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ABSTRACT Millimeter-wave (mmWave) communication is a vital component of future generations of
mobile networks, offering not only high data rates but also precise beams, making it ideal for indoor
navigation in complex environments. However, the challenges of multipath propagation and noisy signal
measurements in indoor spaces complicate the use of mmWave signals for navigation tasks. Traditional
physics-based methods, such as following the angle of arrival (AoA), often fall short in complex scenarios,
highlighting the need for more sophisticated approaches. Digital twins, as virtual replicas of physical
environments, offer a powerful tool for simulating and optimizing mmWave signal propagation in such
settings. By creating detailed, physics-based models of real-world spaces, digital twins enable the training
of machine learning algorithms in virtual environments, reducing the costs and limitations of physical
testing. Despite their advantages, current machine learning models trained in digital twins often overfit
specific virtual environments and require costly retraining when applied to new scenarios. In this paper, we
propose a physics-informed reinforcement learning (PIRL) approach that leverages the physical insights
provided by digital twins to shape the reinforcement learning (RL) reward function. By integrating
physics-based metrics such as signal strength, AoA, and path reflections into the learning process, PIRL
enables efficient learning and improved generalization to new environments without retraining. Digital
twins play a central role by providing a versatile and detailed simulation environment that informs the RL
training process, reducing the computational overhead typically associated with end-to-end RL methods.
Our experiments demonstrate that the proposed PIRL, supported by digital twin simulations, outperforms
traditional heuristics and standard RL models, achieving zero-shot generalization in unseen environments
and offering a cost-effective, scalable solution for wireless indoor navigation.

INDEX TERMS Digital twin, millimeter-wave (mmWave) communication, wireless indoor navigation,
reinforcement learning (RL), physics-informed learning, zero-shot generalization.

I. INTRODUCTION

HIGH-FREQUENCY transmission in the millimeter-
wave (mmWave) bands is a key component of

modern fifth-generation (5G) wireless systems, enabling
not only massive data rates but also highly accurate
positioning and localization capabilities [1], [2]. The wide

bandwidth of mmWave signals, combined with the use
of large antenna arrays, allows for fine-grained tem-
poral and angular resolution of signal paths, making
mmWave a powerful tool for the use cases such as
indoor navigation and simultaneous localization and map-
ping (SLAM) [3], [4]. Unlike traditional camera-based
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sensors, mmWave signals provide the added advantage
of penetrating beyond line-of-sight, allowing for robust
navigation in obstructed and complex indoor environments
[5], [6].
Indoor navigation using wireless and radar signals is

essential in environments where traditional vision-based
systems face challenges, such as poor lighting, smoke, or
occlusions. This approach is highly valuable for robotics
in warehouses, hospitals, and disaster response scenarios,
where precise and robust navigation is critical. For instance,
radar-based systems can provide reliable positioning in
non-line-of-sight (NLOS) conditions, enabling robots to
perform tasks like inventory management, patient assistance,
or search and rescue. Additionally, wireless signal-based
navigation leverages existing infrastructure (e.g., Wi-Fi or
5G networks) to guide robots with minimal hardware
requirements. In such a wireless indoor navigation (WIN)
problem [6], a mobile robot (or agent) must navigate to a
target that broadcasts periodic mmWave signals, while the
environment is unknown. However, effectively leveraging
mmWave signals for indoor navigation remains challenging
because physics-based heuristics, such as following the angle
of arrival (AoA), provide effective zero-shot generalization
in simple settings without requiring training, but they
often fall short in complex wireless environments where
multipath propagation, including reflections and diffrac-
tions [7]. Additionally, the effectiveness of such heuristics
can be diminished by noisy signal measurements, leading to
suboptimal navigation decisions.
To better simulate and evaluate these complex real-world

environments, digital twins offer an innovative solution.
A digital twin is a virtual replica of a physical system,
enabling real-time simulation, optimization, and monitoring
across various domains [8]. In the context of wireless
communications, digital twins are used to model intricate
environments and predict how wireless signals behave under
different conditions. For indoor navigation, this means a
digital twin of a building can simulate how mmWave signals
propagate through walls, floors, and other obstacles, provid-
ing valuable insights for refining navigation algorithms [9].
Digital twins also offer a cost-effective alternative to physical
testing, allowing machine learning models to be trained
in virtual environments, significantly reducing development
costs and improving scalability. Despite these advantages,
machine learning models trained in digital twins often suffer
from overfitting to specific environments, making them
less effective in new settings. Extensive retraining is often
required to adapt to different environments, which can be
both time-consuming and computationally expensive [8].
In tackling such complex navigation problems besides

classic machine learning, deep reinforcement learning (RL)
has emerged as a promising end-to-end (e2e) framework,
capable of learning policies directly from multimodal input
data, including both vision and wireless signals. However,
e2e RL methods are data- and computation-intensive, often
requiring vast amounts of training data and GPU hours [10].

These models also tend to overfit the training environment,
leading to poor generalization when deployed in new, unseen
settings [11], and they often require pre-exploration to
function effectively in new environments [5].

To overcome these limitations, digital twins can play
a pivotal role in making reinforcement learning models
more efficient and generalizable. This work proposes a
physics-informed reinforcement learning (PIRL) approach,
where physical principles derived from the digital twin
environment are incorporated into the RL reward structure.
As shown in Fig. 1, the key idea is to augment the
standard e2e RL framework with a reward function shaped
by physics-based metrics such as signal strength, AoA,
and path reflections. These physically-motivated rewards
guide the agent towards actions that align with real-
world wireless propagation phenomena, thereby enhancing
learning efficiency and improving generalization across
different environments. Since these physical principles hold
across diverse wireless environments, PIRL enables zero-shot
generalization, allowing the trained model to navigate new
environments without requiring extensive retraining. Two
recent studies [12] and [13] develop structural digital twins
for autonomous aerial vehicles using a library of physics-
based models to adapt to changing structural conditions.
Reference [12] integrates Bayesian state estimation for model
selection and [13] enhances the interpretability with optimal
trees, facilitating explainable assessments and optimal sensor
placement. While these two studies focus on model-driven
adaptation, in this paper, we focus on using PIRL to demon-
strate a learning-based approach that dynamically transfers
knowledge across different environments. As an extension
of our previous conference version of the work [14], in
this paper, we introduce a generalized wireless digital
twin (WDT) framework, providing a more comprehensive
theoretical foundation. Additionally, a rigorous analysis of
link state properties is conducted to enhance the under-
standing of the system’s dynamic behavior. The motivations
and methodological details have been further enhanced,
ensuring greater clarity and reproducibility. Furthermore, the
computational complexity analysis has been expanded with
a more in-depth discussion, offering a thorough evaluation
of the proposed approach’s efficiency. Finally, the paper
includes an extensive discussion on scalability and potential
applications, broadening the practical implications of the
proposed model.
The contributions of the paper are summarized as follows:

• We design and formulate a WDT framework specifically
for the WIN problem, enabling detailed simulation of
complex wireless environments.

• We propose a novel physics-informed reward shap-
ing approach for RL, simplifying implementation and
improving training efficiency by embedding physics-
based constraints.

• We demonstrate that PIRL reduces the training time
and computational overhead compared to vanilla e2e
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FIGURE 1. The wireless indoor navigation (WIN) requires the agent to navigate to the wireless transmitter in an unknown environment using multi-modal input, including
vision and wireless. The non-physics e2e RL (NPRL), based on relative distance cost, fails to navigate efficiently in unseen scenarios. Trained to utilize physics prior,
physics-informed RL (PIRL) acquires zero-shot generalization with interpretable policies.

RL, particularly valuable in scenarios where simulating
wireless propagation is costly.

• Our experiments show that PIRL generalizes well to
new environments in a zero-shot manner, outperforming
existing heuristic and RL-based methods.

• Inspired by recent advances in explainable AI, we
perform sensitivity analysis on the learned PIRL model,
showing that its actions are interpretable and consistent
with the underlying physics principles embedded in the
reward function.

II. SYSTEM MODEL
In this section, we first introduce the indoor digital twin
platform we developed. Then, we present the problem
formulation of the WIN setup.

A. INDOOR DIGITAL TWIN FORMULATION
Wireless Information: Since wireless signals and RGB-based
images are both multi-dimensional vectors associated with
the agent’s pose p, these two can be treated as vector fields
in the considered WIN task. We refer to them as the wireless
field W(p) and the vision field V(p), respectively. The agent
pose is represented by

p = (x, y, ϕ), (1)

where x, y denotes the xy-coordinate of the agent measured in
meters, and ϕ represents the orientation of the agent in radius
(measured counter-clockwise from x-axis). For each pose p,
the wireless field W(p) describes the wireless signal received
by the agent at the pose p, which includes the AoA and
AoD (D: departure) for five channels. Following a similar
setup in [6], selecting the strongest 5 paths for channel
parameter estimation is essential due to the sparsity of

wireless channels, especially in mmWave communications.
Most of the received signal power is concentrated in a few
dominant paths, while weaker paths contribute minimally
and often fall within the noise floor. By focusing on these
strongest paths, we can reduce computational complexity,
improve estimation accuracy and align with practical 3GPP
and wireless channel models. This approach ensures efficient
modeling while maintaining the essential characteristics of
the propagation environment. Here, AoA is the direction
from which a wireless signal arrives at a receiving antenna,
and AoD is the direction in which a wireless signal departs
from a transmitting antenna. Several wireless methods are
available to estimate paths from transmitted signals; we use
a tensor decomposition method from [6] reviewed below in
Wireless Digital Twin. Mathematically,

W(p) = (
gn,�

rx
n ,�tx

n

)N
n=1 ∈ R

3×N, (2)

where N is the maximum number of detected paths, and, for
path n, gn denotes its signal-to-noise ratio (SNR), �rx

n and
�tx
n denote the AoA and AoD of the path n, respectively.

Following the setup in [6], we use the top N = 5 paths.
Wireless Digital Twins: The genesis of WDTs proposed in

this paper relies upon the Gibson model [15], a remarkable
embodiment of real-world indoor reconstruction based on
point clouds and RGB-D (D: Depth) cameras. The realism
of the RGB input vt in WDT surpasses that of the synthetic
SUNCG dataset (a manually created large-scale dataset of
synthetic 3D scenes with dense volumetric annotations),
earlier utilized in exploration research [16]. The simulated
wireless field W(p) adheres to the mmWave simulation
methodology expounded in [6].
To initiate the wireless data simulation, a mesh discretiza-

tion of the 2D map with a cell width of 15 cm is implemented
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FIGURE 2. Wireless Channel Simulation Demos.

as presented in Fig. 2(a), and wireless signals for each
vertex point are generated. The simulation commences with
the utilization of ray-tracing software such as Wireless
InSite [17] to generate noise-free electromagnetic wave rays,
as shown in Fig. 2(b). However, it is crucial to understand
that these ray-tracing wireless propagation paths are not
exact representations of real-world wireless channels that
a robot could actually receive. That is to say, the robot
cannot directly access the ray tracing paths in the real world,
indicating a potential deviation between the simulated and
real-world environments.
The subsequent phase involves the orchestration of

antenna arrays, the induction of noise, and the subsequent
disintegration of the channel, enabling the extraction of
potential real-world robot-receivable wireless signal paths.
The rendering of high-resolution ray-tracing data to cover

the entire map for channel sounding and robot navigation
entails the use of a 2D receiver (RX) grid with a 15 cm
interval, as shown in 2(a). Each task configuration includes
one transmitter (TX) and an RX grid, referred to as a wireless
link in wireless communication parlance. The strongest
25 rays out of 250 are chosen for each wireless link to
simulate the wireless channel, as validated by numerous
experiments [18], [19], [20].
The design of antenna arrays is shown in Fig. 2(c).

Leveraging the theoretical foundations developed in Fig. 2c,
three of 1x8 patch microstrip antenna arrays for the RX and
three 2x4 patch microstrip antenna arrays for the TX are
simulated. In this way, we can realize an omnidirectional
coverage by 1) three 120◦ sectors in the azimuth plane,
2) elevation angles of 0◦, 120◦, and -120◦, and 3) code-based
beamforming for each array in each time index t. Moreover,
to facilitate TX and RX detection, a known synchronization
signal is transmitted by the TX, sweeping through a sequence
of directions from the different TX arrays.
A 3D codebook of the mmWave system is designed

following [21], [22] to obtain corresponding AoA and AoD
in the channel decomposition post-medium wave. At this
point, ray tracing data, antenna patterns, antenna group
design, beamforming, and the codebook coalesce to simulate
realistic indoor wireless channels. Notably, a loss of 6dB,

inclusive of noise figures, is introduced during antenna group
design, and additive white Gaussian noise (AWGN) assumed
to be independent and identically distributed (i.i.d.) is added
across the channel modeling RX antennas.
With the wireless channel acquired, the next step involves

sub-channel (wireless path) estimation via low-rank tensor
decomposition [23], [24]. This yields the wireless data

W(p) = (
gn,�

rx
n ,�tx

n

)5
n=1 ∈ R

3×5, (3)

where gn denotes the SNR of the n-th channel, and �rx
n and

�tx
n denote the AoA and AoD of the n-th sub-channel.
Finally, the fusion of the wireless channel data with

the Gibson indoor model culminates in the creation of
WDTs, meticulously tailored for indoor navigation, as shown
in Fig. 3. For additional details regarding the simulation
process, readers may refer to the pertinent sections in [6].

B. WIRELESS INDOOR NAVIGATION: TASK SETUP
With the designed WDT, consider a WIN task setup as
studied in [6], where a stationary target is positioned at an
unknown location in an indoor environment. The target is
equipped with a mmWave transmitter that broadcasts wire-
less signals at regular intervals. Equipped with a mmWave
receiver, an RGB camera, and motion sensors, the agent aims
to navigate to the target in minimal time. In contrast to the
PointGoal task [25], WIN does not provide the agent with
the target coordinates. The detailed environment setup and
the agent’s actuation/sensor models are presented below.
The agent starts from an initial pose p1 and aims to locate

and navigate to the target (the wireless transmitter) denoted
by (x∗, y∗). We consider a WIN task where the agent operates
in the presence of multiple kinds of information feedback
that we denote with a vector

ot = (
mt, p̂t, vt,wt

)
, (4)

where t is the time step, mt is an estimate map, p̂t =
(x̂t, ŷt, ϕ̂t) is the estimated pose, vt = V(pt) represents
visual information, and wt = W(pt) represents the wireless
information. More details are listed below:

• Map and pose estimation mt and p̂t: The map and
pose estimates can come from any SLAM module. In
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FIGURE 3. A summary of wireless digital twin (WDT).

the simulations below, we will use the state-of-the-art
neural SLAM module proposed in [26] that provides
robustness to the sensor noise during navigation. This
SLAM module internally maintains a spatial map mt
and the agent’s pose estimate p̂t (different from the
raw sensor reading p̄t) at each time step during the
navigation process. The spatial map is represented as
mt ∈ [0, 1]2×M×M is a 2-channel M × M matrix, where
M × M denotes the map size. Each element in the
first channel represents the probability of an obstacle at
the corresponding location, while those in the second
channel denote the probability of that location being
explored. We note that each “location” in the spatial
map corresponds to a cell of size 5cm × 5cm in the
physical world. The spatial map is initialized with all
zeros at the beginning of the navigation. The agent
starts at the center of the map facing east, i.e., p1 =
(M/2,M/2, 0). Of particular note is that the map center
may not coincide with the center of the floor plan;
the agent can start with any location in the indoor
environment. The map updates rely on a pre-trained
neural SLAM module, which is essentially a neural
network [25] that adjusts the entries of the two channels
to update the obstacle information along the navigation.

• Visual information vt: V(p) ∈ R
3×L1×L2 is the 3-channel

RGB camera image input at the pose p, where L1 and L2
denote the height and the width, respectively. In addition
to the wireless sensor and the camera, the agent is also
equipped with motion sensors. The sensor readings lead
to the estimate of the agent pose p̂ = (x̂, ŷ, ϕ̂), which
can be different from the agent’s authentic pose p. The
difference εsen = p̂−p is referred to as the sensor noise.

• Wireless information wt:

W(p) = (
gn,�

rx
n ,�tx

n

)N
n=1 ∈ R

3×N, (5)

where N is the maximum number of detected paths
along which signals propagate. For the n-th path, gn

denotes its signal-to-noise ratio (SNR), �rx
n and �tx

n
denote the AoA and AoD, respectively. We consider
the top N = 5 paths with the strongest signal strengths
among all paths (see [6]).

Finally, for agent actions, following [26], we assume the
agent utilizes three default navigation actions,

A := {aF, aL, aR}. (6)

Here, aF = (d, 0, 0) denotes the moving-forward command
with a travel distance equal to the grid size d = 25 cm; and
aL = (0, 0,−10◦) and aR = (0, 0, 10◦) stand for the control
commands: turning left and right by 10 degrees, respectively.

C. WIN OBJECTIVE
Navigating within an unknown environment can be viewed
as sequential decision-making using partial observations. The
agent’s state is given by its authentic pose pt that remains
hidden, and only partial information ot, which includes the
spatial map mt, pose estimate p̂t, RGB images vt, and
wireless signal wt, collected by sensors is available for
decision-making at each time step. The state transition as
shown in the actuation model presented in Section II-B is
Markovian

pt+1 = pt + at. (7)

An important remark is that even though the agent acquires
the initial pose and subsequent action sequence, it is unaware
of its actual pose. Such unobservability of the underlying
state is due to the fact that actuators may not perfectly carry
out the control action under various sources of error and
uncertainty, such as mechanical friction, voltage variations,
and inertia. The agent has to utilize sensor readings from the
motion sensor (wheel encoders) and RGB sensor to derive
an estimate p̂t. Hence, the WIN task is a partially observable
Markov decision process (POMDP), with the observation
kernel ot being too complicated to be analytically modeled.
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The navigation performance can be measured through
a cost function defined as the Euclidean distance (or any
distance metric, e.g., geodesic distance) between the current
pose and the target position

ct = ‖xt − x∗‖2 + ‖yt − y∗‖2. (8)

Denote Ht := {(ok, ak)t−1
k=1, ot} the set of all possible

observations up to time t, and H := ∪H
t=1Ht the union of all

histories, where H denotes the horizon length. The agent’s
objective in WIN is to find an optimal policy π : H → A
such that the cumulative cost Eπ [

∑H
t=1 ct] is minimized,

which is a customary setup in mobile robot navigation
tasks [25]. Since the cost function is non-negative and attains
zero if and only if the agent arrives at the target position,
minimizing the cumulative cost is equivalent to finding the
shortest path, implying that the agent aims to navigate to
the target in minimal time.

III. PHYSICS-INFORMED REINFORCEMENT LEARNING:
MOTIVATIONS AND REWARD SHAPING WITH THREE
PHYSICS TERMS
With formulated WIN problem (4) and (6), in this section,
we first present the enhanced state-of-the-art method using
deep RL and its limitations. Then, we introduce our proposed
PIRL with a focus on three specific physics-informed terms:
link states, reversibility, and SNR.

A. CLASSIC DEEP RL
The planning algorithms for POMDP [27] are not suitable
for WIN, since the state and the observation space are of
high dimensions and continuum, and the observation kernel
remains unknown. To create model-free learning-based nav-
igation, one can apply deep reinforcement learning, such as
proximal policy optimization (PPO) [28], to approximately
solve the cost-minimization problem in (9), where the policy
π is represented by an actor-critic neural network [29], and
its model weights are denoted by θ ∈ R

d.
To address the partial observability in WIN, we incorpo-

rate a recurrent module [30] into the actor-critic network
architecture (see Section IV-A). With the recurrent neural
network (RNN), the policy π(θ) need not take in all past
observations {(ok, ak)t−1

k=1, ot}, and instead, the current partial
observation suffices, as RNN can memorize historical input
and integrate information feedback across time [30]. We refer
to RL with the loss function (9) as non-physics-based RL
(NPRL), to differentiate it from the physics-informed RL to
be described shortly

min
θ

LRL(θ) := Eπ(θ)CRL, CRL =
H∑

t=1

ct. (9)

However, as presented in the literature [31], [32], we
observe in the initial experiments that when NPRL policies
are applied to the WIN problem, they exhibit poor gen-
eralization ability and sample efficiency. For example, the
NPRL agent trained for one task (a given map and one target

position within the map) even fails to navigate to another
target within the same map. Due to multiple reflections and
diffractions of mmWave, the wireless field W(p) changes
drastically when the transmitter moves from one location
to another, especially when the indoor environment displays
complex geometry. Consequently, model weights learned for
(overfit) one task are barely relevant to another. In addition to
limited generalization, the NPRL agent requires an astronom-
ical amount of samples due to catastrophic forgetting. Since
wireless fields vary across different tasks, knowledge of the
previously learned task may be abruptly lost as information
relevant to the current task is incorporated. Hence, the NPRL
agent needs to be re-trained under previous tasks, leading to
time-consuming shuffle training [10].

B. PHYSICS-INFORMED REINFORCEMENT LEARNING
Physics-informed machine learning or RL has emerged as
a promising approach to simulate and tackle multiphysics
problems in a sample-efficient manner [33]. The gist is that
neural networks can be trained from additional information
obtained by enforcing physics laws. Existing general-purpose
strategies of distilling the physics-domain-knowledge into
the RL agent include supervised-learning approaches such
as imitation learning [34], and RL approaches such as
offline/batch RL [35], [36] and vanilla RL, i.e., online policy
learning [37], where the agent repeatedly interact with the
digital twin to acquire feedback. This work considers the
simple online learning approach based on WDT because we
need a fair comparison between our proposed PIRL and
other baseline wireless navigation approaches that are based
on online RL on sample efficiency and generalization.
Adopting online RL, we thus propose to simply aug-

ment the cost with physically-motivated reward shaping.
Specifically, the augmented cost function is defined as

L(θ) := Eπ(θ)[CRL + λLSCLS + λAoACAoA + λSNRCSNR],

(10)

where the additional terms are motivated by physics prin-
ciples in WIN: CLS, for link-state monotonicity, CAoA for
the angle of arrival direction following, and CSNR for SNR
increasing. λLS, λAoA, and λSNR are weighting constants. In
the following, we present these three physics-informed terms
in detail.
In the experiments, the configuration of hyperparameters

and weighting constants before each reward term follows the
intuition that each component is equally important and shall
not dominate or be dominated by other reward components.
Note that each reward component falls within intervals of
similar ranges. For example, the values for CAoA and CSNR
range from 0 to 180. The distance reward, varying across the
maps and the target locations, typically assumes a positive
value no greater than 200. Since these reward components
are of similar ranges, we confine the reward weights to
[0.5, 2], over which we utilize a grid search to explore
various weight combinations. The detailed hyperparameter
setups are deferred to Section V.
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FIGURE 4. The physics principles in WIN.

1) Monotonicity of Link States: In mmWave applications,
link states are of great importance [1], [6], which are
primarily categorized into Line-of-Sight (LOS) and NLOS. A
location (x, y) (or equivalently a pose p) is said to be of LOS
if there is a wireless signal path wherein electromagnetic
waves traverse from the source to the receiver without
encountering any hindrances. In contrast, NLOS signifies
the absence of such a direct visual path. NLOS can further
be subdivided into first-order, second-order, third-order, and
so forth. First-order NLOS (1-NLOS) implies that at least
one electromagnetic wave in the wireless link undergoes
a single reflection or diffraction. Likewise, second-order
NLOS (2-NLOS) suggests at least one electromagnetic wave
undergoing two instances of reflection or diffraction. Similar
arguments apply to higher-order NLOS, denoted by 2+-
NLOS. Define

�(p) ∈ {0, 1, 2} (11)

as the link state of the pose p, where the link state evaluation
0, 1, and 2 represent the LOS (0-NLOS), 1-NLOS, and 2+-
NLOS scenarios, respectively. Note that the link state is a
wireless terminology instead of the actual state input to be
fed into RL models. Instead, the agent learns to infer the
link state from the raw wireless inputs W(p) [6].

Fig. 4(a) presents a distribution map of link state for
indoor wireless signals. The purple cross represents the target
location. The LOS coverage, by definition, is a connected
area, unlike 1-NLOS, and 2+-NLOS coverage. Hence, when
the agent enters the LOS area, the shortest path to the target
is the straight line connecting the two (see Fig. 4(a)), which
remains within the LOS area. Another important observation
is that the LOS area must be bordered by 1-NLOS, which is
then bordered by 2-NLOS, and so forth. In other words, if the
link state increases as the agent navigates, the resulting path
cannot be optimal. This observation leads to the following
Theorem.
Theorem 1: A necessary condition for a path to be optimal

is that the link state decreases monotonically along the path,
which motivates the term

CLS =
∑

t

max{0, �t − �t−1}. (12)

Mathematically, given navigation path 	p := (p1, . . . , pH), pt
denotes the pose at time t, let �t = �(pt) be the link state of

the pose pt. A necessary condition of 	p being the shortest
path is that the link state � is non-increasing along the path:
�i ≤ �j, for 0 ≤ j < i ≤ H.
Proof: Consider a navigation path 	p := (p1, . . . , pH),

pt denotes the pose at time t. Let �t = �(pt) be the
corresponding link state of the pose pt. Suppose, for the sake
of contradiction, that for the shortest path 	p, there exists
0 ≤ j < i ≤ H such that �i > �j, and we consider two
possible cases: 1) �i = 1 > 0 = �j, and 2) �i = 2 > 1 = �j.
In the first case, when entering the LOS area, the agent shall
remain in the LOS, as we discussed earlier. Hence, 	p is not
optimal. In the second case, since � cannot jump from 2 to
0, there must be some 1-NLOS after pi. Let k > i be the
smallest index for which �k = 1, then connecting �j and
�k yields a shorter path, conflicting the optimality. Fig. 4(a)
presents a visualization of the two cases.

2) Reversibility of mmWaves: Similar to the principle of
reversibility of light, the mmWave follows the same path if
the direction of travel is reversed. This reversibility principle
leads to a simple yet effective navigation strategy: following
the AoA of the strongest path, which experiences the least
number of reflections. Besides, [6] shows that following the
AoA of the strongest path in 1-NLOS cases (NLOS with a
single reflection) generally leads to decent navigation since
it tends to find a route around the obstacle. However, for
2-NLOS cases (�t = 2), following the AoA may not be a
reliable solution, since it arises from multiple reflections or
diffractions. To impose this angle tracking, we add the term

CAoA =
H∑

t=1

|�̃t − �rx
1,t|2 · 1{�t �=2} (13)

into (10) where �̃t is the agent’s moving direction derived
from the action and �rx

1,t is the AoA of the strongest path
included in the wireless information wt.

3) Navigation in 2+-NLOS and the Gradient Field of SNR:
Due to reflections, diffractions, and measurement noises, the
reversibility principle is less effective in 2+-NLOS. Denote
by g(p) = ∑

i gi(p) the overall SNR at the pose p, or
equivalently, the location (x, y). A key observation is that g
displays remarkable declines in the transit from the LOS and
1-NLOS to 2+-NLOS areas, see Fig. 4(b). Upon statistically
analyzing 21 maps, it is observed that navigating from the
1-NLOS position to the nearest 2+-NLOS position leads to
an average decline of 25.2 dB in SNR. Hence, we propose a
navigation heuristic in 2+-NLOS scenarios: the agent should
move along the reverse direction of the SNR gradient field
−(∇xg,∇yg) (finite differences in practice), i.e., toward the
direction with the stronger signal strength. We remark that
such a heuristic is less helpful in the LOS and 1-NLOS,
where ∇g is relatively insubstantial: the difference between
SNRs of two adjacent mesh vertices is mostly within 3 dB.
To encourage the policy to increase in SNR, we add the cost

CSNR =
H∑

t=1

|�̃t − νt|2 (14)
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FIGURE 5. PIRL targets the suboptimal θPIRL shared by various tasks, instead of
optimal policies θ∗

A , θ∗
B for individual tasks.

where νt denotes the angle between −∇x,yg(pt) and the
x-axis. In numerical implementations, νt is replaced by
the steepest descent direction approximated using finite
differences of the mesh points. Consider a discretization
of the angle range {−180,−170, . . . , 0, . . . , 170, 180}. For
each relative angle from the discrete set, we compute the
average of SNR evaluations at all mesh points (where
the wireless data is collected, see Section II-A) along the
direction. The highest SNR direction is set to be νt.
One important observation is that the physics-based reward

shaping is not a potential-based transformation [38]. To see
this, consider a sequence of poses p1 → p2 → · · · → pn →
· · · → p1 such that the agent can travel through them in
a cycle, which can incur a net positive cost, e.g., CLS is
strictly positive when traversing from LOS to NLOS and
then back to LOS. Hence, the policy invariance theorem [38]
tells that (10) leads to a navigation policy distinct from the
shortest path prescribed by (9). For example, following AoA
in the 1-NLOS may yield a detour around a corner rather
than the shortest path. Even though PIRL is not optimal,
it targets suboptimal solution θPIRL shared across various
tasks (because physics principles are invariant) as shown
in Fig. 5. The shared suboptimality alleviates catastrophic
forgetting in training and creates zero-shot generalization in
testing.

IV. PROPOSED PIRL ALGORITHM AND
IMPLEMENTATION
To accommodate the heterogeneous information (vision and
wireless), we design a hierarchical RL policy inspired
by [26]. The RL policy consists of two separate neural
networks,

π(θ) = (πG(θG), πL(θL)). (15)

Here, πG is a global policy network that sets a long-
term goal location, which does not represent the agent’s
estimate of the target position but rather a waypoint on the
navigation path. πL is a local policy that takes in the long-
term goal and generates a sequence of navigation actions.
A schematic illustration is presented in Fig. 6, and the
pseudocode is summarized in Algo. 1. The following sub-
sections present the key components of the proposed PIRL
algorithm.

A. OVERALL PIRL HIERARCHICAL POLICY STRUCTURE
Since the wireless information wt in (5) is directly generated
by the transmitter, the global policy needs to produce a series
of waypoints using such information. Specifically, denote by

αt = πG(wt | θG) (16)

the output from the global policy, which consists of an
estimated angle �̂t and link-state estimates �̂t based on the
current wireless input wt. Given the global policy output αt
and the agent current pose estimate x̂t, ŷt, the long-term goal
pLt = (xLt , y

L
t ) can be expressed as

xLt = x̂t + δt cos �̂t, yLt = ŷt + δt sin �̂t, (17)

where δt is a predicted distance depending on the link state
estimate �̂t. Also, the predicted distance is given by

δt = 1{�̂t=2} · Db +
(

1 − 1{�̂t=2}
)

· Ds, (18)

where Db = 7.5 leading to aggressive exploration and
Ds = 2.5 to a conservative one. The intuition behind this
setting is as follows: if the agent is in a state of 2+-NLOS, it
prefers to search for the goal aggressively; if not, the agent
prefers to move slowly, being more cautious.
Once the global policy determines the long-term goal, a

path planner denoted by fplan, based on the Fast Marching
method [39], computes the shortest path from the current
location to the goal using the spatial map mt and the pose
estimate p̂t from the SLAM module. The unexplored area
is considered a free space for planning. The output of the
planner is a short-term goal

pSt = fplan
(
pLt ,mt, p̂t

)
, (19)

which is the farthest point on the path within the grid size
d = 0.25m from the agent. Then, the local policy takes in
the path-planning output and the camera images, producing
navigation actions

at = πL

(
vt, p

S
t |θL

)
(20)

for collision avoidance.
Since the navigation actions correspond to small

movements (e.g., turn left/right by 10◦), the agent needs
to implement a sequence of actions to move from the
current position to the short-term goal before calling the
global policy to update the long-term goal. Hence, our PIRL
operates the global and local policy at different timescales.
Denote by Hg the global decision horizon, indicating the
total number of calls to the global policy. At each global
time step t ∈ {1, 2, . . . ,Hg} (i.e., global policy call), the
local policy operates in a local decision horizon denoted by
Hl: at each local time step τ ∈ {1, 2, . . . ,Hl}, the policy
takes in the visual information and executes an action (line
11-14) in Algo. 1.

We finally conclude the policy network overview by
presenting its neural network architecture. The global policy
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FIGURE 6. The hierarchical structure of the RL policy. The global policy takes in the wireless input and produces long-term goals (blue dot) fed to the local policy that
generates a sequence of navigation actions to an associated short-term goal (red dot). The local policy relies on the active neural-SLAM module [26] for pose and map estimates
that are utilized later by the planner to produce short-term goals.

comprises a recurrent neural network architecture, which
includes a linear sequential wireless encoder network with
two layers, followed by fully connected layers and a Gated
Recurrent Unit (GRU) layer [40]. Additionally, there are two
distinct layers at the end, referred to as the actor output layer
and the critic output layer. The local policy is constructed
using a recurrent neural network architecture. It incorpo-
rates a pre-trained ResNet18 [41] as the visual encoder,
which is followed by fully connected layers and a GRU
layer.

B. GLOBAL AND LOCAL POLICY TRAINING
We employ different training processes for the global and
local policies since the two policy networks are of different
functionalities. For the local policy training, we follow the
practice in [26], where the local reward is determined by
the agent’s proximity to the short-term objective and the
cross-entropy loss is utilized. The local policy undergoes
training via imitation learning, specifically through behav-
ioral cloning, and we refer the reader to [26] for more details.

Our contribution mainly lies in global policy training
that applies PPO [28] with the global reward shaped by
physics terms in Section III. While (10) lays down the
general principle for physics-informed reward shaping, the
implementation further enforces the monotonicity of link
states in the LOS and 1-NLOS, and the resulting global
reward function design is as follows.

rgt =
{

λLSCLS · (
ζ1e−ζ2ct − λAoACAoA

)
, �̂t ∈ {0, 1}

−λSNRCSNR, �̂t ∈ {2}, (21)

where ζ1 and ζ2 are hyperparameters.

Algorithm 1 PIRL Algorithm
Require: Global policy πG, pre-trained Local policy πL, and

the planner module fPLAN ; time horizon Hg,Hl
1: Initialize global policy parameters θ0;
2: while not converged do
3: Reset environment and agent state;
4: Set global time t = 0;
5: Sample initial time wt, vt for policies;
6: while t < Hg do
7: Set local time τ = 0;
8: Sample action αt from global policy πG(wt|θ);
9: Compute long-term goal pLt using αt;

10: Compute short-term goal pSt using planner fPLAN ;
11: while τ < Hl do
12: Sample action set al from local policy

πL(vt, pSt );
13: Execute action al and observe next state vτ+1;
14: Update local time τ = τ + 1;

15: Update global policy parameter θ using collected
data and the PPO algorithm;

16: Observe next state wt+1;
17: Update global time t = t + 1;

18: Output θt

We are now ready to illustrate the PPO algorithm for
global policy training. Denoting

Gt =
Hg−1∑

k=0

γ krgt+k+1 (22)

as the discounted future reward starting from t, we can derive
the state-value function under a global policy π(θ) (also
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denoted by πθ ) as

Vθ (w) = Eα∼π [Gt|wt]. (23)

Similarly, we can determine the value function of a (state,
action) pair (i.e., Q function) under such policy as

Qθ (w, α) = Eα∼π [Gt|wt, αt]. (24)

To measure the performance of an action at a certain state,
we can use the advantage function defined as [28]

Aθ (w, α) = Qθ (w, α) − Vθ (w). (25)

Unlike the vanilla policy gradient method [42] that
optimizes the value function, PPO considers a clipped
surrogate objective. Let πθold represent the old policy from
the last update, and πθ denote the new policy. The probability
ratio is denoted as

μ(θ) = πθ (α|w)

πθold (α|w)
. (26)

Additionally, we introduce a small hyperparameter ε. To
ensure the ratio remains within a certain range, we define
the clipping function as

clip(μ(θ), 1 − ε, 1 + ε). (27)

This function restricts the ratio to be no greater than 1 + ε

and no less than 1 − ε. Therefore, the objective function
under this clipping is:

JCLIP(θ) = E

[
min

(
μ(θ)Âθold(w, α), (28)

clip(μ(θ), 1 − ε, 1 + ε)Âθold(w, α)

)]
,

where Âθold(·) represents the estimated advantage for the
old policy using sample rewards Gt. The objective function
JCLIP(θ) calculates the expectation over the minimum
value between two terms: the first term is the product
of the ratio and the estimated advantage under the old
policy, while the second term is the product of the
clipped ratio and the estimated advantage under the old
policy. Such an operation addresses the training instability
with extremely large parameter updates and big policy
ratios.
When implementing PPO on a network architecture with

shared parameters for both the policy (actor) and value
(critic) functions, the critic is responsible for updating the
value function to obtain the estimated advantage function
Âθold (·). On the other hand, the actor serves as our policy
model. To promote sufficient exploration in the learning
process, an error term, (Vθ − Vtarget)2, and an entropy
bonus H(w, πθ (·|w)), is introduced for value estimation
and exploration encouragement, where Vtarget represents the
discounted cumulative reward associated with a sample
trajectory. When a given trajectory ends, target state values
are computed as

V target
t = rt + γ rt+1 + γ 2rt+2 + · · ·

+ γ k−1rt+k−1 + γ kVθold (wt+k), (29)

where k is the length of trajectory segment. Such segmenta-
tion breaks a large sample trajectory into multiple segments,
leading to multiple PPO updates along the whole sample
trajectory [28]. In summary, the overall PPO objective
function can be written by

JPPO = E

[
JCLIP(θ) − ξ1

(
Vθ − Vtarget

)2 + ξ2H(πθ (·|w))

]
,

(30)

where ξ1 and ξ2 are two hyperparameters. By optimizing the
objective function JPPO(θ), we obtain the optimal policy π .

V. EXPERIMENTS
This section evaluates the proposed PIRL approach for WIN
tasks, aiming to answer the following questions.

• Sample Efficiency: does the PIRL take fewer training
data than the non-physics-based baseline?

• Zero-shot Generalization: can PIRL navigate in unseen
wireless environments without fine-tuning?

• Interpretablility: does the PIRL conform to the physics
principles, leading to interpretable navigation?

We briefly touch upon the training procedure and the
experiment setup in the ensuing paragraphs. All experiments
are conducted using a Linux GPU workstation with an AMD
Threadripper 3990X (64 Cores, 2.90 GHz) and an NVidia
RTX.

A. EXPERIMENT SETUP
The experiment includes 21 different indoor maps (15 for
training and 6 for testing) from the Gibson dataset [15]
labeled using the first 21 characters in the Latin alphabet (A,
B, . . ., U). Table 1 presents the label map correspondence,
where the left-hand side displays the maps used for training,
while the right-hand side displays those for testing. Each
map includes ten different target positions labeled using
numbers (1,2, . . ., 10). The agent’s starting position is fixed
for each map regardless of the target position, depending
on which, the ten targets for each map are classified into
three categories. The first three targets (1-3) are of LOS (i.e.,
the agent’s starting position is within the LOS area), the
next three (4-6) belong to 1-NLOS, and the rest four (7-10)
correspond to 2+-NLOS scenarios. For each task (e.g., A1),
the maximum number of training episodes is 1000, and the
training process terminates if the agent completes the task
in more than 6 episodes out of 10 consecutive ones.
During the training phase, the first 15 maps (A-O) with

associated 10 task positions are utilized to learn a PIRL
policy in sequential order. The training process follows a
specific sequence, starting with task A and progressing to
A10, followed by training under tasks B1 to B10. Each task
consists of 1000 training episodes. This procedure is repeated
until the agent has been exposed to all 15 maps with all
target positions. The intuition behind this sequential training
approach is to gradually increase the complexity of the tasks.
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TABLE 1. Label-map correspondence.

It begins with LOS cases, which are relatively simple, then
proceeds to 1-NLOS cases, and finally to 2+-NLOS cases,
which pose a higher level of difficulty.
We consider three baseline navigation algorithms, namely,
• Non-physics-based RL (NPRL): the RL policy is of the
same architecture as our proposed PIRL, whereas the
reward function is not physics-informed, i.e., only LRL
in (9).

• Wireless-assisted navigation (WAN): this non-RL-based
method, put forth in [6], relies on a physics-based
heuristic that utilizes wireless signals (following AoAs)
exclusively within LOS and 1-NLOS scenarios while
exploring randomly in 2+-NLOS. WAN uses a pre-
trained classification model to infer the link state.

• Vision-augmented SLAM (V-SLAM), which is a
vision-augmented version of the active neural SLAM
(AN-SLAM) in [26].

The first two are primary baselines since our PIRL is a hybrid
of the two methodologies. Additionally, to highlight the
necessity of leveraging wireless signals in indoor navigation,
we consider the third baseline where V-SLAM only takes
in RGB image data without wireless inputs. The V-SLAM
agent is capable of localizing the target once it falls within
the visual (LOS), whereas in the NLOS, V-SLAM reduces to
the AN-SLAM, aiming to explore as much space as possible.
For the first NPRL baseline policy, we consider rotation

training to alleviate catastrophic forgetting. The rotation
training generally follows the task sequence as the sequential
training in PIRL. Yet, after finishing the training on the
current task, we randomly select a set of previous tasks to
re-train the model before moving to the next task in the
sequence to refresh NPRL’s “memory”. The number of re-
train tasks is set to be half of the total number of finished
tasks. Our experiments use the pre-trained vision model and
neural-SLAM module in the other two baselines. We report
experimental results based on 20 repeated tests with different
random seeds. Moreover, the system parameters, including
their detailed descriptions and values in the simulations, are
summarized in Table 2.

B. SAMPLE EFFICIENCY
We first evaluate the sample efficiency of the PIRL training
process by comparing the number of training episodes of
PIRL in LOS, 1-NLOS, and 2+-NLOS with those of NPRL.

TABLE 2. Hyperparameters used in the PIRL algorithm.

The bar plot in Fig. 7 gives a visualization of the sample
efficiency in the training phase on map A (the first map
used in the training) and I (midway in the training). In the
early stage of the training, no remarkable difference between
the two is observed. However, as the training proceeds,
PIRL demonstrates a superior sample efficiency on map
I, compared with NPRL. This is because the PIRL agent
learns to utilize the physics principles that persist across
different wireless fields, after being trained on first a few
maps. One can see that the PIRL policy already acquires
generalization ability to some extent at this point, such that
lightweight training would be sufficient for navigating in new
environments. In contrast, the NPRL agent, using vanilla end-
to-end learning, may be confused when exposed to drastically
different wireless fields. Hence, the prior experience does
not carry over to the new environment, and NPRL needs to
learn almost from scratch.

C. GENERALIZATION
We first highlight that our testing environments (new maps
with different target positions) are structurally different
from training cases. Different room topologies and wireless
source locations create drastically different wireless fields
unseen in the training phase, as the reflection and diffraction
patterns are distinct across each setup. We collect the testing
performance of three baselines and our PIRL on maps P
to U, and report the average results of 20 repeat tests
under different random seeds. Since baselines and PIRL use
different reward designs, we consider the metric normalized
path length (NPL) defined as the ratio of the actual path
length (the number of navigation actions) over the shortest
path length of the testing task (the minimal number of
actions). The closer NPL is to 1, the more efficient the
navigation is. The comprehensive comparison is summarized
in Table 3, and Fig. 8 gives a visualization of NPLs averaged
over the LOS task (e.g., P1-3), the 1-NLOS (e.g., P4-6),
and the 2+-NLOS (e.g., P7-10) on testing maps P and T.
Our PIRL policy generalizes well to these unseen tasks
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FIGURE 7. The number of episodes for ten tasks in map A and I. For each map, task number 1-3, 4-6, and 7-10 are tasks of LOS, 1-NLOS, and 2+-NLOS case, respectively.
Compared with NPRL, PIRL requires fewer and fewer episodes on each case as the training progresses.

FIGURE 8. Average NPLs and the standard deviations (left) and SPLs (right) returned by navigation policies in the testing. Unlike NPL, SPL uses the inverse of the path length,
and hence, the smaller the SPL one returns, the better it is. Since SPL assigns zeros to unsuccessful navigation instances, we do not report its standard deviation.

and achieves the smallest NPLs across all three scenarios.
In addition to NPL, we also report in Fig. 8 the Success
weighted by (normalized inverse) Path Length (SPL) and
in Table 4 the quantitative values, which is customary in
the literature [25]. Compared to NPRL, PIRL consistently
achieves lower NPL and higher SPL across all link states,
demonstrating superior performance. In LOS, PIRL reduces
NPL by approximately (55% (P) and 51% (T)), comparable
to V-SLAM, and achieve a higher SPL improvement (119%
vs. 109% for P, 88% vs. 70% for T). In 1-NLOS, PIRL
outperforms V-SLAM with a greater NPL reduction (58%
vs. 42% for P, 47% vs. 11% for T) and a significantly
higher SPL gain (111% vs. 75% for P, 83% vs. -15%
for T). The advantage is most pronounced in 2-NLOS,
where PIRL reduces NPL by 48% (P) and 40% (T) while
achieving an SPL improvement over 230% (P) and 120%
(T), far exceeding V-SLAM’s performance. Overall, PIRL
consistently delivers both lower NPL and significantly higher
SPL, proving its robustness and efficiency across varying
link conditions.
Moreover, to compare the running cost, in Table 5, we

present the time consumption of PIRL and NPRL across 15
different maps, labeled A to O. The last column of the table
reports the improvement of PIRL over NPRL in terms of
GPU hours. The number of episodes represents the average
across 10 different tasks per map. Since the training process
follows a sequential order based on the map index, PIRL
exhibits faster convergence in later maps, whereas NPRL
maintains a consistent convergence time regardless of the
map.
Furthermore, we compare the computational complexity

of PIRL, NPRL, WAN, and V-SLAM in both training and
testing. In training, all methods leverage the pre-trained
neural SLAM module and local policy from prior work,
which was trained on 10 million samples. Since WAN and

V-SLAM are heuristic-based, their training complexity is
limited to these shared components. However, PIRL and
NPRL require additional training for their global policy, with
PIRL demonstrating significantly lower sample complexity
than NPRL as training progresses. In response to R3.1,
we provide GPU hour comparisons in Table 1 (Table 5 in
the manuscript) to quantify this difference. For testing, the
primary computational cost comes from processing input
data and goal generation. Unlike PIRL and NPRL, WAN
and V-SLAM do not require a trained global policy, as they
follow heuristic rules (e.g., AoA-based navigation, and RGB-
based target localization). However, since PIRL’s global
policy network is lightweight (only five layers), the dominant
computation overhead across all methods remains the neural
SLAM and local policy, leading to comparable operational
complexity in testing.

D. INTERPRETABLE NAVIGATION
We provide empirical evidence that the PIRL leverages
the principles stated in Section III in the sense that
the agent’s behavior is well aligned with the physics
principles. Specifically, we focus on 1) the reversibility
principle: whether the agent follows the AoA, and 2) the
gradient heuristic: whether the agent moves toward the
high-SNR direction. Fig. 9(a), 9(b), and 9(c) present the
histograms of 1000 sample angle outputs �̂ (i.e., moving
directions) at a LOS, a 1-NLOS, and a 2+-NLOS position,
respectively. One can see from these figures that the
PIRL obeys the physics principles enforced by CAoA and
CSNR.
Furthermore, we attempt to interpret the PIRL model using

explainable AI (XAI) methodologies. Since our physics-
informed reward shaping bears distinct physics principles
depending on the specific link states, we opt for post-hoc
local XAI methods that provide explanations for specific
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TABLE 3. A comparison of NPLs under 6 testing maps. PIRL achieves impressively efficient navigation in the challenging scenario 2+-NLOS, compared with baselines.

TABLE 4. Performance improvement (NPL: the lower, the better; SPL: the higher, the better) of policies in Map P and Map T compared to NPRL.

TABLE 5. GPU hours and episodes of PIRL and NPRL for maps A-O.

instances instead of creating a interpretable surrogate model,
e.g., linear and rule-based models [43], [44], [45], to explain
the global navigation behaviors over the entire map. Among
existing post-hoc local XAI approaches, model-agnostic
methods, such as LIME [46], SHAP [47], and Ancors [48],
enjoy border applicability since they apply to generic

machine learning models. However, these methods often
need to generate auditing data under stringent requirements
and additional training and computation to examine the non-
interpretable model and key features, which is challenging
to fulfill in our digital twin environment. For example, for
a given input, LIME requires perturbed data around the
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FIGURE 9. The interpretability experiments on the reversibility principle
(Section III-B(b)) and the SNR heuristic (Section III-B(c)). (a)(b)(d)(e) confirms that the
PIRL agent traverses reversely along the angle of arrival. (c)(f) indicates that SNR is
instrumental when navigating in high NLOS areas.

neighborhood of the input instance subject to a proximity
requirement. However, due to diffractions and reflections
in mmWave propagation, a slight offset to the transmitter
location can create drastically different wireless fields.
Therefore, we resort to gradient-based attribution methods

specific to neural networks [49] due to their lightweight
operation without additional data generation. Following the
gradient explanation technique in [50], we compute the
global policy’s partial derivative with respect to each feature
(e.g., link state, AOA, and SNR) to inspect the importance
of each feature when deciding the policy network output.
Denote by w(p) the wireless information input at position
p defined in (5). For a given testing map, we randomly
sample 10 locations in LOS, 1-NLOS, and 2+-NLOS areas,
respectively. We evaluate the mean value of ∇wπG(w) over
these 10 inputs in the three areas. We repeat the same
procedure for all testing maps and plot the magnitude of each
entry of average ∇wπG in Fig. 9. Similar to the saliency map
in [50], the heat map in Fig. 9 indicates the PIRL policy
sensitivity to each feature: the darker red blocks suggest
more important features.
Ideally, the policy network should be mostly sensitive to

the first-channel AoA in LOS and 1-NLOS, since our reward-
shaping encourages the agent to travel reversely along the

TABLE 6. Ablation studies on the SNR and link state terms. The metric is NPL
averaged over all testing tasks.

AoA direction. In higher-order NLOS, the policy should be
sensitive to SNR as we employ SNR gradient directions as a
navigation heuristic. Our intuition is confirmed by the heat
map in Fig. 9, and the PIRL model indeed leverages the
wireless information as instructed by the principles, which
points to another advantage of incorporating the physics
information into RL: the physics-based reward components
lead to interpretable navigation.

E. ABLATION STUDY
Recall that PIRL differs from WAN in its use of link state
and SNR information. We conduct ablation studies regarding
CLS and CSNR, for which we report the NPL results. For the
SNR ablation, we replace CSNR with the relative distance
cost in 2+-NLOS to see whether the SNR heuristic helps the
agent navigate efficiently in such a scenario. As one can see
from Table 6, the answer to the question is affirmative, as the
SNR ablation returns significantly higher NPLs in 2+-NLOS.
We also replace CLS with a constant number to investigate
whether the link-state penalty discourages the agent from
entering the higher-order NLOS area from the lower-order
NLOS. The third row in Table 6 indicates that without CLS,
the agent frequently revisits the high-order NLOS areas in
testing, which yields higher NPLs in NLOS scenarios. In
summary, CSNR contributes to PIRL’s success in 2+-NLOS,
and CLS helps stabilize the navigation (less variance).

VI. RELATED WORKS
Due to necessary exploration [51], RL typically suffers from
poor sample efficiency [52], especially when facing sophis-
ticated tasks such as WIN. PIRL emerges as a promising
remedy through integrating data and mathematical physics
models. Even though no census has been established on the
exact definition, PIRL amounts to introducing appropriate
observational, inductive, and learning biases that can speed
up the learning process [33]. Introducing observation biases
bears the same spirit of data augmentation, where the
underlying physics law is embedded into the training data.
For example, [53] trains an RL model using a combination
of historical data and synthetic data generated from a traffic
flow model for ramp metering. By incorporating into the RL
training a predicted conflict zone visualized by a physics-
based prediction algorithm, [54] develops a physics-informed
aircraft conflict resolution strategy. Inductive biases corre-
spond to interventions to the RL model architecture [55],
and the resulting outputs are guaranteed to implicitly satisfy
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a set of given physics laws. One example is the physics-
informed model-based RL considered in [56], where the
physics constraints are imposed on the model learning. Our
proposed PIRL method belongs to the third class: introducing
learning biases. By selecting appropriate loss functions and
constraints to modulate the training, this class of PIRL
favors convergence to solutions adhering to the underlying
physics. The advantage of our reward-shaping approach lies
in its lightweight design: without generating synthetic data
(first class) or modifying the RL policy network structure
(second class), the physics-informed reward-shaping features
seamless compatibility with existing RL training paradigms.
Moreover, what distinguishes our PIRL from other straight-
forward reward-shaping methods [57] is that our proposed
PIRL features a two-timescale operation to accommodate
the multi-modal information in WIN, where the physics-
informed learning biases are injected into the slow-scale
global policy learning.

VII. CONCLUSION AND FUTURE WORK
This work develops a physics-informed RL (PIRL) for
wireless indoor navigation and is evaluated by the proposed
digital twin. By incorporating physics prior to reward
shaping, PIRL introduces learning biases to modulate policy
learning, favoring those adhering to physics principles.
As these principles are invariant across training/testing
tasks, PIRL alleviates catastrophic forgetting in training and
displays zero-shot generalization in testing.
This paper opens up several directions for future work.

First, we point out that one failure case our PIRL agent
may encounter is when it enters into a power-outage region
(e.g., a balcony) where no or negligible wireless signals are
available due to complex spatial geometry and high-order
reflections. One future extension to address this issue is to
synthesize vision and wireless information. Once the agent is
trapped in a power outage case, it switches to the exploration
mode and aims to maximize the covered area (e.g., areas
scanned by the RGB camera). By doing so, the agent is
motivated to move out of the region and explore another area.
Once jumping out of the power-outage area, the wireless-
based PIRL is again activated to take over the long-term
goal generation. Through such an event-triggered control
framework, the agent can navigate across the entire indoor
environment regardless of the wireless signal availability.
Another promising extension is to consider the height fac-

tor in navigation. Even though our WIN is a 2-dimensional
navigation task, it is likely in reality for the agent to observe
a line-of-sight (LOS) link state but with an obstacle between
the agent and the target. Our proposed PIRL can still cope
with such a scenario. The intuition is that if the agent
observes an LOS link state but also an obstacle through the
RGB camera, it should start to follow the AoA of the second
strongest channel, which corresponds to the propagation path
within the xy-pane that experiences the least reflections.
Bearing such intuition, when designing the reward-

shaping, we can incorporate a symbolic trigger (i.e., if-else

rule) into the CAoA in the loss function in eq. (10). In LOS,
if no obstacle is observed, then we use the current CAoA
design; otherwise, the trigger is active, and we replace the
AoA direction in CAoA with the corresponding entry from
the second strongest channel.
PIRL’s generic design makes it inherently scalable to

larger environments and more complex wireless setups, such
as FR3/upper mid-band scenarios. In larger spaces, such
as expanded rooms or multi-room environments, PIRL can
adapt by efficiently managing interference, beamforming,
and resource allocation, ensuring robust communication
and accurate navigation even with an increased number of
antennas and robots. Furthermore, FR3 scenarios introduce
additional complexity due to the coexistence of short-
and long-range propagation characteristics. PIRL’s adaptable
framework allows it to learn and generalize across diverse
multipath profiles and dynamic link conditions, making it
well-suited for real-world deployment. To further enhance
scalability, PIRL can be extended to heterogeneous wireless
setups, incorporating varying antenna configurations, dense
user environments, and rapidly changing network conditions,
ensuring flexibility and reliability in complex, large-scale
deployments.
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