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ABSTRACT: To  improve  the  adaptability  of  Connected  and  Automated  Vehicles  (CAVs)  in  mixed  traffic,  this  study  proposes  a
prediction  model  training  indicator  that  comprehensively  considers  drivers'  Social  Value  Orientation  (SVO)  and  planning  goals.
Active Influence Factor (AIF) is used as the goal to predict the future safety loss and consistency loss of CAVs. Second, an objective
function  based  on  SVO  is  constructed  to  understand  the  driver’s  characteristics  to  evaluate  the  safety,  comfort,  efficiency,  and
consistency of candidate trajectories. The results showed that integrating SVO and consistency functions can help ensure that CAVs
drive under a more stable risk potential energy field. The prediction planning model that considers SVO can improve the reliability
of  the  CAV  output  trajectory  to  a  certain  extent.  The  prediction  planning  under  the  AIF  has  better  accuracy  and  stability  of  the
output trajectory; however, it still has strong adaptability and superiority under different sensitivity parameters. The minimum and
maximum  standard  deviations  of  our  model  are  0.78  and  0.78  m,  respectively,  whereas  the  minimum  and  maximum  standard
deviations  of  the  comparative  model  reach  2.07  and  4.56  m,  respectively.  The  minimum  standard  deviation  of  the  other
comparative model reaches 1.35 m, and the maximum standard deviation reaches 4.45 m.

KEYWORDS: Connected  and  Automated  Vehicles  (CAVs); Social  Value  Orientation  (SVO); smart  prediction  planning; trajectory
planning; numerical simulation

  

1  Introduction
In  recent  years,  the  integrated  sensing,  decision  planning,  and
robust  control  of  Connected  and  Automated  Vehicles  (CAVs)
have promoted the rapid expansion of CAV application scenarios
(Zhou  et  al.,  2023).  Limited  by  policy  introduction,  technical
constraints,  responsibility  ethics,  and  other  restrictive  factors,
CAVs  and  Human-Driven  Vehicles  (HDVs)  will  coexist  for  a
long  period  of  time  in  the  future.  Hence,  the  fundamental
challenge that demands attention is the augmentation of decision-
making  capabilities  in  CAVs  to  emulate  the  cognitive  processes
observed in  proficient  human drivers  (Bai  et  al.,  2024; Dai  et  al.,
2023).

Current  scholarly  discourse  maintains  a  sanguine  perspective
on  the  holistic  advancement  of  autonomous  driving  technology,
coupled  with  the  anticipation  of  a  significant  proliferation  of
CAVs  within  the  transportation  landscape.  Research  has
extensively  considered  vehicle  dynamic  constraints  (Jiang  and
Zhou, 2021) and proposed a situational awareness framework for
trajectory planning in structured traffic environments (Dixit et al.,
2018).  Additionally,  under  high-speed  conditions,  CAVs  are

prone to approaching extreme operating conditions (Sazgar et al.,
2018). Altche  et  al.  (2017) established  a  virtual  input  double
integrator  that  is  based  on  extreme  conditions  and  applied
appropriate  speed  profiles  to  solve  optimization  problems.  This
approach  constructs  highly  constrained  trajectory  corridors  and
optimal  results  under  complex  road  conditions  and  vehicle
operating  conditions  (Jeon  et  al.,  2013; Wang  et  al.,  2020).
Research  progress  on  CAVs  in  straight-line  scenarios  can  be
categorized into trends of intelligence (Dixit et al., 2018; Liu et al.,
2018),  collaboration  (Tomas-gabarron  et  al.,  2013; Richter  et  al.,
2014),  and  dynamism  (Michael  and  Stephen,  2016; Rong  et  al.,
2024a).  However,  constrained by technological  limitations,  policy
restrictions,  and  ethical  considerations,  the  coexistence  of  CAVs
and HDVs is highly likely to persist in the long term. Game theory
serves as a vital approach for handling mixed traffic scenarios. Yu
et  al.  (2023) proposed  a  multiagent  dynamic  game  model  that
fully  considers  the  states  of  surrounding  vehicles  to  ensure
accurate  execution  of  lane-changing  decisions. Yan  et  al.  (2023)
introduced  a  trajectory  planning  framework  based  on  game
theory, achieving dynamic evolution of planning from both lateral
and  longitudinal  game  perspectives. Zhou  et  al.  (2019) extended
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the game model to interactions among motor vehicles, nonmotor
vehicles, and pedestrians, enabling CAVs to dynamically evaluate
and respond to various uncertainties at complex intersections via
a  pipeline  algorithm.  In  addition  to  game  relationships,
cooperation  among  CAVs  is  crucial.  Therefore, Qiu  and  Du
(2023) proposed  an  embedded  mixed-integer  nonlinear
programming approach to  realize  cooperative  planning of  CAVs
in  mixed  traffic,  aiming  for  formation  and  efficient  driving.
Hubmann  et  al.  (2017) defined  human  drivers’ intentions  as  a
partially  observable  Markov  decision  process,  enabling  CAVs  to
make judgments and responses in continuous state spaces. Cai et
al.  (2023) and Rong  et  al.  (2024b) presented  a  hierarchical
cooperative  merging  control  strategy  for  entrance  ramp merging
in  mixed  traffic  to  optimize  safe  and  flexible  trajectories.  In
summary, existing research primarily utilizes game theory logic to
infer  and  model  feasible  decision-making  plans  across  different
scenarios  and  entities,  aiming  to  achieve  low-risk  and  high-
efficiency goals.

However, three core issues remain: (1) How can the quality of
CAV  candidate  trajectories  be  effectively  evaluated  so  that  the
output  trajectory  fully  considers  the  subject  factor  CAV  and  the
object factor HDV (Wang et al.,  2023)? (2) How can the driver’s
Social Value Orientation (SVO) be fully evaluated to improve the
accuracy of motion planning? (3) How to consider driver factors
and planning goals in the prediction model so that the prediction
results can be transformed from “prediction accuracy-oriented” to
“planning  goal-oriented” (Zhang  et  al.,  2023)?  Therefore,  this
study  proposes  a  smart  prediction  planning  algorithm for  CAVs
that is based on SVO. The main contributions of this study are as
follows.

Contribution  1:  Shifting  from  self-oriented  to  socially
compatible  planning. The  traditional  objective  function  focuses
on  safety,  comfort,  and  efficiency  and  represents  a  self-oriented
planning  strategy.  By  introducing  a  consistency  function,  this
strategy  evolves  into  a  socially  compatible  planning  approach,
enabling  CAVs  to  consider  potential  inconveniences  to  other
vehicles.

Contribution  2:  Incorporation  of  Dynamic  SVO  (D-SVO).
This study proposes a trajectory planning algorithm that accounts
for  D-SVO  of  drivers.  This  approach  enhances  planning
effectiveness  while  maintaining  robustness  in  various  driving
scenarios.

Contribution  3:  Transition  to  smart  prediction  and
planning. The  concept  of  smart  prediction  and  planning  is
introduced, shifting the focus from “prediction accuracy-oriented”
to “optimization  effect-oriented”.  This  change  leads  to  more
efficient  trajectory  planning  by  prioritizing  optimization  over
mere accuracy.

In addition to the introduction, this paper explains the research
object,  research  questions,  and  research  framework  in  Section  2.
Second, three different prediction models are proposed in Section 3.
The  first  is  a  future  trajectory  prediction  model  that  is  based  on
SVO.  The  second  is  the  prediction  of  the  future  loss  value  via
SVO, and the third is the prediction of the loss value impact index
via  SVO.  In  Section  4,  an  objective  function  based  on  SVO  and
consistency  is  constructed.  Finally,  the  experimental  results  are
analyzed for each innovation point in Section 5. The conclusions
are presented in Section 6.

2  Problem description

2.1  Research subjects
CAVs and HDVs transmit basic safety messages from vehicles to
vehicles.  The  research  scenario  is  an  ordinary  road  section.  The
main vehicle is set to CAVmain, the other CAV numbers are CAV1,
CAV2,  … ,  and the HDV numbers are HDV1, HDV2,  … The
trajectory data of the vehicle are s = {x, y, v, a, θ, κ}, where x, y,
v, a, θ, and κ are the lateral position, longitudinal position, speed,
acceleration, deflection angle, and curvature, respectively.

In Fig. 1, the yellow vehicles represent CAVs, whereas the white
vehicles depict HDVs. During predictive planning by CAVs, it  is
crucial  to  anticipate  the  trajectory  of  interacting  HDVs  and
integrate  this  information  into  the  CAV  planning  module.
Assuming that the HDV drivers behave rationally, their predicted
trajectory is considered normal. A prosocial driver tends to adopt
a more conservative trajectory,  whereas an aggressive driver may
exhibit a more assertive trajectory.

2.2  Research problem
(1)  How can the  objectivity  of  evaluating  the  trajectory  planning
objective  function  for  CAVs  be  enhanced,  thereby  ensuring  that
planning outcomes consistently satisfy driving requirements while
prioritizing safety, comfort, and efficiency?
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(2)  In  what  ways  can  the  influence  of  HDVs  driver  charac-
teristics  on  CAV  prediction  and  planning  be  comprehensively
assessed, enabling CAV trajectory planning results to better adapt
to driving conditions within mixed traffic environments?

(3)  How  can  the  target  requirements  of  CAV  trajectory
planning  be  effectively  incorporated  into  the  prediction  process
for surrounding vehicles, ensuring that prediction outcomes align
more closely with the intended planning objectives?

2.3  Research framework
As illustrated in Fig. 2, the prediction module processes the SVO
of nearby HDVs, along with the historical trajectory data of both
HDVs and the CAV. The module employs three distinct training
metrics  to  increase  the  prediction  accuracy.  The  first  metric,
denoted  minimum  Average  Displacement  Error  of  trajectory  as
minADEtraj,  minimizes  the  deviation  between  the  predicted  and
actual future trajectories of HDVs. The second metric, minimum
Root  Squared  Error  of  loss  value  (minRMSEloss),  focuses  on
reducing  the  deviation  between  the  predicted  and  actual  loss
values  of  the  CAV’s  candidate  trajectories.  The  third  metric,
minimum Root Squared Error of  AIF (minRMSEaif),  optimizes a
planning-oriented  training  metric  aimed  at  improving  trajectory
prediction.  Following  these  predictions,  the  planning  module
evaluates  each  candidate  trajectory  via  a  loss  function  that
incorporates  safety,  comfort,  efficiency,  and  consistency.
Additionally, the predicted future trajectories of HDVs are utilized
in calculating the safety and consistency functions.

3  Prediction model
In  the  context  of  autonomous  driving,  SVO  offers  a  systematic
framework  for  modeling  social  dynamics  between  vehicles.  Each
vehicle is considered a rational agent, balancing its individual goals
with broader objectives, such as safety and social cooperation. By
incorporating  SVO,  we  aim  to  represent  the  diverse  motion-
planning styles seen in real-world driving, where vehicles may not
always  prioritize  the  same  outcomes.  Each  agent’s  trajectory  is
predicted on the basis  of  its  SVO and historical  data,  influencing

how  it  responds  to  the  movements  of  other  vehicles.  A
cooperative  agent  is  more  likely  to  predict  trajectories  that
maintain  safe  distances  and  adjust  speed  to  avoid  conflicts,
whereas  a  self-interested  agent  may  prioritize  reaching  its
destination  efficiently,  potentially  at  the  expense  of  comfort  or
yielding to others. SVO plays a critical role in how agents balance
self-interest  with  cooperative  behavior  in  multiagent  environ-
ments.  The  prediction  model  leverages  SVO  to  anticipate  how
vehicles  with  different  orientations—self-focused,  cooperative,  or
competitive—will  act  on  the  basis  of  their  observed  behavior.
Cooperative  vehicles  are  expected  to  yield  or  maintain  safe
distances,  whereas  self-interested  or  competitive  vehicles  may
prioritize efficiency (e.g., faster lane changes). Drawing from social
preference theory, SVO helps predict how vehicles behave on the
basis  of  their  social  orientation,  increasing  trajectory  accuracy.
SVO  serves  as  input  data  for  the  prediction  model  and  as  a
parameter for reconstructing the loss function.

F1 and F2 are  used to  predict  the  future  trajectories  of  HDVs
for  the  planning  module.  F1  relies  solely  on  trajectory  data,
whereas  F2  uses  both  trajectory  data  and  SVO  data  as  training
inputs.  F3  and  F4,  on  the  other  hand,  directly  predict  the  loss
value  for  each  candidate  trajectory  in  the  planning  module.  F3
uses trajectory data and loss values as training inputs, whereas F4
incorporates trajectory data, loss values, and SVO data. As a result,
F1 and F2 (or F3 and F4) can be compared to evaluate the impact
of SVO. Additionally, F1 and F3 (or F2 and F4) can be analyzed to
assess the differences in their outputs.

3.1  Trajectory prediction via SVO
As  shown  in Table  1,  F1  and  F2  are  both  prediction  modules
designed  to  forecast  the  future  trajectories  of  HDVs.  The  key
difference lies in their input sources: F1 relies solely on trajectory
data, whereas F2 uses both trajectory data and SVO data as inputs.
The  evaluation  metrics  include  Average  Displacement  Error
(ADE), Final Displacement Error (FDE), and Miss Rate (MR).

This study uses Long Short-Term Memory (LSTM) to learn the
interactive  feature  information of  interactive  vehicles  (referred  to
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Table 1    Prediction models of F1 and F2

F1 F2
Input Trajectory data Trajectory and SVO data

Training index f1 f2

Output Future trajectory
Evaluation metrics ADE, FDE, MR

⌊ ⌋Note: The predicted trajectory of the HDV is TPhdv,pred = [Shdv,pred(t + Δt), Shdv,pred(t + 2Δt), …, Shdv,pred(t + qΔt)]T, q = T/Δt , where T is the time domain
(s), and Δt is the update frequency (s). The real trajectory of HDV is TPhdv,true = [Shdv,true(t + Δt), Shdv,true(t + 2Δt), …, Shdv,true(t + qΔt)]T.
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as  CAVs  in  this  study)  and  can  automatically  learn  typical
interactions between different vehicle trajectories. The output data
are  HDV  future  trajectory  data TPhdv,pred.  For  the  single-modal
trajectory  prediction  model,  ADE,  FDE,  and  MR  are  selected  as
evaluation indicators (Table 1).

Input  data  for  F1.  Vehicle  trajectory  prediction  has  obvious
time  series  characteristics.  The  input  data  of  F1  include  HDV
trajectory data TPhdv,history and CAV trajectory data TPcav,history.

Training  index  for  F1. We  calculate  it  by  the  vector  angle
between the HDV-predicted trajectory and the real trajectory and
the L1 distance loss value.

f1 =
α1

q

q∑
i=1

Llat [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)]

+
α2

q

q∑
i=1

Llon [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)]

(1)

Llat [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)] =
Lloss [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)]
× sin

(
ΔSi

hdv,pred,ΔSi
hdv,real

)
(2)

Llon [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)] =
Lloss [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)]
× cos

(
ΔSi

hdv,pred,ΔSi
hdv,real

)
(3)

Lloss [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)] =
q∑

i=1

|Shdv,pred (t+ i · Δt)− Shdv,real (t+ i · Δt)| (4)

sin
(
ΔSi

hdv,pred,ΔSi
hdv,real

)
=

√
1− cos2

(
ΔSi

hdv,pred,ΔSi
hdv,real

)
(5)

cos
(
ΔSi

hdv,pred,ΔSi
hdv,real

)
=

ΔSi
hdv,pred · ΔSi

hdv,real∣∣ΔSi
hdv,pred

∣∣ · ∣∣ΔSi
hdv,real

∣∣ (6)

ΔSi
hdv,pred = Shdv,pred (t+ i · Δt)− Shdv,pred [t+ (i− 1) · Δt] (7)

ΔSi
hdv,real = Shdv,real (t+ i · Δt)− Shdv,real [t+ (i− 1) · Δt] (8)

ΔSi
hdv,pred ΔSi

hdv,real ΔSi
hdv, pred

ΔSi
hdv, real ΔSi

hdv, pred ΔSi
hdv, real

ΔSi
hdv, pred ΔSi

hdv, real ΔSi
hdv, pred

ΔSi
hdv, real

where f1 is the training indicator of the HDV trajectory prediction
model  during  the  training  process. α1 and α2 are  the  weights  for
the  lateral  and  longitudinal  deviations,  respectively. q is  the
number of trajectory points. Llat[Shdv,pred(t + i·Δt), Shdv,real(t + i·Δt)]
is the lateral deviation for the predicted and real trajectories of the
HDV at  the i-th  trajectory  point. Llon[Shdv,pred(t + i·Δt), Shdv,real(t +
i·Δt)]  is  the  longitudinal  deviation  for  the  predicted  and  real
trajectories of the HDV at the i-th trajectory point. Lloss[Shdv,pred(t +
i·Δt), Shdv,real(t + i·Δt)]  is  the  total  deviation for  the  predicted and
real  trajectories  of  the  HDV  at  the i-th  trajectory  point.  The
sin( , ) is the sine value between  and

.  The  cos( , )  is  the  cosine  between
 and .  is the deviation between the i-th

and  (i − 1)-th  predicted  trajectories.  is  the  deviation
between  the i-th  and  (i − 1)-th  predicted  trajectories.  The
prediction model at this time is F1.

Driver factors are important reference indicators that affect the
future trajectory selection of HDVs. Therefore, the difference from

F1 is that F2 optimizes the input data and training indicators. The
output  data,  prediction  model,  and  evaluation  metrics  remain
unchanged.

Input  data  for  F2.  The  data  input  of  F2  includes  HDV
trajectory data TPhdv, history, CAV trajectory data TPcav, trajectory, and D-
SVO. The output data are HDV future trajectory data TPhdv,pred.

Training  index  for  F2.  On  the  basis  of  F1,  the  D-SVO
distribution  model  of  the  HDV  is  introduced.  When  the  HDV
and  CAV  participate  in  game  interaction,  D-SVO  can  better
evaluate  its  future  trajectory  choices.  When  the  HDV  and  CAV
gradually  break  away  from  the  game  interaction,  D-SVO’s
performance  in  correcting  trajectory  prediction  results  decreases.
The problem is that the real future trajectory of an HDV considers
“driver  characteristics” and  the “surrounding  road  environment”
at the same time, that is,  the joint result  of subjective factors and
objective factors. Therefore, the training indicators fhdv,svo based on
D-SVO are imported. All the indicators are normalized.

fhdv,lat =
1
q

q∑
i=1

Llat [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)] (9)

fhdv,lon =
1
q

q∑
i=1

Llon [Shdv,pred (t+ i · Δt) , Shdv,real (t+ i · Δt)] (10)


fhdv,svo =

1
q

q∑
i=1

βi

∣∣D− SVOo
hdv,mean,pred (t+ i · Δt)

−D− SVOo
hdv,mean,real (t+ i · Δt)|

βi =
2

1+ eD−SVOo
hdv,std(t+i·Δt)

(11)

{
f2 = αlatfhdv,lat + αlonfhdv,lon + αsvofhdv,svo
αlat + αlon + αsvo = 1

(12)

where fhdv,lat is  the  deviation  between  the  laterally  predicted  and
real  trajectory  data  of  the  HDVs. fhdv,lon is  the  deviation  between
the longitudinal predicted and real trajectory data of HDVs. fhdv,svo
is  the  deviation  between  the  predicted  and  real  SVO  of  HDV
drivers. βi is the weight for the SVO at the i-th trajectory point. αlat,
αlon,  and αsvo are  the  weights  for fhdv,lat, fhdv,lon,  and fhdv,svo,
respectively. The prediction model at this time is F2.

3.2  Loss value prediction via SVO
Under  the  same trajectory  planning  algorithm,  the  loss  values  of
different candidate trajectories need to be evaluated. Therefore, we
can use  the  prediction model  to  directly  predict  CAV safety  and
consistency  loss  values  and  use  the  prediction  results  for  CAV
trajectory optimization. The real safety and consistency loss values
of the CAV candidate trajectories are set to Jsafety,real and Jconsistency,real.
The predicted safety and consistency loss  values  of  the candidate
trajectories  are Jsafety,pred and Jconsistency,pred,  respectively  The  training
model is LSTM (Table 2).

Input data for F3. CAV safety and consistency loss values have
obvious  time  series  characteristics.  The  input  data  for  F3’s  loss
 

Table 2    Prediction models of F3 and F4

F3 F4

Input Trajectory data,
loss value

Trajectory data, loss value,
SVO data

Training index f3 f4

Output Future loss value
Evaluation metrics RMSE
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value  prediction  include  CAV  safety  value  data Jsafety,history =
[Jsafety,real(t – t0), Jsafety,real(t – 2t0),…],  CAV consistency loss value
data Jconsistency,history =  [Jconsistency,real(t – t0), Jconsistency,real(t – 2t0), …],
HDV  trajectory  data TPhdv,history, and  CAV  trajectory  data
TPcav,trajectory. The output data are the future safety and consistency

loss  values Jsafety,pred and Jconsistency,pred,  respectively  of  CAV  at  each
timestamp.

Training  index  for  F3. We  model f3 through  the  predicted
safety and consistency loss values of CAV and the true safety and
consistency loss values.

f3 =
[
Ksafety

q

q∑
i=1

|Jsafety,real (t+ i · Δt)− Jsafety,pred (t+ i · Δt)|+ Kconsistency

q

q∑
i=1

|Ji (t+ i · Δt)− Jconsistency,pred (t+ i · Δt)|
]

(13)

Driver  factors  are  important  factors  affecting  CAV  safety  and
consistency loss values. Therefore, F4 optimizes the input data and
training  indicators.  The  output  data,  prediction  model,  and
evaluation metrics remain unchanged.

Input  data  for  F4.  The  data  input  of  F4  includes  CAV safety
value data Jsafety,history = [Jsafety,real(t – t0), Jsafety,real(t – 2t0),  …],  CAV
consistency  loss  value  data Jconsistency,history =  [Jconsistency,real(t – t0),
Jconsistency,real(t – 2t0), …],  HDV  trajectory  data TPhdv,history,  CAV
trajectory  data TPcav,trajectory,  and HDV’s  D-SVO data.  The  output
data are the future safety and consistency loss values Jsafety,pred and
Jconsistency,pred, respectively of CAV at each timestamp.

Training index for  F4.  When the  HDV and CAV participate
in  game  interaction,  the  HDV’s  D-SVO  can  better  evaluate  the
choice  of  the  CV’s  future  trajectory.  When  the  HDV  and  CAV
gradually  break  away  from  the  game  interaction,  the  HDV’s  D-
SVO  performance  in  correcting  trajectory  prediction  results
decreases.  Ideally,  future  trajectory  prediction for  HDVs is  based
on the historical trajectory of the HDV and the status data of the
CAV.  Without  considering  driver  characteristics,  F3’s  training
indicators  are  reasonable.  The  problem  is  that  the  real  future
trajectory  of  an  HDV  considers “driver  characteristics” and  the
“surrounding  road  environment” at  the  same  time,  that  is,  the
joint  result  of  subjective  factors  and  objective  factors.  Therefore,
the  HDV  prediction  model  must  consider  subjective  factors  to
ensure  that  the  prediction results  approach the  real  situation.  All
the indicators are normalized.

fcav,safety =
1
q

q∑
i=1

|Jsafety,real (t+ i · Δt)− Jsafety,pred (t+ i · Δt)| (14)

fcav,consistency =
1
q

q∑
i=1

|Jconsistency,real (t+ i · Δt)

−Jconsistency,pred (t+ i · Δt)| (15)


fhdv,svo =

1
q

q∑
i=1

βi

∣∣D− SVOo
hdv,mean,pred (t+ i · Δt)

−D− SVOo
hdv,mean,real (t+ i · Δt)|

βi =
2

1+ eD− SVOo
cv,std(t+i·Δt)

(16)

f4 = αsafety · fcav,safety + αconsistency · fcav,consistency + αsvo · fhdv,svo (17)

where fcav,safety is the deviation between the predicted and real safety
loss  values  at  the i-th  trajectory  point. fcav,consistency is  the  deviation
between the predicted and real  consistency loss  values at  the i-th
trajectory  point. αsafety, αconsistency,  and αsvo are  the  weights  for
fcav,safety, fcav,consistency,  and fhdv,svo,  respectively.  The  prediction  model
at this time is F4.

3.3  Loss value prediction via smart predict-planning
With  the  advancement  of  autonomous  vehicle  technology,  both
the  prediction  and  planning  modules  have  achieved  strong

performance in their respective functions. However, the challenge
of information loss between these modules remains a critical issue,
especially in complex corner cases. To address this, a new training
metric  that  incorporates  the  objectives  of  the  planning  module
into the prediction module  is  proposed (Mo and Lv,  2023).  This
metric  aims  to  minimize  the  information  loss  between  distinct
modules, thereby enhancing the integration of the prediction and
planning processes in CAVs (Chen et al., 2023).

The HDVs that  interact  with CAVs are the IHDV vehicles.  The
safety loss value generated by HDVi at the j-th candidate trajectory
of a CAV is Jsafety(i,j), the consistency loss value is Jconsistency(i,j) (I = 1,
2,  …, IHDV), and for the j-th CAV, the objective functions of the
candidate  trajectories  include  the  safety  function Jsafety(j),  the
comfort function Jcomfort(j), the efficiency function Jefficiency(j), and the
consistency function Jconsistency(j).  The expressions of  the safety and
consistency functions are as

Jsafety(j) =
∑
i=1

α(i) · Jsafety(i,j) (18)

Jconsistency(j) =
∑
i=1

β
(i) · Jconsistency(i,j) (19)

where α(i) represents the safety weight of the HDVi relative to the
CAV  candidate  trajectories  and  where β(i) represents  the
consistency  weight  of  the  HDVi relative  to  the  CAV  candidate
trajectories.

D-SVOo
i

D-SVOo
i D-SVOo

i

This  study  uses  the  traditional  potential  energy  field  and  D-
SVO to define two weight distributions. The potential energy field
strength generated by HDVi at the CAV is set as Ei, the D-SVO of
the HDVi driver is set as D-SVOi, and the corresponding angle is
set as . Psychological research has shown that SVO is a
key factor that affects individual behavior and attitudes in a wide
range  of  social  situations.  Compared  with  self-centered  people,
prosocial  people  exhibit  more  trust  and  cooperation  behaviors,
and  prosocial  people  act  on  behalf  of  others.  Performance  in
decision-making  is  more  similar  to  decision-making  for  oneself;
that  is,  prosocials’ self-other  decision-making  discrepancies  are
smaller.  The  first  is  the  safety  weight α(i).  From  the  analysis  of
explicit  factors, Ei is  taken  as  the  basic  element.  The  larger  the
value  is,  the  greater  the  safety  weight α(i) of  HDVi.  From  the
perspective  of  implicit  factors,  when  different  HDVi values  have
the same |Ei| (the directions may differ), proself drivers may make
more  radical  and  self-interested  driving  decisions  than  prosocial
drivers.  The  second  is  the  consistency  weight β(i).  As  mentioned
above,  prosocial  drivers  have  smaller  self-other  decision-making
differences than proself drivers do, so the consistency weight β(i) of
prosocial  drivers  is  greater.  Therefore,  we can use HDVi’s Ei and

 to  define α(i) and  use  to  define β(i).  The
expressions of α(i) and β(i) are as

αi =
σ
(
D-SVO°′

i

)
· e|E’

i |∑
i=1

σ
(
D-SVO°′

i

)
· e|E’

i |
, βi =

eD-SVO°′
i∑

i=1

eD-SVO°′
i

(20)

Smart prediction-planning algorithm for connected and autonomous vehicle based on social value orientation 9210053-5

https://doi.org/10.26599/JICV.2024.9210053
 



σ
(
D-SVO°′

i

)
=

1
1+ e−D-SVO°′

i

(21)

D-SVO°′
i =

D-SVOo
i −D-SVOo

i−min

D-SVOo
i−max −D-SVOo

i−min
(22)

|E′
i | =

|Ei| − |Emin|
|Emax| − |Emin|

(23)

Therefore,  the  CAV  only  needs  to  screen  out  the  trajectories
corresponding  to  the  lowest  value  of  the  total  loss  value Ctotal
among all its candidate trajectories. The optimization goal of CAV
is to find the relative minimum value of the total loss value.

We  analyze  the  relationships  among  different  data  in  four
stages and derive training indicators for the prediction model.

Step  1:  The  CAV  has  generated n candidate  trajectories,  and
the total  loss  value  of  each candidate  trajectory is Ctotal = [Ctotal(1),
Ctotal(2), …, Ctotal(n)]. The weight values of the CAV safety, comfort,
efficiency,  and  consistency  functions  are Ksafety, Kcomfort, Kefficiency,
and Kconsistency, respectively.  The  solution  matrix  for  all  candidate
trajectories is as

Ctotal(1)

Ctotal(2)

· · ·
Ctotal(n)

 =


Jsafety(1) Jcomfort(1) Jefficiency(1) Jconsistency(1)
Jsafety(2) Jcomfort(2) Jefficiency(2) Jconsistency(2)
· · · · · · · · · · · ·

Jsafety(n) Jcomfort(n) Jefficiency(n) Jconsistency(n)



×


Ksafety

Kcomfort

Kefficiency

Kconsistency


(24)

where the predicted total loss value of the j-th candidate trajectory
of  the CAV is Ctotal-pred(j) and the true total  loss  value is Ctotal-true(j).
The  predicted  safety  loss  value  of  the j-th  candidate  trajectory  is
Jsafety-pred(j) (HDVi’s predicted safety loss value is Jsafety-pred(i,j)), and the
true safety loss  value is Jsafety-true(j) (HDVi’s  true safety loss  value is
Jsafety-true(i,j)).  The  predicted  consistency  loss  value  is Jconsistency-pred(j)
(the  predicted  consistency  loss  value  of  HDVi is Jconsistency-pred(i,j)),
and  the  true  consistency  loss  value  is Jconsistency-true(j) (the  true
consistency loss value of HDVi is Jconsistency-true(i,j)).

Step  2:  Derive  the  relationship  between  the  predicted  results
and the real results.

Jsafety-true(i,j)-Jsafety−pred(i,j) = ΔJsafety(i,j) (25)

Jconsistency-true(i,j) − Jconsistency-pred(i,j) = ΔJconsistency(i,j) (26)

Ctotal-true(j) − Ctotal-pred(j) = ΔCtotal(j) (27)

Expanding Eqs. (24)–(26), we obtain the following results:

Ksafety · [Jsafety -trus(j) − Jsafety -pred(j)]

+ Kconsistency · [Jconsistency -true(j) − Jconsistency -pred(j)] = ΔCtotal(j)

(28)

Jsafety -trus(j)=
∑
i=1

αi ·Jsafety -trus(i,j) Jsafety -pred(j)=
∑
i=1

αi ·Jsafety -pred(i,j)

Jconsistency -true(j) =
∑
i=1

βi · Jconsistency -true(i,j) Jconsistency -pred(j) =
∑
i=1

βi·

Jconsistency -pred(i,j)

, ,

, 

, and Eq. (27) becomes Eq. (28) as

Ksafety ·
∑
i=1

αi · (Jsafety -trus(i,j) − Jsafety -pred(i,j)) + Kconsistency

×
∑
i=1

βi · (Jconsistency -true(i,j) − Jconsistency -pred(i,j)) = ΔCtotal(j)

(29)

Equations (28) and (29) are combined into Eq. (30) as

Ksafety ·
∑
i=1

αi ·ΔJsafety(i,j)+Kconsistency ·
∑
i=1

βi ·ΔJconsistency(i,j)=ΔCtotal(j)

(30)

Step  3:  Case  analysis.  Theoretically,  we  need  to  compare  the
size  relationship  between  the  total  loss  values  of  all  candidate
trajectories  of  CAVs.  For  example,  CAV  has  three  candidate
trajectories, 1, 2, and 3, and the corresponding total loss values are
Ctotal-true(1)/Ctotal-pred(1), Ctotal-true(2)/Ctotal-pred(2), and Ctotal -true(3)/Ctotal-pred(3).

Ctotal-trus(1) − Ctotal-trus(2) = Ctrue(1→2) (31)

Ctotal-trus(2) − Ctotal-trus(3) = Ctrue(2→3) (32)

Ctotal-pred(1) − Ctotal-pred(2) = Cpred(1→2) (33)

Ctotal-pred(2) − Ctotal-pred(3) = Cpred(2→3) (34)

Ctotal-trus(1) − Ctotal-pred(1) = ΔCtotal(1) (35)

Ctotal-trus(2) − Ctotal-pred(2) = ΔCtotal(2) (36)

Ctotal-trus(3) − Ctotal-pred(3) = ΔCtotal(3) (37)

Comparing  Eq.  (35)  to  Eq.  (36)  and  Eq.  (36)  to  Eq.  (37),  the
following results are obtained:

Ctrue(1→2) − Cpred(1→2) = ΔCtotal(1) − ΔCtotal(2) (38)

Ctrue(2→3) − Cpred(2→3) = ΔCtotal(2) − ΔCtotal(3) (39)

Substitute Eq. (30) into Eq. (38) and Eq. (39).

Ctrue(1→2) = Ksafety ·
∑
i=1

αi · [ΔJsafety(i,1) − ΔJsafety(i,2)] + Kconsistency

×
∑
i=1

βi ·[ΔJconsistency(i,1)−ΔJconsistency(i,2)]+Cpred(1→2)

(40)

Ctrue(2→3) = Ksafety ·
∑
i=1

αi · [ΔJsafety(i,2) − ΔJsafety(i,3)] + Kconsistency

×
∑
i=1

βi ·[ΔJconsistency(i,2) − ΔJconsistency(i,3)] + Cpred(2→3)

(41)

Therefore, according to the case situation, when the safety loss
value and consistency loss value of CAVs for HDVi with different
driving conditions and different SVOs satisfy the above equations,
the prediction results of safety and consistency loss values do not
affect the actual optimization result.

Step  4:  Transition  from  the  case  scenario  to  the  regular
scenario.  Assume  that  a  CAV  has n candidate  trajectories.  The
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relative relationship between the j1 trajectory and the j2 trajectory (j1 < j2) is as

Ctrue(j1→j2) = Ksafety ·
∑
i=1

αi · [ΔJsafety(i,j1) − ΔJsafety(i,j2)] + Kconsistency ·
∑
i=1

βi · [ΔJconsistency(i,j1) − ΔJconsistency(i,j2)] + Cpred(j1→j2) (42)

There are a total of (n2 − n) / 2 cases when traversing j1 < j2,  as long as g(j1, j2) > 0 is satisfied.

g (j1, j2) = Ctrue(j1→j2) ·

{
Ksafety ·

∑
i=1

αi · [ΔJsafety(i,j1) − ΔJsafety(i,j2)] + Kconsistency ·
∑
i=1

βi · [ΔJconsistency(i,j1) − ΔJconsistency(i,j2)] + Cpred(j1→j2)

}
(43)

When g(j1, j2) > 0, the prediction result has a better effect on the
optimization  result,  and  the  output  result  is  recorded  as  0.
Conversely,  when g(j1, j2)  ≤  0,  the  prediction  result  has  a  worse
effect on the optimization result.

Therefore,  we  obtain  training  indicators  guided  by  planning
objectives, as shown in Eq. (44):

f =
n∑

j2>j1

n∑
j1=1

G (j1, j2)

G (j1, j2) =

 0, g (j1, j2) > 0
1

1+ e−|g(j1,j2)|
, g (j1, j2) ⩽ 0

(44)

where G(j1, j2) represents the training metrics for the j1 trajectory
and j2 trajectory.

The prediction model at this time is F5.

4  Motion planning model
For  CAVs,  we  introduce  SVO-driven  motion  planning.  The
planning  model  calculates  the  total  cost  of  each  candidate
trajectory  by  incorporating  the  SVO-influenced  behaviors  of
surrounding vehicles. This involves adjusting the weights assigned
to safety, comfort, efficiency and consistency in the cost function.
A  vehicle  with  a  cooperative  SVO  might  prioritize  safety  over
efficiency,  whereas  a  self-focused  vehicle  prioritizes  minimizing
travel  time.  In  the  planning  model,  SVO  plays  a  key  role  in
shaping  the  motion  planning  process  of  CAVs,  as  it  selects  the
optimal  future  trajectory.  This  approach  is  grounded  in  utility-
based motion planning and risk-aware models.

Utility-based  motion  planning.  In  the  planning  model,  the
vehicle  evaluates  multiple  candidate  trajectories  and  selects  the
one  that  maximizes  a  utility  function,  which  incorporates  SVO-
based considerations. This utility function not only focuses on self-
oriented objectives, such as minimizing travel time or maximizing
comfort  but also accounts for the broader social  environment by
prioritizing safety, cooperation, and compliance with traffic rules.
Utility maximization is a central concept in decision theory, where
rational  agents  aim  to  maximize  their  utility  under  given
constraints.  SVO  modifies  the  utility  function  by  introducing
weights  for  cooperative  versus  self-interested  behavior.  A  vehicle
with  a  cooperative  SVO  assigns  higher  utility  to  trajectories  that
maintain safe distances or yield to others, whereas a self-interested
vehicle  seeks  to  maximize  its  own  efficiency.  This  approach
parallels  the  social  utility  models  in  behavioral  economics,  where
agents  consider  both  individual  and  collective  payoffs  when
making decisions in social contexts.

Risk-aware models. Another theoretical foundation for SVO in
planning is its alignment with risk-aware decision models. Driving
is  inherently  risky,  requiring  trade-offs  between  safety,  comfort,
and efficiency. SVO aids the planning model in assessing risk not
only  from  the  perspective  of  the  autonomous  vehicle  but  also

from the broader traffic  environment,  where the actions of  other
vehicles  can  introduce  additional  risks.  A  vehicle  with  a
cooperative  SVO  may  plan  a  more  conservative  trajectory,
maintaining  larger  distances  from  other  vehicles  to  reduce  the
likelihood of  collisions.  In contrast,  a  more self-interested vehicle
might  take  greater  risks  to  optimize  for  time  efficiency.  By
adjusting the risk profile of each trajectory via SVO, the planning
model can balance these trade-offs in a manner that mirrors real-
world  driving  behavior.  This  approach  is  grounded  in  bounded
rationality  and  prospect  theory,  which  explain  how  agents  make
decisions  under  uncertainty  by  factoring  in  both  potential  gains
and  risks.  SVO  enriches  this  framework  by  introducing  a  social
layer to risk assessment, allowing vehicles to plan trajectories that
reflect both personal and social risk considerations.

4.1  Parameter description of CAV

⌊ ⌋

In the global coordinate system, the state data of the CAV at time
t are Scav =  [xcav, ycav, vcav, acav, θcav, κcav]T,  where xcav represents
lateral position, ycav represents longitudinal position, vcav represents
speed, acav represents acceleration, θcav represents deflection angle,
and κcav represents curvature. The status data of the HDV are Shdv =
[xhdv, yhdv, vhdv, ahdv, θhdv, κhdv]T, and the future trajectory data of the
HDV are TPhdv = [Shdv(t), Shdv(t +  Δt), Shdv(t +  2Δt),  …, Shdv(t +
qΔt)]T,  where q = T/Δt , T is  the  trajectory  planning  time
domain  (s),  and  Δt is  the  trajectory  update  frequency  (s).  The
decision result of the CAV is DMcav = fcav([DPcav, DScav, DGcav]T).

Existing  trajectory  planning  algorithms  are  mainly  based  on
graph  algorithms,  optimization  algorithms,  sampling  algorithms
or  hybrid  algorithms  to  meet  the  computing  needs  of  different
specific  traffic  scenarios.  The  problem  is  that  CAVs  and  HDVs
will  coexist  for  a  long  time  in  the  future,  so  trajectory  planning
algorithms that consider driver characteristics are very important.
On  the  basis  of  the  D-SVO  algorithm  constructed  in  previous
studies,  this  study  constructs  an  autonomous  driving  trajectory
planning  algorithm  that  fully  considers  D-SVO.  The  basic
algorithm  of  trajectory  planning  adopts  a  hybrid  algorithm,
horizontal  trajectory  planning  utilizes  a  sampling  algorithm,  and
the  longitudinal  trajectory  planning  sampling  optimization
algorithm  is  obtained.  CAV  high-performance  candidate
trajectories.

4.2  Improved objective function considering consistency
First,  the CAV fits  and generates  multiple  high-quality  candidate
trajectories on the basis of the horizontal sampling algorithm and
the vertical optimization algorithm. Second, this section constructs
a dynamic objective optimization function by introducing driving
consistency Jconsistency in addition to safety Jsafety, comfort Jcomfort, and
efficiency Jefficiency in the objective function.

4.2.1  Safety function

First,  the  safety  loss  value  is  calculated  between  the  states  of  the
CAV  and  the  interacting  HDV.  When  we  obtain  the  future
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trajectory  of  the  HDV  from  the  prediction  module  and  the
candidate  trajectories  of  the  CAV,  the  safety  potential  field
strength  value  can  be  calculated  at  each  trajectory  point  at  the
same timestamp. Finally,  the safety loss value is  generated by the
average safety potential field strength value from the first point to
the  end  point.  For  CAVs  to  navigate  safely,  they  must  consider
both  their  current  risk  profile  and  that  of  surrounding  HDVs
concurrently.  This comprehensive assessment forms the basis for
quantitatively  evaluating  the  relative  safety  of  multiple  CAV
candidate  trajectories  with  the  predicted  HDV  trajectories.  The
safety function, denoted as Jsafety,  comprises two key components:
an  evaluation based  on the  instantaneous  states  of  the  CAV and
HDV  and  another  based  on  the  predicted  trajectories  of  CAV
candidates  and  HDVs.  The  security  weight  values wpresent and
wfuture assign  importance  to  the  state-based  and  trajectory-based
safety  assessments,  respectively,  with  their  sum  equaling  unity
(wpresent + wfuture =  1). Ehdv→cav represents  the  field  strength
generated  by  the  HDV  on  the  CAV,  and Emax denotes  the
maximum possible field strength. Moreover, within the trajectory-
based  evaluation,  each  trajectory  point  in  the  time  series  is
assigned a weight, wi,  which exhibits  an exponential  decay trend;
meaning  that  the  impact  of  points  further  back  in  time
diminishes.  The  sum  of  all  weights, wi,  equals  1,  ensuring  a
balanced consideration of the entire trajectory.

Jsafety = wpresent

∣∣∣∣Ehdv→cav (t)
Emax

∣∣∣∣
+ wfuture

1
q

q∑
i=1

wi

∣∣∣∣Ehdv→cav (t+ qΔt)
Emax

∣∣∣∣, q∑
i=1

wi = 1

(45)

Additionally,  the  explanation  of  the  safety  potential  field
strength is expressed as

Ehdv→cav =
GRhdvMhdv

|Rhdv→cav|k1
rhdv→cav

|rhdv→cav|
exp (k2vhdvcos(θhdv)) (46)

where Ehdv→cav is  the safety potential  field strength value of  CAVs
based on the impact of HDVs. rhdv→cav is the distance between the
CAV and HDV. k1, k2,  and G are  the  undetermined coefficients.
Mhdv is the equivalent mass of the HDV. Rhdv is the index of road
conditions. vhdv is the speed of the HDV. θhdv is the angle between
the speed direction and rhdv-cav.

4.2.2  Comfort function

To  determine  the  comfort  metric, Jcomfort,  we  employ  first-order,
second-order,  and  third-order  partial  derivatives  of  the  lateral
displacement  of  the  CAV  within  the  Frenet  coordinate  system
with  respect  to  its  longitudinal  displacement.  These  derivatives
serve  as  indicators  that  quantify  various  aspects  of  the  vehicle’s
lateral motion, contributing to the overall comfort evaluation. The
weight values, wfirst, wsecond, and wthird, are assigned to each of these
indicators,  reflecting  their  relative  importance  in  the  overall
comfort assessment. The sum of these weights is normalized to 1,
ensuring  a  balanced  consideration  of  all  three  derivatives  in  the
calculation of Jcomfort.

Jcomfort = wfirst

w
l′(s)2ds+ wsecond

w
l′′(s)2ds+ wthird

w
l′′′(s)2ds

(47)

4.2.3  Efficiency function

The  conventional  approach  to  defining  the  efficiency  function
relies  solely  on  the  deviation  between  the  CAV’s  speed  and  a

predetermined  target  speed.  However,  this  study  innovates  by
introducing  dynamic  spatiotemporal  occupancy  metrics, Us and
Ut,  to  formulate  the  efficiency  function, Jefficiency.  This  approach
offers  a  more  nuanced  and  rational  assessment  of  CAVs’ future
trajectory  performance  in  terms  of  optimizing  road  usage  and
spatiotemporal  efficiency.  By  considering  the  dynamic  nature  of
traffic  flow  and  the  vehicle’s  interactions  with  its  surroundings,
this  method  provides  a  more  comprehensive  evaluation
framework that goes beyond traditional speed-based metrics.

Jefficiency =
1
q

[
q∑

i=1

Us (t+ qΔt) +
q∑

i=1

Ut (t+ qΔt)
]

(48)

4.2.4  Consistency function

In  the  pursuit  of  maximizing  driving  efficiency  through  CAV
trajectory planning, it  is  crucial  to acknowledge the potential  risk
of  driving  instability  arising  from  significant  disparities  between
the future trajectory choices of HDVs and CAVs. To mitigate this
concern,  driving  consistency  emerges  as  a  pivotal  indicator  that
must be factored into the planning process. When CAV candidate
trajectories align closely with the predicted trajectories of HDVs in
terms of their performance characteristics, fluctuations that could
lead  to  accidents  or  traffic  congestion  can  be  prevented.  To
quantify  driving  consistency,  we  introduce Jconsistency,  which  is
computed  by  analyzing  the  vector  angles  and  L1  distance  loss
values  between  the  predicted  HDV  trajectory  and  each  CAV
candidate  trajectory.  This  analysis  begins  by  determining  the
vector  angles  between  the  corresponding  trajectory  segments  of
the  HDV  prediction  and  each  CAV  candidate,  encompassing
both  transverse  and  longitudinal  vector  angles  in  the  global
coordinate  system.  By  doing  so,  we  can  assess  the  similarity  in
directional changes and the degree of alignment between the two
trajectories,  thereby  providing  a  robust  measure  of  driving
consistency.

cos
(
ΔSj

cav,ΔSj
hdv

)
=

ΔSj
cav · ΔSj

hdv∣∣ΔSj
cav

∣∣ · ∣∣ΔSj
hdv

∣∣ (49)

sin
(
ΔSj

cav,ΔSj
hdv

)
=

√
1− cos2

(
ΔSj

cav,ΔSj
hdv

)
(50)

ΔSj
cav = Scav (t+ j · Δt)− Scav [t+ (j− 1) · Δt] (51)

ΔSj
hdv = Shdv (t+ j · Δt)− Shdv [t+ (j− 1) · Δt] (52)

sin
(
ΔSj

cav,ΔSj
hdv

)
cos

(
ΔSj

cav,ΔSj
hdv

)where  is  the  angle  between  transverse  vectors
and  is the angle between longitudinal vectors.

Second,  the  L1  distance  loss  between  the  HDV-predicted
trajectory  segments  and  CAV  candidate  trajectory  segments  is
calculated.

Lloss [Scav (t+ j · Δt) , Shdv (t+ j · Δt)] =

1
q

q∑
j=1

|Scav (t+ j · Δt) , Shdv (t+ j · Δt)| (53)

where Lloss is the L1 distance loss, Scav(t + j·Δt) is the j-th trajectory
point of  the CAV, and Shdv(t+j·Δt)  is  the j-th predicted trajectory
point of the HDV.

The  lateral  and  longitudinal  distance  losses  of  the  prediction
model are subsequently calculated on the basis of the vector angle
and L1 distance loss.
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Llat [Scav (t+ j · Δt) , Shdv (t+ j · Δt)] =
Lloss [Scav (t+ j · Δt) , Shdv (t+ j · Δt)]
× sin

(
ΔSj

cav,ΔSj
hdv

)
(54)

Llon [Scav (t+ j · Δt) , Shdv (t+ j · Δt)] =
Lloss [Scav (t+ j · Δt) , Shdv (t+ j · Δt)]
× cos

(
ΔSj

cav,ΔSj
hdv

)
(55)

where Llat is the transverse distance loss and Llon is the longitudinal
distance loss.

Llat and Llon are used to construct the consistency index in this
step.

Jconsistency = α1

q∑
j=1

Llat [Scav (t+ j · Δt) , Shdv (t+ j · Δt)]

+ α2

q∑
j=1

Li [Scav (t+ j · Δt) , Shdv (t+ j · Δt)] (56)

where α1 and α2 represent the weights of horizontal  distance loss
and longitudinal distance loss, respectively, and α1 + α2 = 1.

D-SVOo
D-SVO  was  then  introduced  to  optimize Jconsistency.  The  larger

 is, the larger the value of Jconsistency. If |Ehdv→cav| is smaller,
the value of Jconsistency will be smaller.

Jconsistency ←
∣∣∣∣D-SVOo

SVOo
max

∣∣∣∣ · ∣∣∣∣Ehdv→cav

Emax

∣∣∣∣ · Jconsistency (57)

J′safety J′comfort J′efficiency J′consistency

Second, Jsafety, Jcomfort, Jefficiency,  and Jconsistency of  all  candidate
trajectories  of  CAVs  are  normalized  to  obtain  the  normalized

, , , and .
The  expression  of  the  comprehensive  objective  function  is  as

follows. Ksafety, Ksmooth, Kefficiency,  and Kconsistency represent the weight
values of safety, comfort, efficiency, and consistency, respectively.

Ctotal = Ksafety · J′safety + Kcomfort · J′comfort + Kefficiency · J′efficiency

+ Kconsistency · J′consistency
Ksafety + Ksmooth + Kefficiency + Kconsistency = 1

(58)

The model at this time is M1.

4.2.5  Optimization of the weight distribution

D-SVOo
hdv,mean

D-SVOo
hdv,std

D-SVO  can  be  used  to  characterize  the  cooperation  tendency  of
HDV  drivers  dynamically.  See  the  Appendix  for  details  of  the
modeling  process.  There  is  a  certain  degree  of  uncertainty  in
trajectory  prediction  itself,  so  the  interaction  between  CAVs  and
HDVs needs to consider the impact of HDV driver characteristics.
For  example, Csafety is  calculated  under  the  same  HDV  predicted
trajectory and CAV candidate trajectory. Theoretically, the driving
risk of a proself-type driver will be significantly greater than that of
a  prosocial  driver,  resulting  in  a  CAV’s  failure  to  evaluate  the
relative risk of the two. The impact is also different. Therefore, we
can  improve  the  algorithm’s  adaptability  to  different  HDVs  by
dynamically optimizing Ksafety, Ksmooth, Kefficiency,  and Kconsistency.  The
mean value of HDV’s D-SVO is , and the standard
deviation  of  D-SVO  is .  When  CAVs  and  HDVs
choose  different  decision-making  behaviors,  there  are  differences
in  the  CAV  objective  function.  Vehicle  decision-making  content
includes decision-making to pass, decision-making to slow down,
and  decision-making  to  yield.  The  situation  where  both  vehicles
decide to pass  is  not  considered for  the time being.  For different

D-SVOo
hdv,mean

D-SVOo
hdv,mean

CAV-HDV  decision  combination  results,  the  corresponding
initialization  weights  are  proposed  as Ksafety-0, Ksmooth-0, Kefficiency-0,
and Kconsistency-0. On this basis, if the mean value of 
is  larger,  HDV  prosocial  behavior  will  be  more  obvious,  and
proself-type  behavior  will  be  more  obvious.  Therefore,  the
coefficient δ is  introduced  to  evaluate  the  impact  of

 on the CAV objective function.

δ = e
q1

(∣∣∣∣∣ S-SVOo
hdv

D-SVOo
hdv,mean

∣∣∣∣∣−1
)
− 1 (59)

Moreover,  when  the  standard  deviation  is  too  large,  the
uncertainty of the D-SVO distribution of the HDV is large at this
time,  and  the  interaction  between  the  CAV  and  HDV  is  not
obvious. At this time, the δ of CAV is infinitely far from the mean
of  D-SVO.  When  the  standard  deviation  decreases,  the  D-SVO
distribution  of  the  HDV  is  relatively  clear  at  this  time,  and  the
interactive  game between the CAV and HDV is  obvious.  At  this
time, the δ of CAV is infinitely close to the mean of D-SVO.

δupdate =

(
2

1+ e−q2D-SVOo
hdv,std

)
δ (60)

On this basis, the weights are further corrected as

Ksafety ←
δupdate · Ksafety

(δupdate − 1) · Ksafety + 1 (61)

Kcomfort ←
Kcomfort

(δupdate − 1) · Ksafety + 1 (62)

Kefficiency ←
Kefficiency

(δupdate − 1) · Ksafety + 1 (63)

Kconsistency ←
Kconsistency

(δupdate − 1) · Ksafety + 1 (64)

The CAV objective function is corrected in real time according
to the corrected weight value. The model at this time is M2.

5  Experimental results

5.1  Experimental parameter settings
The  data  sources  for  the  prediction  and  planning  modules  were
derived  from  the  ubiquitous  traffic  eye  dataset.  The  experiments
were  conducted  on  a  laptop  with  an  Intel(R)  Core  i9–12900H
processor (20 cores), 16 GB of RAM, a 512 GB NVMe SSD, and
an NVIDIA GeForce RTX 3060 GPU running Windows 10 Pro.
The  software  environment  included  Python  3.8.10,  with  key
libraries  such  as  PyTorch  1.8.0,  TorchGeometric  1.7.0,  NumPy
1.19.5,  and  Matplotlib  3.3.4,  all  developed  via  PyCharm
Professional 2021.1. The experimental parameters were set on the
basis of existing research findings and relevant industry standards,
ensuring  that  the  experimental  results  accurately  reflected  real-
world conditions (Table 3).

For  X1,  the  data  features  include  the  horizontal  and  vertical
coordinates,  speeds,  and accelerations of  two interacting vehicles.
We  utilized  trajectory  data  from  the  Ubiquitous  Traffic  Eyes
dataset,  which  contains  a  total  of  1,043,910  entries.  From  this
dataset,  we  filtered  out  88,909  trajectories  involving  interactions
between two vehicles. Moving on to X2, the data features expand
to include the mean and standard deviation of the D-SVO, along
with  the  coordinates,  speeds,  and  accelerations  of  the  two
interacting vehicles.  Similarly,  88,909 interaction trajectories were

Smart prediction-planning algorithm for connected and autonomous vehicle based on social value orientation 9210053-9

https://doi.org/10.26599/JICV.2024.9210053
 



selected from the Ubiquitous Traffic Eyes dataset,  with the mean
and  standard  deviation  of  the  SVO  estimated  via  an  algorithm
based on literature. For X3, the dataset incorporates the horizontal
and  vertical  coordinates,  speeds,  and  accelerations  of  the  two
interacting vehicles,  as well as the safety loss and consistency loss
values  for  all  candidate  trajectories  of  the  CAV.  This  subset  also
consists of 88,909 trajectories. In the cases of X4 and X5, the data
features  include  not  only  the  coordinates,  speeds,  accelerations,
safety  loss,  and consistency  loss  values  of  the  interacting  vehicles
and  CAV  candidate  trajectories  but  also  the  mean  and  standard

deviation of the D-SVO. Both X4 and X5 share the same dataset
of 88,909 interaction trajectories. A summary of the data samples
for the different models is provided in Table 4.

For  the  prediction  model,  optimal  performance  across  all  the
prediction modules was achieved via the grid-search method. The
learning rate was varied between 0.0001, 0.001, and 0.01, while the
batch size was set  to 16,  32,  and 64.  Additionally,  the number of
epochs  was  adjusted  to  50,  100,  and  150.  The  details  of  these
parameter settings are presented in Table 5.

The other parameters are shown in Table 6.

 

Table 3    Settings of the experimental parameters

Parameter Value Explanation
Δt 0.1 Update frequency (s)

Tmax, Tmin 4.0, 5.0 Planning duration (s)
cmax 1.0 Maximum curvature (m–1)

vmax-lon, vmin-lon 50, 3.0 Maximum and minimum longitudinal speed (m·s–1)
amax-lon, amin-lon 3.0, –3.0 Maximum and minimum longitudinal acceleration (m·s–2)
vmax-lat, vmin-lat 2.0, 0.0 Maximum and minimum lateral speed (m·s–1)
amax-lat, amin-lat 2.0, –2.0 Maximum and minimum lateral acceleration (m·s–2)

Ksafety, Kcomfort, Kefficiency, Kconsistency 0.25, 0.25, 0.25, 0.25 Initial weights for cost function

 

Table 4    Data samples X1, X2, X3, X4, and X5

(a) Data sample of X1
Frame Time Car1 Land1 x1 y1 v1 a1 Car2 Land2 x2 y2 v2 a2

5,251 87.51 102 2 5.03 –0.18 15.59 1.65 104 1 5.93 1.05 12.14 0.82
5,252 87.53 102 2 5.17 –0.18 16.00 0.55 104 1 6.00 1.05 12.42 0.54

— — — — — — — — — — — — — —
 

(b) Data sample of X2
Frame Time Car1 Land1 x1 y1 v1 a1

5,251 87.51 102 2 5.03 –0.18 15.59 1.65
5,252 87.53 102 2 5.17 –0.18 16.00 0.55

— — — — — — — —
 

Frame Time Car2 Land2 x2 y2 v2 a2 SVO SVO-std
5,251 87.51 104 1 5.93 1.05 12.14 0.82 46.88 1.14
5,252 87.53 104 1 6.00 1.05 12.42 0.54 46.26 1.11

— — — — — — — — — —
 

(c) Data sample for X3
Frame Time Car1 Land1 x1 y1 v1 a1 Car2 Land2 x2 y2 v2 a2

5,251 87.51 102 2 5.03 –0.18 15.59 1.65 104 1 5.93 1.05 12.14 0.82
5,252 87.53 102 2 5.17 –0.18 16.00 0.55 104 1 6.00 1.05 12.42 0.54

— — — — — — — — — — — — — —
 

Safety 1 Consistency 1 Safety 2 Consistency 2 Safety 3 Consistency 3 … …
0.15 0.12 0.18 0.12 0.25 0.20 — —
0.35 0.44 0.31 0.42 0.50 0.61 — —
— — — — — — — —

 

(d) Data sample for X4 and X5
Frame Time Car1 Land1 x1 y1 v1 a1 Car2 Land2 x2 y2 v2 a2

5,251 87.51 102 2 5.03 –0.18 15.59 1.65 104 1 5.93 1.05 12.14 0.82
5,252 87.53 102 2 5.17 –0.18 16.00 0.55 104 1 6.00 1.05 12.42 0.54

— — — — — — — — — — — — — —
 

Safety 1 Consistency 1 Safety 2 Consistency 2 … … SVO SVO-std
0.15 0.12 0.18 0.12 — — 46.88 1.14
0.35 0.44 0.31 0.42 — — 46.26 1.11
— — — — — — — —
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This  study  proposes  a  joint  prediction-planning  algorithm  for
CAVs based on SVO and conducts corresponding evaluations on
three  innovative  points,  including  optimization  analysis  of
trajectories by improving the objective function and optimization
analysis  of  trajectories  by  SVO  and  optimization  analysis  of
trajectories by joint predictive planning.

X1 is a combination of F1 and M1, X2 is a combination of F2
and  M2,  X3  is  a  combination  of  F3  and  M1,  and  X4  is  a
combination of F4 and M2. X5 is a combination of F5 and M2.

5.2  Result  analysis  of  trajectory by improving the objective
function
This study first  evaluates the optimization effect  of  the improved
objective  function  on  the  trajectory.  The  purpose  of  the
autonomous  driving  objective  function  is  to  select  a  safe  and
comfortable  future  trajectory,  so  it  is  crucial  to  be  able  to
continuously output a stable and safe future trajectory. We choose
the  changes  in  the  safety  potential  energy  field  strength  and
acceleration  to  illustrate  the  performance  of  the  algorithm  in
terms of safety and comfort, respectively. The models used in the
comparison  are  M2,  M2.1  (considering  only  the  consistency
function),  M2.2  (considering  only  the  HDV’s  SVO),  and  M2.3
(not considering the consistency function and HDV’s SVO).

As shown in Table 7, among all the algorithms, the mean value
and  standard  deviation  of  the  CAV  safety  potential  energy  field
strength under M2 are only 0.1683, and the standard deviation is
0.0591.  The  mean  and  standard  deviation  of  the  CAV  safety
potential  energy  field  strength  under  M2.3  reach  0.3129  and
0.3139, respectively. Although the performance of M2.2 and M2.1
is  worse  than  that  of  M2.3,  it  is  still  not  as  good  as  the
performance of M2. Second, as shown in Fig. 3, the distribution of
the  safety  potential  energy  field  strength  under  M2  is  relatively
concentrated without  any abnormal  values,  whereas  M2.1,  M2.2,
and M2.3 all have abnormal values to varying degrees. Therefore,
the following conclusions are drawn:

1) Stability and Safety Enhancement: Integrating SVO and the
consistency  function  into  the  objective  function  significantly
improves the stability and safety of CAV trajectories, as evidenced
by the lower mean and standard deviation in the safety potential
energy field and the absence of abnormal values in M2.

2) Importance  of  comprehensive  integration: While
individual  consideration  of  SVO  or  the  consistency  function
provides some benefits, the combination of both, as in M2, yields

the best performance, ensuring that CAVs operate within a safer,
more  stable  risk  environment,  thus  enhancing  overall  safety  and
comfort.

5.3  Result analysis of trajectory based on SVO
This  section  mainly  evaluates  the  impact  of  SVO  on  CAV  joint
forecast  planning  results.  The  ideal  optimal  trajectory  is  the
comparison  benchmark  under  the  same  situation,  which  is  used
to evaluate the relative error between the output trajectories of X1,
X2, and X3. FDE and MR are used as evaluation indicators. These
three  indicators  are  important  reference indicators  in  the field  of
trajectory  prediction  research  and  have  important  guiding
significance  for  the  evaluation  of  the  experimental  results  of  this
study.  The evaluation content  includes  two parts.  The first  is  the
analysis of results under continuous experiments and the analysis
of results under different SVOs.

CAV  joint  prediction  planning  has  a  certain  degree  of
randomness.  To fully evaluate the optimization effect  of  SVO on
the  CAV  output  trajectory,  we  conducted  30  consecutive
experiments,  as  shown in Figs.  4 and 5 and Table 8.  Overall,  the
average ADEs of  X1 and X2 are 6.633 and 5.847 m, respectively,
and  the  average  FDEs  are  3.329  and  2.151  m,  respectively.  The
average ADEs of  X3 and X4 are 5.660 and 4.213 m, respectively,
and  the  average  FDEs  are  2.545  and  2.051  m,  respectively.
Therefore, the following conclusions are drawn.

1) Impact  of  SVO  on  trajectory  accuracy:  The  inclusion  of
SVO  significantly  reduces  both  ADE  and  FDE,  as  demonstrated
by the improved performance of X3 and X4 over X1 and X2. This
finding  indicates  that  models  accounting  for  social  dynamics  are
better  at  predicting  more  accurate  and  reliable  trajectories,
aligning closer to the ideal optimal trajectory.

2) Consistency  in  performance  across  experiments:  The  30
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Fig. 3    CAV safety potential energy field distribution diagram.
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Fig. 4    Box plot of the ADE distribution.

 

Table 5    Hyperparameter settings

Prediction model Learning rate Batch size Epoch
F1 0.001 64 50
F2 0.001 64 50
F3 0.0001 64 100
F4 0.001 64 50
F5 0.0001 32 100

 

Table 6    Other parameters for the prediction module

Parameter Value Parameter Value
Sliding window 30 Hidden layer 256

LSTM layer 2 Dropout rate 0.05

 

Table 7    Standard deviation and average value of the safe potential energy field

M2 M2.1 M2.2 M2.3
Std 0.0591 0.1368 0.2005 0.3139

Mean 0.1683 0.2092 0.2303 0.3129
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consecutive  experiments  reveal  that  integrating  SVO  leads  to
more consistent and predictable outputs, with lower variations in
key metrics such as ADE and FDE. This consistency underscores
the importance of considering social factors in the joint prediction
planning process, as it enhances the robustness of CAVs’ decision-
making  under  various  scenarios,  ultimately  leading  to  safer  and
more reliable autonomous driving outcomes.

As shown in Figs. 6 and 7, the ADE of X2 is smaller than that
of  X1,  and the ADE of  X4 is  smaller  than that  of  X3.  Moreover,
the  FDE of  X2  is  smaller  than that  of  X1,  and the  FDE of  X4  is
smaller than that of X3.

As shown in Fig. 8, we further draw the ADE error band charts
of  X1–X4  and  the  trajectory  charts  of  X1–X4.  In  the  same
experimental scenario, compared with the comparison model (X1
and X3), the output trajectories of SVO (X2 and X4) fit the ideal
trajectory  better,  with  smaller  errors.  Therefore,  in  the  CAV
prediction  planning  model  considering  SVO,  whether  the
prediction target is the future trajectory of the HDV or the direct
prediction  of  the  CAV’s  loss  value  distribution  can  improve  the
reliability  of  the CAV’s  output  trajectory to  a  certain extent.  The

conclusion  is  that  incorporating  SVO  into  the  CAV  prediction
planning  model  significantly  improves  trajectory  accuracy,
ensuring better  alignment with the ideal  path and enhancing the
overall reliability of autonomous driving systems.

5.4  Result  analysis  of  trajectory  through  joint  prediction
and planning
This  section  aims  to  evaluate  the  impact  of  the  intelligent
“prediction-optimization” method  on  the  results  of  CAV  joint
prediction and planning. Using the ideal optimal trajectory under
the same conditions as the comparative benchmark, we assess the
relative  errors  between the  output  trajectories  of  X2,  X4,  and X5
and the ideal trajectory under the same scenario. ADE, FDE, and
MR  are  used  as  evaluation  metrics.  These  three  metrics  are
important references in the field of  trajectory prediction research
and  have  guiding  significance  for  the  evaluation  of  the
experimental  results  in  this  paper.  The  evaluation  includes  two
parts: the first is the analysis of results under continuous random
experiments,  and  the  second  is  the  analysis  of  results  under
different sensitive parameters.

We conducted ten consecutive random experiments,  in which
the HDV randomly fluctuated within the allowable range, but the
numerical  value  of  each  change  was  identical  across  different
model tests. The distribution of ADEs is illustrated in Fig. 9. First,
the  average  ADE of  X5 ranged from a  minimum of  0.52  m to  a
maximum  of  4.03  m,  which  was  significantly  lower  than  the
output  results  of  X2  and  X4  under  the  same  conditions.
Additionally, the minimum standard deviation of X5 was 0.78 m,
and  the  maximum  was  3.17  m,  whereas  the  minimum  standard
deviation  of  X2  reached  2.07  m,  and  the  maximum was  4.56  m.
The minimum standard deviation of X4 reached 1.35 m, and the
maximum  was  4.45  m.  Therefore,  the  conclusions  are  shown
below.

Enhanced  accuracy  and  consistency:  The  smart “prediction-
optimization” method in Model  X5 significantly outperforms X2
and X4,  resulting in a lower ADE and standard deviation,  which
leads to more accurate and consistent trajectory predictions.

Improved  stability:  X5’s  consistent  performance  across
random  experiments  demonstrates  the  robustness  of  the
“prediction-optimization” approach,  effectively  handling  HDV
fluctuations  and  resulting  in  more  stable  and  reliable  CAV
trajectory planning.

As  shown  in Fig.  10,  we  further  evaluated  the  MR.  In  the  10
consecutive random experiments, the MR of X5 was no less than
50%,  which  was  higher  than  the  maximum  MR  of  X2  and  X4.
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Table 8    Results distribution table of the ADE and FDE methods.

ADE FDE
Max Min Mean Max Min Mean

X1 3.606 3.038 3.329 8.030 5.523 6.633
X2 3.521 1.203 2.151 7.565 1.528 5.847
X3 3.459 1.582 2.545 8.323 2.662 5.660
X4 3.134 1.327 2.051 8.071 1.523 4.213
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Additionally,  X5  achieved  six  results  above  60%  and  two  results
above  80%.  Under  the  same  conditions,  the  MR  of  X2  did  not
exceed 60%, and the MR of X4 did not exceed 40%. Moreover, the
majority  of  the  MR distributions  for  both  X2  and  X4  fell  within
the  range  of  [20%,  40%].  Therefore,  we  conclude  that  the  CAV
joint prediction and planning model that considers Smart Predict-
Optimize  (SPO)  can  effectively  meet  planning  requirements,
resulting  in  a  lower  deviation  and  better  fit  between  the  output
trajectory and the ideal trajectory.

The  time  domain  and  update  frequency  for  CAV  trajectory
planning  are  crucial  sensitivity  parameters  in  joint  prediction
planning. A smaller time domain and lower frequency may cause
the  CAV  to  overlook  some  traffic  elements  in  the  road  scene,
compromising  safety  while  reducing  the  computational  load.
Conversely,  a  larger  time  domain  and  higher  frequency  may
improve safety but increase the computational load. On the basis
of  existing research,  we set  the planning time domain to 4.5,  5.0,
and 5.5 s and the update frequency to 0.1, 0.2, and 0.3 s, resulting
in nine combinations of sensitivity parameters. We used the ADE,
FDE, and MR as evaluation metrics. As shown in Tables 9−11, the
ADE  of  X5  is  consistently  lower  than  that  of  X2  and  X4.
Additionally,  within  the  same  time  domain,  the  ADE  of  X5
gradually decreases as the frequency increases. For example, when
the  time  domain  is  4.5  s,  the  ADEs  are  2.24,  1.82,  and  1.51  m,
respectively. However, when the frequency is 0.1 s, the ADE of X5
first  decreases  and  then  increases  as  the  time  domain  increases.
Conversely,  when the  frequency  is  0.2  and 0.3  s,  the  ADE of  X5
continues to decrease as the time domain increases.  This may be
because,  under certain update frequencies,  a  higher time domain
allows the CAV to consider more traffic elements ahead, resulting
in differences between the output trajectory of the CAV and that
of  shorter  time  domains.  Similarly,  the  performance  of  X5  in
terms of FDE and MR is superior to that of X2 and X4 under the
same  conditions.  The  results  demonstrate  that  the  CAV  joint
prediction-planning  model  incorporating  the  smart “prediction-
optimization” method  (X5)  exhibits  strong  adaptability  and
consistently  superior  performance  across  various  time  domains
and  update  frequency  settings,  making  it  more  reliable  and
effective than models X2 and X4 under diverse conditions.

Furthermore,  we  analyze  the  phenomenon  from  the
perspective  of  individual  distribution.  As  shown  in Fig.  11,  the
results indicate that the joint prediction planning of CAVs under
SPO can achieve superior accuracy and trajectory stability, further
supporting the conclusions mentioned above.

6  Conclusions
This study proposes three models. M2 refers to the CAV planning
algorithm based  on  HDV future  trajectory  data  and  D-SVO.  X2
takes “HDV trajectory data, CAV trajectory data, and D-SVO” as
input and predicts the future trajectory of the HDV (F2) with the
objective of minimizing the weighted sum of the HDV prediction
trajectory error and D-SVO prediction error. The predicted HDV
trajectory is  then input into M2 to output the optimal trajectory.
X4  takes “HDV  trajectory  data,  CAV  trajectory  data,  CAV  loss
values, and D-SVO” as input and predicts the future loss value of
CAVs (F4) with the objective of minimizing the weighted sum of
the predicted CAV future loss value and D-SVO prediction error.
The  loss  value  is  then  input  into  M2  to  output  the  optimal
trajectory.  The  X5  (F5+M2)  model  implements  the  logic  of
“intelligent  prediction-optimization”.  X5  takes “HDV  trajectory
data, CAV trajectory data, CAV loss values, and D-SVO” as input
and constructs an AIF in the prediction model by considering the
optimization  objective  and  D-SVO.  The  AIF  is  used  as  the

 

Table 10    FDE under different sensitivity parameter settings

T (s) Δt (s)
X5 X4 X2

FDE (m) FDE (m) FDE (m)

4.5
0.1 2.66 18.01 11.10
0.2 0.54 9.00 7.14
0.3 4.17 4.59 4.52

5.0
0.1 3.16 16.32 5.23
0.2 6.52 10.87 7.32
0.3 1.07 4.79 5.01

5.5
0.1 3.68 17.68 5.85
0.2 4.62 10.71 6.25
0.3 0.57 5.21 5.16
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Fig. 10    Distribution of MR under different HDV accelerations.

 

Table 9    ADE under different sensitivity parameter settings

T (s) Δt (s)
X5 X4 X2

ADE (m) ADE (m) ADE (m)

4.5
0.1 2.24 6.75 3.92
0.2 1.82 3.58 2.56
0.3 1.51 1.92 1.81

5.0
0.1 1.81 5.93 2.10
0.2 1.32 3.22 2.54
0.3 0.98 2.10 1.71

5.5
0.1 2.01 6.41 2.35
0.2 1.14 3.48 2.35
0.3 0.66 2.02 1.75

 

Table 11    MR under different sensitivity parameter settings

T (s) Δt (s)
X5 X4 X2

MR (%) MR (%) MR (%)

4.5
0.1 58.33 24.17 41.67
0.2 50.00 25.00 48.33
0.3 66.67 40.00 60.00

5.0
0.1 66.37 34.51 48.67
0.2 85.24 45.90 50.82
0.3 92.31 43.59 64.10

5.5
0.1 50.00 30.00 47.27
0.2 86.88 40.98 52.46
0.3 100.00 51.28 61.54
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Fig. 11    Box plots for different planning durations and update frequencies.
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objective to predict the future loss value of CAV (F5), and the loss
value is then input into M2 to output the optimal trajectory. The
experimental  results  show that  the  joint  prediction and planning
of  CAVs  considering  the  SVO  and  SPO  exhibit  excellent
performance in terms of trajectory output accuracy, stability, and
adaptability.  This  enables  CAVs  to  effectively  adapt  to  the
influence  of  other  HDVs  in  mixed  traffic  flows  and  make  more
reliable decision-making and planning. For future research, on the
basis  of  the  results  of  this  study,  we  will  shift  the  planning
algorithm from single-vehicle intelligent planning to multivehicle
collaborative  planning  and  propose  a  joint  prediction-planning
framework  for  multivehicle  collaboration  on  the  basis  of  SVO,
realizing  the  possibility  of  large-scale  application  of  autonomous
driving technology.  In today’s mixed traffic environments,  where
HDVs  and  autonomous  vehicles  coexist,  social  interactions
between different vehicles have become increasingly common. As
you  mentioned,  traditional  pipeline  technologies  struggle  to
manage  all  corner  cases,  potentially  leading  to  severe  accidents.
End-to-end  approaches,  however,  can  reduce  information  loss
across different modules, such as perception, prediction, planning,
and  control.  Thus,  a  promising  research  direction  is  the
development  of  an “Integrated  Interaction-Optimized
Architecture  for  Autonomous  Vehicle  Prediction  and  Planning”
to  enhance  social  interaction  capabilities  and  minimize
information loss for autonomous vehicles in the near future.

Appendix
Behavioral and experimental economics show that drivers exhibit
unique  social  decision-making  preferences,  such  as  altruism,
fairness,  reciprocity,  aversion to inequity,  and egalitarianism. The
assumption  that  drivers  make  decisions  solely  on  the  basis  of
individual  needs  overlooks  the  variability  in  how different  driver
groups  behave  across  various  scenarios.  SVO  addresses  this  by
capturing  a  driver’s  preferences  for  how  rewards  are  distributed
between themselves  and  others.  SVO can  predict  behaviors  such
as  cooperative  motivation,  negotiation  strategies,  and  decision-
making processes.  For  CAVs,  understanding the  SVO of  human
drivers can significantly enhance behavior prediction, particularly
in  situations  that  require  cooperation,  such  as  navigating
intersections.  Without  considering  SVO,  an  AV  might  adopt  a
more conservative approach, waiting for all  HDVs to pass before
proceeding. Since drivers do not directly communicate their SVO,
AVs  must  infer  it  on  the  basis  of  observed  behaviors  and  social
cues. We estimate a driver’s SVO by identifying which SVO most
closely  aligns  with  their  predicted  and  actual  driving  trajectories.
This  method  enables  us  to  infer  the  SVO  distribution  within  a
population  of  drivers,  beyond  specific  driving  scenarios.  SVO,  a
concept  from  psychology,  refers  to  individuals’ preferences  for
distributing  outcomes  between  themselves  and  others  in
interdependent  situations,  influencing  behavior  in  social
dilemmas.  It  is  primarily  categorized  into  prosocial  and  proself
types.  When  applied  to  road  traffic,  social  dilemmas  involve
interactions between vehicles, where SVO affects decision-making.

In  traditional  traffic  flow,  social  interaction  occurs  mainly
among  HDVs,  and  this  interaction  is  realized  through
acceleration,  deceleration,  horns,  lane  changes,  flashlights,  and
other  methods.  SVO’s  angle  is  assumed to  range  from 0°  to  90°,
with  a  completely  prosocial  driver  having  an  angle  of  90°  and  a
completely  proself  driver  having  an  angle  of  0°.  Studies  have
shown that  prosocial  drivers tend to have cooperative intentions,
which  means  that  they  achieve  driving  consistency  with
interacting  vehicles  through  decision-making  control.  Proself

drivers  tend  to  pursue  the  maximization  of  benefits,  where
benefits  may  include  the  maximization  of  driving  space  and  the
minimization  of  driving  time,  academically  known  as  the
maximization of space occupancy and time occupancy. Therefore,
prosocial  drivers  and  prosocial  drivers  can  achieve  their  goals
through cooperation, showing the strongest sense of cooperation;
prosocial  drivers  and  proself  drivers  present  a  one-sided  trend,
with  the  former  seeking  reasonable  decision-making  space  while
driving and the latter seeking any possible decision-making space;
proself  drivers  and  proself  drivers  pursue  selfish  driving  benefit
maximization in the game of competition.

When CAVs have no knowledge of the characteristics of HDV
drivers, CAVs need to estimate the drivers’ SVO. We can evaluate
it through the relative states between CAVs and HDVs. The first
factor  is  speed.  Proself  drivers  seek  to  maximize  their  dynamic
space occupancy and dynamic time occupancy on the road, which
is most directly reflected in the relative speed between CAVs and
HDVs. The advantage of SVO lies in its ability to quantify drivers’
social preferences for allocating resources to themselves and others
in specific  situations.  If  the speed of  the HDV is  equal  to  that  of
the CAV, we can consider the SVO to be 45°; if the HDV speed is
greater than the CAV speed, the HDV expects to seek safer, more
comfortable,  and  efficient  driving  space  through  higher  speeds
during  the  interaction,  indicating  a  weaker  willingness  for
cooperation and fair decision-making and a SVO tending toward
0°.  If  the  HDV speed is  lower  than the  CAV speed,  the  HDV is
more  inclined  to  achieve  vehicle  driving  through  reasonable
decision-making  during  the  interaction,  with  a  stronger
willingness  for  cooperation  and  a  SVO  tending  toward  90°.  The
second factor is acceleration and jerk. Proself drivers seek greater
driving  benefits  and  respond  to  various  potential  risks  through
frequent  acceleration  and  deceleration  behaviors,  resulting  in
larger  absolute  values  of  acceleration  and  jerk.  In  contrast,
prosocial  drivers  achieve  safety  and  comfort  through  stable
driving,  with  lower  absolute  values  of  acceleration  and  jerk.
Therefore,  we  can  construct  an  estimation  value  of  the  driver’s
SVO by using the speed comparison as the base, acceleration and
jerk as the exponent, and 45° as the constant.

D-SVOo =
( vcav
vhdv

)μ1| ahdvamax |+μ2| jhdvjmax | ·D-SVOo
max/2,

0° ⩽ D-SVOo ⩽ 90° (A1)

Furthermore,  the  estimated  value  of  SVO  provides  a  baseline
for  HDV  drivers,  allowing  us  to  further  construct  a  standard
deviation of SVO and establish a Gaussian distribution model for
SVO. Imagine a scenario where the distance between a CAV and
an HDV is considerable and where there is virtually no interaction
between them. In such a case, the accuracy of the abovementioned
estimation  of  the  HDV  driver’s  SVO  would  decrease,  and  the
impact of SVO on the decision-making and planning of the CAV
would also diminish.  As the CAV approaches the HV, the social
interaction or game-playing phenomenon between them becomes
more apparent, making both the SVO estimation and its influence
on the CAV more reliable. Therefore, it is necessary to introduce
an  indicator  to  illustrate  the  degree  of  interaction  between  the
CAV and the HDV, namely,  the safety potential  field.  The safety
potential  field  takes  into  account  the  trajectory  data  of  both  the
CAV and the  HDV to  derive  the  safety  potential  field  generated
by  the  HDV  at  the  location  of  the  CAV.  A  higher  value  of  the
safety  potential  field  indicates  a  greater  degree  of  interaction
between the CAV and the HDV, and vice versa.
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D-SVOo
std ←

∣∣∣∣ Emax

Ehdv→cav

∣∣∣∣ ·D-SVOo
max/4 (A2)

Therefore,  we  constructed  a  Gaussian  distribution  model  to
represent  the  D-SVO  of  HDV  drivers.  The  estimated  value  of
SVO  reflects  the  overall  trend  in  how  HDV  drivers  allocate
driving benefits, whereas the standard deviation of SVO indicates
the  degree  of  trust  that  CAVs have  in  their  estimations  of  HDV
drivers’ SVO.  We  illustrate  this  via  data  from  the  Ubiquitous
Traffic Eyes (Figs. A1–A5).

As  shown  in Figs.  A1 and A3,  the  SVO  of  Vehicle  1  and
Vehicle 2 is represented, illustrating how each vehicle balances its
self-interest with the interests of others. A higher SVO, indicating
more  prosocial  behavior,  leads  to  greater  consideration  of  the
welfare of surrounding vehicles. As the SVO of Vehicle 1 increases
(demonstrating more prosocial behavior), its safety potential field
remains lower,  meaning that Vehicle 1 takes fewer risks and acts
more cooperatively. In contrast, when Vehicle 2 has a lower SVO

(indicating more individualistic behavior), its safety potential field
fluctuates  more,  suggesting  a  higher  tolerance  for  risk  and  less
cooperative behavior. The alignment between SVO and the safety
potential  field  helps  explain  why  one  vehicle  may  yield  more
frequently than the other to avoid collisions.

The speed profiles of Vehicle 1 and Vehicle 2 are presented in
Figs.  A1 and A4.  Drivers  with  a  higher  SVO,  indicating  more
prosocial  behavior,  tend  to  adjust  their  speed  in  response  to
surrounding  vehicles  to  avoid  conflicts,  especially  in  situations
such as  merging or lane changes.  The speed profile  of  Vehicle  1,
which has a higher SVO, shows smoother adjustments with fewer
spikes, suggesting that Vehicle 1 adapts its speed to maintain safe
distances  and promote  cooperative  driving  behavior.  In  contrast,
Vehicle  2,  with  a  lower  SVO,  exhibits  more  abrupt  changes  in
speed,  reflecting  more  aggressive  or  individualistic  driving.  This
indicates  that  Vehicle  2  may  prioritize  its  own  objectives  (e.g.,
getting  ahead)  over  the  safety  of  others,  leading  to  more  erratic
speed variations.

As shown in Figs. A1 and A5, acceleration directly reflects how
a vehicle adjusts its speed over time, offering insight into a driver’s
decision-making process in traffic.  Vehicle 1,  with a higher SVO,
displays more controlled and consistent acceleration, indicating a
cautious  and  cooperative  approach.  This  behavior  aligns  with
prosocial  decision-making,  where  the  driver  avoids  sudden
acceleration that might cause discomfort or pose risks to others. In
contrast,  Vehicle  2  exhibits  sharper  changes  in  acceleration,
particularly in situations where cooperation is less prioritized. This
suggests  that  Vehicle  2  behaves  more  competitively  or
independently,  potentially  making  abrupt  decisions  without
considering the collective safety of the surrounding environment.

Higher  SVO  (more  prosocial):  Vehicle  1  shows  a  greater
tendency  for  cooperative  driving,  reflected  in  a  smoother  safety
potential  field,  controlled  speed,  and  steady  acceleration.  This
indicates a safer and more predictable driving pattern.

Lower SVO (more individualistic): Vehicle 2, by contrast, takes
more risks, as shown by its fluctuating safety potential field, erratic
speed,  and  abrupt  acceleration.  This  behavior  suggests  more
competitive  and  self-focused  driving  tendencies,  with  less  regard
for the surrounding vehicles.
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