm of concurrent engineering (Domazet et al.,
1995), characterized by dynamic product models in databases and an enhancement to a
process-oriented approach aimed at improving design change management. Over the last
three decades, DDD has leveraged quantitative and qualitative data throughout the PD
process to inform decision-making and refine solutions.

Finding a well-accepted definition for DDD has shown to be difficult (Johnson et al.,
2023). Some scholars emphasize the importance of data in their definitions, such as:
”the activities that utilize data as the primary enabler for generating value, including
design modeling and design reasoning” (Wang et al., 2022). However, other scholars
emphasize the use of AI and data analytics as the foundation of the definition, expressing
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concern that most computer-aided tasks in design are primarily enabled by various PD
data (Feng et al., 2020). Frameworks for DDD usually consist of real-time data sensing
and acquisition coupled with data processing and storage units, which then input the
developing model and perform data mining on results and knowledge (Zhang et al., 2017).

DDD has been used to enable designers to understand user demographics, engagement,
and product performance (Kumar, 2019). The process typically involves a combination of
requirement identification, modeling, workflow implementation, simulation, data min-
ing, and evaluation. On the industrial front, it has been argued that by integrating data
practitioners into design teams, organizations can bridge the gap between data-driven
decisions and creative solutions (Noble, 2024). Companies use DDD to create new or
improved products and services in different industries. For instance, DDD is used to
build long-term customer relationships in a value co-creation manner, adapt to contin-
uous business reconfiguration, or address societal challenges such as sustainability (Lee
and Ahmed-Kristensen, 2023).

DDD is increasingly integrated into PD processes, which enables it to offer opportu-
nities for design optimization and innovation (Quiñones-Gómez et al., 2025; Johnson
et al., 2023). However, implementing DDD faces challenges as well, particularly in the
early design stages and physical PD (Briard et al., 2021, 2023). These challenges include
data selection, availability, and capturing (Langner et al., 2024), as well as the integra-
tion of data science with traditional design methods (Liu et al., 2024). The shift towards
DDD requires designers to acquire new skills and organizations to adapt their processes
(Johnson et al., 2023; Cantamessa et al., 2020). While DDD is commonly used for iden-
tifying customer needs through text mining of social media and online reviews, there is
potential for broader applications, especially in cyber-physical systems and IoT (Bertoni,
2020) that need to be explored. As DDD evolves, it presents both opportunities and eth-
ical considerations, necessitating further research to fully leverage its potential in design
practices (Quiñones-Gómez et al., 2025; Liu et al., 2024).

Although some financial and business products benefit from abundant data, this does not
hold true for the engineering design of high-level technical products, which is the focus
of this thesis. This discrepancy has brought a focus on how to collect big data in the field
of solid mechanics, which has been shown to be a bottleneck for the application of DDD
in such products (Ramnath et al., 2019). Another reason for this can be the difficulty in
effectively managing and integrating heterogeneous data and knowledge across different
phases of product design (Feng et al., 2020). As a design knowledge support tool, DDD
can be used for data extraction and design realization (Feng et al., 2020). However, the
challenge remains in building the amount of data that is required for design and effectively
managing it for different tasks. Adaptation of data science techniques to the specific
requirements of engineering design tasks has been proposed to be one avenue to fulfill
such gaps in the field (Chiarello et al., 2021b). Researchers raise the question ”How to
teach solid mechanics to artificial intelligence” (Mianroodi et al., 2021) and assert that the
application results in a fast solver that can potentially accelerate the calculation of stress
distribution in highly non-linear mechanical systems.

DDD, in the context of this thesis, is an engineering methodology in which data serves
as the central enabler for creating value through informed decision-making, iterative re-
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finement, and innovation throughout the product development lifecycle. DDD system-
atically involves the collection, processing, and analysis of quantitative data to accelerate
design evaluation. However, real-world applications face bottlenecks and limitations that
constrain engineers’ ability to fully exploit this methodology. This thesis identifies three
such limitations and proposes corresponding solutions to overcome them. Examples in-
clude extracting features independent of geometrical representations, employing dynamic
relaxation methods as an efficient alternative to traditional finite element analysis, lever-
aging these methods to create large-scale datasets, and establishing a platform for effective
dataset management and surrogate model execution at multiple levels of product archi-
tecture.

2.4.3 Design for and/or with AI

Recent research explores the integration of AI in design processes, proposing frameworks
to bridge the gap between engineering design and AI. This integration shifts the role of
human designers from direct problem-solving (people who design solutions) to defining
the parameters and frameworks that guide AI in finding solutions (people who design
problem-solving loops) (Verganti et al., 2020). This replacement of objects in the de-
sign challenges existing theoretical frameworks around how we design and necessitates a
reevaluation of the principles underlying design and creativity in the AI era.

Moving the human role from being at the center of problem-solving to being guides in
decision loops raises concerns about control, interpretability, and accountability in the
design process. While AI expands what is technically possible, it complicates how design-
ers define problems, evaluate outcomes, and ensure ethical standards. Critics argue that
AI systems often operate as opaque“black boxes,”making it difficult to trace reasoning
or anticipate unintended consequences (Stoimenova and Price, 2020). It has been shown
that there is a methodological gap and a lack of integrated and cohesive frameworks that
account for the unique demands of designing with and for AI.

In this thesis, Design for AI (Design for Artificial Intelligence (DfAI)) is positioned as
an extension of the established Design for X (DfX) philosophy, rooted in the German
VDI guidelines. DfX has been viewed as a collection of guidelines that incorporates non-
functional requirements, given as additional criteria to be included in concept evaluation,
configuration, and embodiment phases of the PD process (Pahl and Beitz, 1984). The aim
is to include non-intuitive aspects in the design that influence its life, such as durability,
adaptability, reliability, and serviceability (Magrab et al., 2009). In a similar way, DfAI
is recently defined as ”a set of goals, principles, and heuristics that aim to improve the
effectiveness, adoption, and innovation of engineering design and manufacturing AI”
(Williams et al., 2022). They argue that for industries and academia to reach this goal,
they must collaborate to address challenges such as data and expert shortages, enabling
the full utilization of AI technology in design practices. This definition of DfAI as an
evolving construct aligns its goals with the objectives of the individual problems studied
in this thesis.

In recent years, as scholars have begun questioning whether we should design with AI
or design for AI (Stoimenova and Price, 2020), another loose use of this terminology

31



has been proposed. Felzmann et al. argue that design for AI should integrate trans-
parency principles from the beginning of development in the system (Felzmann et al.,
2020). This is a way to ensure accountability and ethical integrity in automated decision-
making systems. For designers, this approach reinforces the need to embed ethical and
interpretative considerations into AI-enhanced design processes, ensuring that techno-
logical advancements align with societal values. The concept of the “triangle of shared
responsibility”further illustrates this shift, which positions the designer, generative AI
(e.g., LLMs), and traditional rule-based software as complementary agents in the design
process (Pradas Gomez et al., 2024). In this view, the designer sets the creative vision
and defines the task, while the AI contributes adaptive reasoning and context-aware re-
sponses. Meanwhile, the traditional code provides stability and deterministic execution
of specific functions. This triangle, as a collaborative framework, highlights the need to
balance creativity, adaptability, and control in AI-supported

Designing with AI emphasizes the collaborative and interactive role of AI in the design
process. Rather than treating AI solely as a tool, this perspective positions ’AI as a design
material’, where it is a dynamic, interactive element that actively shapes both process and
outcome (Yildirim et al., 2022). This approach allows designers to leverage AI’s capa-
bilities to enhance system efficiency and develop more innovative solutions. Ultimately,
treating AI as a core design material highlights that while AI can automate routine inter-
face tasks, its true value lies in augmenting human insight at deeper system and service
levels. Shi et al. systematically review designer-AI interactions, revealing that AI can
augment creative processes by uncovering latent user needs, generating diverse design al-
ternatives, and supporting iterative refinement. Their findings underscore a critical shift:
rather than replacing human creativity, AI is increasingly seen as a complementary partner
that empowers designers to push creative boundaries (Shi et al., 2023). Bagnato explores
the transformative potential of AI in design through the concept of the “Artificial In-
telligence of Objects.”His work illustrates that AI-driven generative processes not only
automate repetitive tasks but also open up new aesthetic and cultural dimensions in ob-
ject design. This perspective frames AI as a tool for reimagining design outputs, enabling
personalization, rapid prototyping, and a dynamic dialogue between technological inno-
vation and cultural expression (Bagnato, 2023). Together, these perspectives shift AI from
a background enabler to an active design agent, one that broadens how designers think,
create, and engage with complexity.

While designing with AI emphasizes collaboration, co-creation, and the augmentation of
human creativity, designing for AI prioritizes embedding ethical principles, transparency,
and accountability into systems from inception. Realizing these approaches in practice
requires careful alignment between theoretical ideals and actual development processes.
Two key factors that influence the role and impact of AI in design are the level of integra-
tion and the level of automation (Zwingmann, 2023). The level of integration refers to
how thoroughly AI is embedded within an environment, and the level of automation in-
dicates how much human intervention is needed for AI to function effectively. Together,
these dimensions define distinct categories of AI roles, such as AI as assistants, copilots,
autopilots, and agents, as illustrated in Figure 2.9. This framework clarifies the varying
degrees of AI involvement in designs, as knowing where a system fits is vital for defining
its role.
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Figure 2.9: Integration and automation in AI framework (Zwingmann, 2023)

Realizing the benefits of designing with and for AI requires bridging theoretical per-
spectives with practical considerations. Despite conceptual clarity on AI’s roles, chal-
lenges persist in implementing these ideas effectively in real-world scenarios. Practical
obstacles include extended development cycles, insufficient integration of user experi-
ence (UX) principles, and the translation of technical outputs into meaningful user expe-
riences (Heier, 2021). Moreover, there is often a gap between theoretical human-centered
AI guidelines and their practical applicability, as they frequently lack detailed, context-
specific methods. Addressing these implementation barriers―such as enhancing data lit-
eracy, fostering stakeholder collaboration, and promoting iterative, user-focused design
processes―is critical for effectively integrating AI into design practices and achieving
meaningful, user-centric outcomes.

2.5 Data Engineering in Data-driven design

Following discussions on ”Data-Driven Design” and ”Data Engineering in Data Science,”
this section aims to define and elucidate ”Data Engineering for Data-Driven Design.” This
concept integrates principles from both fields to enhance the capabilities and efficiency
of design processes. Here, it is explored how engineering features, labels, and datasets can
accelerate design evaluation and improve design outcomes. Previous studies have identi-
fied critical synergies between these two fields, highlighting essential tools and algorithms
while uncovering significant challenges (Chiarello et al., 2021b). For instance, the inno-
vative use of CAD as input for data-driven methods, the need for meaningful feature
representations, the automation of data labeling, and the acceleration of the prototyping
process.

Data engineering in data-driven design is a crucial component of modern engineering
processes, focusing on the creation, maintenance, and optimization of data architecture,
infrastructure, and pipelines (Jain et al., 2023). It involves integrating design theory with
data science (Liu et al., 2021) and developing tools for automated data curation (Klettke
and Störl, 2021). DE supports decision-making in engineering design by enabling effi-
cient processing of large volumes of data from diverse sources (Petersen et al., 2022). It
facilitates advanced analytics, machine learning, and other data-driven operations. The
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field has evolved through four generations of approaches and is increasingly important
in various industries, including automotive systems engineering (Maier et al., 2017; Vlah
et al., 2022).

To illustrate how principles from data science can inform and support engineering de-
sign, an analogy is made. In 2017, Monica Rogati published a blog post on Hackernoon,
drawing an analogy between Maslow’s Hierarchy of Needs and data science (Maslow,
1943; Rogati, 2017). This comparison highlights the foundational requirements of data
science in a structured manner. Design Hierarchy of Needs is another framework that
adapts Maslow’s Hierarchy of Needs to design framed by (Bradley, 2010). It priori-
tizes five levels, from basic to advanced: functionality (does it work?), reliability (is it
consistent?), usability (is it easy to use?), proficiency (does it enhance user ability?), and
creativity (is it innovative?). A design must meet lower needs before addressing higher
ones effectively. Figure 2.10 shows these two hierarchies beside each other.
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Figure 2.10: Analogy between data science and the design hierarchy of needs

Both hierarchies of needs emphasize a step-by-step progression from foundational re-
quirements to advanced capabilities. At the base, the functionality required in a design
is comparable to the data requirement for AI, as both support the smooth operation of
their respective systems. Moving up, Reliability in design and infrastructure for moving
and storing generated data, both guarantee consistent and trustworthy performance over
time. Usability focuses on making a product efficient and satisfying for users; in a simi-
lar way, exploring, transforming, and aggregating data provides useful analytics. At the
higher levels, Proficiency in design enhances the user’s ability to achieve more through
the design, and applications offering specific, practical use cases where AI can be lever-
aged for tasks like automation or decision-making. Finally, Creativity in design mirrors
Intelligence in AI, representing the pinnacle of each hierarchy.
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2.5.1 Data Mining in Data-driven Design

Data mining in engineering design involves extracting valuable insights from various
sources related to design processes and products. Regardless of any possible input data
type in ML models - scaler or binary, vector or time series, and matrices or images (Arjo-
mandi Rad et al., 2023) - the data is translated to Real (R) numbers to be used in mathe-
matical computation. Because of their rich data types, simulations are a natural choice for
data mining in engineering. In continuous simulations (e.x, Finite Elements), node and
shell section information stored in a meshed finite element model can yield input data for
analyzing a part’s performance after a geometric change (Kuhlmann et al., 2005). Zhao
et al. present a framework for data preparation and mining on crash simulation data for
studying occupant restraint systems parameters on crashworthiness properties based on
attribute importance and decision trees (Zhao et al., 2010). This was reported to reduce
the size of the data sets and delete irrelevant features from the data sets, especially in full
vehicle model type geometries that have more than hundreds of parameters.

On the other hand, discrete event simulation models are used as cost projectors for esti-
mations in life cycle assessments. Data mining on the history and cost-based features are
used in the aerospace industry as tools to characterize cost drivers such as over-performing
repair activities (Painter et al., 2006). Such clustering-based simulation mining methods
instantiate a vast design space offline. Given new design variants, most similar designs
are looked up with a similarity index, and from the simulation results of its ’design neigh-
bors’, a behavior valuation for a given simulation is stated without a FEA (Burrows et al.,
2011). Generally, simulation data is exploited to learn heuristic connections between the
design space and the simulation space, but the effectiveness of this method depends on
how well the simulations represent real-world behavior. Bad simulations can lead to bad
heuristics. More recently, simulation data mining that uses mesh models has been shown
to be effective in assisting designers in tracking design change (Shao et al., 2018).

Graening and Sendhoff suggest several methods for shape mining to enable data mining
techniques in engineering design to integrate data across design teams dealing with dif-
ferent simulations, as they argue these techniques are restricted to single design processes
and individual design teams (Graening and Sendhoff, 2014). Data mining for such re-
search is more of knowledge discovery by looking at associations (finding dependencies
in an analyzed data set), clustering (creating clusters of objects in a way to ensure the
highest possible similarity between group members), classification/regression (creating a
dependency model between independent variables describing given objects), or descrip-
tion (concise summarizing of analyzed data) (Rogalewicz and Sika, 2016).

2.5.2 Feature Engineering in Data-driven Design

The practical application of AI, machine learning, and data science methods depends fun-
damentally on the availability and structure of high-quality datasets. In DDD, datasets
are systematically constructed to map raw data into structured forms, categorizing infor-
mation into meaningful features and corresponding labels. Features in computer-aided
design and features in data science are completely referred to as different things. In the
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data science and ML community, a feature is defined as the numerical encapsulation of
the raw data (Zheng and Casari, 2018), serving as characteristics or property of the en-
tities being analyzed (Dong and Liu, 2018). Features serve as structures in a dataset and
are meaningful within a scientific or engineering context (Obermaier and Peikert, 2014).
Data scientists use algorithms to discover patterns and relationships within mined data
to identify patterns, make predictions, or derive insights. Features in data science can be
represented as columns in an Excel spreadsheet or as attributes within a dataset in vari-
ous formats, such as CSV files, SQL databases, or data frames. These features are crucial
for training ML models as they provide the necessary information to predict or classify
outcomes based on the learned patterns from the data.

On the other hand, there is the notion of CAD features or form features in the design liter-
ature that refer to the fundamental building blocks of a design’s form (Shah and Rogers,
1988). These features are essential geometric or functional components of a product, such
as holes, slots, bosses, and other standardized shapes that can be combined to create the
overall geometry of a product. In addition to the form, features are also defined as entities
describing the function (Dong et al., 1991), encapsulating specific engineering significance
used to represent attributes and relationships within a part or assembly. Features can also
refer to the connection between two parts (Murshed et al., 2010), also known as assem-
bly features like mating and constraints, as well as parametric controllers like dimensions
and angles that designers use as relationships that exist between different parts within an
assembly. CAD features in parametric modeling allow for easier modifications and op-
timization of designs, where the relationships among features can be defined to update
the entire design when changes are made automatically. Moreover, the terms kinematic
features, manufacturing features, and functional features are also introduced in design lit-
erature (Cheng and Ma, 2017), which are self-explanatory. User-defined features (UDF)
enable users to build their own features in CAD (Tang et al., 2001; Bonde et al., 2022),
allowing for greater flexibility and customization in the design process. These features can
be tailored to specific engineering requirements or to optimize the manufacturing pro-
cess, thereby enhancing the functionality and efficiency of the designed products. The
definitions of features and the distinctions between Design Science and Data Science are
succinctly summarized in Table 2.1. This table highlights how each field approaches the
concept of ’features’ from its unique perspective.

An overlap between DE in product design and process is the knowledge discovery field
that enables understanding a large body of textual datasets. Initially, this included build-
ing cyber agents such as web tracers and web organizers to extract needed information for
PD (Dagli and Lee, 1997). Such textual features in engineering studies aim to enhance
knowledge reuse by introducing computation knowledge extraction in text format from
design documents, testing reports, life cycle assessments, customer reviews, sales returns,
and so on (Reich, 2005; Romanowski and Nagi, 2001). Semantic literature constructs
a tag similarity measure to emulate how humans recall tags from memory. This line of
research aims to design information retrieval by utilizing a network of similar semantics
(Shi et al., 2017). Features that are being mined are structured information from written
historical records (Sexton and Fuge, 2020). Another semantics branch is to analyze sen-
timents for mining customer requirements in the conceptual design process (Sun et al.,
2020; Wu et al., 2022). Features identified here are the emotional tone (positive, negative,
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Table 2.1: Definitions for features in data science and design science literature

Data Science Design Science
Numerical encapsulation of the raw data
(Zheng and Casari, 2018)

Form features are fundamental build-
ing blocks of a design’s form (Shah and
Rogers, 1988)

Characteristics or property of the en-
tities being analyzed (Dong and Liu,
2018)

Entity describing both the form and
function of a design (Dong et al., 1991)

Structures in a dataset and meaning-
ful in context (Obermaier and Peikert,
2014)

A part feature a shape with specific ge-
ometric and topological characteristics,
and similarly, assembly feature is a con-
nection between two parts (Murshed
et al., 2010)

neutral) expressed within the text. Moreover, there are other kinds of mining-related top-
ics concerning product design, such as reasoning about designs through frequent pattern
mining, product design using association rule mining, and text features for mining design
rationale, which are all along the same lines. Text mining research in PD continues until
today (Park et al., 2023; Yang et al., 2023) with advancements in large language models,
but since it goes beyond the scope of this paper, the readers are referred to a review paper
(Siddharth et al., 2022) for a comprehensive view on the topic.

2.6 Datasets in Data-driven Design

In the field of computer science, large datasets have been fundamental for improving
methods and algorithms. Similarly, datasets, particularly large ones, are becoming in-
creasingly essential for product design and development, especially for testing innovative
processes and validating new methodologies. However, designers often struggle to find
extensive, well-labeled, public datasets (Arjomandi Rad et al., 2024). This fact has re-
cently been highlighted in several review papers conducted in the field. A compilation of
review papers from recent years that acknowledge the challenge of dataset availability is
shown in Table 2.2. This compilation echoes a widespread concern regarding the lack of
design datasets and sets the context for challenges in dataset acquisition in PD.
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Table 2.2: Quotations from recent review papers in the design community

”To shorten long training times, complete and noise-free design datasets created under
suitable conditions are required.” (Yüksel et al., 2023)
”Most of the research paid more attention to using certain kinds of algorithms to solve
certain types of design-related problems, yet seldom has it clarified how to prepare the spe-
cific dataset and how to conduct design knowledge-related feature engineering to identify
the key design features that are supposed to be learned by the algorithm models.” (Yang
et al., 2023)
Section on ”A Need for Large Multi-modal Design Datasets”. ”The community should
collaboratively construct and maintain expansive design datasets with high-quality labels.
This would entail collecting and storing aligned multimodal design data, labeling datasets
with design-related attributes, and if available, providing pre-trained embeddings or latent
representations, and specifying associated design context.” (Song et al., 2023)
”ML-based models can significantly aid in acquiring the massive number of datasets re-
quired for typical uncertainty quantification (UQ) procedures, which might not be prac-
tical to obtain from simulations and experiments.” (Babu et al., 2023)
”We propose that scholars develop standard datasets using design text as a common evalua-
tion platform for future NLP applications.” ”None of the NLP contributions that we have
reviewed in this article leverage a design-specific gold standard dataset for evaluation.”, ”A
gold standard dataset is necessary for NLP applications that aim to measure artifact-level
metrics such as novelty, feasibility, and so forth.” (Siddharth et al., 2022)
Section on ”Datasets”, and also writes ”Compared to other research fields like Com-
puter Vision, which have massive publicly available datasets, the availability of large, well-
annotated, public datasets in engineering is severely lacking.” (Regenwetter et al., 2022)
”If the ML-enabled DA is to be attained, larger datasets of real-world designs should be
made freely available. Most of the ML algorithms reviewed herein have used training
datasets in the order of the hundreds.” (Málaga-Chuquitaype, 2022)
”To foster the use of data in the context of engineering design, scholars and practitioners
may develop packages especially designed for the ED context, as well as examples and
datasets associated to particular methods.” (Chiarello et al., 2021a)

Earlier reviews often cited the ”need for bigger datasets” as an Achilles heel for DDD
methodologies. Design engineers tried to avoid large datasets as they were perceived as less
manageable black boxes (Liem, 2007) and calling for reduced-order modeling to address
the computational challenges of large-scale statistical problems (Frangos et al., 2010). Yet,
as can be inferred from the Table 2.2, the recent discourse reflects a positive shift towards
creating larger datasets. More than two decades after the first DDD approaches, data
seems to still be a limiting factor in the full-scale applications of ML models (Málaga-
Chuquitaype, 2022), but in a different way. This mirrors the paradigm shift in overall AI
literature and reflects the recent success of generative models that utilize more complex
algorithms and much bigger datasets.

To address this growing challenge, some researchers suggest collaboration between de-
sign engineers and data scientists to solve the issue (Chiarello et al., 2021a), and some
emphasize the importance of staying lean and small and increasing quality by extract-
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ing and managing latent features (Rad et al., 2022). Synthetic datasets are emerging as
a viable solution to address the scarcity of real-world data, with guidelines proposed for
their creation, annotation, and validation (Picard et al., 2023). There is a cumulative
effort for creating guidelines and best practices for data publishing in mechanics and dy-
namics (Ebel et al., 2025), recognizing its essential role in data-driven engineering design
and highlighting challenges, solutions, and examples based on research in AI-supported
design tasks (Ahmed et al., 2025).
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Chapter 3

Research Methodology

3.1 Research Context

The content of this thesis was developed over the last five years during my studies at two
Swedish universities. Figure 3.1 shows a timeline for different activities during this period.
The work began with the ’Butterfly Effect’ project at Jönköping University in 2019, which
lasted for roughly two years. During which papers 1 to 3 were written in the way that is
presented in the figure. During the summer of 2022, I got my Licentiate degree from
Jönköping University and moved to Chalmers University of Technology to continue my
PhD. I was involved in the CHEOPS low power project, which also lasted for another
two years, during which papers 4 to 7 were produced in the way that is illustrated in the
figure.

J ö n k ö p i n g  U n i v e r s i t y C H A L M E R S  U n i v e r s i t y

Butterfly Effect Project

Lic. Ph.D.

CHEOPS Project

Figure 3.1: Projects involved in the thesis and the timeline for different studies

The Butterfly Effect project was financed through the Swedish Knowledge Foundation
(KK-Stiftelsen) with grant number 20180189. The idea for this project was based on an
analogy to Lorenz’s chaos theory, which aims to forecast unpredictable tornadoes in the
future of a system. The Butterfly Effect research project investigated how a small change
in the early phases of product development could significantly affect the final product
and vice versa.

The Consortium for Hall Effect in Orbit Propulsion System, abbreviated as CHEOPS,
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was a project funded through the European Horizon project (H2020 project under Grant
Agreement 730135). This project aimed to give Europe a competitive edge with respect to
technologies related to the design, simulation, and manufacturing of Hall Effect Thrusters,
and Chalmers had a small role in it for value and cost assessment for different product
architectures designed in the project.

3.2 Industrial Context

It is essential to demonstrate how the developed methodologies and findings of this re-
search have been applied and validated within real-world industrial contexts. Two key
industrial sectors involved in this research are the automotive industry, particularly in
areas related to passive safety systems such as airbags and crash simulations, and the space
industry, specifically concerning fluid management systems. Collaborations within these
sectors have provided diverse and challenging application domains to validate the pro-
posed methods and frameworks.

The curtain airbag is an important safety feature that protects people’s heads during side-
impact and rollover crashes. A CATIA model of a curtain airbag was developed in col-
laboration with Autoliv AB in the Butterfly Effect project, a top company in automotive
safety systems that specializes in airbags, seatbelts, and other safety technologies. This
model is used in two case studies, which led to two separate publications that are in-
cluded in this thesis. Finite element simulations for this model ran with LS-DYNA, the
medial axes with Rhino Grasshopper, and dynamic relaxation modeling with Rhino Kan-
garoo. Figure 3.2 shows all products and cases that have been developed, borrowed, and
used for this thesis, and the described Airbag model is numbered a case 1.

Figure 3.2: Used cases from different industrial context

The crash case studies consist of two distinct analyses. The first case involves investigating
the cross-sectional shapes of thin-walled beams for the Toyota RAV4, borrowed from
existing literature. These shapes were reconstructed and simulated under identical crash
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conditions using ABAQUS. Subsequently, the cross-sectional geometries were exported
and further utilized in Rhino Grasshopper to facilitate subsequent design exploration and
analysis, in a similar way to the airbag case. This case is numbered as Case 2 in the figure.
The second crash case (numbered Case 4 in the figure) was the front structure of a car,
designed and simulated based on information from the literature. Some of the author’s
previous publications, completed before starting the PhD, were used.

Case number 3 in the figure relates to the space industry aspect of this thesis, which fo-
cuses on Fluid Management System (FMS), specifically related to the CHEOPS project.
Due to confidentiality requirements within the space industry, the use of proprietary
company data was not possible. Therefore, the FMS datasets are built by considering
the actual existing datasets and the underlying physics of the problem. For system-level
performance data was collected, comprising 32 thruster results tested under different op-
erating conditions with power ranging from 100 to 2000 W.

Furthermore, I will highlight the contributions of the industrial partners in terms of
providing data, domain knowledge, and validation opportunities. Their involvement has
been essential to demonstrating the applicability of the research findings to real-world
scenarios.

3.3 Research Approach

As briefly mentioned in Section 1.2, A systematic approach for structuring problems and
systems is used to break down the problem at hand and explore its core elements (VDI-
2221, 1987), which also resembles the V-model in automotive engineering. The overall
employed research approach is illustrated in Figure 3.3.

DRM

Case study

Experiment

Overall problem

Sub-problems

Individual problems Individual solutions

Sub-solutions

Overall-solutions

Figure 3.3: Adopted research methods for studying different levels of formulated problems

This figure shows that at a high level, Design Research Methodology (DRM) is employed
as a way to organize and guide the direction of the research during the PhD process toward
addressing the Overall Problem. Beginning from early clarification phases of DRM, the
overall problem of engineering design lead time was identified through semi-structured
interviews with industrial partners. Additional clarification and descriptive steps reveal
that two approaches, design automation and data-driven design, are among the avenues
that require exploration.

Case studies are used for further refining the problems and to convey more understand-
ing of the sub-problems that are contributing to the overall problem. Together with an
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industrial partner, it was decided that design evaluation is one of the main contributors
to the overall problem and, therefore, was chosen as the main problem for further study.
Literature and case studies suggest that a data-driven approach is able to accelerate the de-
sign evaluation cycles, but faces challenges, three of which are identified and introduced
as individual problems in this thesis, see Figure 1.8.

Utilizing the data-driven approach can enhance the analysis and synthesis processes by
providing rapid predictions based on previously generated data. While offering substan-
tial speed advantages, it necessitated the availability of extensive, high-quality data. De-
sign automation can be used as an enabler for structuring the datasets required for anal-
ysis and enhancing efficiency by minimizing repetitive tasks. However, challenges, such
as processing cost, quality, and management of the generated data, limit their utilization
and adaptability when applied to complex and evolving design tasks. Therefore, computer
experiments are employed to analyze and synthesize these problems that are identified as
bottlenecks in addressing the design evaluation sub-problem with a data-driven approach.

The research approach follows a progressive narrowing strategy. Starting from a broad,
high-level overall problem, gradually breaking it down into sub-problems, and then fur-
ther into individual problems considered to be the root causes. To complete the loop on
the V-model and validate the findings, the individual solutions that are proposed are vali-
dated within their respective case studies. A workshop is designed with industrial partners
and experts for validation and verification at the sub-solution level. The validation of the
overall solution, as it requires substantial studies and effort, remains for future work. To
organize the work during the validation process, Sargent’s methodology (Sargent, 1988)
is used.

3.4 Research Methodology

3.4.1 Organization of Research with DRM

The work carried out during this thesis is organized using DRM, one of the various
methodologies available in design science (Blessing and Chakrabarti, 2009). The frame-
work consists of four stages, as shown in Figure 3.4. The double arrows in the picture show
the fact that the researcher is allowed to revisit the stages to make sure the foundation of
the research is on solid ground.

The choice of DRM has been partially because it offers a structured and iterative frame-
work for problem identification, development of solutions, and validation of findings.
This effectively aligns with this research’s aim of reducing engineering design lead time
by breaking down this overall problem into sub-problems and individual problems, an-
alyzing them through empirical data collection, and proposing tailored solutions. Addi-
tionally, the iterative nature of DRM allows revisiting and refining each stage to ensure
robust findings.

The Research Clarification (RC) is used in this thesis for clarifying the work to be done
and gathering information to support the assumptions (the fact that engineering design
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Figure 3.4: DRM framework (Blessing and Chakrabarti, 2009)

lead time is the overall problem). This was achieved by reviewing literature and semi-
structured interviews to help explain the research. The outcome of this stage was a de-
scription of both the existing and desired situations, which helped us to formulate the
overarching aim of the thesis. Additionally, a success criterion for reducing this time is
formulated to evaluate the outcome of the research. The measures for success criteria
align with the subject under investigation.

In the Descriptive Study I (DS-I), more analyses on empirical data are performed through
case studies to investigate influencing factors and to shed light on the current situation. It
was noticed that the literature fails to provide answers, and the state of practice falls short.
Methods to enhance understanding of the problem, like field observation, are employed
at the case company. The gathered data, in combination, provided understanding of the
root causes, which are formulated as individual problems, contribute to the sub-problem
(see 1.6).

Blessing & Chakrabarti use the term ’support’ to represent possible means for improv-
ing the process, which are called individual solutions in this thesis. Support can include

“strategies, methodologies, procedures, methods, techniques, information sources, soft-
ware, tools, guidelines, etc., addressing one or more aspects of design”(Blessing and
Chakrabarti, 2009). Prescriptive Study (PS) was about finding an individual solution for
each individual problem and evaluating them. A complete understanding of the existing
situation is achieved when moving on with this phase.

Descriptive Study II (DS-II) was about finding out how well the individual solutions work
and if they can satisfy the desired success criteria of not only fulfilling the lower level
but also the sub-problem level. The generalizability of the provided individual solutions
(only two out of three) is investigated by applying the methods to other case studies.
In cases where this has occurred, the support’s limitations are mentioned, but further
investigations are advised to be taken up in future studies. This was mainly because the
vision of the desired situation needed to be adjusted accordingly before the tool could be
improved.
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3.4.2 Understanding the Problem

Semi-structured Interviews

In essence, semi-structured interviews are ’engaging conversations’ where the interviewer
warmly encourages the respondent to share their feelings and provide unique examples
(Merriam and Tisdell, 2015). This approach fosters deeper insights into the challenges
they face, moving beyond just surface-level responses. The semi-structured interview fea-
tures flexible question usage, specific data collection from all participants, a predominant
focus guided by a list of questions or topics to investigate, and a lack of predetermined
wording or sequence. (Merriam and Tisdell, 2015). It’s essential to keep all four aspects in
mind, since the primary aim of a semi-structured interview is to create a conversational
atmosphere rather than a traditional questioning scenario.

To gain a good understanding of the particular topic of interest, it is important to cap-
ture the interviewee’s understanding of the topic within their own context. While this
may make strict evaluation more challenging, it allows for the inclusion of contextual
factors. Challenges and considerations regarding sampling participants (and in general)
are discussed in the literature (Cash et al., 2022).

In research involving practitioners in engineering, product development, and produc-
tion, semi-structured interviews are often utilized to balance rigor and flexibility, espe-
cially considering the limited time available to engage with practitioners. Depending on
the focus of the study, whether it is preliminary or aimed at detailed validation, different
techniques can be employed. A typical process that is also being used in this study can
be viewed in Figure 3.5 in the adopted form (Flankegård et al., 2019). In this process,
first keywords and phrases were noted when reading the transcripts and then categorized
into themes. Next, all quotes exemplifying the codes were copied to a spreadsheet to-
gether with the keywords and phrases indicating different themes, and the naming and
categorization of the challenges were developed. In the next phase, these categories will
be presented at a workshop with the management team and interview respondents at the
studied company to receive feedback on the categories.

Data 
collec�on via 

interviews

Transcrip�on 
of the 

interviews

Keywords and 
phrases 

categorized 
into themes

Categoriza�on 
of the 

challenges 
were 

developed

Categories 
related to a 

model of the 
product 

development 
process

Figure 3.5: Interview process and the analysis afterward (Flankegård et al., 2019)

For this thesis overall, fifteen semi-structured interviews were conducted with experts
from a leading airbag manufacturing company (Autoliv AB) to gather qualitative insights.
The choice of semi-structured interviews was driven by the need to explore complex,
contextual insights into CAD and CAE practices that are not fully understood or doc-
umented in the literature. Interviews were conducted over a three-month period, each
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lasting approximately 60 minutes, and carried out using a digital conferencing tool to ac-
commodate the geographical spread of the participants. One limitation of this approach
was the potential for bias in qualitative data, as the interview participants might have had
vested interests in promoting specific techniques. Multiple viewpoints were sought to
mitigate this by selecting a diverse range of experts.

Case studies

The rationale behind employing a case study approach lies in its profound ability to un-
cover in-depth insights and complex interactions within real-life contexts. According to
Yin (Yin, 2003), a case study methodology is particularly effective in investigating contem-
porary phenomena within its real-life context, especially when the boundaries between
phenomenon and context are not clearly evident. For example, the effectiveness of the
data-driven approach could be influenced by various external factors such as the specific
simulation tools used, the expertise of the designers, or the type of design problems being
addressed. A case study approach allows for the examination of these interdependencies in
detail and informs the refinement and validation of the methodology. This depth of anal-
ysis is essential for understanding not only whether the methods work but also why and
under what conditions they are most effective. Since this research aims to improve design
processes by reducing engineering design lead time through data-driven techniques, the
case study approach provides a way to observe and analyze how these methods perform
when applied within authentic industrial or academic settings.

Four case studies are employed in total to contextualize the overall problem of engineering
design lead time. These case studies use empirical data analyses to provide a better under-
standing and narrow down the sub-problem, namely ’Design Evaluation’, to achieve the
higher goal. These case studies illustrate how the engineering design lead time, as overall
problem defined in the Research Clarification phase (RC), plays out in different cases
and how addressing the sub-problem of evaluation of concepts can lead to shorter engi-
neering design lead time. Therefore, to complement the process and refine the problem
formulation, three individual problems are identified as hindrances in data-driven design
evaluation.

Paper FPaper EPaper DPaper CPaper BPaper ADRM StagesResearch Questions

Research 
Clarification

RQ1

Descriptive
Study I

RQ1RQ2

Prescriptive 
Study

RQ2RQ3

Descriptive
Study II

RQ3

Figure 3.6: Papers connection to research questions and DRM framework
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3.4.3 Developed Strategies

The development of strategies for addressing each individual problem is carried out dur-
ing the prescriptive study phase. By employing the computer experiment as a research
method, this phase assesses how various interventions or design changes might affect the
performance of the design concept in each case study (Santner et al., 2003). This exper-
imental phase aims to validate the efficacy of each concept under controlled conditions,
thus providing empirical support to the theoretical findings derived from the case studies.
The interplay between case studies and experimental methods enables the combination of
qualitative depth with quantitative rigor. This dual approach ensures that the conclusions
drawn are both contextually informed and empirically validated.

Individual problem one was studied on two case studies that have resulted in papers A
and E, In the same way, individual problem 3 studied with two case studies resulted in
papers D and F. Paper B is the result of a case study with individual problem two and
paper C is a review paper that studies opportunities and challenges with datasets in design.
Figure 3.6 shows how different outcome papers are connected to different steps in DRM
methodology as well as proposed research questions in this thesis.

3.4.4 Validation and Verification Methods

The primary validation framework used is proposed by (Sargent, 1988, 2010, 2020). This
approach reinforces that the proposed solutions are effective and efficient concerning the
problems and constraints of the thesis, while also adhering to the established standards
of academic rigor. The motivation for selecting Sargent’s model stems partially from its
methodical approach to validation, and also partially because of this method’s roots in
the modeling and simulation field. Of such reasons, this validation method is highly
suitable for ensuring the veracity and applicability of the modeling and simulation work
in this thesis. This methodological model (called Sargent’s model in this thesis) supports
the reliability of the models, simulations, and research findings within four distinct parts
illustrated in Figure 3.7.

In this thesis, Conceptual model validity is performed to determine that the theories and
assumptions underlying the conceptual models are correct and that the model’s represen-
tation of the problem entity is ’reasonable’ for the intended use of the model. This has
been done using experts’ assessments on models’ usability and applicability.

Computerized model verification is used to ensure that the computer programming and
implementation of the conceptual models are correct. This has been performed following
the Sargent’s suggestion for structured walkthroughs/review the code line-by-line with
peers, trace the model’s execution to detect errors, and dynamic testing of the model
under various conditions to verify outputs.

Operational validity has determined that the model’s output behavior has sufficient accu-
racy for its intended purpose or use over the domain of the model’s intended application.
Sargent suggests accomplishing this by comparing the model’s outputs (e.g., performance
metrics) to historical data and other validated models by employing similar techniques.
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Figure 3.7: Model Validation and Verification by (Sargent, 1988)

An example of graphical comparisons is given to visually assess outputs using histograms
or scatter plots.

Data validity step is used to ensure that the data used for model building, model evalua-
tion and testing, and conducting the model experiments are adequate and correct. This
is done, for instance, by collecting data relevant to the design task. Test data for accuracy
using different error metrics. Screen for outliers, evaluate prediction results with various
models.

Although Sargent’s model meets classical validation questions regarding effectiveness (is
the model designed correctly?) and efficiency (is the model designed right?), it falls short
when applied to processes and design process models. For instance, Conceptual Model
Validation checks if the simulation’s theories are correct for the real system, but it does not
focus on the logical consistency of the method itself outside of that context. Operational
Validation confirms that outputs match real-world data, but it does not explicitly assess
whether the method’s structure remains sound across diverse cases. These shortcomings
are considered when applying Sargent’s methodology to assess findings. Logical consis-
tency of the findings outside the case studies can be investigated by applying the developed
supports to a different case. This thesis checks the operational validity of the models by
determining that the model’s output accuracy remains sufficient for its intended purpose
across diverse cases.

Workshop

As mentioned, conceptual model validity in Sargent’s model is determined by assessing
experts’ opinions on the developed models. The assumption is that if the model is deemed
applicable and useful by experts, it can be argued that it fulfills its intended purpose. A
workshop consisting of three presentations on individual solutions, each lasting about 20
minutes, is designed. Following Sargent’s definition, the first goal of the workshop is to
assess if experts think the developed supports represent the problem entity. Therefore,
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before presenting what has been developed, a five-minute survey was conducted to as-
sess how much participants think the problem exist, and therefore how much support is
lacking. Figure 3.8 shows the designed workshop that consists of three rows.
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Figure 3.8: Validation workshop with the case company

After the first survey, which inquired about the need, a 10-minute presentation was pro-
vided to show how each individual solution addresses that need. This is followed by
another five-minute survey that gathered feedback on how useful and applicable they
found the support. Almost 10 people participated in the workshop, of whom nearly half
had also participated in the interviews conducted earlier. The results of this workshop are
presented in the discussion chapter.

In some cases, additional validation checkpoints at the detail level are considered during
the work process. However, it is not feasible to provide detailed information about every
step. For instance, the willingness of respondents to serve as reliable informants affects the
validity of the data collected in semi-structured interviews. In this study, triangulation
is considered as a method for such cases. This approach involves not depending on a
single source for information and facts but instead validating them through multiple data
sources. This is a way of assuring the validity of research through the use of a variety of
methods to collect data on the same topic, which involves different types of samples as well
as methods of data collection (Yin, 2011). This was accomplished by participating in some
internal meetings of the companies and conducting observation sessions with engineers
working on the problematic tasks. By comparing conclusions from these observations
and interviews, data collection was stimulated with triangulated insights, which provided
more trustworthiness for the research.
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Chapter 4

Summary of papers

This chapter summarizes six appended papers concerning the problem formulation pre-
sented in the Introduction section, as well as their contributions to the research questions.
As mentioned, the thesis examines three individual problems in a nonlinear chronologi-
cal order. To understand how these papers relate to one another, Figure 4.1 illustrates the
three problem areas and the sequence in which the papers were produced. This section is
written with respect to this illustrated order and will not follow a linear timeline.

1

Prepared datasets are
rigid and prevent design

changes

Models depend on the
initial parameterization

convention

Paper A

Paper E

32

Paper B

Paper C

Paper D

Paper F

Data engineering

Feature engineering

Costly testing methods
limit large-scale labeling

of datasets

Figure 4.1: Mapping the papers and the individual problems, see Figure 1.8

4.1 Feature engineering on airbag case, Paper A

This paper is the result of the first study performed and is a mix of ’Research Clarification’,
’Descriptive Study I’, and a ’Prescriptive Study’ in DRM methodology. It attempts to answer
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RQ1 by presenting a challenge with data-driven design evaluation, RQ2 by highlighting the
importance of fast evaluation in the design process, and RQ3 by showing a feature extraction
methodology and applying it to the design evaluation of a side airbag. The paper shows that
the offered method reduces the evaluation time of a design concept and is, therefore, can be
successful in impacting the selected success criteria.

This paper identifies challenges in implementing a prediction tool within the design pro-
cess, specifically focusing on dimensionality and parameterization, based on a literature
review and workshops. A case study on side airbags demonstrated that fully defining a
CAD model requires specifying numerous parameters, which can introduce complica-
tions. A parametric analysis of these CAD parameters revealed substantial variation in
how each one influences the airbag’s final volume. This underscores the complex and
interdependent relationships among the parameters. Notably, none of the individual
CAD parameters showed a direct correlation with the final volume, which may explain
the limited accuracy of prediction models trained solely on these inputs.

The search for features that have low dependence on CAD parameterization and high
correlation with output commences by calculating the medial axis of the geometrical 2D
shape of the airbag. The medial axis, often referred to as the shape’s ”skeleton,” is a method
of reducing a shape’s complexity by capturing its fundamental structural features without
retaining all geometric details. This is achieved by computing the set of all points having at
least two closest points on the object’s boundary, effectively creating a simplified internal
representation of the object. Figure 4.2 shows how the medial axis was generated in
Rhino/Grasshopper. The Vonronoi component is used to create circles at equal distances
on the edge of the geometry, and then by increasing the radius of these circles and making
them create a boundary, the medial axis is generated.

Figure 4.2: Medial axis extraction process from airbag 2D geometry

The medial axis is a geometric entity like other entities such as area, circumference, etc, but
is unique for an arbitrary design shape. The paper demonstrates that the medial axis, as an
alternative method of representing geometry, can be used to extract high-quality features
for prediction analyses. For instance, the length of the medical axis and the sum of the
circumferences of all circles inscribed in the design shape are extracted as new parameters.
These geometric entities, as new parameters, are referred to as sleeping parameters, and are
studied as a performance indicator for the inflated curtain airbag. Table 4.1 demonstrates
that these new parameters, calculated independently from CAD model parameterization,
have a significantly better correlation with the volume output.
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Table 4.1: Correlation between CAD and Sleeping parameters with the output

Name of the parameter R2 Correlation with the output
No. 1 (CAD parameter) 0.037
No. 13 (CAD parameter) 0.018
No. 12 (CAD parameter) 0.0441

Area 0.829
Length of the medial axis 0.752

Sum of circumferences inscribed 0.881

Regression analyses were conducted to assess and validate the performance of extracted
parameters within regression modeling. The findings confirm that sleeping parameters
enable designers to create straightforward yet precise regression models that utilize fewer
features and sample points. A Support Vector Regression (SVR) model was also trained
to illustrate that transitioning from basic linear regression to more advanced algorithms
does not significantly improve prediction accuracy compared to the benefits provided by
sleeping parameters. By enhancing the quality of training features, sleeping parameters
enable satisfactory results with Multiple Linear Regression (MLR), eliminating the neces-
sity for complex regression algorithms like SVR or a higher number of training samples.

Table 4.2: Error of trained models using CAD parameters vs sleeping parameters

Multivariate Linear Regression Support Vector Regression
Accuracy of the
regression model
among predicted
and expected sets

All 14 CAD
model parameters

Selected 3
Sleeping

parameters

All 14 CAD
model parameters

Selected 3
Sleeping

parameters

R2 0.6318 0.9505 0.8027 0.9544
MSE 14.7304 1.8802 14.3419 1.7784

The proposed methodology is transferable to all volume simulations in airbag models
that use 2D geometries as inputs, such as knee and side airbags that deploy from the
passenger seat. Other inflatable structures that require volume simulation can benefit
from the findings of this paper, such as high-pressure vessels, inflatable tunnel plugs,
inflatable rubber dams, different kinds of inflatable boats, etc. It can be argued that
this methodology is scalable to any performance evaluation that requires good enough
accuracy but fast evaluation for decision-making in the early stages of the design process.
In the following section, another case study will be introduced to examine if this method
applies to other simulations that utilize 2D shapes as inputs.

4.2 Feature engineering on crash case, Paper E

This paper addresses the first individual problem, similar to Paper A, see Figure 1.8, and
expands on the proposed solution. It restates the problem and therefore briefly touches on
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’Descriptive Study II’ but mainly involves ’Prescriptive Study’ by introducing new type features
that can be extracted, and ’Descriptive Study II’ by an attempt to assess the generalizability
of the already discussed solution in another industrial case study. The main aim is to offer
an organized category of extractable features and demonstrate the method’s applicability in
another industrial case, thus it attempts to answer RQ2 and RQ3.

In paper A, ’sleeping parameters’ are defined in contrast to conventional CAD parame-
terization as engineered features that are coupled to the geometry of the design but are
independent of the geometry creation process. The term sleeping emphasizes that these
features, while not immediately visible or conventional, have a potential utility that can be
awakened through appropriate processes. Unlike latent, sleeping parameters can be con-
structed, extracted, selected, and then processed even if the geometry undergoes drastic
changes. This process justifies borrowing and using the feature engineering terminology
from the data science field.

Any method’s true potential and versatility are revealed when challenged in diverse envi-
ronments. Therefore, the previously introduced medial axis concept is employed in the
analysis of structural components like Thin-Walled Beams (TWB), given their role in ve-
hicle safety and performance. Many automakers use a repetitive design process to evaluate
the crash performance of these beams. Thus, applying feature engineering (feature con-
struction, feature extraction, feature selection, and feature processing) to the predictive
modeling and analyses in such a case study can lead to an order of magnitude reduction
in engineering design lead time. Figure 4.3 illustrates three distinct beam cross-sections
utilized in the Raw4 Toyota body frame.

Figure 4.3: Medial axis extraction for three TWB cross sections

In these three figures, the blue line in the middle represents the extracted medial axis,
while the gray lines are part of the Voronoi cells used in the process. The features extracted
from the medial axis are informed by the beams’ crashworthiness and are extractable
at any point after the design process. This paper presents various features, such as the
number of handles, branching points, and other properties that can be calculated from
the medial axis. Table 4.3 presents these extracted features along with their correlation to
two crashworthiness outputs, SEA (Specific Energy Absorbed) and PCF (Peak Crushing
Force), which serve as performance indicators for the design of these beams. This paper
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further explores three distinct correlation analyses (linear and non-linear) to ensure that
the identified relationship is not reliant on the kind of analysis used.

Table 4.3: Correlation between mined features and two FEA outputs.

Linear regression
score

Pearson
correlation

Spearman
correlation

SEA PCF SEA PCF SEA PCF
Length of Medial Axis 0.83 0.89 -0.91 0.94 -0.93 0.92
Width Information 0.26 0.23 -0.50 0.48 -0.57 0.58
Num. of Handels 0.68 0.77 -0.82 0.88 -0.81 0.81
Branching Points 0.70 0.79 -0.83 0.89 -0.86 0.85
Shape Perimeter 0.87 0.98 -0.93 0.99 -0.99 0.98
Avg. Circle Radius 0.34 0.30 0.58 0.54 0.58 -0.58
Shape Compactness 0.57 0.52 0.75 0.72 0.74 -0.74

The extracted features are derived from the geometric and statistical properties of the
shape, and such correlation analyses are a means to rank them for prediction tasks. For
instance, the length of the medial axis, the number of branching points (indicative of the
shape’s complexity), and the perimeter of the shape are shown to be good indicators of
crashworthiness. For the length of the medial axis specifically, Pearson correlation values
of -0.91 for SEA and 0.94 for PCF were observed.

To explore and understand the diverse impacts of possible geometric properties from the
medial axis, this paper categorizes features into region-based, fractal-based, and boundary-
based, shown in Table 4.4. This approach facilitates feature selection for machine learning
by guiding engineers in selecting the most relevant features for various analyses and ensur-
ing that models are built with the most independent and impactful data, thereby driving
more accurate predictions and informed design decisions.

Table 4.4: Categorization of features beyond traditional feature selection in CAD

Feature Type Examples Description
Boundary-based Perimeter, convex hull, radius of gyration, Eu-

ler number, profile, bounding box parameters
Extracted directly
from the shape’s
boundary

Region-based Area, mean intensity, Eccentricity (elongated
or stretched) variance, entropy, texture, Cen-
tral moments, Hu moments, or Zernike mo-
ments can capture shape properties, compact-
ness

Extracted from
the interior of the
shape

Fractal-based Fractal dimension, Skeletonization Features
(length, branches, loop handles), eigenvalues
and eigenvectors of the covariance matrix of
shape points, Tortuosity (Measuring the ”wig-
giliness” of the medial axis), Angles between
Branches

Describes the self-
similar structure
of the shape

One of the most effective features identified and used in both Paper A and E is the Medial
Axis Length, which can give an idea of the complexity and the extent of the shape. For
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example, a longer medial axis might correlate with higher energy absorption capabilities
as it indicates more extensive internal structuring, which could be beneficial in crash
scenarios. Paper E introduces the concept of fractal base features, which are directly
related to how Voronoi cells are distributed inside the shape and capture the complexity
and detail within the shape. Number of Branch Points refers to the number of points where
the medial axis splits, indicating complexity and potential stress concentration points, and
is another fractal-based feature identified.

Average Circle Radius measures the average radius of circles that can fit within the differ-
ent parts of the geometry, indicating the uniformity and symmetry of the area. Width
Information sums or averages of the radii, providing a measure of the overall dimensional
spread across the design. Region-based features such as these examples are crucial for
models that predict structural integrity and deformation patterns. For instance, a larger
average circle radius might indicate larger, more uniform areas that could behave differ-
ently under stress compared to areas with smaller, more varied radii. In crashworthiness,
such uniform regions might deform more predictably, aiding in better energy absorption
predictions.

Perimeter is the total length of the shape’s outline, providing a simple measure of size and
scale and Number of Handles refers to the count of distinct ’loops’ or holes within a shape,
which can indicate complexity and features like cavities or enclosed spaces. Boundary-
based features can significantly impact the predictive modeling of structural behaviors.
The perimeter can be used to assess the overall material usage or structural boundary
conditions, which are crucial in defining how a shape might behave under external forces.
The number of handles affects the flow of forces through a structure; more handles might
imply more points for energy distribution, influencing how energy is absorbed in a crash.

4.3 Large-scale labeling of dataset, Paper B

This paper reuses the case study as presented in Paper A, to address another individual problem.
Therefore, it touches on the Research Clarification by means of a literature review and then
combines ’Descriptive Study I’ and a ’Prescriptive Study’. The proposed support satisfies the
overall success factor (engineering design lead time) in the case study with limitations. The
results provide insights for RQ1 by the results of the literature review, RQ2 by presenting the
change in the current practice, and RQ3 by implementing the prescribed changes and the
support.

A computational method known as dynamic relaxation is discussed in the literature,
which has primarily been used for simulating unstable structures in the past. This method
requires several iterations to converge, yet the iterations are computationally inexpensive
since there is no need to assemble a stiffness matrix. Nonetheless, the discretization and
some steps remain time-consuming. In this paper, an implemented version of dynamic
relaxation in a component called Kangaroo within Rhino/Grasshopper is utilized to pro-
duce labels for 60,000 CAD models. A methodology for creating a large quantity of
labeled data using dynamic relaxation is proposed, which can be applied to a wide range
of simulations. Figure 4.4 shows volume visualization in Rhino, which is achieved by
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using the Kangaroo component in Grasshopper.

Figure 4.4: Volume simulation visualization in Rhino

Figure 4.5 shows the schematic of the dataset created from two sizes of images as well as
their labels which are volumes of the associated geometry. This dataset has been made
available to the public in an online repository (Arjomandi Rad, 2022). Most of the ma-
chine learning datasets today are based on real-life problems and literature can benefit
from engineering datasets like the one presented here for benchmarking purposes.

Figure 4.5: The dataset consists of 60,000 labeled images with two sizes

Moreover, an off-the-shelf implemented CNN with three layers is chosen for the training
process. The training was performed with 128 a batch size and 50 epochs. As shown
in Figure 4.6, the loss value, which represents the summation of the errors in our model
(calculated from the cost function) for each case in the testing dataset, is shown on the left.
The figure on the right shows accuracy, the percentage of correct predictions applicable
only to classification tasks. From the picture, It can be concluded that there is minimal
gap in accuracy between training and validation, both converging to roughly 90%. In
the loss graph, both training and validation are decreasing effectively and steadily, with
an acceptable gap between them (referred to as the generalization gap) across each epoch,
ultimately converging to 0.2, indicating a successful model.
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Figure 4.6: Accuracy (Left) and loss (Right) of training and validation dataset

Later, the network accuracy was tested using 10000 new samples that were acquired sepa-
rately within a similar but separate sampling process. The testing showed 89.42% accuracy
and 0.26 loss, which means that from 10000 testing cases, 8943 cases were predicted cor-
rectly and 1057 cases were placed in the wrong bin.

4.4 Review of datasets in engineering design, Paper C

After working with features and labels as components of the datasets, this paper comes as a
result of the first study after licentiate and therefore includes a revised and broadened ’Research
Clarification’ and ’Descriptive Study I’. The paper is an attempt to capture the bigger picture by
shifting the focus from feature engineering to data engineering as the sub-solution is delivered,
and thus revisiting the RQ1 and RQ2 at the beginning of the second part of the PhD process.

The transition from focusing solely on features to addressing the broader data ecosystem
is essential for enhancing predictive modeling and analysis in design engineering. Data
engineering extends beyond the extraction and optimization of features; it involves the
holistic management of the data lifecycle, encompassing acquisition, validation, storage,
protection, and processing of data.

The literature in design datasets is growing fast, and by the time of publishing this thesis,
the performed literature review is already outdated. A total of 25 design datasets were
identified by the publication time of the paper and organized into six categories shown
in Figure 4.7. These categories pinpoint their applications at different phases of product
development, from conceptualization to refinement. This sets the stage for discussing
the overarching need for more comprehensive and scalable datasets that can adapt to the
evolving demands of the design industry.
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Figure 4.7: Existing design datasets landscape illustrated diversity and the gaps

The paper discusses the challenges in creating design datasets. Issues of data sharing and
privacy are paramount, with companies often reluctant to disclose proprietary informa-
tion that could benefit broader research and development efforts. Moreover, ensuring the
quality of datasets is another hurdle, as data often comes from varied sources and may be
incomplete or noisy. This necessitates sophisticated data engineering strategies to clean,
preprocess, and standardize data, ensuring that it can effectively train AI models.

The economic aspect of data engineering is another issue within the field. Recognizing
that acquiring and analyzing large, high-quality datasets can often be cost-prohibitive,
particularly for small and medium-sized enterprises. The paper suggests that overcoming
these barriers may require innovative approaches, such as the development of synthetic
datasets. These datasets, generated through algorithms, can mimic real-world data, offer-
ing a practical solution for testing and validation without the associated costs or privacy
concerns.

The potential of end-to-end datasets in covering a broader spectrum of the design process
is discussed. As the current datasets focus on, for example, identifying customer needs or
finalizing design solutions. This approach to building datasets across different phases of
product development not only bridges the gap between theoretical and practical aspects
of design but also fosters a more integrated development process.

In the concluding sections, the role of AI and specifically Generative Pretrained Trans-
formers (GPT) is discussed. While AI has shown promise in generating innovative de-
sign concepts and ideation, its application in quantitative and engineering-specific tasks
remains challenging. GPTs’ abilities for building design-related synthetic or end-to-end
datasets are promising due to their capacity for comprehensiveness, adaptability, making
them good at understanding complex design requirements and acquiring large amounts
of information in a short time. Additionally, GPTs can assist in labeling, augmenting,
and enriching datasets, thereby contributing to more robust and scalable AI-driven design
evaluation processes. The paper underscores the need for continued research and devel-
opment in AI capabilities to fully leverage its potential in creating and utilizing dynamic,
comprehensive datasets in design.
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4.5 System analysis on component datasets, Paper D

This paper is the first step in addressing the third individual problem, see Figure 1.8, studied in
this thesis. It includes a mix of ’Research Clarification’ and ’Descriptive Study I’ as it explores
the last problem primarily through a literature review and previously conducted interviews.
The paper aims to capture the bigger picture by shifting the focus from feature engineering
to data engineering, thus contributing to RQ1 through the results of the literature review, to
RQ2 by proposing a change in current practice, and to RQ3 by providing an initial version of
support.

In traditional design processes, disparate teams often choose subsystem technologies inde-
pendently. This fragmented approach can lead to lengthy design cycles, integration chal-
lenges, and suboptimal technology choices due to a lack of comprehensive performance
data. Therefore, if designers in the early phases could analyze product performance, many
design cycles could have been avoided.

At the core of the proposed framework is functional decomposition through a Function-
Mean (FM) tree method, which breaks down the primary function of the system into
a hierarchy of subfunctions and associated design means. This structured representa-
tion not only clarifies the relationships among subsystems but allows for the mixing and
matching of different sub-functions and means to find ideal architecture at an abstract
level. This hierarchical structure serves as a blueprint for constructing a modular ensem-
ble of datasets. Each node in the FM tree represents a specific function or design solution,
and data collected from simulations or experimental tests are organized to align with these
nodes, illustrated in Figure 4.8.
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Figure 4.8: Mapping functional decomposition to system-level dataset ensemble
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By establishing shared interfaces between these modular datasets, surrogate models can be
developed at multiple levels of the design hierarchy. The connected ensemble of datasets
thus enables quantitative analysis by linking low-level input parameters (such as compo-
nent dimensions or operational flow rates) with high-level performance outcomes (such
as thrust or energy absorption). This structure allows the overall system behavior to be
predicted by aggregating information from the various modules in a coherent and scalable
manner.

The proposed support is demonstrated through a case study involving the FMS of Hall
Effect Thrusters (HET), illustrated in Figure 4.9. This is a complex, multi-physics system
used for satellite propulsion. To generate quantitative predictions of the thrust (system
level output) without resorting to high-fidelity simulations at early design stages, surro-
gate modeling techniques are employed. A dataset comprising performance data for 32
different thruster designs was compiled from the literature. Surrogate models were trained
using key component parameters (e.g., anode flow rate, discharge voltage, and current) to
predict system-level outputs. A leave-one-out approach trains each surrogate model with
one design as the test set, using the others for training. In this study, machine learning
models, specifically Gaussian Process Regression models are used. This captures diverse
operating conditions and technology variations, which yields approximate system-level
performance predictions. Ensemble techniques, including stacking and concatenation in
frameworks like Keras, integrate component-level models with system-level predictions,
enhancing accuracy and facilitating better design space exploration.

Functional Decomposition Dataset concatenation Surrogate Modelling

Figure 4.9: HET case datasets in coupled functional and component data

The ensemble approach achieved an average root-mean-square error (RMSE) of 2.85, a
mean absolute percentage error (MAPE) of 11.25%, and an R² of 0.77. These metrics
indicate that the method effectively utilizes low-level operational data to yield reliable
predictions of overall system performance. Furthermore, the framework is extended to
evaluate subsystem-level performance by analyzing alternative FMS architectures. Neural
network models, enhanced with regularization techniques, were trained on datasets from
one manufacturing method and tested on data from a different method. The smooth con-
vergence of the loss function and acceptable error margins observed during these experi-
ments demonstrates that the ensemble approach is robust and capable of accommodating
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design variations.

4.6 Product dataset platform with crash case, Paper F

The most recent paper is a mix of ’Prescriptive Study’ and briefly ’Descriptive Study II’. It
expands on the proposed solution in Paper D and addresses the shortcomings in demonstrating
the support’s effectiveness. The paper, therefore, primarily responds to RQ2 by showing how the
current practice could be customized and to RQ3 by proving the newer version of the previously
introduced support.

The paper presents a novel approach to bridge the gap between early-phase conceptual
design and detailed performance evaluation in automotive structures. Recognizing that
early design often relies on low-fidelity, qualitative methods due to the prohibitive cost of
high-precision simulations, the study proposes the development of a modular dataset plat-
form. This platform is built upon a product model hierarchy that mirrors the functional
decomposition of the product architecture. In particular, the integration of function-
mean (FM) modeling with datasets acquired from Finite Element (FE) analyses enables
a more rigorous, quantitative evaluation of design concepts at the system level. By lever-
aging shared features extracted from the FM tree, the methodology provides an avenue
for front-loading detail-level analysis and supports rapid evaluation of both incremental
and radical design changes.

The methodology is illustrated through a detailed case study focused on the front struc-
ture of a car, a system comprising key components such as a bumper and a crash box.
An FM tree (illustrated in Figure 4.10) is employed as an early design modeling tool to
decompose the overall function of a car front structure into hierarchical subfunctions and
corresponding design solutions. Each node in the FM tree represents a specific function
or design alternative (for example, the energy-absorbing role of a crash box or bumper).

Data obtained from high-fidelity FE simulations, covering different design parameters
such as geometry, material properties, and boundary conditions, are mapped onto the
FM tree structure. The performance metrics from the component level (such as Energy
Absorption and Peak Crushing Force) as additional features for surrogates at high lev-
els serve as sleeping parameters. This means that these shared interfaces link lower-level
component datasets to the overall system performance dataset. The resulting platform of
datasets (illustrated in Figure 4.10) serves as a modular platform that facilitates quantita-
tive analysis by enabling the training of prediction models that capture the influence of
component-level innovations on system-level outcomes.
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Figure 4.10: The assembled dataset platform for car front structure (Right), Functional
decomposition of a car front structure (Left).

The assembled dataset platform is used to train several machine learning models to pre-
dict system-level performance indicators. Two distinct types of design modifications are
evaluated: modular changes (transitioning from a square crash box to a multi-cell round
crash box, denoted by the change from variant A to C) and radical changes (replacing a
traditional component with an s-rail configuration, denoted by the change from variant
A to B). The results demonstrate that, by leveraging the shared interface provided by the
FM tree, the prediction models can roughly estimate key performance outputs. Error
metrics such as mean absolute error, mean absolute percentage error, root mean square
error, and R² values are used to assess the accuracy of the predictions. In the case of mod-
ular changes, the models exhibit satisfactory performance, while predictions for radical
design changes reveal the challenges associated with extrapolating beyond the original
design space.

In addition, similarity analysis is employed to quantitatively assess how closely new design
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variants align with the legacy configuration. By comparing the extracted feature represen-
tations, derived from the shared interfaces of the FM tree, the similarity metric provides
an index that helps determine whether a variant falls within the reliable prediction do-
main of the trained models. Lower similarity distances indicate that the design remains
within the incremental modification range, while larger distances suggest that the changes
are more radical, potentially challenging the accuracy of the predictions. This analysis is
shown in 4.11 and serves as a valuable tool to support informed decision-making by clearly
distinguishing between incremental and radical design modifications.

Figure 4.11: Similarity analysis of alternative technologies in the architecture
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Chapter 5

Discussion and Conclusion

This section elaborates and synthesizes the results of the papers and then tries to explic-
itly answer each research question stated at the beginning of this thesis. After a critical
reflection on acquired results, the limitations of the proposed three individual solutions
were discussed. The final discussion of the chapter is on the validation of the findings
with respect to the selected method and attained results.

5.1 Synthesis of Results

The collective results of the findings reported in Chapter 4 form the basis for how data
engineering can be introduced into engineering design processes and enable a data-driven
design approach. When analyzing the results together and comparing them to the liter-
ature, it is relevant to position the data-driven design approach proposed in this thesis in
line with more well-known design automation approaches reported over the last decades.
The results presented in this thesis rely on using concepts originating in data science and
data engineering and combining these in design evaluation disciplines. An important fac-
tor to address when proposing how to further introduce data-driven design into practice is
to ensure that interpretability, conventions, and definitions used are carefully addressed.

Fully automated systems offer clear advantages, but they do not meet industrial demands
for rapid design evaluation, as they do not reduce the computational time. Another
challenge with fully automated design approaches is generalizability, i.e., the measure re-
quired to fully automate design support requires too much effort for every new design
study. On the other hand, data-driven approaches such as surrogate models and sophis-
ticated AI algorithms are challenged by their need for a large amount of training data
that, in turn, requires an automated CAE simulation process. Furthermore, the design
automation and data-driven approach (separately) require scripting competence, which
domain engineers in the industry usually lack. Design automation is usually transparent
and allows for debugging, but it is a slow process and is built on the same expensive sim-

65



ulations. Whereas data-driven algorithms lack transparency, once the training has been
performed, the speed is almost considered real-time, which makes them more suitable for
the early phases of the design process, when high accuracy is traded off for time.

The data-driven approaches presented are an important step to advance design evalua-
tion practice beyond the current state in industry. In the study reported, it has been
evidenced that lead time for design evaluation studies can be radically reduced in several
different types of evaluation conditions. As such, the ability to evaluate (more) designs
in a continuously time-pressed early development phase can be supported. It has been
argued that iterations are a natural part of any development process and are even bene-
ficial for optimizing and refining any task. Therefore, in each iteration of such futuristic
support, the product requirements are satisfied, and the product is synchronized with the
customer before it moves either to the next iteration or to the production phase. Digital
models used through this verification process resemble digital twins, and the work can be
positioned in the context of Industry 4.0.

5.1.1 Feature Engineering for Data-driven Design Evaluation

Feature engineering enables designers to create straightforward yet precise prediction
models using a few features and sample points. Comparing linear regression to sup-
port vector regression, paper A concludes that transitioning from simple to more com-
plex algorithms does not resolve the prediction accuracy issue to the extent that sleeping
parameters can. Many other researchers share similar opinions about the value of data
exceeding that of the model, and this perspective is acknowledged in the literature by the
community.

Moreover, straightforward analyses can democratize the use of analyses, allowing design-
ers with diverse backgrounds to have a real-time prediction model. This method, if in-
tegrated into a CAD environment, allows designers to swiftly observe how changes in
design variables like length, radius, or offset can affect the simulation output, potentially
increasing the design evaluation speed. Furthermore, independence from traditional pa-
rameterization in CAD will provide the flexibility to innovate with new solutions and
explore beyond the design space limitations imposed by those parameterizations.

The results from papers A and E contribute to feature engineering in data-driven design
and indicate that employing feature engineering could lead to models that are both less
complex and more predictive. This offers a method for the engineering design community
to conduct design evaluations independently from the parameterization process, which
can also result in a more automated and faster evaluation.

5.1.2 Automated Labeling for Data-driven Design Evaluation

Image regression and surrogate modeling have been proven able to reduce lead time in
product development and design evaluation situations, both in literature and in prac-
tice. However, most existing design automation techniques show limitations in labeling
generated training data due to their reliance on expensive simulation and test data. Dy-
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namic relaxation is proposed as a less computationally intensive simulation to compute
the volume of the airbag. When utilized in the proposed framework, it allows the design
automation script to level large datasets based on a proportion of the data and thereby
facilitates image regression in the design process.

Dynamic relaxation possesses several characteristics that enhance its suitability for au-
tomating the simulation output assignment process to training data in data-driven design
processes. Despite being less accurate compared to other finite element methods, such as
Explicit Time Integration Methods (e.g., Central Difference Method) and Implicit Time
Integration Methods (e.g., Newmark-beta Method), it offers computational efficiency
and simplicity, making it advantageous for rapid data generation. Firstly, it is less com-
putationally intensive than traditional Finite Element Methods, as there is no stiffness
matrix and it avoids solving large systems of equations. Secondly, the simulation setup
requires fewer detailed inputs about material properties and boundary conditions, which
reduces the preparation time and complexity associated with each simulation run. These
benefits collectively make dynamic relaxation an effective tool for supporting faster, more
efficient design automation workflows.

The result of Paper B shows a promising way of using novel types of labeling data for
state-of-the-art machine learning algorithms in design evaluation. However, more inves-
tigations are required to assess this method’s generalizability with other case studies.

5.1.3 Data Engineering for Data-driven Design Evaluation

By bridging the gap between component-level details and system-level performance pre-
dictions, the framework proposed in papers D and F enables fast performance evaluation
in the early phases at the system level, which make it an interesting alternative for early -
screening and exploration - design studies where quality of both input and actual design
definitions are low.

Using an FM tree to organize and connect diverse datasets creates a coherent data ar-
chitecture that captures the complex relationships and dependencies within the system.
By mapping data across different levels of the product architecture, from component
specifics to overall system behavior, the framework enables quantitative analysis that is
both modular and scalable. This method supports rapid ”what-if ” analyses and facilitates
the evaluation of new design alternatives, whether incremental or radical, without the
need for extensive re-simulation.

This approach allows for the dynamic integration and updating of elements in product
architecture and thereby in the dataset platform as new data becomes available or as design
changes or technologies are implemented. The ability to quickly and efficiently draw
analysis on the design changes makes this method particularly valuable for the early stages
of design, where decisions need to be made rapidly to assess potential impacts on system
performance.

In most cases, analyzing a new design change means that ML models stored in the dataset
platform should perform extrapolation on the previous dataset. A similarity analysis in-
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corporated in the dataset platform framework enables users to understand how much
they can trust the prediction results. This process compares feature vectors derived from
new design variants against those stored in a design database. The analysis typically uses
distance metrics; based on how similar a new design is to existing designs, users can deter-
mine the extent of extrapolation required and allow engineers to make informed choices
about when and how to use the platform.

5.2 Challenges and support requirements (RQ1)

RQ1: What are the challenges of data-driven design evaluation in the design process of iterative
and simulation-driven products?

Data-driven design evaluation has the (demonstrated) potential to accelerate design eval-
uation, which is a substantial part of the engineering design lead time of those products
that heavily rely on simulation for design evaluation. However, despite its promise, sev-
eral critical challenges impede its effective implementation. Three issues are pinpointed
in this thesis, which collectively contribute to extended design evaluation cycles. These
challenges not only affect the accuracy and efficiency of predictive models but also limit
design flexibility, ultimately influencing the overall product engineering design lead time.

• The dependency of evaluation methods on conventional model parameterization.

• The labeling of large datasets and the lack of a design-embedded evaluation method.

• A scalable and modular method for using design datasets in design change analyses.

The first challenge identified is the dependency of data-driven design evaluation on CAD
model parameterization. In the design process of iterative and simulation-driven prod-
ucts, conventional CAD models are built upon predefined parameterization conventions.
Often, the designer is required to follow the conventions from legacy models, which leads
to a limited design space search. Traditional CAD parameters frequently fail to correlate
strongly with simulation outcomes. As a result, ML models built using these parameters
may not capture the true complexity or potential performance of a design. The design
processes of TWB and curtain airbag are used as case studies in papers E and A to illustrate
the challenges posed by reliance on traditional CAD parameterization. It was shown that
conventional CAD parameters often result in high-dimensional design spaces that add to
the complexity of surrogate modeling. For instance, in the thin-walled beam case, a sim-
ple geometric design change (like adding a radius or fillet) can necessitate numerous new
parameters, leading to cumbersome model changes, increases in complexity, and a loss
of accuracy in predictions. In the airbag study, parameters like offset and island length
showed a weak correlation with outputs like volume, yet can cause long finite element FE
iterations for design evaluation. This rigidity limits flexibility, as drastic design changes
(a new technology with the same function) can render pre-trained models obsolete, esca-
lating computational costs for redesigning and retraining, and consequently prolonging
the design cycles.

68



The second challenge discussed in this thesis is the efficient generation of labeled data that
is required for training ML models in data-driven design evaluation tasks. In simulation-
driven design, traditional simulations and tests are used as labeling techniques, which tend
to be manual, expensive, and not scalable to the large volumes needed. This bottleneck
is exacerbated by the sequential nature of the design process, where a single design failure
triggers a return to the initial evaluation stage, which prolongs the labeling process even
more. This limitation results in delayed updates to the training datasets and compromises
the predictive power of the evaluation models. Inaccurate or incomplete labels as a result
of testing or simulation limitations can also lead to models that are less effective at design
evaluation, thereby hampering rapid decision-making and iterative improvements.

The scarcity of comprehensive datasets hinders data-driven design evaluation of simulation-
driven products. Paper C identifies three categories of challenges as the reasons for this
challenge: Namely, sharing/privacy, quality assurance, and acquisition economics. Com-
panies are increasingly concerned about privacy issues, and regulations such as the General
Data Protection Regulation (GDPR) restrict access to real-world data, which is critical for
having wide access to trustworthy data. Meanwhile, competitive reluctance from com-
panies further limits dataset availability as they refrain from publishing their produced
data, as noted in security-intensive fields like space design (CHEPOS project). Quality
issues, such as noisy or inconsistent data, demand extensive preprocessing, which slows
down the iterative design evaluation, while the high cost of collecting and processing large
datasets makes it impractical to generate the thousands of samples needed for robust pre-
dictive models (touched on in Paper B). These barriers collectively impede the creation
of datasets that can support the rapid, data-intensive evaluations required in iterative and
simulation-driven design, leaving designers with suboptimal tools for decision-making.

Data-driven design evaluation for Hall Effect Thrusters in the space industry is challenged
by interoperability difficulties and limited data availability, as outlined in paper D. The
complexity of systems involving multiple subsystems (e.g., thruster units, flow manage-
ment systems) which are developed by different companies lead to such issues and slows
evaluation cycles in the design process. Additionally, the scarcity of comprehensive op-
erational data restricts the ability to train robust predictive models, forcing reliance on
physical testing or analytical methods with high error rates. It is worth mentioning that
the plasma physics used to simulate the performance of these thrusters is not commer-
cialized and holds a lower Technology Readiness Level (TRL) than other CAE methods.
Thus, the space industry is challenged by the inability to share datasets among different
teams and digital means of generating accurate data, which leads to an inability to make
informed decisions in the early phases.

Therefore, the third problem area concerns the lack of a method that can enable different
teams sitting apart from each other and producing their own datasets to work together
toward a common design evaluation goal. As shown in Papers D and F, traditional datasets
are often constructed around fixed, one-level information at one component or single
subsystem level, which restricts the ability to explore alternatives beyond the established
design space. This limitation largely arises from designers relying on costly simulations
and tests to understand how a design change in the system will impact various outputs.
This makes current design change analysis practices resistant to scale. This situation gets
worse in larger companies because designers and testers are sitting even further apart,
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or in complex products where every subsystem is produced by a different company (as
is the case in the space industry), which leads to miscommunication and inconsistent
assumptions about the design process.

5.3 State of the art and practice (RQ2)

RQ2: How can data-driven methods in product development processes be customized for the
design evaluation of iterative and simulation-driven products?

The state of the art in engineering design has focused on surrogate modeling techniques
to address high-dimensional, expensive black-box problems, such as radial basis functions
with high-dimensional model representation and improved kriging surrogates using par-
tial least squares for dimension reduction, as reviewed in Section 2.

Engineering design literature has increasingly leveraged advanced data-driven techniques,
including deep learning and image regression, to address challenges in simulation-driven
design processes. As shown in Paper B, recent research has explored a variety of input types
(scalars, vectors, time series, and images) to build surrogate models that predict simula-
tion outcomes, such as aerodynamic coefficients, stress distributions, and fluid flow fields.
Techniques like CNN have gained prominence for handling complex, high-dimensional
data, including geometric representations from CAD models, point clouds, and surface
meshes. These approaches aim to overcome limitations of traditional parametric surro-
gate models, such as dimensionality and dependency on pre-existing simulation data, by
integrating richer geometric information and advanced algorithms. The literature high-
lights a shift toward image-based methods to capture intricate design details, driven by
the success of computer vision advancements like ImageNet, though engineering appli-
cations still lag in handling real-world geometric complexity.

Recent advancements in engineering design have utilized digital twins to enhance decision-
making in product design, in addition to monitoring system performance during opera-
tion. However, this application faces criticism since there is no physical twin during the
concept design phase, leading it to be termed as a digital shadow in the literature. More-
over, in resource-constrained settings, the investment in digital twins might not justify
the returns and may be prohibitive for smaller organizations or early-stage projects, as is
the case in this thesis.

As for the state of engineering design practice, the use of CAD and CAE simulation is
characterized by iterative and resource-intensive processes, compounded by challenges
like high dimensionality and parameterization (Discussed in Papers A and E). Designers
typically define CAD models with extensive parameters and constraints to cover the de-
sign space, which often results in large, cumbersome training datasets for machine learn-
ing models. This adherence can limit design flexibility and creativity. The separation
between CAD designers and CAE simulation engineers, frequently in different depart-
ments, leads to prolonged engineering design lead time due to iterative feedback loops.
These inefficiencies are particularly evident in the early design phase, where evaluation
tools are lacking, necessitating repeated simulations in later phases.
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Simulation-driven processes dominate design evaluation, relying heavily on computation-
ally intensive tools like FEA, CFD, and rigid body dynamics, etc. As mentioned in paper
B, the avant-garde companies in these fields use design automation to reduce the bur-
den, however, DA comes with limitations. To alleviate this, industry often supplements
commercial tools with in-house solutions to accelerate evaluation, yet the computational
burden of processing complex simulations remains a significant bottleneck, particularly
for real-time design space exploration. These methods, while accurate, result in long
engineering design lead times due to sequential, iterative workflows where designs are
repeatedly tested and refined across multiple simulation stages. The empirical data col-
lected for this thesis clearly indicates that the industry requires a next-best model 1.9 that,
while less accurate, offers faster evaluations, specifically in early-phase design phases. The
tradeoff between evaluation costs and our confidence levels must be considered for future
design evaluation methods.

Technology selection within system-level design relies heavily on iterative, resource-intensive
processes involving multiple teams working on interdependent subsystems, as discussed
in paper E. Design evaluations often depend on physical testing or detailed digital or phys-
ical simulations, which extend design cycles due to their computational complexity and
the need for extensive validation. Low-fidelity models, such as scoring matrices, are com-
monly used in early conceptual phases, but they lack the granularity to assess the impact
of innovative technologies on system performance. The fragmented nature of subsystem
development in early phases creates interoperability challenges, with teams operating in
silos, leading to prolonged lead times and difficulties in integrating new technologies.
This traditional approach struggles to adapt to rapid design changes or scale effectively
across hierarchical system levels, highlighting a gap between practical needs and the ability
to explore design spaces efficiently.

5.4 Developed supports (RQ3)

RQ3: What data-driven design supports can be developed for more efficient design evaluation?

The design support developed in this thesis centers on the utilization of data and datasets
to enhance the data-driven design evaluation processes for more efficient analysis tech-
niques. It prescribes datasets and their elements (features and labels) to enhance the
effectiveness of design evaluations in a data-driven context.

The correlation-based feature extraction approach leverages the medial axis as an alter-
native representation of the geometry to extract and select more impactful features than
CAD parameters. This approach is exemplified in two case studies, first on the volume
simulation of a curtain airbag and second on the evaluation of TWB for crashworthiness
metrics. Through these applications, the approach not only simplifies the computational
demands of the design process but also provides a more robust and flexible framework
for handling complex design changes and iterations, ensuring more accurate and efficient
predictive modeling.

The methodology capitalizes on ’sleeping parameters’ (see papers A and E), a concept that
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involves the extraction of highly relevant features that are typically overlooked in standard
CAD-based analyses. These parameters are extracted from the medial axis representation,
offering a more profound insight into the design’s functional and structural integrity
without the constraints of conventional parameterization. The resulting reduction in the
dimensionality of design problems significantly reduces the reliance on time-consuming
simulations. Enhancing the surrogate modeling techniques allows for rapid prototyp-
ing and iterative testing, accelerating the development cycle. It is shown that techniques
like the medial axis yield geometric descriptors that can be employed to capture essen-
tial structural characteristics, such as length, surface area, or cumulative circumferences,
offering a more comprehensive representation of complex shapes. These descriptors ex-
cel at capturing the underlying topology and spatial distribution of geometry, which can
enhance predictive modeling by providing richer, shape-aware features.

The development of real-time design evaluation support offers a significant enhancement
in the efficiency of the design process. To offer such a possibility, this thesis proposes
a dynamic relation to label thousands of images, which was not possible by traditional
methods. Dynamic relaxation sidesteps traditional FE, which often entail complex se-
tups, including detailed material models, boundary conditions, and intrusion dynamics.
Instead, dynamic relaxation treats the simulation as an energy problem within a spring-
mass model framework, and such simplification trades off speed for accuracy. Leveraging
dynamic relaxation for label creation allows the utilization of state-of-the-art image-based
machine-learning models trained on screenshots within a CAD environment. This in-
tegration facilitates the transition of design evaluation into a real-time, data-rich phase
where a wide range of stakeholders can modify designs and get informed on predictive
analytics.

This thesis leverages a framework that combines functional decomposition with surrogate
modeling. This innovative approach is particularly beneficial in complex system design
processes that involve larger developing teams and more complex product architecture.
By applying function-mean modeling and surrogate techniques, designers can predict
system-level performance from low-level input parameters. The method is initially ap-
plied to a case study from the space industry, where it demonstrated the possibility of
synthesizing high-level output (thrust) from lower-level inputs, such as the orifice diame-
ter of the fluid management subsystem, through a shared feature (flow rate). The method
is structured as a ”Product Dataset Platform” to bridge the gap between different levels of
product and perform system-level performance evaluations based on feature engineering
and functional decomposition applied to FE datasets. This support links early concep-
tual models to detailed response evaluations, providing a framework for assessing new
technologies and making informed decisions during the system-level design process.

5.5 Critical reflection on acquired results

One major challenge for feature engineering adoption in engineering design is the het-
erogeneity of data sources. Features used for surrogate modeling could include various
sources, types, or qualities. For instance, textual data from requirement documents or
descriptive design notes from an older best practice could not be easily used to augment
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CAD model parameters in a data-driven evaluation method. Conventional CAD models
are built on established parameterization methods that yield a set of numerical features
reflective of design intent, such as dimensions or tolerance values, while empirical data
might be gathered from physical prototypes or sensors with varying sampling rates and
noise levels. Combining these different data types requires careful preprocessing, normal-
ization, and often, the development of bespoke feature extraction techniques tailored to
each data source.

Furthermore, the contextual relevance of features may differ based on the design objec-
tive. For example, features relevant for predicting structural integrity might differ from
those needed for assessing aerodynamic performance. As a result, feature engineering for
engineering design involves not only handling heterogeneous data but also identifying the
most relevant features for specific tasks within a larger, interconnected design process.

The live prediction model presented in Paper B, despite being able to show the perfor-
mance of the design correctly, does exhibit some shortcomings. Although dynamic re-
laxation is computationally less intensive compared to other traditional finite element
methods, it still involves iterative discretization steps that can become time-consuming
when scaled to very large or highly complex datasets. Moreover, while the CNN-based
image regression model achieves close to 90% accuracy on the validation set, its perfor-
mance diminishes when dealing with more subtle design variations or when applied to
simulations involving complex stress distributions that are not as effectively captured by
image-like representations. Using larger image resolutions may increase computational
costs, and employing deeper networks can introduce additional complexities.

While the dataset platform design (presented in paper F) provides a flexible and modu-
lar framework that unifies component-level and system-level data through a hierarchical
FM tree, a key shortcoming identified in Papers D and F is its limited ability to accu-
rately extrapolate performance for radical design changes. In practice, the platform works
well when modifications remain within the incremental range of the legacy design space;
however, when designers push the boundaries with innovative or substantially different
alternatives, the shared interfaces and integrated datasets may not capture the full com-
plexity of system interactions. This limitation can lead to degraded predictive accuracy
and challenges in confidently assessing the performance of designs that fall far outside the
established dataset.

The discussion in Paper B addresses image regression techniques utilizing image-based
datasets for engineering applications, outlining various advantages and disadvantages as-
sociated with these methods. It has been argued that engineering-based datasets possess
unique characteristics, necessitating tailored treatments regarding their data generation
and handling process. One characteristic of that source is the geometry. Like an airbag
shape screenshot example shown in Paper B, using DOE with CAD to generate a large
dataset results in skewed training data compared to images that are usually used in com-
puter science datasets.

Conversely, design datasets compared to computer science benchmark datasets offer ad-
vantages as well. For instance, since all the images are generated digitally, much of the
pre-processing typically required for datasets can be covered faster. By uniformly crop-
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ping all the images using a script for their generation, it’s possible to align all the constant
pixels in one position, which can greatly reduce training time in the learning process.
This is a process that can be very time-consuming for other datasets.

5.6 Validation of the results

The three techniques for data-driven design evaluation support proposed in this thesis
are linked to established modeling techniques and result from a combination of several
approaches. The Medial Axis and Sleeping Parameters merge CAD modeling for feature
extraction with AI models for predictions. Dynamic Relaxation, as a modeling tool, aligns
with CAE modeling, while the CNN models are the AI model aspect of this support.
The Dataset Platform leverages various modeling, CAE models to generate datasets, AI as
the analysis component, and functional modeling, which is used to recreate the product
architecture. To understand the environment of the models developed in this thesis and
position them in that environment, Figure 5.1 visualizes all the models developed for the
supports.
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Figure 5.1: Categorization of developed and/or used models

Depending on the type of models used for each design evaluation support, the validation
questions that need to be asked may vary in scope. Therefore, the four steps of Sargent’s
validation model (see Figure 3.7 are applied differently over the three developed design
evaluation supports. For the first step in all supports, whether it was of the type a CAD,
CAE, or AI model type, it was ensured that the model represented the system to the in-
tended degree. For example, the design evaluation supports ’Medial Axis and Sleeping
Parameters’ and ’Image Regression and Dynamic Relaxation’, are performed on the airbag
case study, where the CAD models are developed according to the case companies’ in-
ternal guidelines and are therefore validated separately through testing for other internal
applications. Modifications of the models for developing these supports are performed
in collaboration with company specialists. Therefore, the Computerized model verification
in Sargent’s model, which is about making sure the models are correctly implemented in
the computer, is deemed completed. Similarly, for the Product Dataset Platform, which
is applied to the crash case study, all the CAE models utilized are selected from experi-
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Table 5.1: Action has been taken for various parts of validation/verification

Medial axis
and sleeping
parameters

Image regression
and dynamic
relaxation

Product
dataset
platform

Conceptual
model

validation

Investigated through a
workshop in the case company

Computerized
model

verification

Review/tracing execution, Error debugging
CAD models
developed

with experts

CAD models
developed

with experts

CAE models built
based on literature

Operational
validation

Method applied to
a different case

AI predictions
compared

with simulation,
Used physically

tested CAE

Method applied to
a different case,
Used physically

tested CAE

Data validity

ML models and
error metrics
are compared,

Correlation checked

Ensure dataset is
representative

Error metrics
compared,

Declined accuracy
discussed,

Data leakage
is prevented

mentally validated examples that exist in the literature. Table 5.1 shows the other three
steps in Sargent’s model and how they have been achieved in this thesis.

The subsequent step in the validation method is Operational validity, which involves en-
suring that the model’s output behavior has sufficient accuracy for its intended purpose.
While alternative methodologies may exist to verify the correct implementation of our
produced CAD, CAE, and AI models, a potentially more reliable approach is to apply
the support to a different case. Consequently, two of the three supports are tested in this
manner, as illustrated in the table. When utilizing CAE models in conjunction with the
Product dataset platform and Image regression methods, the approach to ensure accu-
rate results was to implement a simulation setup that has been validated through physical
testing. This is accomplished by researching existing literature and consulting with the
case company to obtain an appropriate model.

Data validity is achieved through involving various ML models and the evaluation of their
performance using different error metrics. By comparing these models and analyzing cor-
relation metrics, the consistency and reliability of the data are assessed. Additionally, in
the case of the Product dataset platform, steps are taken to prevent data leakage, ensur-
ing that the models are trained and tested on appropriately separated datasets to avoid
artificially inflated performance metrics.

Conceptual model validity refers to the process of ensuring that the underlying theories,
assumptions, and abstractions used in developing conceptual models are accurate, ap-

75



propriate, and applicable to the intended problem domain. It involves verifying that the
models adequately represent the relevant phenomena and that the simplifications or as-
sumptions made during model development do not compromise their validity for the
intended purpose. In this thesis, conceptual model validity is established by demonstrat-
ing the usefulness and applicability of the developed design evaluation supports. This
involves showing that the proposed methods and models are both theoretically sound
and practically effective in addressing the specific needs of the engineering design pro-
cess.

This process requires industrial experience and practical knowledge regarding how these
supports can be beneficial in a real industrial setting. Therefore, as detailed in the method-
ology section, a workshop is created and conducted with an industrial partner to assess
this component. The results of the workshop are presented in Figure 5.2, which shows that
most of the participants expressed themselves positively about the need for the support
and also the usefulness and applicability of the them in their work.

Figure 5.2: Results of validation verification workshop from the case company

The 16 questions that are asked of participants of the workshop are listed below (Legend
of the Figure 5.2), which shows 5 questions per design evaluation support.

1. Designers in the company need to know more about AI technology and its appli-
cations.

2. You are using AI in your daily work in the company one way or another?
3. Alternative geometry representations are frequently used in your design and/or

analysis workflows.
4. Adhering to a fixed parameterization convention adds unnecessary delays in design

and/or limits your design freedom.
5. Medial axis-based feature extraction can be extended and useful for more product

design processes in the company.
6. Precision that lies in long FEM simulations goes to waste because design iterations

happen in early fuzzy stages.
7. Do you think the company is doing way too many simulations and way too much

manual development?
8. Some of the manual development tasks in the company should be done with AI
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9. Do you use or take benefit in any form from game engine simulation methods in
the company?

10. How useful do you think using screenshots and AI can be for evaluating some of
the simulations in the company?

11. Some of the simulations in the company can also benefit from the dynamic relax-
ation method (or similar game engines).

12. There is a relation between the scale of the change in the design process and the
time it will take to address it.

13. Ability to know the effect of your decisions at the system level is less than that at
the component level.

14. Connecting functional modeling to product architecture will be useful for the com-
pany products when it comes to addressing design changes.

15. Dataset platform could be applicable to resolving the design change problem at the
system level in the company.

16. Dataset management increase the application of AI in product development?

The techniques for data-driven design evaluation support proposed in this thesis have
proven effective in close case situations, reducing the time required for design evaluation
(see papers A and B). However, to implement the proposed method in the PD process
model level within the company’s real environment, these supports must be incorporated
into the design tools currently being used in the company. This aspect will remain to be
tackled by companies in the near future.

The validation study conducted has assessed the usefulness and applicability of the pro-
posed methods within a relevant industrial context. To achieve meaningful industrial
impact, the methodologies and tools developed and demonstrated in this thesis must be
adopted more broadly in practice, where their influence on real product development
performance can be thoroughly evidenced. While such extensive validation is beyond
the scope of this PhD study, the potential for practical applicability and impact has been
evaluated to a possible extent through the conducted studies.

5.7 Conclusion

Design automation has been successfully applied in various aspects of the design pro-
cess, including design evaluation to free engineers from mundane tasks and reduce the
engineering design lead time. However, the continuous growth of product complex-
ity, the ever-changing customer requirements, and the general industrial shift for shorter
design and product cycles necessitate new smart ways to evaluate design concepts and
reduce engineering design lead time. More recently, AI algorithms and data-driven ap-
proaches have shown great potential to take up design automation to the next level, by
using machines to learn, generate, and analyze design variants. However, the application
of data-driven methods to the design evaluation process poses a few challenges that are
addressed in this thesis. In this thesis, three challenges are identified, each addressed by
a distinct solution, and applied across four case studies using a design research method-
ology. First, feature engineering is proposed to make the evaluation less dependent on
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parameterization, then dynamic relaxation is used to label a large design dataset, which
paves the way for large-scale dataset generation. Finally, combining features and labels, a
data engineering framework is outlined called dataset platform design that offers a faster
and cheaper design evaluation method, trading off accuracy. From a scientific perspective,
this thesis contributes to the advancement of data-driven design evaluation by providing
methods for leveraging data engineering techniques within design evaluation processes.
The methods are demonstrated to be effective in early phases of the design process, such
as technology selection. The studies highlight limitations associated with each proposed
design evaluation support, which provides a basis for further investigations. Despite these
limitations, validation results indicate that the proposed methods are helpful for design
evaluation in industrially relevant scenarios. While direct impacts on engineering design
lead time have not been measured, the positive feedback on usability and effectiveness
suggests that the approach addresses critical challenges in iterative, simulation-driven de-
sign processes. This indicates potential applicability across other high-level, technical
design environments.

5.8 Future work

Based on the findings and limitations identified throughout this thesis, there are several
areas where further work is recommended. The suggested areas for further research are
structured into four key themes:

Mitigating Identified Weaknesses

While the proposed methodologies have shown promise, certain limitations were iden-
tified during the studies. Addressing these weaknesses requires further refinement and
enhancement of the current approaches.

For future image regression methods, Other sampling methods can be explored to gen-
erate design variants that efficiently cover the design space. Our analysis indicates that
relying solely on parameterized methods may hinder thorough exploration of the design
space, limiting the potential for innovative solutions.

Further simulations can be conducted utilizing dynamic relaxation techniques, as the
scope of this thesis primarily focuses on the inflation process of airbags.

Implemented CNN mode designed for classification problems, which needs modification
for engineering regression tasks. The network architecture will be designed.

Exploring Alternative Approaches

This thesis focused on specific methods for data-driven design evaluation; however, alter-
native approaches could further enhance the capabilities of design automation.
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Alternative extractable information from geometrical and simulation models can be ex-
plored as input for building an AI model is an area that requires more exploration. Cloud-
based and voxel-based representations of geometrical objects have shown promising re-
sults in the literature. These geometrical representations could provide a new data type
for training AI models. Testing several data types on different models will determine what
kind of data performs best with which AI method.

Physics-informed neural networks (PINNs) have recently shown generalizability for broader
applications. PINNs include the physical laws (for example, a differential equation) gov-
erning the behavior under study in the cost function of the ML model. Since there are
analytical solutions for crash simulation, these equations can be tested on PINNs to im-
prove the learning and reduce the training size.

It is recommended to explore the integration of feature engineering techniques into 3D
modeling and to expand this approach to other engineering fields. In 3D geometry, the
medial axis is represented in a plane rather than as a line, as it is in 2D geometry. This
understanding can lead to new geometric representations that benefit a wider range of
products.

Integrating unsupervised or semi-supervised learning techniques to enhance model train-
ing where labeled data is limited. Unsupervised learning methods enable the model to
identify patterns and structures within the data without the need for labeled examples,
allowing for the extraction of valuable insights from unannotated datasets, which makes
them relatable to geometrical shape designs.

Further investigating the use of transfer learning to apply learned knowledge from one
domain to another. This includes analyzing how pre-trained models can be adapted to
new design tasks, the role of fine-tuning in enhancing model performance, and the impact
of domain similarities on learning efficacy.

Advancing Research into Practice

The industrial relevance of the proposed methods suggests the potential for broader prac-
tical application.

The developed surrogate models have been successful and validated. The next step is to
create software tools with a graphical user interface that can be implemented in compa-
nies. This will simplify the utilization of sophisticated AI algorithms for non-engineers.
This was needed because less technical users struggle to maintain datasets and models.

Conducting more extensive validation studies in collaboration with industry partners to
ensure practicality and usability is also recommended to advance research into practice.

Generalizing Findings and Contributing to Knowledge

While the methods proposed in this thesis address specific challenges, generalizing these
findings to broader theoretical frameworks and methodologies would strengthen their
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scientific contribution.

In future studies, the expectation is to find out what kind of data types are more suitable
for which types of simulations and geometries, be it solid models, sheet metal, etc. Fi-
nally, moving from real-time predictions to real-time analysis, a generalized framework
for performing performance analysis in real-time can be developed and validated with
relevant validation methods.

Developing generalized theories and guidelines for generating and evaluating datasets
in data-driven design is essential. This includes focusing on best practices for dataset
curation, such as establishing criteria for data relevance and quality. To effectively evaluate
these datasets, we need clear metrics and standards that allow designers to assess their
impact on fostering innovative solutions.
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