CHAL

UNIVERSITY OF TECHNOLOGY

A membrane computing approach to the generalized Nash equilibrium

Downloaded from: https://research.chalmers.se, 2025-10-19 15:13 UTC

Citation for the original published paper (version of record):

Luque Cerpa, A., Gutiérrez-Naranjo, M. (2025). A membrane computing approach to the generalized
Nash equilibrium. Natural Computing, 24(2): 321-336.
http://dx.doi.org/10.1007/s11047-025-10014-z

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Natural Computing (2025) 24:321-336
https://doi.org/10.1007/s11047-025-10014-z

=

Check for
updates

A membrane computing approach to the generalized Nash

equilibrium
Alejandro Luque-Cerpa’ - Miguel A. Gutiérrez-Naranjo®

Accepted: 17 March 2025/ Published online: 18 April 2025
© The Author(s) 2025

Abstract

Generalized Nash Equilibrium is an extended version of the standard Nash Equilibrium with important implications in real-
life problems such as economics, wireless communication, the electricity market, or engineering among other areas. In this
paper, we propose a first approach to computing Generalized Nash Equilibria using Membrane Computing techniques. We
model an efficient P system that, based on Euler’s method, computes approximations of Generalized Nash Equilibria of
population games under Brown—von Neumann—Nash dynamics, bridging both areas and opening a door for a flow of

problems and solutions in both directions.

Keywords Membrane computing - Generalized Nash equilibrium - Evolutionary game theory

1 Introduction

Evolutionary Game Theory (EGT) studies the evolution of
a population of agents that interact with each other and get
a payoff in each interaction Hofbauer and Sigmund (2000).
The obtained payoff depends on the chosen strategies of
the agents which participate in the interaction. Each agent
selects only one strategy at a time, but this choice can be
modified over time. The driving principle in this situation
is that individuals tend to be selfish, choosing strategies
that result in higher payoffs for themselves. In this context,
a Nash equilibrium is reached when no agent can increase
its payoff by changing its strategy while other agents
maintain their current ones Nash (1951).

In a Nash equilibrium problem, all the agents compete
among them to maximize their payoffs, and each agent can
freely choose its strategy. The generalized Nash equilib-
rium problem (GNEP) is a variant of the Nash problem

< Alejandro Luque-Cerpa
luque @chalmers.se
Miguel A. Gutiérrez-Naranjo
magutier@us.es

Department of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg, Sweden

Department of Computer Science and Artificial Intelligence,
Universidad de Sevilla, Seville, Spain

introduced in 1952 by G. Debreu Debreu (1952). In a
GNEDP, the strategy set of each player may also depend on
the other players’ strategies. This GNEP models a large
number of real-life situations, such as power allocation in a
telecommunication system, environmental pollution con-
trol, or energy market model (for a detailed survey, see,
e.g., Facchinei and Kanzow (2007)).

In this paper, we propose to study the GNEP in the
framework of Membrane Computing Paun (2002); Paun
et al. (2010). Membrane Computing is a well-known area
of Computer Science that takes inspiration from the bio-
chemical reactions inside the vesicles of living cells. P
systems Paun (2000), the so-called Membrane Computing
devices, have been successfully considered to model many
dynamic processes in real-life problems Colomer et al.
(2011, 2010); Garcia-Quismondo et al. (2017). From the
initial definition of P systems, many variants have been
explored by adding new features to the initial model (see,
e.g., Song (2021) for a recent survey). Recently, Proba-
bilistic P systems Cardona et al. (2011), a kind of P system
designed to deal with probability distributions in the
application of rules, was considered to model the spread of
behaviors in structured populations in the framework of
EGT Garcia-Victoria et al. (2022). In this paper, we study
the GNEP by considering transition P systems with active
membranes Paun (2001), also called membrane
polarization.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-025-10014-z&domain=pdf
https://doi.org/10.1007/s11047-025-10014-z

322

A. Luque-Cerpa, M. A. Gutiérrez-Naranjo

The paper is organized as follows: Sect. 2 establishes
some background on P systems and specifies the type of P
system we use: transition P systems with membrane
polarization. Section 3 introduces population games under
the Brown-von Neumann-Nash (BNN) dynamics, that will
be used as the framework to define our P system. In Sect. 4,
we describe the design of our P system and analyze its time
complexity, showing that it does not depend on the number
of players or strategies involved. We also present an
experiment to illustrate its functioning. Finally, some
conclusions and hints for future work are presented.

2 Transition P systems with membrane
polarization

In this section, we define the variant of P systems that we
used to solve our problem: transition P systems with
membrane polarization. Then, in section 2.1, we provide an
example of such a P system.

After the development of the first model of P system by
Gh. Paun in 1998 Paun (2000), many variations have been
presented. In this work, we use a combination of two
proposed variants. The P system designed is a transition P
system Paun (2000) with active membranes Paun (2001)
without division rules, i.e., a transition P system with
membrane polarization. A transition P system with mem-
brane polarization of degree g > 1 is a construct:

Im= <F,/1,W17 < We, (Rlapl)v LT (Rtppq)a iﬂut>
where:

1. T is the alphabet of objects;
2. u is a hierarchical tree-like membrane structure of q
membranes that have a polarization among 0, +, —;

3. wi,...,w, are multisets of objects over I';
4. Ri,...,R, are finite sets of evolution rules of the
form:

o uly], —u [v’]g where u,u',v,v are multisets over
I', he{l,...,q}, h is not the label of the root
membrane in u, and o, § € {0, +, —}.

o Dy —u [v’]f where u, ', v,V are multisets over T,
he{l,...,q}, his the label of the root membrane
in p, and o, f € {0,+, —}.

The difference between the expressions resides in that

no objects should be able to enter the skin membrane

(the root of p) from the environment. The meaning of

these rules can be easily understood as combinations of

the following examples:

o [u], — [v];, also expressed as [u — V], is an object
evolution rule, that transforms the multiset # into
the multiset v.

@ Springer

5. pyy--

o [ul, — v]g is a send-out communication rule, that

ejects the multiset u, and transforms it into the
multiset v.

o ully— [v]ﬁ is a send-in communication rule, that
absorbs the multiset u, and transforms it into the

multiset v.

The general expression considers combinations of
these cases, where some multisets can be absorbed into
membrane /4 at the same time as others are transformed
or ejected.

., pg are partial order relations over Ry, ..., Ry,
called priority relations. Given two rules r,r, we
represent that r has higher priority than r' by p, > p,..
Priority indicates what rule should be applied if both

are applicable.

6. iy €90,1,...,q} is the output region, where 0

represents the environment.

A configuration of II is defined by C;=
(Wi, 1)y, (Wigy01), wo,) for an instant ¢, where wy,,
is the multiset of objects in membrane / at instant #, oy is
the membrane polarization of membrane h, and wy, is the
multiset of objects of the environment. The initial config-
uration of IT is Cy = ((wy,0),..., (w,,0),0). We use the
notation C, = i’ to denote specific parts from the config-
uration C, where only the membranes in the subtree i’ from
u are considered.

For each configuration, the rules are applied in a parallel
and maximal way. By maximal, we indicate that no more
rules can be applied at the same time. Formally, a multiset
U of rules is maximal if there is no multiset of applicable
rules U’ such that U C U'. If two applicable rules with the
same priority are exclusive, this is, triggering one would
prevent the other one from triggering, then only one of
them is selected at random and applied.

As in Garcia-Victoria et al. (2022), the semantics of the
P system follow the next principles:

(I1) When an object crosses a membrane, its polariza-
tion may change. Rules can only be applied if the
polarization is appropriate.

(I2) If two rules that affect the same membrane can be
applied at the same time, and one of the rules
changes the polarization of the membrane, both
rules are applied. This means that the change of
polarization is performed after all other evolution
rules are applied.

Notice that principle (I2) ensures that rules are applied in a
parallel and maximal way. If this principle is not assumed,
and a rule can change the membrane polarization, then the
order of application of the rules would be important during
a single transition step. In that case, multisets of rules that

A membrane computing approach to the generalized Nash equilibrium

323

can be applied would not be well-defined, breaking the
parallelism and maximality of the system.

Notice also that, while the membranes in IT have labels
in {1,...,q}, we can always define a set H of labels with
|H| = g such that there is a bijection between the elements
of H and the membranes of u. The same applies to the
rules, that we can express as the tuple (R, p). We use this
fact in Sect. 4.1 to provide a better indexing.

2.1 Example of a P system

Let
IT= <r7 H, Wi, wa, (Rh {prl > prz})a (R27 Q))a iaut>

be a transition P system with membrane polarization of
degree 2 where:

e I'={ab,c};
o n=[[B1
o w =1{k}

o wy = {d’c};
o Ri={rn=klly— [Kly,r=[ko— k| };
e Ro={n=[@—bhru=la—drs=

i luut - 2‘

We have that U, = {ri,r3,ra,r5}, Up={r3}, Us=
{rl,ri,r5} are multisets of applicable rules. U, is not
maximal because U, C U;. U; and Us are the only maxi-
mal multisets of applicable rules, and they could both be
applied in this configuration because there is no priority
between the rules involved in each set. r, can not be part of
a maximal multiset of applicable rules because rule r; has
priority over rule r; (p,, > p,,).

The multiset U; would lead to the configuration
C, = [[b*ck];]), and the multiset U; would lead to

Ci = [[bc3k]y]1. Because the polarization of membrane 2
changed to + in both configurations, none of the rules in
R, can now be applied. Because there are no objects kp in
membrane 1, none of the rules in R can be applied. The
computation of the system is then finished for both cases
after one transition step.

e — b3}

3 Population games under BNN dynamics

The purpose of this section is to introduce population
games. Specifically, we introduce population games under
BNN dynamics, which are central to this paper. In section
3.1, we give an example of such a game: the Energy
Market Game, where players decide when to buy energy
and modify their strategies depending on the decisions of
the rest until an equilibrium is reached. We use the Energy
Market Game as a framework to define our P system, and

we explain how the P system can be modified to adapt it to
other population games under BNN dynamics.

In a population game, we have a society of decision-
making agents divided into disjoint populations that
receive different payoffs depending both on the decisions
they make and the decisions the rest of the agents make.
The goal of each population is to maximize the payoff
received. The decisions that agents can make depend on the
population they form part of. Each agent is endowed with a
revision protocol, which provides conditional switch rates
between strategies according to their associated payoffs
Sandholm (2010). These rates allow the agents to change
their strategies over time. When the number of agents is
large enough, this process can be described by differential
equations, referred to as the evolutionary dynamics model
(EDM). In EDMs, the agents can be modeled as real
numbers, the mass of agents, instead of being modeled as
discrete independent entities. There are multiple EDMs,
but we focus on a specific EDM known as BNN dynamics
Brown and von Neumann (1951), which are described next
(see Martinez-Piazuelo et al. (2022) for details).

Let us consider a society of agents divided into N €
Z -, disjoint populations indexed by P = {1,2,...,N}.
Each population k£ € P is comprised of a constant mass of
decision-making agents m* € R - (. The set of strategies of
each agent in population ke P is S C Z>; with
2<nkt = |Sk | < 0o. The amount of agents selecting strategy
i € S* at population k is denoted as x¥ € R . Notice that
agents from different populations k; and k, can select the
same strategy i if i € S and i € $*. Similarly, the pro-
portion of agents selecting strategy i € S’ at population k is

denoted as zf = x}/m*. Furthermore, x* = (x} ,. .,xfka)"
and 7 = (Zf?l, v Zi,,k) denote the strategic distributions of
population k, x=T 2T DT, and
2=, 2,2 . Let t € Z+ be the discrete-time

index; x(¢) the value of x at time #; z(¢) the value of z at time
t and p¥(t) € R the payoff received by the agents selecting
strategy i € S* at population k € P.

Following the revision protocol introduced in Martinez-
Piazuelo et al. (2022), the equations that define the EDM
describing the evolution of x(7) over time are:

x-k(t) _kaDk ZLDk (1)

1

jesk
PO =240) @
" lest
where [], = max(-,0), and ¥ denotes the derivative of

x. This EDM is known as the BNN dynamics Brown and
von Neumann (1951).

@ Springer

324

A. Luque-Cerpa, M. A. Gutiérrez-Naranjo

Intuitively, Eq. (2) computes the benefit of having more
agents following strategy j in population k. The reason is
that Equation (2) computes the difference between the

payoff obtained by agents x* and the average payoff

J
obtained at time step f. A positive value of ﬁjl-‘(t) would
indicate that it would be better for population k to have
agents switch to strategy j. Equation (1) can then be used to
decide how many agents should switch to other strategies
at the next time step, given by the derivatives x*(z).

A payoff dynamics model (PDM) that describes the
evolution of p(¢) is also introduced, defined by:

ilr) = Ax(1) — b 3)
p(t) = F(x(1) = ATu(r) (4)

where f'is a fitness function that provides the payoff for the
strategies chosen at a given population state, y represents
some constraints over such decisions, and such constraints
are given by a matrix A and a vector b that depends on the
specific problem. In this context, A and b just introduce
penalizations to the payoff, instead of introducing hard
constraints.

Since the importance of this system lies in updating the
payoff signal p(f) and having a closed-loop configuration
between p(f) and x(#), a simplified version of this system,
where we remove the constraints over the strategies cho-
sen, is considered:

p(t) =f(x(1)) (5)

An EDM whose payoff function follows a PDM is then
called an EDM-PDM.

It is not hard to modify the P system proposed later in
Sect. 4.1 to compute the effect of the constraints intro-
duced by A and b in Eq. (5). Because they are linear, the
extra computation time required is constant per iteration
t. However, because our goal is to show how can P systems
be used for computing Generalized Nash Equilibria (GNE),
we limit ourselves to the case without constraints.

3.1 Energy market game

In the previous section, we expressed a population game
under BNN dynamics through Egs. (1) (2) and (5). To solve
a specific population game, we need to define the payoff
function (Eq. 5) considering a specific function f that is
different for each game. Taking this into account, a specific
EDM must be selected as a framework to define our P
system. Because of this, we consider an example of the
Energy Market Game Martinez-Piazuelo et al. (2022) as
the framework.

In the Energy Market Game, N € Z > players compete
to purchase energy over a time horizon of 7 € Z > time

@ Springer

slots. Players who try to purchase energy in the same time
slots will end up paying more for the energy, and the base
price for energy is higher for some time slots than for
others. The goal is to buy energy as cheaply as possible,
considering that other players have the same goal. For this
problem, we can consider each player a population k, and
the agents x;" represent the amount of energy purchased by
player k in the time slot i.

Following the notation described at the beginning of
Sect. 3, let Ck € R™*" be a matrix such that each column
of C* has exactly one element equal to 1 and the rest equal
to 0, each row of C* has at most one element equal to 1,
and the j-th element of the i-th column of C* is 1 iff player
k competes in time slot j<T. Let C = [C!,C?,...,C"] €
RT*" pe the concatenation of the C* matrices of all players,
where n =3, p n*. Then Cx corresponds to the collective
energy demand for all time slots. Let J : R" — R” be the
pricing function given by J(x) = DCx +J, where D €

RT;T is diagonal and Je R>0, and let OF : [R'go — R be

the individual cost of each player k € P, given by

() = X ((f/2) () + B -
iesk

Bi € Rxo.

Following the results from Martinez-Piazuelo et al.
(2022), the payoff function p(f) = f(x(¢)) for the Energy
Market Game can be expressed by f(x(¢)) = —S - x(¢) —
C'J — o ®x(t) — B where

) where a € R>o and

o M = diag(m'L,,m*La,...,m L),
e S=diag(C'"DC!,..., CNTDCN) +RTR, and
e R=[V/DC' v/DC?,... DCV.

e diag is the operation that constructs a matrix using the
input elements as the diagonal, and where the rest of the
elements are null.

To define the payoff over z¢(r), the following transforma-
tion is performed over Eq. (5):

p(t) =f(x(1)) = f(M - (1))

=-SM " “
=S M z(t)—C'J—a® (M- z(1))— B

Equations (1) and (2) also change for z¥(¢):

0 0] (7)

jesk

pJ Zzl (8)

leS*

20 =")

A membrane computing approach to the generalized Nash equilibrium

325

4 Design and functioning of the P system

In this section, we introduce first the general idea behind
the design of a P system proposed to compute approxi-
mations of GNE for population games under BNN
dynamics. Then, we define the P system in Sect. 4.1. After
that, we perform a computation analysis in Sect. 4.2, where
we indicate the evolution rules defined in Sect. 4.1 that are
applied to the configurations. Finally, we include our
experimental results in Sect. 4.3.

Let us consider the EDM-PDM system introduced in
Sect. 3.1 by Egs. (6), (7), and (8). In this section, a P
system that computes approximations of GNE under the
BNN dynamics for this system is described. The compu-
tation can be summarized in a loop of five stages, repre-
sented in Algorithm 1. Stages 1 and 2 are used to compute
p(t) using Eq. (8), Stages 3 and 4 are used to compute Z(¢)
using Eq. (7), and Stage 5 is used to update the value of
z(#). To solve any other EDM-PDM system, only the first
stage of the P system has to be modified, while the rest
remains unchanged.

The fundamental idea behind the system is to compute
approximations and discretize the values involved in the
EDM-PDM system by rounding to n decimals and multi-
plying by 10". To show the functioning of our P system, we
fix n = 2 from now on. However, the system can easily be
modified for other values of n, providing better approxi-
mations with the cost of a longer runtime. After dis-
cretizing, a P system can evolve objects representing z(f) to
compute GNE. For n = 2, a single object that represents
ZX(t), represents 1% of the agents of population k that
follow the strategy i. For example, if we have 16 objects
that represent zi(f), then z(r) =0.16. Formally, to
approximate and discretize, we perform
round(x,n) = [10" - x]. To obtain the next value of the
variables in the next instant 7+ ty., using the values of
instant 7, we use Euler’s method Butcher (2016), this is,
Z(t + tstep) = Z(t) + Z(t) * Istep-

In Algorithm 1, other stop conditions can be easily
defined, for example, comparing the z(#) values of one
iteration with those of the previous one (in constant time)
and stopping if no difference is found, but more rules
would be necessary. For the sake of simplicity, our stop
condition is to limit the number of iterations in the loop.

Because performing multiplications using P systems is
not trivial, we define a P system that replicates the Russian
peasant multiplication algorithm Cameron (1994) in
Appendix A. The reason for using this specific algorithm is
that the number of time steps required to compute a mul-
tiplication is upper bound by a constant for all multipli-
cations of our P system. We use this multiplication P
system as a module for our P system.

Algorithm 1 General overview of the P system computation

Require: L >0,t>0,s=0

while s < L do
1. Compute payoff p(t) for current iteration ¢.
2. Compute sums Y zj’“(t) ~p§?(t)

jesk
3. Compute [p}]y and [Y pF]4
jESk

4. Compute 2¥(t)
5. Update z(t) and output results.
6.s:=s5+1

end while

4.1 Definition of the P system

The P system to compute approximations of GNE under
the BNN dynamics is defined as the construct:

H = <r7 Hv i, (Wh)he[-lv (Ra p)a iout>
where the alphabet of objects is given by:
T = {(Prod,k,i,l), (k,i,l) | k € Pi€ 1= || +i}

Jj<k

U{(Prod2, ki, 1), {a,k,i,l) | k€ P,i €S 1=""|9|+i}

j<k
U {¢, rem, multy, mult,, prod, prody, e, ey, pos, q, so, 51, zneg, zvarp, zvarn}

U{a,b,d,m,f,yo,p,n,comp} U{p, | 1<1< > |sH}
keP

U {mi, ki, a;, by fi,yi | 1 <i< 6} U{over,py,err,v}

U {500, 0,1, 02, ¥2.0, Y215 ¥2.2, Y305 4.0, Va1, 4.2, Va3, 5.0 }
U{y7x | k € P} U{(AUX,n),(AUX1,n), (CLK,n)|n >0}

U {3, multzio, multz;y | k€ Pyie S5, 1<j<7}
U{Ck (q,i),d;, qi,negi,pos; | k € P,i € §,1<j<7}
U {304, Y05 Y55 Y53, 5.1 | k € Pyi € 85,1 << 10}

U {ys.124, wi, compwi, i, | k € P,i € $,1<j< 10}

U {EXIT;, (EXIT ,k,i,l,n) | k € P,i € S5 1<j<10,
n>1} U {{INIT,k,i,l) | k € P,ie $51<j<10,n>1};

the set of membrane labels is given by

H = {0} UPU{Sis}vicstvrer U {ARESik biesier
UA{MULT s }yiesonep U M1, M2}
UMULT2; i }yicsoper Y {UPDik byicsivier
U{ACUM}yeps

the membrane structure yu is represented in Fig. 1, and is
defined as follows:

e Membrane skin with label 0, inside of which we find:

1. One membrane with label P.
2. N membranes with labels P. Inside of each
membrane k € P:

2.1. S*¥ membranes with labels Six Vie Sk, Inside
each S;;:

@ Springer

326

A. Luque-Cerpa, M. A. Gutiérrez-Naranjo

— One membrane with label RES; ;

2.2. S*¥ membranes with labels MULT;; Vi€ Sk,
Inside each membrane MULT; ;:

— One membrane with label M1
— One membrane with label M2

2.3. S* membranes with labels MULT?2;; Vi € S.
Inside each membrane MULT?2; :

— One membrane with label M1’
— One membrane with label M2’

2.4. S* membranes with labels UPD;; Vi € S*
2.5. One membrane with label ACUM,,

the output region i, is the skin (label 0);

the initial multisets are wp = yo, ws,, = (k, i, 1Y% Vi € sk
VkeP with zZF:=[1%] for 1<i<max{$*} and
Zpargsty = 100 = (IS = 1) - [12], wges,, = (AUX,0) Vi €
S Yk € P, and for any other membrane m, the initial
multiset is w,, = 0;

and the set of rules R is given by the following rules,
separated by the corresponding stage of Algorithm 1,
where A represents the empty multiset, the rule RS,,, rep-
resents the n-th rule of the m-th stage, the rules are defined
Vke P, VieS and [= > || +i, and Pmp Tepresents

Jj<k
the priority of the rule RS, ,:
Stage 1 (Computate payoff p(z))

To use f(z(t)) in the P system, let x := [100 - (—C"J —
B)] be the constant part of Eq. (6), and let a;; := [(S - M);]
and by := [(S- M), + («-M),] for 1 <j 1< 3 p|S¥| be
the coefficients that will multiply z¥ in Eq. 6. Notice that
because a;; and b; are used to compute products by mul-
tiplying them by 2, and z¥ is already multiplied by 100,
neither a;; nor b; are multiplied by 100 when rounded.

The intuition behind the rules of this stage is that objects
(k,i,l) represent z¥(¢), and they will be used to compute
pi(t) by generating objects p; (see Eq. (6)).

Rules RS| 1, RS\ 3, and RS} 4 move objects (k, i,), which
represent z¢ (¢), until they are in membrane P. At the same
time, they produce objects that will be used in later stages
(¢, {Prod,k,i 1)), and objects that will be used for

Fig. 1 Membrane structure of
our P system. All membranes
start with polarization 0

0
RESi,.

UPD;, 1

MULT?2;, 1

D |
RESi i |g

UPD;, .

0

ACUM,

MULT2;, .

0
0 0 0
0 0
M1 M1
M2 M2
MULT;, N MULT?2;, n
. 0
o — UPD;, ~
: y -
M1
M1 0
;)
M2 JMULT;, M2 JMULT?;, .~ ACU My
N

@ Springer

A membrane computing approach to the generalized Nash equilibrium

327

coordination (Cy). Rule RS;, generates objects p; repre-
senting the constant part of Eq. 6.

RS11 = [(k,i,]S — [c]§, (k.i,])
RS12 = [yo — py'p5. . Py
RS 3 = [(k,i,)]} — [(Prod, k,i,)]} (k,i,1)Cy

RSl,4 = <ka 2 l>[}?’ - [<k7 2 l>]]g

Rules RS 5 and RS ¢ are used to coordinate the system.
Once the polarization of the membrane P changes to +,
rule RS 7 is applied, and the objects p; generated are mixed
with the objects p; that were already in membrane P
because of rule RS, computing indeed p(7) as expressed
in Eq. 6.

RSi5 = [CI0C)0...CI% — yi]o

RS16=y1[1p — Dalp

a1 by Qi

RSy 7 = [(k,i,1) _>p[1‘1,1pgz-’. P __.pzm/];

Rules RS} g, RS9, and RS 1, are used for coordinating.
The coordination is achieved by changing the polarization
of membrane P. Rule RS o extracts from P objects p;, that
now represent p;(t) = pk(t), as objects (a, k, i,).

RS18 = [y2 — yal}

RS19 = [y3]p — [yalprem

RS110 = [pilp — [pla,k,i,0)

RS 11 = [ys — yslp

Rule RS, moves each object (a,k,i,[) to its corre-
sponding membrane k. These objects will later be used in
Stage 2. Rules RS 3 to RS ;5 are used to coordinate the
beginning of Stage 2. Rule RS j¢ is a cleaning rule used to
remove objects rem that are now useless.

RS1,12 = (aa k,i, l>[]2 - [<a7 k,i, l>]2

RS113 = [y5 — yelp

RS114 = [velp — [1p ¥7.1 Y7237

RS\ 15 = y7x(}2 - [m“lt(‘)Skl]k_v Vk e P.

RS) 16 = [rem — 7], VYm € H, Vs € {+,—,0} (Clean-
ing rule).

Stage 2 (Compute sums jgs:k i (1)pf (1))

To compute the products of z(z) and p}(t), we use the
membranes MULT;;, which work as multiplication mod-
ules. These modules compute the product of two numbers
and return the result in a maximum of 43 transition steps.

Each membrane MULT; contains two membranes, M1
and M2. When objects a are placed in M1, objects b are
placed in MULT;, an object k; is placed in M1, and the
polarization of the three membranes is 0, the multiplication
module will compute the product of the numbers repre-
sented by objects a and b. Membranes MULT;; expel

objects d, representing the product, and an object f repre-
senting that the multiplication process is finished. For the
sake of simplicity, we left the details about the multipli-
cation process in Appendix A, including a computation
analysis.

The intuition behind the rules of this stage is that objects
(Prod, k,i,l) were produced in Stage 1 to represent z*(z).
These objects are transformed into objects prod. Together
with objects (a, k,i,1), that represent p*(¢), and the multi-
plication modules MULT;;, we obtain the result of multi-
plying zj (z) by pj(¢). The sum Y, _q 27 (r)p}(7) is obtained
by grouping all the resulting objects in the membranes
ACUM;y. The rest of the rules are for coordination,
rounding, or producing objects necessary for later stages.

Rules RS> | to RS, 9 are used to coordinate the genera-
tion of objects a, b, and k| in membranes M1, MULT;, and
M1, respectively. Once this is done, the multiplication
process will begin, and the product of z¥(7) (represented by
objects @) and pf(r) (represented by objects b) will be
computed. Objects (Prod2,k,i,l) and pos; are also gener-
ated for later stages.

RSy, = [(Prod,k,i,l) — prod (Prod2.k,i,l)],

RS>, = [(a,k,i,I) — e posi],

RS, 3 = multy]]El]/IULT;‘k — [multo];,ULTi_k

RS> 4 = prod|]IJ\r/IULT,;k - [Pmd];]ULT,»_k

RSys = ef]1\+/IULT,-_k - [e}AJ:IULT,»_k

RS6 = [multO]AZULT,,,(- [kO]OMULT,_kr em

RS>7 = prod — [a]g,”

RS8 = [e — b]}?/IULT;_k

RS29 = kol lyny — kil

Rule RS o is used to send objects pos; to membranes
UPD;, which will be used in later stages.

RS2,10 = posi](L)/PD,-,k - bosi](()]PD,;k

Rule RS 1, takes the multiplication results, represented
by objects d, and sends them to membrane ACUM;, trans-
formed into objects neg. When all multiplications are fin-
ished, the sum 7« zj’-‘(t)pj’-‘(t) is given inside ACUM,
represented by objects neg. Then, rule RS, changes the
polarization of ACUM; to indicate that the sum is com-
puted. Because z_;‘(t) and p_;-‘ () were rounded by multiplying

by 100, it is necessary to use rules RS> 13, RS2 14, and RS> 15
to round the product again and eject them from membrane
ACUM;.

@ Springer

328

A. Luque-Cerpa, M. A. Gutiérrez-Naranjo

— £IS¥1 10
RSy 11 = fI5] Jacum, — [Yz,O]XCUMk
— 110 0
RS 12 = df]ACUMk - [neg]ACUMk
RS>13 = [negloo];‘:CUMk = [HCUMk"eg
RS 14 = [negSI]XCUMk —]XCUMkneg, with p, 13 > py 14
RS; 15 = [neg — /AL]XCUM;{’ with py 14 > ps 5.
Rules RS5 16, RS> 17, and RS, 13 coordinate the beginning
of the next stage.
RS316 = [y20 = Y2.1lacum,
_ 0
RSy 17 = [yZ.,l]XCUMk - []ACUMkyZZ
RSy.18 = [y22]; — [vaolorem

Stage 3 (Compute [pf], and Y [p],)

jesk -

The goal of this rules is, because of Eq. (8), to compute
P¥ by computing the difference of two numbers: p¥(¢) and
> est 2 (1) - pf(r) In this stage, we compute [p¥], and

&
Ejesk Lnj]4—‘

From now on, in this stage, let S* = {ij,..., sk }-

Rules RS31 and RS3, are used for coordination.
RS31 =30 = 3,14 -)’3,1‘1‘%]2

RS32 = y3,1[]?JPDi_k - [rem]ZPD,;kylli

Because we need to compute p¥(¢) for each i, we use
rule RS33 to create |S¥| copies of Y, g 25 (1) - pf (1), each
represented by neg;. These copies are then sent into
membranes UPD; by using rule RS3 4.

RS33 = [neg — neg;, ... negi‘sk‘]g

RS34 = negi];PD,»_k - [negi]ZPD,;k

Rules RS35 and RS3¢ are used to coordinate the com-
putation of p¥(f) — 3", s+ (1) - p¥(r) by changing the
polarization of membranes UPD; to —.

RS35 = [y32; —)’3‘3,,']2

RS36 = [y33,]]ZPD,-,A, — [¥34.] L_/PD,,k]g

Rules RS37, RS33, and RS39 compute
(1) = Y e (1) - pf(2). If the difference is positive,
objects g; remain. Otherwise, because we are interested in
using this difference to compute [pf],, objects neg; are
eliminated. [pf], is then represented by objects g;.

RS37 = [negi posi — ypp,,
RS3 53 = [negi — Aypp,,» With p37 > p3g.
RS39 = [posi — qilypp,,» With p37 > p34.

Rules RS3 10 and RS ; are used for coordination. Rule
RS5 12 generates objects g and ejects them from membranes
UPD;. By doing this, we compute the sum }; [ﬁ]k] -
while bﬁf] + is still represented by objects g;. Rule RS3 13
coordinates the beginning of the next stage.

RS310 = [v34i — ¥35.ilupp,,
RS3 11

vssilupp,, — [)’3,6,i]?/pD,._kV€m

@ Springer

—]%PDM‘] qi
RS3 13 = [}’&e,i]?]pD,_k — []([]/pD,,_k)’3,7,i

Stage 4 (Compute 7¥(1))

Because of Eq. (7), to compute z'f (t) we need to compute
first zj - " [p}], . From Stage 3, we have objects ¢ that
represent Y.« [p)],, and from Stage 2 we have objects

RS3 12 = [Qi]([)jpl_)[_k

(Prod2,k,i,l) that represent z¥. As in Stage 2, we can use
membranes MULT?2;; as multiplication modules. These
modules work the same as MULT;; from Stage 2, com-
puting products in a maximum of 43 transition steps, and
with the only difference that MULT?2; returns objects d;
instead of d and objects f; instead of f (see Appendix A for
more details).

When the multiplication process is finished, we will
have objects ¢; from Stage 3 that represent [p¥] +» and we
will have obtained objects d; that represent z - Zie o [ﬁ;‘] .
We can then compute 7¥(f) (see Eq. (7)), resulting in
objects zvarp if it is positive, or zvarn if it is negative.

From now on, in this stage, let S* = {ij,..., sk }-

Rules from RS4; to RS4 1, coordinate the beginning of
the multiplication process inside membranes MULT?2;y,
multiplying z¥, represented by objects (Prod2,k,i,l), and
D jest Llfj"] .- represented by objects g.

RS41 = [37i,- - V32, — multzi .. -multZi‘Sk‘,o]g
RS4» = [multzip — multzi‘l]g

_ . .10

RSy3 =1[q— (q,01)-- {q,is)]x

_ . 0 0
RS44 = (Prod2,k,i,1)|]MULTZM - @rOd]MULTZ;k

_ AT 10 0
RS45 = (q,0)[]MUer,-,k - MMULTz,-_k

RSy6 = multz; 1|]gxwLTz,-,k - [multO]IT/IULTz;‘k
RS47 = [prod — prodo];,ULni‘k

RSig =[e — eo];t}ULTZ;k

RS49 = [multo],t,ULnM — [mulfl]%umi,krem

RS4“’10 Epl’Od() — [a]lom,

RS411 = [eg — b]ngTz,,k

RS412 = mult, []2411 - [kl]gﬂ/

Rules RSy 13 and RSy 14 coordinate the beginning of the
computation of [(¢)], — z(¢) - - [p}(r)], in membranes

jes*
Sige-
IS¥]

= I8
RS4713 =/ —>y470

A membrane computing approach to the generalized Nash equilibrium

RS414 = yao| }S‘k [Y4,1];~r,_k

Rules RS4 15 to RS423 compute such difference. If the
difference is positive (negative), then objects zvarp (zvarn)
are produced.

RS415 = qi]s+k = [s0ls;,

RS423 = [zneg — zvarn]si_k, W1th Pa21 > p4123.
Rules RS424, RS4 25, and RS4 56 are just for coordination,
preparing the system for the next and final stage.

RS324 = [ya1 — yaals,
RS425 = [yap — y473]§’.k

RS426 = [y4.,3]5+,,k — [ysolg, rem

Stage 5 (Update z(r) and output results)

Since Stage 1, we have objects ¢ that represent z¥. In this
stage, we combine them with objects zvarp or zvarn, rep-
resenting Z(¢), to update z(#) using Euler’s method:
2(t + tyep) = 2(1) + tyep - 2(1).

Rule RSs; is used for coordination. Because we take
Iep = 0.01, Tules RSs, to RSsjo are used to compute
2(t) + tyep - Z(). Because nothing guarantees that the new
values satisfy 0 < zf(t) < 100, there are some special cases
to consider. Most of the rules from RSs 1; to RSs 33 are used
to deal with these cases, and the rest are for coordination.
These cases are further developed in section 4.2, Stage 5.

RSs1 = [ys0 — ysuls,

100

RSs2 = [zvarn'™ ¢ — J]g,

RSs3 = [varn®' ¢ — J]g , with ps, > ps .

RSs 4 = [zvarp'® p]7

RSss5 = [c — plg,,» With ps3 > pss.

RSs6 = [zvarn'® — nls, . With ps3 > ps.
RSs; = [zvarn®' — nlg , with ps ¢ > ps ;.
RSsg = [zvarn — /g , with ps; > psg.
RSs9 = [zvarp® — plg , with ps, > ps .

RSs 10 = [zvarp — A, . with psg > ps 0.
RSs 11 = [ys1 — ysp2 COmPIOO]
RS5’]2 = wl()()]s‘
RSs13 = [ysals, — [ys,ﬂs,_kys,s,i

(0 0
RSs14 = [pls, — [15,

1()0

[over|g s Wi

329
RSs15 = [over comp'® — A ¢
RSs16 = [nls, — []5,n
RSs517 = [Comp]s o]2 compw;
RSs 13 = [p comp — pilg, , with pys > pyg.
RSs19 = [pils, — s, mi

RSsoo=[pn— /I]k

RSs21 = [p compw; — wyy, with pyy > po;.
RSs20 = [n wi — compw;)\, with pyg > pos.
RSs23 = [p — err]y, with py; > pos.

RS54 =[n— err]g, with pyy > poy.
RS525 = [ys3 — s, 4]5,k

RSs526 = [ys4 — y5$s]5,_yk

RSs527 = [ys.s]givk — E‘:_kySﬁ

RS528 = [y53.,- - V530 Vsaly
RSs20 = [ysal) — [ys.s V%] rem
RSs30 = [wi v — 2z,

RSs31 = [w; — 2], with Ps530 > P531-
RSs 3 = [compw; — /ﬂ,j

RSs33 = [v =z, with P530 > P533-

RSs34 = [yss]i — [Jprem
RSs3s =zl I, — [als,,
0

- ['))5’7]Si.k

RSs37 = y57] Ings,, — Dsslies,,

RSs 38 = zi[];erEs,,k - [EXITi];erESi,k

Rules from RS5 39 to RSs 47 are used for coordination and
for preparing the output of the P system. Objects (AUX, n)
are used to count how many iterations of Algorithm 1 have
been completed. Objects (EXIT,k,i,l,n) represent the
values z¥(¢) at iteration n. Objects (INIT, k,i,1) are used to

reset the P system, preparing Stage 1 for a new iteration of
the algorithm.

RSs36 = y5,6[];:k

RSs30 = [(AUX,n) — (CLK,n+ 1)"(AUX1,n + D)]xEs,.

RS540 = [ysslpes, — [Vs59lres,, rem

RSs.41 Z[EXIT, (CLK,) s, — | s, (EXIT,k,i,1,n), with n> 1
RSS’42 = KCLK, n> —)V]I;ES,)/(’ with n 2 1 and ,05141 > p5142.

- 0
RSs43 = [)’5,9]REsi_k = [}RES,7ky5,10
RS54 = [(AUX1,n) — (AUX,n)|pps, . with n> 1

@ Springer

330

A. Luque-Cerpa, M. A. Gutiérrez-Naranjo

RSs 45 =[(EXIT ki, 1,n)]§ — [(INIT,k,i,1)]3 (EXIT k,il,n), with n>1

_ 0 0
RSs46 = [ys0ls,, — [s, V511
RSs47 =[(EXIT, k,i,1,n))0 — [NEXITk,i,1,n), with n> 1

Rules RSs43 to RSs¢y coordinate a new iteration of
Algorithm 1, sending an object y; to membrane P and
initializing the new objects (k,i,I) for Stage 1.

0 0
RSs548 = [Vs114,- - -y5,11,;‘sk‘]k — [I ¥s.124

RSs49 = [V5.12.1- - Ys.28 —)’0}8
RSs 50 = [err]g —]gerr

RSss51 = [yo — Y00 Yo.1-- ~yo,N]8
RS55 = yoo| }?» — [Yo,o]?»

RSss53 = yox| It — Dooly

RS554 = [yoo — yo,l]g

RSs.55 = [yooli — oy - -}’O,iwk‘]g
RSs.56 = [yo.1 — Yo2l

RSs57 = yo.[](s),_k - b’o,z];k
RSs53 = [yo2 — Yolp

RSsso = [(INIT ,k,i,1) — (k,i,])]5

RSse0 = [yools, — [15, rem
To stop after L iterations of Algorithm 1
RS5761 = [<AUX1,L> Y59 — ;L]I;ES,-_;(

4.2 Overview of the computation

This subsection provides an analysis of the computation for
each stage of Algorithm 1. The result of the computation
analysis is that for each time step #, the number of transition
steps is upper bound by a constant. This means that the
computation time complexity of the global computation
only grows linearly with ¢.

Stage 1: Computation of payoff p(¢f) In this stage, the
payoff of the current iteration is computed. To do this, it is
necessary to consider the function f involved in Eq. (6).
The computation starts with the initial configuration. If we
only consider the membranes involved in this stage, we
have the following configuration:

Co = [[[tk. i, 715, 10 [vo)5IS

After 8 transitions steps, applying rules from RS;; to
RS 13, we have that each value p;(f) of p(?) is computed:

Cs = [[{a, &, i, 1" [ye]p 10

We computed then p(f), as intended. Some rules in Stage 2

@ Springer

will transform the objects (a,k,i,[) that are in the mem-
branes |] 1> but for now, we are interested in seeing when
Stage 1 will finish. Two iterations later, after applying rules
RS]A’14 and RS|,152

Cio=1[- ~mulf(|)5k|]1: []g]g

Stage 2: Computation of the sums Y zj(1)p} (1)
jeSk

Stage 2 starts with the last configuration of Stage 1: Cyo.
After C, and Cg, because of the effects of rules RS; 3 and
RS\ 12, there are some elements (Prod, k,i,1) and (a,k,i,1)
in [],. These membranes k changed their polarization from
0 to — in Cy, initiating Stage 2. After only three transition
steps, and applying rules from RS, to RS, g:

o & " SK|1—
Ciz = [[[p’ (f)[a ’kl]gﬂ[]OMZ}?/IULTM&LDO‘Y? m](l)/PD,_k []gCUMArem‘S ‘]k]g

In this configuration, p; = p¥, so z¥-pt is computed in
each membrane MULT;;. Because the round function
multiplies by 100, the (rounded) result of the multiplication
will be 100 - z¥ - p¥. Furthermore, each product is computed
after (at most) 43 transition steps, as proven in Appendix
A. Some objects d may be introduced as objects pos into
membranes ACUM). before finishing these 43 transition
steps. After (at most) 44 steps, having applied rule RS> 10,
and ignoring membranes MULT; x:

0 .k pk —10
Ccsr = [[Ujoﬁlm]UPD,,k [”@gmo 4P y2«,0];;CUMk]k]0

After three transition steps, applying rules RS, ;; to RS, i5:
C<o0 = [[haosf’(t)]?]PD’_k []XCUMk neg™ ysp rem]g]g

where m; = > 2%(¢) - pX(1). By the end of this stage, we
ieSk
computed then 7, as intended.

Stage 3: Computation of [pf], and) [5f],

jesk
This stage starts with the last configuration of Stage 2:
C <60. The change of polarization of membranes [], from
— to 0 and the presence of objects ys(initiate Stage 3.
Following all rules of Stage 3 (RS3; to RS3,13), we can see
that after 7 steps we have the configuration:

7]

Ceor =1l }(Z)JPDM‘IW q; " y3,7,i]2]g

where o = > Ui]kh
jesk

Stage 4: Computation of z¥(¢)

Stage 4 starts with the last configuration of Stage 3: C <¢;.
After objects (Prod2,k,i,I) were created in computation
C11, they are processed and introduced in membrane

A membrane computing approach to the generalized Nash equilibrium

331

MULT?2; in computation C, but the product is not ini-
tiated until all objects y37; are generated using rule RS3 j3:

0 10 k10 0 o P,
Ccor =1 HMI’[]Mz'P”OdZ’]MULTzi_k[]s,,kq ‘g

070
¥3.7.lilo
Five iterations later, after applying rules from RS4; to
RS4 12, the multiplication in MULT2; can start:
el

d 3k
Cern = [@l | B ™ Bvra, [18, 7em a1

After at most 43 iterations, as proven in Appendix A:

0 100-z0c S5 [5], 1070
Cens =1]s,,kdi 1 49 +]k]o
After four more iterations, using rules from RS, 13 to RS4 20,
RS4724, and RS4’252
“k
-Jks[lpi]+]+]0]0

*
C <19 = [[ya3 zneg” siJklo

Now, depending on the result, the objects generated will be
different. We represent by zvar(plin) the possibility of
having objects zvarp or zvarn.
Considering that zf = [pf], —z} - Y. [p}]., after apply-
jesk

ing rules from RS,; to RS4,3 depending on the case, and
RS, 6, we have:
C<120 = [sovar(plin)], 10
Stage 5: Update of z(r), coordination for next iteration
and results output

This stage starts with the last configuration of Stage 4:
C < 120- In the initial multiset, there were some copies of
(AUX, 0) that have not been processed yet. Since config-
uration C;, there are also objects ¢ in membranes S;; that
have not been processed because the polarization has
changed from O to — in the last configuration for the first
time since:

C <120 = [[(AUX,)55 50 zvar(pl[n)* 15 1)

To update z(f), we wuse Euler’'s method with
z(t 4+ 0.01) = z(z) + 0.01 - Z(¢). Depending on the objects
existing at the end of Stage 4, there are three possible cases.
Let m; = zf? +0.01 zf Then:

e Case 1: If 0 <m; <100, then three transition steps later
using rules from RS5,| to RS57]1, RS5,]3, and RS5A’181

C<123 = [[{AUX, 0)gs, ysa comp' @™ p™]8 yss.. V53 I

And finally, using rules RSs;7, RSs19, RSs2s5, and
RS5128:

C <124 = [[[{AUX, 0) g, ys.l5,, compwi ™" wf!

070
, Compw; wi"ys.alilo

e Case 2: If m; <0, then three transition steps later using
rules from RS57| to RS533, from RSS76 to RS538, RS5’11,
and RS5713I

C <13 = [[{(AUX, 0) g5, vs3 comp'® n™Jg ysiy. . vsig 1o

And ﬁnally, using rules RS5,]6, RS5~17, RSS725, and
RS5“’282

C<ia = [[[(AUX, 0>]?eES,_kyS,4]g,-_ oo

100 m; y5’4]k]0

, compw;™" n
e Case 3: If m; > 100, then three transition steps later
using rules RSs i, RS54, RSs s, from RSs59 to RSs 13, and

R557153
070

C<in = [[[(AUX, 0)]255,&5‘3 P'n‘fmo]g,k}’ss,i.- . -ij.:‘LWW,-lOO]k 0

Notice that, in this stage, objects ys3; are always
created in the same configuration in each of the three
cases. Finally, using rules RSs 14, RSs55, and RS5 »g:

C<ios = [[[(AUX,) s, ys.als,, wi™ p™ % ysalylo

Regardless of the result of each case, objects w; represent
the new zf?, objects compw; represent the difference
between z¥ and 100, and objects p and n represent positive
and negative overflow respectively. If both overflows exist,
they will cancel each other for the next configuration.
These objects are introduced because, while using Euler’s
method, there is nothing that assures that 0 < z¥(r) <100
Vt > 1. The next configuration, using rules from RSs o to
RS5724, RS5’2(), and RS5729, is then:

& 100—2*
C<125 = [[[(AUX, O)]zES’_kysj]g err' wi' compw; ' yss vloo];rrem]g

k

Objects err are created only in case some overflow appears.
Seven transition steps later, using rules RSs»7 and from
RSs 30 to RSs 43, the objects EXIT will be in the skin. These
objects will represent the final result of z(¢) for each #:

&

C<in = [[{AUX, 1)]?eEs,A <IN[T~,kaial>:f]g',k]2<EXIT7 ki, 1 1) ysiaa. - -%,12,1\1]8

Finally, after six more iterations, using rules from RSs 49 to
RS5.’602

sk

P . #
C <138 = HKAUX’ 1)]?QES,»k <k7 i l>~’]g,»,krem]I%EXIT’ k,i, 1, 1> ' b’o]?’]g

It is important to notice that, in this last configuration,
object yy is in membrane P and the objects (k, i, I) are in S¥.
This configuration is then analogous to configuration Cy, so
we know that the system can run another iteration of
Algorithm 1. When rule RSsg; is eventually triggered,
object yso will be consumed, and this will prevent the
generation of new objects yo and (k,i,/). This will even-
tually make the P system stop evolving (see rules RSs 43,
RS5746, RS5748, R55,49, and from RS5,51 to RSs,Sg).

@ Springer

332

A. Luque-Cerpa, M. A. Gutiérrez-Naranjo

In conclusion, the transition from z(7) to z(f + f,) has a
constant upper bound of 138 steps, and it does not depend
on the size of the problem or the f,, chosen. If we had to
compute GNE by using Euler’s method iteratively to
compute the evolution of z(f), we would have to update the
values z¥(7) in each iteration using Eqs. (6), (7), and (8) for
each k € P and each i € S*. This would require a compu-
tation time proportional to Y, 5 |S¥| for each iteration. If ¢
iterations of Euler’s method are required to compute the
GNE, then the computation time complexity is proportional
0 O(t - > 1ep |S¥]). In contrast, the computation time our P
system requires to update z(¢) is upper bound by a constant
that does not depend on Y, 5 [S*|. This implies that the
computation time complexity is proportional to O(z).
Because of the massive parallelism inherent to P systems,
the computation time complexity is reduced by a factor of
Siep 184

To define this system, it was required to select a specific
fz(H)) to compute p(?) (see Eq. (6)). In our case, f(z(¥)) was
given by the Energy Market Game (Sect. 3.1) and involves
real numbers. We also used objects that represent 1% of the
agents z(f) as explained at the beginning of Sect. 4.
Because of these decisions, we rounded every number to
two decimals. We can take smaller values of #y,, to get
better approximations if we round to more decimals, but
then Euler’s method will require more time steps to com-
pute the GNE. However, this does not affect the difference
in computation time complexity stated above.

4.3 Experimental results
4.3.1 Setup

Researchers have developed different P system simulators
that are available, like P-lingua (MeCoSim) Gutiérrez-
Naranjo et al. (2008); Garcia-Quismondo et al. (2009);
Pérez-Hurtado et al. (2010) or UPSimulator Guo et al.
(2019, 2018). To perform experiments, we use MeCoSim
for its simplicity. This simulator allows the design of P
systems with particular properties, in this case, transition P
systems with membrane polarization.

One limitation of every P system simulator is that it still
runs on a computer, so the parallelism inherent to P sys-
tems is lost. However, we can use MeCoSim to perform
experiments and test the P system designed in Sect. 4.1.

Although some implementations of P systems on GPU
devices can be found in the literature (see, e.g., Martinez-
del-Amor et al. (2015); Zhang et al. (2021)), our experi-
ment was conducted on a machine with a 3.59GHz 6-core
CPU and with 16GB of RAM. We consider the possibility
of adapting the implementation to GPU devices, and

@ Springer

empirically studying the improvements in time, as future
work.

4.3.2 Experiment

To test the correct behavior of our P system, we have
considered a small example, where N =3, T =35,
St ={3,5}, $* = {1,3,5}, $* = (§")" = {1,2,4}, and we
randomly sample the nonzero elements of D, J, o, and m*
from [0, 1], [2, 4], [1, 10], [0, 1] and Debreu (1952);
Facchinei and Kanzow (2007) respectively. The parameters
are sampled from the same distributions described in
Martinez-Piazuelo et al. (2022).

In Fig. 2, we can see how the trajectories of the values z¢
initialize as equally distributed for each player k as possi-
ble, and they evolve until reaching a stable distribution
after only 10 time steps: 7 =0 after ten steps. At that
moment, a GNE is found. It was expected that player 3
would concentrate more agents over time slot 4 (zi) or 2
(z3) since it is the only player with access to those
resources. The difference is a consequence of the cost
difference. As expected, the results coincide with those
obtained by applying Euler’s method independently.

Notice that, as explained in Sect. 3, z{.‘ represents the
proportion of agents in population k that follow strategy i.
In the Energy Market Game that we are solving, z; is the
proportion of energy purchased in time slot i by player k.

5 Conclusions

We propose a P system based on Euler’s method that
computes approximations of GNE for population games
under BNN dynamics. If Euler’s method requires ¢ itera-
tions to compute GNE, we have proved that the compu-
tation time complexity of the P system is linear with
respect to ¢, independently of the size of the problem.

Our P system presents some limitations. First, if the
function f representing the game is complex enough, it is
possible that P systems are not powerful enough to com-
pute it in constant time, increasing the system’s time
complexity. Second, the system presented only works for
population games under BNN dynamics.

This work can be extended in some directions. First, in
this paper, some of the evolution rules of the P system are
defined specifically for instances of the Energy Market
Game as a representative of population games under BNN
dynamics. As future work, we propose modifying this P
system to compute GNE for other population games under
BNN dynamics by changing the payoff function and the
corresponding rules. Second, our P system is also easily
generalizable for studying the evolution of other EDM-

A membrane computing approach to the generalized Nash equilibrium 333

Fig. 2 Small experiment with
three players (populations) and 01 L. S
five strategies, distributed such 2
that S' = {3,5}, $2 = {1,3,5}, sl --- =
$3 = (SH)° = {1,2,4}. Players 3 —— 3
1, 2, and 3 are represented by < 2
i 3
lines z}, z2, and z?, respectively g 40 - =4
z —_—— - =
< 35 e ————— -
§ <= ~
~SS oo ~Tsao
30 S~ ... T
25 ;
0 1 2 3 4 5 6 7 8 9 10 11
Number of iterations
PDM systems besides population games under BNN The alphabet of objects is given by:

dynamics, even if equilibria are not reached.
Finally, as pointed out in sect. 4.3, the current study can
also be simulated in a GPU device to explore further time

I'={a,b,c,d,f,m,yo,y1,rem} U{k; : 1 <i<6}U{a;: 1 <i<5}
U{bi: 1<i<4}uU{m;: 1<i<3}U{fi:1<i<4}

improvements. . . .
The ruleset of this system is the following:
RS] = [k] — k2 yo](l)
Appendix A Russian peasant multiplication RS; = [k — k]’
in membrane computing RS3 = [ky — k]’
RS4 = [k4 — k5](1)
A P system that computes the product of two numbers 0
. . . o g . RS5 = [ks i kﬁ]l
m,n € Ny, inspired by the Russian peasant multiplication 0
algorithm Cameron (1994), is defined in this appendix. The RS6 = ks — ki, o
goal is to use it as a multiplication module for the P system RS; = [* — a yﬂl
defined in Sect. 4.1. RSg = [a — m y,]}, with p; > pg
The algorithm is described in Algorithm 2. RSy = a1 — a3
. . . RSi) = [a» — a3]}
Algorithm 2 Russian Peasant Multiplication 0
RS]] = [(13 i 614]1
Require: m,n € Z>1;res :=0 RSp, = [ag — 615](1)
if m = 2g+ 1 for some ¢ € Z then RS13 = [as — a](l)
1. res:=n > 0
end if RS14 = [yy yo — 4]

while m # 1 do
2.m:=|m/2|, n:=2n.

Table 1 Multiplication of m =

if m = 2q +1 for some ¢ € Z then 37 and n = 16 using the Russian m " res
j).‘ ;es =res+n Pfi:}ellsarztA 1}4u1§it];})11icalzti)on algo- 0 37 16 16
en 1 rithm (Algorithm | 18 0 16
end while
2 9 64 80
4. Return res
3 4 128 80
4 2 256 80
5 1 512 592

For example, if we want to multiply m = 37 by n = 16
using Algorithm 2, we get the result of Table 1, where 7 is
the iteration of the while loop.

The structure of the P system has three membranes: p =
[;1,]o and the initial multisets are w; = {a"k;}, wp = 0
and wy = {b"}. The output region i, is the environment.

@ Springer

334

A. Luque-Cerpa, M. A. Gutiérrez-Naranjo

RS1s = [y1 yo m)y — [fIif, with pyy > py5
RS16 = [yi — 2]}, with pj5 > pys

RS17 = [m]] — [1ym, with pis > py;

RS15 = [kayo]} — [110, with p;5 > pg and pig > p,
RS19 = [b — by]y

RSy = b1 — bz]g

RS> = |by — b3]8

RSy = [b3 — b4]8

RS»; = [by — c2]8

[
[
[
[
[
[
RSy = [c —),
RSys = [b3[13 — [dloc’]y
[
[
[
[
[

RSy = [c — b]g

RSy; = [m]y — [mi]g rem

RSy3 = [my — my);

RSy = [my — m3],

RS30 = [m3]y — []grem

RS3; = [f ks — 2%, with p3; > ps
RSy =f[15 — fi Ifils

RSy = [fl]g — [], rem

RS34 [fl] — [fz] rem
RS =fl], = f B
RS36 = [fs = fal,

RS37 = [f3 — faly

RSss = [fil; — [Jyrem
RS3o = [faly — [Iof

RS40 = [d]z []2 d
RSy = [d]y — [lod
RS42 == [b4 — d]

RS43 = [y()] — [f3] rem

RS44 = [b3 —)v]()

RSys = [rem — 7], Vm€{0,1,2}, Vse {+,—,0}
(Cleaning rule).

A.1Computation analysis

The behavior of this P system is correct. It is easy to prove
this by analyzing the following four cases: m =0, m =1,
m = 2p with p > 1 and m = 2p + 1 with p > 1. Notice that,
because the rules are applied in a parallel and maximal way
as described in Sect. 2, the behavior of this P system is
deterministic, and no other sets of rules can be applied in
each configuration.

e Ifm =0, thenm-n = 0, and the following computation
takes place:

@ Springer

I
C1 = [kayol S 19875
Ca = [[10 19B5yolo
Cs = [[1] 363f:]q rem
Ca =[5y
Cs = [[11 BIof

The computation is then done in 5 iterations, and
because the output is zero copies of object d, the result
is correct.

If m=1, then m-n =n and:

Co = [[aki][156"y
C1 = [[myryoka])[13610
Cz (17131 15557 To
= [N[A5B5A10
C4 =](1)[|5 biforem), rem
Cs = [NIRL dfly
Co = [1NAal2 o "
C7 = [1} [5rem]ofd"

The computation is then done in 7 iterations, and

because the output is n copies of object d, the result is
correct.
If m = 2p with p > 1 and we follow the Russian peasant
multiplication algorithm, then the result of the partial
computation doesn’t contribute directly to the final
result. In our system, this means that no objects d will
be saved in membrane [|,:

Co = [[a™ki]}[156"

I
Cy = [y yoka]] 198115
Cs = [[ahks)] 190415
Cs = [[dka] 130215
C = (ks)] 190415
Cs = [[akel{[15¢™T0
Ce = [l k) 156™10

The computation goes from multiplying by m = 2p,
represented by objects a, to multiplying by m = p in 6
iterations. We can see also that no objects d were cre-
ated, and that n, represented by objects b, is raised to
2n as in the Russian peasant multiplication algorithm.
If m=2p+1 with p>1 and we follow the Russian
peasant multiplication algorithm, then in this case the
result of the partial computation contributes directly to
the final result. In our system, this means that n objects
d will be saved in membrane []:

A membrane computing approach to the generalized Nash equilibrium

335

» 2p+1 07 1042170
Cy = [[d m y{""" yo ka]i[136110

I

I
Cy = [[doks] [|5 mlg
Cs = [[d5ka][1365 mu]g rem
Cy = [[diks]\ [d"]5c™ ma]y
Cs = [[ake)\[d"]56" m3];
Co = [[ak1)\ [d"]36™ g rem

The computation goes from multiplying by
m = 2p + 1, represented by objects a, to multiplying by
m = p in 6 iterations. We can see also that n objects d
were created in membrane |](2), and that n, represented
by objects b, is raised to 2n as in the Russian peasant
multiplication algorithm.

Finally, if we observe rules RS49 and RSy, we see that the

objects d will be extracted from []J when the whole
computation is finished, giving the result as output.

It takes 6 iterations to reduce the problem of multiplying
by m to the problem of multiplying by [m/2], this is, to
complete an iteration of the while loop in Algorithm 2.
Because n doesn’t influence the number of operations, we
have an upper bound over the number of transition steps of
146 [loga(m)].

For the P system defined in Sect. 4.1, we take advantage
of the previous bound by always doing m = zf and n = pf.‘
or n=73 g [pj‘] ,» depending on the multiplication we
have to compute. Because 0 < zf < 100, we have that if we
multiply m by any number, the number of iterations will be
bounded by 1+ 6 - [log,(100)] = 43.

In the P system defined in Sect. 4.1, the membranes
MULT;; will be almost exactly as described, with the

changing from p=11711% to
W= Tl]glz}l?lULT;_k' Membranes MULT2;; will have

W=]2,,2,]2,,[]”2,_* as membrane structure, and will

structure

return objects d; instead of d (rules RSy, RS4;) and objects
fi instead of f (rule RS39).

Acknowledgements M.A.G.N. acknowledges the support by the
European Union HORIZON-CL4-2021-HUMAN-01-01 under grant
agreement 101070028 (REXASI-PRO) and by TED2021-129438B-
100 / AEI/10.13039/501100011033 / Union Europea NextGeneration
EU/PRTR.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Brown GW, von Neumann J (1951) 6. SOLUTIONS OF GAMES BY
DIFFERENTIAL EQUATIONS, Princeton University Press,
Princeton 73-80. https://doi.org/10.1515/9781400881727-007

Butcher J (2016). Numerical methods for ordinary differential
equations. https://doi.org/10.1002/9781119121534

Cameron PJ (1994) Combinatorics: topics techniques, algorithms.
Cambridge University Press, Cambridge

Cardona M, Colomer MA, Margalida A, Palau A, Pérez-Hurtado I,
Pérez-Jiménez MJ, Sanuy D (2011) A computational modeling
for real ecosystems based on P systems. Nat Comput
10(1):39-53. https://doi.org/10.1007/S11047-010-9191-3

Colomer M, Lavin S, Marco I, Margalida A, Pérez-Hurtado I, Pérez-
Jiménez M, Sanuy D, Serrano E, Valencia-Cabrera L (2010)
Modeling population growth of Pyrenean Chamois (Rupicapra P.
Pyrenaica) by using P-systems, Membrane Computing 11th
International ~ Conference. Lect Notes Computer Sci
6501:144-159. https://doi.org/10.1007/978-3-642-18123-813

Colomer MA, Margalida A, Sanuy D, Pérez-Jiménez MJ (2011) A
bio-inspired computing model as a new tool for modeling
ecosystems: the avian scavengers as a case study. Ecol Model
222(1):33-47. https://doi.org/10.1016/j.ecolmodel.2010.09.012

Debreu G (1952) A social equilibrium existence theorem. Proc Natl
Acad Sci United States of America 38(10):886-893

Facchinei F, Kanzow C (2007) Generalized Nash equilibrium
problems. 40R - A Quart J Oper Res 5(3):173-210. https://doi.
org/10.1007/S10288-007-0054-4

Garcia-Quismondo M, Reed JM, Chew FS, del Amor MAM, Pérez-
Jiménez MJ (2017) Evolutionary response of a native butterfly to
concurrent plant invasions: simulation of population dynamics.
Ecol Model 360:410-424. https://doi.org/10.1016/j.ecolmodel.
2017.06.030

Garcia-Quismondo M, Gutiérrez-Escudero R, Pérez-Hurtado I, Pérez-
Jiménez MJ, Riscos-Nufiez A (2009) An overview of P-lingua
2.0, in: G.Paun, M.J. Pérez-Jiménez, A. Riscos-Nuiiez,
G. Rozenberg, A. Salomaa (Eds.), Membrane computing 10th
international workshop 264-288. https://doi.org/10.1007/978-3-
642-11467-020

Garcia-Victoria P, Cavaliere M, Gutiérrez-Naranjo MA, Cardenas-
Montes M (2022) Evolutionary game theory in a cell: a
membrane computing approach. Inform Sci 589:580-594.
https://doi.org/10.1016/J.INS.2021.12.109

Guo P, Quan C, Ye L (2019) Upsimulator: a eneral P system
simulator. Knowl-Based Syst 170:20-25. https://doi.org/10.
1016/j.knosys.2019.01.013

Guo P, Quan C, Ye L (2018) A simulator for cell-like P system. In:
Qiao J, Zhao X, Pan L, Zuo X, Zhang X, Zhang Q, Huang S
(eds) Bio-inspired computing: theories and applications.
Springer Singapore, Singapore. https://doi.org/10.1007/978-
981-13-2826-8_20

Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Ramirez-Martinez D
(2008) A software tool for verification of spiking neural P
systems. Nat Comput 7(4):485-497. https://doi.org/10.1007/
S11047-008-9083-Y

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1515/9781400881727-007
https://doi.org/10.1002/9781119121534
https://doi.org/10.1007/S11047-010-9191-3
https://doi.org/10.1007/978-3-642-18123-813
https://doi.org/10.1016/j.ecolmodel.2010.09.012
https://doi.org/10.1007/S10288-007-0054-4
https://doi.org/10.1007/S10288-007-0054-4
https://doi.org/10.1016/j.ecolmodel.2017.06.030
https://doi.org/10.1016/j.ecolmodel.2017.06.030
https://doi.org/10.1007/978-3-642-11467-020
https://doi.org/10.1007/978-3-642-11467-020
https://doi.org/10.1016/J.INS.2021.12.109
https://doi.org/10.1016/j.knosys.2019.01.013
https://doi.org/10.1016/j.knosys.2019.01.013
https://doi.org/10.1007/978-981-13-2826-8_20
https://doi.org/10.1007/978-981-13-2826-8_20
https://doi.org/10.1007/S11047-008-9083-Y
https://doi.org/10.1007/S11047-008-9083-Y

336

A. Luque-Cerpa, M. A. Gutiérrez-Naranjo

Hofbauer J, Sigmund K (2000) Evolutionary games and population
dynamics. J] Amer Stat Assoc. https://doi.org/10.2307/266943 1

Martinez-Piazuelo J, Ocampo-Martinez C, Quijano N (2022) Gener-
alized Nash equilibrium seeking in population games under the
Brown-von Neumann-Nash dynamics, 2022 European Control
Conference 2161-2166. https://doi.org/10.23919/ECC55457.
2022.9838437

Martinez-del-Amor MA, Garcia-Quismondo M, Macias-Ramos LF,
Valencia-Cabrera L, Riscos-Nufiez A, Pérez-Jiménez MJ (2015)
Simulating P systems on GPU devices: a survey. Fundam
Informaticae 136(3):269-284. https://doi.org/10.3233/FI-2015-
1157

Nash J (1951) Non-cooperative games. Annals Math 54(2):286-295

Pérez-Hurtado I, Valencia-Cabrera L, Pérez-Jiménez M, Colomer M,
Riscos-Nufiez A (2010) Mecosim: A general purpose software
tool for simulating biological phenomena by means of P systems,
IEEE Fifth international conference on bio-inspired computing:
theories and applications (BIC-TA) 637-643. https://doi.org/10.
1109/BICTA.2010.5645199

Paun Gh (2000) Computing with membranes. J Computer Syst Sci
61(1):108-143. https://doi.org/10.1006/jcss.1999.1693

Paun Gh (2002) Membrane Computing. Springer-Verlag, Germany

@ Springer

Paun Gh (2001) P systems with active membranes: attacking NP-
complete problems, J Automata, LangCombin 6(1): 75-90.
https://doi.org/10.25596/jalc-2001-075

Paun Gh, Rozenberg G, Salomaa A (eds) (2010) The Oxford
Handbook of Membrane Computing. Oxford University Press,
Oxford, England

Sandholm WH (2010) Population games and evolutionary dynamics.
MIT Press

Song B, Li K, Orellana-Martin D, Pérez-Jiménez MJ, Pérez-Hurtado I
(2021) A survey of nature-inspired computing: membrane
computing. Assoc Comput Mach Comput Surv 54(1):1-31.
https://doi.org/10.1145/3431234

Zhang G, Pérez-Jiménez MJ, Riscos-Nufiez A, Verlan S, Konur S,
Hinze T, Gheorghe M (2021) P systems implementation on
GPUs. In: Membrane Computing models: implementations.
Springer, Singapore, 163-215. https://doi.org/10.1007/978-981-
16-1566-56

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.2307/2669431
https://doi.org/10.23919/ECC55457.2022.9838437
https://doi.org/10.23919/ECC55457.2022.9838437
https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.1109/BICTA.2010.5645199
https://doi.org/10.1109/BICTA.2010.5645199
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.25596/jalc-2001-075
https://doi.org/10.1145/3431234
https://doi.org/10.1007/978-981-16-1566-56
https://doi.org/10.1007/978-981-16-1566-56

	A membrane computing approach to the generalized Nash equilibrium
	Abstract
	Introduction
	Transition P systems with membrane polarization
	Example of a P system

	Population games under BNN dynamics
	Energy market game

	Design and functioning of the P system
	Definition of the P system
	Overview of the computation
	Experimental results
	Setup
	Experiment

	Conclusions
	Appendix A Russian peasant multiplication in membrane computing
	A.1Computation analysis

	Acknowledgements
	References

