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Abstract
Generalized Nash Equilibrium is an extended version of the standard Nash Equilibrium with important implications in real-

life problems such as economics, wireless communication, the electricity market, or engineering among other areas. In this

paper, we propose a first approach to computing Generalized Nash Equilibria using Membrane Computing techniques. We

model an efficient P system that, based on Euler’s method, computes approximations of Generalized Nash Equilibria of

population games under Brown–von Neumann–Nash dynamics, bridging both areas and opening a door for a flow of

problems and solutions in both directions.
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1 Introduction

Evolutionary Game Theory (EGT) studies the evolution of

a population of agents that interact with each other and get

a payoff in each interaction Hofbauer and Sigmund (2000).

The obtained payoff depends on the chosen strategies of

the agents which participate in the interaction. Each agent

selects only one strategy at a time, but this choice can be

modified over time. The driving principle in this situation

is that individuals tend to be selfish, choosing strategies

that result in higher payoffs for themselves. In this context,

a Nash equilibrium is reached when no agent can increase

its payoff by changing its strategy while other agents

maintain their current ones Nash (1951).

In a Nash equilibrium problem, all the agents compete

among them to maximize their payoffs, and each agent can

freely choose its strategy. The generalized Nash equilib-

rium problem (GNEP) is a variant of the Nash problem

introduced in 1952 by G. Debreu Debreu (1952). In a

GNEP, the strategy set of each player may also depend on

the other players’ strategies. This GNEP models a large

number of real-life situations, such as power allocation in a

telecommunication system, environmental pollution con-

trol, or energy market model (for a detailed survey, see,

e.g., Facchinei and Kanzow (2007)).

In this paper, we propose to study the GNEP in the

framework of Membrane Computing Păun (2002); Păun

et al. (2010). Membrane Computing is a well-known area

of Computer Science that takes inspiration from the bio-

chemical reactions inside the vesicles of living cells. P

systems Păun (2000), the so-called Membrane Computing

devices, have been successfully considered to model many

dynamic processes in real-life problems Colomer et al.

(2011, 2010); Garcı́a-Quismondo et al. (2017). From the

initial definition of P systems, many variants have been

explored by adding new features to the initial model (see,

e.g., Song (2021) for a recent survey). Recently, Proba-

bilistic P systems Cardona et al. (2011), a kind of P system

designed to deal with probability distributions in the

application of rules, was considered to model the spread of

behaviors in structured populations in the framework of

EGT Garcı́a-Victoria et al. (2022). In this paper, we study

the GNEP by considering transition P systems with active

membranes Păun (2001), also called membrane

polarization.
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The paper is organized as follows: Sect. 2 establishes

some background on P systems and specifies the type of P

system we use: transition P systems with membrane

polarization. Section 3 introduces population games under

the Brown-von Neumann-Nash (BNN) dynamics, that will

be used as the framework to define our P system. In Sect. 4,

we describe the design of our P system and analyze its time

complexity, showing that it does not depend on the number

of players or strategies involved. We also present an

experiment to illustrate its functioning. Finally, some

conclusions and hints for future work are presented.

2 Transition P systems with membrane
polarization

In this section, we define the variant of P systems that we

used to solve our problem: transition P systems with

membrane polarization. Then, in section 2.1, we provide an

example of such a P system.

After the development of the first model of P system by

Gh. Pǎun in 1998 Păun (2000), many variations have been

presented. In this work, we use a combination of two

proposed variants. The P system designed is a transition P

system Păun (2000) with active membranes Păun (2001)

without division rules, i.e., a transition P system with

membrane polarization. A transition P system with mem-

brane polarization of degree q� 1 is a construct:

P ¼ hC; l;w1; . . .;wq; ðR1; q1Þ; . . .; ðRq; qqÞ; iouti

where:

1. C is the alphabet of objects;

2. l is a hierarchical tree-like membrane structure of q

membranes that have a polarization among 0;þ;�;

3. w1; . . .;wq are multisets of objects over C;
4. R1; . . .;Rq are finite sets of evolution rules of the

form:

• u½v�ah ! u0½v0�bh where u; u0; v; v0 are multisets over

C, h 2 f1; . . .; qg, h is not the label of the root

membrane in l, and a; b 2 f0;þ;�g.
• ½v�ah ! u0½v0�bh where u; u0; v; v0 are multisets over C,

h 2 f1; . . .; qg, h is the label of the root membrane

in l, and a;b 2 f0;þ;�g.
The difference between the expressions resides in that

no objects should be able to enter the skin membrane

(the root of l) from the environment. The meaning of

these rules can be easily understood as combinations of

the following examples:

• ½u�ah ! ½v�ah, also expressed as ½u ! v�ah, is an object

evolution rule, that transforms the multiset u into

the multiset v.

• ½u�ah ! v½ �bh is a send-out communication rule, that

ejects the multiset u, and transforms it into the

multiset v.

• u½ �ah ! ½v�bh is a send-in communication rule, that

absorbs the multiset u, and transforms it into the

multiset v.

The general expression considers combinations of

these cases, where some multisets can be absorbed into

membrane h at the same time as others are transformed

or ejected.

5. q1; . . .; qq are partial order relations over R1; . . .;Rq,

called priority relations. Given two rules r; r0, we

represent that r has higher priority than r0 by qr [ qr0 .
Priority indicates what rule should be applied if both

are applicable.

6. iout 2 f0; 1; . . .; qg is the output region, where 0

represents the environment.

A configuration of P is defined by Ct ¼
ððw1;t; a1;tÞ; . . .; ðw1;t; a1;tÞ;w0;tÞ for an instant t, where wh;t

is the multiset of objects in membrane h at instant t, ah;t is
the membrane polarization of membrane h, and w0;t is the

multiset of objects of the environment. The initial config-

uration of P is C0 ¼ ððw1; 0Þ; . . .; ðwq; 0Þ; ;Þ. We use the

notation Ct ¼ l0 to denote specific parts from the config-

uration Ct where only the membranes in the subtree l0 from
l are considered.

For each configuration, the rules are applied in a parallel

and maximal way. By maximal, we indicate that no more

rules can be applied at the same time. Formally, a multiset

U of rules is maximal if there is no multiset of applicable

rules U0 such that U � U0. If two applicable rules with the

same priority are exclusive, this is, triggering one would

prevent the other one from triggering, then only one of

them is selected at random and applied.

As in Garcı́a-Victoria et al. (2022), the semantics of the

P system follow the next principles:

(I1) When an object crosses a membrane, its polariza-

tion may change. Rules can only be applied if the

polarization is appropriate.

(I2) If two rules that affect the same membrane can be

applied at the same time, and one of the rules

changes the polarization of the membrane, both

rules are applied. This means that the change of

polarization is performed after all other evolution

rules are applied.

Notice that principle (I2) ensures that rules are applied in a

parallel and maximal way. If this principle is not assumed,

and a rule can change the membrane polarization, then the

order of application of the rules would be important during

a single transition step. In that case, multisets of rules that
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can be applied would not be well-defined, breaking the

parallelism and maximality of the system.

Notice also that, while the membranes in P have labels

in f1; . . .; qg, we can always define a set H of labels with

jHj ¼ q such that there is a bijection between the elements

of H and the membranes of l. The same applies to the

rules, that we can express as the tuple ðR; qÞ. We use this

fact in Sect. 4.1 to provide a better indexing.

2.1 Example of a P system

Let

P ¼ hC; l;w1;w2; ðR1; fqr1 [ qr2gÞ; ðR2; ;Þ; iouti

be a transition P system with membrane polarization of

degree 2 where:

• C ¼ fa; b; cg;
• l ¼ ½ ½ �02 �01;
• w1 ¼ fk0g;
• w2 ¼ fa3cg;
• R1 ¼ fr1 � k0½ �02 ! ½k�þ2 ; r2 � ½k0 ! k�01g;
• R2 ¼ fr3 � ½a2 ! b�02; r4 � ½a ! c�02; r5 � ½c ! b�02g;
• iout ¼ 2.

We have that U1 ¼ fr1; r3; r4; r5g, U2 ¼ fr3g, U3 ¼
fr1; r34 ; r5g are multisets of applicable rules. U2 is not

maximal because U2 � U1. U1 and U3 are the only maxi-

mal multisets of applicable rules, and they could both be

applied in this configuration because there is no priority

between the rules involved in each set. r2 can not be part of

a maximal multiset of applicable rules because rule r1 has

priority over rule r2 (qr1 [ qr2 ).
The multiset U1 would lead to the configuration

C1 ¼ ½ ½b2ck�þ2 �
0
1, and the multiset U3 would lead to

C1 ¼ ½ ½bc3k�þ2 �
0
1. Because the polarization of membrane 2

changed to þ in both configurations, none of the rules in

R2 can now be applied. Because there are no objects k0 in

membrane 1, none of the rules in R1 can be applied. The

computation of the system is then finished for both cases

after one transition step.

3 Population games under BNN dynamics

The purpose of this section is to introduce population

games. Specifically, we introduce population games under

BNN dynamics, which are central to this paper. In section

3.1, we give an example of such a game: the Energy

Market Game, where players decide when to buy energy

and modify their strategies depending on the decisions of

the rest until an equilibrium is reached. We use the Energy

Market Game as a framework to define our P system, and

we explain how the P system can be modified to adapt it to

other population games under BNN dynamics.

In a population game, we have a society of decision-

making agents divided into disjoint populations that

receive different payoffs depending both on the decisions

they make and the decisions the rest of the agents make.

The goal of each population is to maximize the payoff

received. The decisions that agents can make depend on the

population they form part of. Each agent is endowed with a

revision protocol, which provides conditional switch rates

between strategies according to their associated payoffs

Sandholm (2010). These rates allow the agents to change

their strategies over time. When the number of agents is

large enough, this process can be described by differential

equations, referred to as the evolutionary dynamics model

(EDM). In EDMs, the agents can be modeled as real

numbers, the mass of agents, instead of being modeled as

discrete independent entities. There are multiple EDMs,

but we focus on a specific EDM known as BNN dynamics

Brown and von Neumann (1951), which are described next

(see Martinez-Piazuelo et al. (2022) for details).

Let us consider a society of agents divided into N 2
Z� 1 disjoint populations indexed by P ¼ f1; 2; :::;Ng.
Each population k 2 P is comprised of a constant mass of

decision-making agents mk 2 R[ 0. The set of strategies of

each agent in population k 2 P is Sk � Z� 1 with

2� nk ¼ jSkj\1. The amount of agents selecting strategy

i 2 Sk at population k is denoted as xki 2 R� 0. Notice that

agents from different populations k1 and k2 can select the

same strategy i if i 2 Sk1 and i 2 Sk2 . Similarly, the pro-

portion of agents selecting strategy i 2 Sk at population k is

denoted as zki ¼ xki =m
k. Furthermore, xk ¼ ðxki1 ; :::; x

k
ink
Þ>

and zk ¼ ðzki1 ; :::; z
k
ink
Þ> denote the strategic distributions of

population k, x ¼ ðx1>; x2>; :::; xN>Þ>, and

z ¼ ðz1>; z2>; :::; zN>Þ>. Let t 2 Z� 0 be the discrete-time

index; x(t) the value of x at time t; z(t) the value of z at time

t and pki ðtÞ 2 R the payoff received by the agents selecting

strategy i 2 Sk at population k 2 P.

Following the revision protocol introduced in Martinez-

Piazuelo et al. (2022), the equations that define the EDM

describing the evolution of x(t) over time are:

_xki ðtÞ ¼ mk½p̂ki ðtÞ�þ � xki ðtÞ
X

j2Sk

½p̂kj ðtÞ�þ ð1Þ

p̂kj ðtÞ ¼ pkj ðtÞ �
1

mk

X

l2Sk

xkl ðtÞ � pkl ðtÞ ð2Þ

where ½��þ ¼ maxð�; 0Þ, and _x denotes the derivative of

x. This EDM is known as the BNN dynamics Brown and

von Neumann (1951).
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Intuitively, Eq. (2) computes the benefit of having more

agents following strategy j in population k. The reason is

that Equation (2) computes the difference between the

payoff obtained by agents xkj and the average payoff

obtained at time step t. A positive value of p̂kj ðtÞ would

indicate that it would be better for population k to have

agents switch to strategy j. Equation (1) can then be used to

decide how many agents should switch to other strategies

at the next time step, given by the derivatives _xki ðtÞ.
A payoff dynamics model (PDM) that describes the

evolution of p(t) is also introduced, defined by:

_lðtÞ ¼ AxðtÞ � b ð3Þ

pðtÞ ¼ f ðxðtÞÞ � A>lðtÞ ð4Þ

where f is a fitness function that provides the payoff for the

strategies chosen at a given population state, l represents

some constraints over such decisions, and such constraints

are given by a matrix A and a vector b that depends on the

specific problem. In this context, A and b just introduce

penalizations to the payoff, instead of introducing hard

constraints.

Since the importance of this system lies in updating the

payoff signal p(t) and having a closed-loop configuration

between p(t) and x(t), a simplified version of this system,

where we remove the constraints over the strategies cho-

sen, is considered:

pðtÞ ¼ f ðxðtÞÞ ð5Þ

An EDM whose payoff function follows a PDM is then

called an EDM-PDM.

It is not hard to modify the P system proposed later in

Sect. 4.1 to compute the effect of the constraints intro-

duced by A and b in Eq. (5). Because they are linear, the

extra computation time required is constant per iteration

t. However, because our goal is to show how can P systems

be used for computing Generalized Nash Equilibria (GNE),

we limit ourselves to the case without constraints.

3.1 Energy market game

In the previous section, we expressed a population game

under BNN dynamics through Eqs. (1) (2) and (5). To solve

a specific population game, we need to define the payoff

function (Eq. 5) considering a specific function f that is

different for each game. Taking this into account, a specific

EDM must be selected as a framework to define our P

system. Because of this, we consider an example of the

Energy Market Game Martinez-Piazuelo et al. (2022) as

the framework.

In the Energy Market Game, N 2 Z� 1 players compete

to purchase energy over a time horizon of T 2 Z� 1 time

slots. Players who try to purchase energy in the same time

slots will end up paying more for the energy, and the base

price for energy is higher for some time slots than for

others. The goal is to buy energy as cheaply as possible,

considering that other players have the same goal. For this

problem, we can consider each player a population k, and

the agents xki represent the amount of energy purchased by

player k in the time slot i.

Following the notation described at the beginning of

Sect. 3, let Ck 2 RT	nk be a matrix such that each column

of Ck has exactly one element equal to 1 and the rest equal

to 0, each row of Ck has at most one element equal to 1,

and the j-th element of the i-th column of Ck is 1 iff player

k competes in time slot j� T . Let C ¼ ½C1;C2; . . .;CN � 2
RT	n be the concatenation of the Ck matrices of all players,

where n ¼
P

k2P nk. Then Cx corresponds to the collective

energy demand for all time slots. Let J : Rn ! RT be the

pricing function given by JðxÞ ¼ DCxþ �J, where D 2
RT	T

� 0 is diagonal and �J 2 RT
� 0, and let Qk : Rnk

� 0 ! R be

the individual cost of each player k 2 P, given by

QkðxkÞ ¼
P
i2Sk

�
ðaki =2Þðxki Þ

2 þ bki � xki
�
, where aki 2 R� 0 and

bki 2 R� 0.

Following the results from Martinez-Piazuelo et al.

(2022), the payoff function pðtÞ ¼ f ðxðtÞÞ for the Energy

Market Game can be expressed by f ðxðtÞÞ ¼ �S � xðtÞ �
C> �J � a
 xðtÞ � b where

• M ¼ diagðm1In1 ;m
2In2 ; . . .;m

NInN Þ,
• S ¼ diagðC1>DC1; . . .;CN>DCNÞ þ R>R, and

• R ¼ ½
ffiffiffiffi
D

p
C1;

ffiffiffiffi
D

p
C2; . . .;

ffiffiffiffi
D

p
CN �.

• diag is the operation that constructs a matrix using the

input elements as the diagonal, and where the rest of the

elements are null.

To define the payoff over zki ðtÞ, the following transforma-

tion is performed over Eq. (5):

pðtÞ ¼ f ðxðtÞÞ ¼ f ðM � zðtÞÞ
¼ �S �M � zðtÞ � C> �J � a
 ðM � zðtÞÞ � b

ð6Þ

Equations (1) and (2) also change for zki ðtÞ:

_zki ðtÞ ¼
_xki ðtÞ
mk

¼ ½p̂ki ðtÞ�þ � zki ðtÞ �
X

j2Sk

½p̂kj ðtÞ�þ ð7Þ

p̂kj ðtÞ ¼ pkj ðtÞ �
X

l2Sk

zkl ðtÞ � pkl ðtÞ ð8Þ
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4 Design and functioning of the P system

In this section, we introduce first the general idea behind

the design of a P system proposed to compute approxi-

mations of GNE for population games under BNN

dynamics. Then, we define the P system in Sect. 4.1. After

that, we perform a computation analysis in Sect. 4.2, where

we indicate the evolution rules defined in Sect. 4.1 that are

applied to the configurations. Finally, we include our

experimental results in Sect. 4.3.

Let us consider the EDM-PDM system introduced in

Sect. 3.1 by Eqs. (6), (7), and (8). In this section, a P

system that computes approximations of GNE under the

BNN dynamics for this system is described. The compu-

tation can be summarized in a loop of five stages, repre-

sented in Algorithm 1. Stages 1 and 2 are used to compute

p̂ðtÞ using Eq. (8), Stages 3 and 4 are used to compute _zðtÞ
using Eq. (7), and Stage 5 is used to update the value of

z(t). To solve any other EDM-PDM system, only the first

stage of the P system has to be modified, while the rest

remains unchanged.

The fundamental idea behind the system is to compute

approximations and discretize the values involved in the

EDM-PDM system by rounding to n decimals and multi-

plying by 10n. To show the functioning of our P system, we

fix n ¼ 2 from now on. However, the system can easily be

modified for other values of n, providing better approxi-

mations with the cost of a longer runtime. After dis-

cretizing, a P system can evolve objects representing z(t) to

compute GNE. For n ¼ 2, a single object that represents

zki ðtÞ, represents 1% of the agents of population k that

follow the strategy i. For example, if we have 16 objects

that represent zki ðtÞ, then zki ðtÞ ¼ 0:16. Formally, to

approximate and discretize, we perform

roundðx; nÞ ¼ b10n � xc. To obtain the next value of the

variables in the next instant t þ tstep using the values of

instant t, we use Euler’s method Butcher (2016), this is,

zðt þ tstepÞ ¼ zðtÞ þ _zðtÞ � tstep.
In Algorithm 1, other stop conditions can be easily

defined, for example, comparing the z(t) values of one

iteration with those of the previous one (in constant time)

and stopping if no difference is found, but more rules

would be necessary. For the sake of simplicity, our stop

condition is to limit the number of iterations in the loop.

Because performing multiplications using P systems is

not trivial, we define a P system that replicates the Russian

peasant multiplication algorithm Cameron (1994) in

Appendix A. The reason for using this specific algorithm is

that the number of time steps required to compute a mul-

tiplication is upper bound by a constant for all multipli-

cations of our P system. We use this multiplication P

system as a module for our P system.

Algorithm 1 General overview of the P system computation

4.1 Definition of the P system

The P system to compute approximations of GNE under

the BNN dynamics is defined as the construct:

P ¼ hC;H; l; ðwhÞh2H ; ðR; qÞ; iouti

where the alphabet of objects is given by:

C ¼ fhProd; k; i; li; hk; i; li j k 2 P; i 2 Sk; l ¼
X

j\k

jSjj þ ig

[ fhProd2; k; i; li; ha; k; i; li j k 2 P; i 2 Sk; l ¼
X

j\k

jSjj þ ig

[ fc; rem;mult0;mult1; prod; prod0; e; e0; pos; q; s0; s1; zneg; zvarp; zvarng
[ fa; b; d;m; f ; y0; p; n; compg [ fpl j 1� l�

X

k2P
jSkjg

[ fmi; ki; ai; bi; fi; yi j 1� i� 6g [ fover; p1; err; vg
[ fy0;0; y0;1; y0;2; y2;0; y2;1; y2;2; y3;0; y4;0; y4;1; y4;2; y4;3; y5;0g
[ fy7;k j k 2 Pg [ fhAUX; ni; hAUX1; ni; hCLK; nijn� 0g
[ fy3;j;i;multzi;0;multzi;1 j k 2 P; i 2 Sk; 1� j� 7g
[ fCk; hq; ii; di; qi; negi; posi j k 2 P; i 2 Sk; 1� j� 7g
[ fy0;k; y0;i; y5;j; y5;3;i; y5;11;i j k 2 P; i 2 Sk; 1� j� 10g
[ fy5;12;k;wi; compwi; zi; j k 2 P; i 2 Sk; 1� j� 10g
[ fEXITi; hEXIT ; k; i; l; ni j k 2 P; i 2 Sk; 1� j� 10;

n� 1g [ fhINIT ; k; i; li j k 2 P; i 2 Sk; 1� j� 10; n� 1g;

the set of membrane labels is given by

H ¼ f0g [ P [ fSi;kg8i2Sk8k2P [ fRESi;kg8i2Sk8k2P
[ fMULTi;kg8i2Sk8k2P [ fM1;M2g
[ fMULT2i;kg8i2Sk8k2P [ fUPDi;kg8i2Sk8k2P
[ fACUMkg8k2P ;

the membrane structure l is represented in Fig. 1, and is

defined as follows:

• Membrane skin with label 0, inside of which we find:

1. One membrane with label P.

2. N membranes with labels P. Inside of each

membrane k 2 P:

2:1. Sk membranes with labels Si;k 8i 2 Sk. Inside

each Si;k:
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– One membrane with label RESi;k

2:2. Sk membranes with labels MULTi;k 8i 2 Sk.

Inside each membrane MULTi;k:

– One membrane with label M1

– One membrane with label M2

2:3. Sk membranes with labels MULT2i;k 8i 2 Sk.

Inside each membrane MULT2i;k:

– One membrane with label M10

– One membrane with label M20

2:4. Sk membranes with labels UPDi;k 8i 2 Sk

2:5. One membrane with label ACUMk

the output region iout is the skin (label 0);

the initial multisets are wP ¼ y0, wSi;k ¼ hk; i; liz
k
i 8i 2 Sk

8k 2 P with zki :¼ b100
nk
c for 1� i\maxfSkg and

zkmaxfSkg :¼ 100� ðjSkj � 1Þ � b100
nk
c, wRESi;k ¼ hAUX; 0i 8i 2

Sk 8k 2 P, and for any other membrane m, the initial

multiset is wm ¼ ;;

and the set of rules R is given by the following rules,

separated by the corresponding stage of Algorithm 1,

where k represents the empty multiset, the rule RSm;n rep-

resents the n-th rule of the m-th stage, the rules are defined

8k 2 P, 8i 2 Sk, and l ¼
P
j\k

jSjj þ i, and qm;n represents

the priority of the rule RSm;n:

Stage 1 (Computate payoff p(t))

To use f(z(t)) in the P system, let j :¼ b100 � ð�C> �J �
bÞc be the constant part of Eq. (6), and let aj;l :¼ bðS �MÞjlc
and bl :¼ bðS �MÞll þ ða �MÞlc for 1� j; l�

P
k2P jSkj be

the coefficients that will multiply zki in Eq. 6. Notice that

because aj;l and bl are used to compute products by mul-

tiplying them by zki , and zki is already multiplied by 100,

neither aj;l nor bl are multiplied by 100 when rounded.

The intuition behind the rules of this stage is that objects

hk; i; li represent zki ðtÞ, and they will be used to compute

plðtÞ by generating objects pl (see Eq. (6)).

Rules RS1;1, RS1;3, and RS1;4 move objects hk; i; li, which
represent zki ðtÞ, until they are in membrane P. At the same

time, they produce objects that will be used in later stages

(c, hProd; k; i; li), and objects that will be used for

Fig. 1 Membrane structure of

our P system. All membranes

start with polarization 0
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coordination (Ck). Rule RS1;2 generates objects pl repre-

senting the constant part of Eq. 6.

RS1;1 � ½hk; i; li�0Si;k ! ½c�0Si;khk; i; li
RS1;2 � ½y0 ! pj11 pj22 . . .pjnn �0P
RS1;3 � ½hk; i; li�0k ! ½hProd; k; i; li�0khk; i; liCk

RS1;4 � hk; i; li½ �0P ! ½hk; i; li��0P
Rules RS1;5 and RS1;6 are used to coordinate the system.

Once the polarization of the membrane P changes to þ,

rule RS1;7 is applied, and the objects pl generated are mixed

with the objects pl that were already in membrane P

because of rule RS1;2, computing indeed p(t) as expressed

in Eq. 6.

RS1;5 � ½C100
1 C100

2 . . .C100
N ! y1�00

RS1;6 � y1½ �0P ! ½y2�þP

RS1;7 � ½hk; i; li ! p
a1;l
1 p

a2;l
2 . . .p

al�1;l

l�1 pbll p
alþ1;l

lþ1 . . .pan;ln �þP

Rules RS1;8, RS1;9, and RS1;11 are used for coordinating.

The coordination is achieved by changing the polarization

of membrane P. Rule RS1;10 extracts from P objects pl, that

now represent plðtÞ ¼ pki ðtÞ, as objects ha; k; i; li.
RS1;8 � ½y2 ! y3�þP
RS1;9 � ½y3�þP ! ½y4��P rem
RS1;10 � ½pl��P ! ½ ��P ha; k; i; li
RS1;11 � ½y4 ! y5��P
Rule RS1;12 moves each object ha; k; i; li to its corre-

sponding membrane k. These objects will later be used in

Stage 2. Rules RS1;13 to RS1;15 are used to coordinate the

beginning of Stage 2. Rule RS1;16 is a cleaning rule used to

remove objects rem that are now useless.

RS1;12 � ha; k; i; li½ �0k ! ½ha; k; i; li�0k
RS1;13 � ½y5 ! y6��P
RS1;14 � ½y6��P ! ½ �0P y7;1 y7;2:::y7;N

RS1;15 � y7;k½ �0k ! ½multjS
k j

0 ��k , 8k 2 P.

RS1;16 � ½rem ! k�sm, 8m 2 H, 8s 2 fþ;�; 0g (Clean-

ing rule).

Stage 2 (Compute sums
P
j2Sk

zkj ðtÞpkj ðtÞ)

To compute the products of zkj ðtÞ and pkj ðtÞ, we use the

membranes MULTi;k, which work as multiplication mod-

ules. These modules compute the product of two numbers

and return the result in a maximum of 43 transition steps.

Each membrane MULTi;k contains two membranes, M1

and M2. When objects a are placed in M1, objects b are

placed in MULTi;k, an object k1 is placed in M1, and the

polarization of the three membranes is 0, the multiplication

module will compute the product of the numbers repre-

sented by objects a and b. Membranes MULTi;k expel

objects d, representing the product, and an object f repre-

senting that the multiplication process is finished. For the

sake of simplicity, we left the details about the multipli-

cation process in Appendix A, including a computation

analysis.

The intuition behind the rules of this stage is that objects

hProd; k; i; li were produced in Stage 1 to represent zki ðtÞ.
These objects are transformed into objects prod. Together

with objects ha; k; i; li, that represent pki ðtÞ, and the multi-

plication modules MULTi;k, we obtain the result of multi-

plying zki ðtÞ by pki ðtÞ. The sum
P

j2Sk z
k
j ðtÞpkj ðtÞ is obtained

by grouping all the resulting objects in the membranes

ACUMi;k. The rest of the rules are for coordination,

rounding, or producing objects necessary for later stages.

Rules RS2;1 to RS2;9 are used to coordinate the genera-

tion of objects a, b, and k1 in membranes M1, MULTi;k, and

M1, respectively. Once this is done, the multiplication

process will begin, and the product of zki ðtÞ (represented by

objects a) and pki ðtÞ (represented by objects b) will be

computed. Objects hProd2; k; i; li and posi are also gener-

ated for later stages.

RS2;1 � ½hProd; k; i; li ! prod hProd2; k; i; li��k

RS2;2 � ½ha; k; i; li ! e posi��k
RS2;3 � mult0½ �0MULTi;k

! ½mult0�þMULTi;k

RS2;4 � prod½ �þMULTi;k
! ½prod�þMULTi;k

RS2;5 � e½ �þMULTi;k
! ½e�þMULTi;k

RS2;6 � ½mult0�þMULTi;k
! ½k0�0MULTi;k

rem

RS2;7 � prod ! ½a�0M1

RS2;8 � ½e ! b�0MULTi;k

RS2;9 � k0½ �0M1 ! ½k1�0M1

Rule RS2;10 is used to send objects posi to membranes

UPDi;k, which will be used in later stages.

RS2;10 � posi½ �0UPDi;k
! ½posi�0UPDi;k

Rule RS2;12 takes the multiplication results, represented

by objects d, and sends them to membrane ACUMk trans-

formed into objects neg. When all multiplications are fin-

ished, the sum
P

j2Sk z
k
j ðtÞpkj ðtÞ is given inside ACUMk,

represented by objects neg. Then, rule RS2;11 changes the

polarization of ACUMk to indicate that the sum is com-

puted. Because zkj ðtÞ and pkj ðtÞ were rounded by multiplying

by 100, it is necessary to use rules RS2;13, RS2;14, and RS2;15
to round the product again and eject them from membrane

ACUMk.

A membrane computing approach to the generalized Nash equilibrium 327

123



RS2;11 � f jS
k j½ �0ACUMk

! ½y2;0�þACUMk

RS2;12 � d½ �0ACUMk
! ½neg�0ACUMk

RS2;13 � ½neg100�þACUMk
! ½ �þACUMk

neg

RS2;14 � ½neg51�þACUMk
! ½ �þACUMk

neg, with q2;13 [ q2;14.

RS2;15 � ½neg ! k�þACUMk
, with q2;14 [ q2;15.

Rules RS2;16, RS2;17, and RS2;18 coordinate the beginning

of the next stage.

RS2;16 � ½y2;0 ! y2;1�þACUMk

RS2;17 � ½y2;1�þACUMk
! ½ �0ACUMk

y2;2

RS2;18 � ½y2;2��k ! ½y3;0�0krem
Stage 3 (Compute ½p̂ki �þ and

P
j2Sk

½p̂kj �þ)

The goal of this rules is, because of Eq. (8), to compute

p̂ki by computing the difference of two numbers: pki ðtÞ andP
l2Sk zkl ðtÞ � pkl ðtÞ In this stage, we compute ½p̂ki �þ andP
j2Sk ½p̂kj �þ.
From now on, in this stage, let Sk ¼ fi1; . . .; ijSk jg.
Rules RS3;1 and RS3;2 are used for coordination.

RS3;1 � ½y3;0 ! y3;1;i1 . . . y3;1;ijSk j �
0
k

RS3;2 � y3;1;i½ �0UPDi;k
! ½rem�þUPDi;k

y3;2;i

Because we need to compute p̂ki ðtÞ for each i, we use

rule RS3;3 to create jSkj copies of
P

l2Sk zkl ðtÞ � pkl ðtÞ, each
represented by negi. These copies are then sent into

membranes UPDi;k by using rule RS3;4.

RS3;3 � ½neg ! negi1 . . . negijSk j �
0
k

RS3;4 � negi½ �þUPDi;k
! ½negi�þUPDi;k

Rules RS3;5 and RS3;6 are used to coordinate the com-

putation of pki ðtÞ �
P

l2Sk zkl ðtÞ � pkl ðtÞ by changing the

polarization of membranes UPDi;k to -.

RS3;5 � ½y3;2;i ! y3;3;i�0k
RS3;6 � ½y3;3;i½ �þUPDi;k

! ½y3;4;i��UPDi;k
�0k

Rules RS3;7, RS3;8, and RS3;9 compute

pki ðtÞ �
P

l2Sk zkl ðtÞ � pkl ðtÞ. If the difference is positive,

objects qi remain. Otherwise, because we are interested in

using this difference to compute ½p̂ki �þ, objects negi are

eliminated. ½p̂ki �þ is then represented by objects qi.

RS3;7 � ½negi posi ! k��UPDi;k

RS3;8 � ½negi ! k��UPDi;k
, with q3;7 [ q3;8.

RS3;9 � ½posi ! qi��UPDi;k
, with q3;7 [ q3;9.

Rules RS3;10 and RS3;11 are used for coordination. Rule

RS3;12 generates objects q and ejects them from membranes

UPDi;k. By doing this, we compute the sum
P

j2Sk ½p̂kj �þ,
while ½p̂ki �þ is still represented by objects qi. Rule RS3;13
coordinates the beginning of the next stage.

RS3;10 � ½y3;4;i ! y3;5;i��UPDi;k

RS3;11 � ½y3;5;i��UPDi;k
! ½y3;6;i�0UPDi;k

rem

RS3;12 � ½qi�0UPDi;k
! ½ �0UPDi;k

q qi

RS3;13 � ½y3;6;i�0UPDi;k
! ½ �0UPDi;k

y3;7;i

Stage 4 (Compute _zki ðtÞ)
Because of Eq. (7), to compute _zki ðtÞ we need to compute

first zki �
P

j2Sk ½p̂kj �þ. From Stage 3, we have objects q that

represent
P

j2Sk ½p̂kj �þ, and from Stage 2 we have objects

hProd2; k; i; li that represent zki . As in Stage 2, we can use

membranes MULT2i;k as multiplication modules. These

modules work the same as MULTi;k from Stage 2, com-

puting products in a maximum of 43 transition steps, and

with the only difference that MULT2i;k returns objects di
instead of d and objects f1 instead of f (see Appendix A for

more details).

When the multiplication process is finished, we will

have objects qi from Stage 3 that represent ½p̂ki �þ, and we

will have obtained objects di that represent z
k
i �

P
j2Sk ½p̂kj �þ.

We can then compute _zki ðtÞ (see Eq. (7)), resulting in

objects zvarp if it is positive, or zvarn if it is negative.

From now on, in this stage, let Sk ¼ fi1; . . .; ijSk jg.
Rules from RS4;1 to RS4;12 coordinate the beginning of

the multiplication process inside membranes MULT2i;k,

multiplying zki , represented by objects hProd2; k; i; li, andP
j2Sk ½p̂kj �þ, represented by objects q.

RS4;1 � ½y3;7;i1 . . .y3;7;ijSk j ! multzi1;0. . .multzijSk j;0�
0
k

RS4;2 � ½multzi;0 ! multzi;1�0k
RS4;3 � ½q ! hq; i1i. . .hq; ijSk ji�0k

RS4;4 � hProd2; k; i; li½ �0MULT2i;k
! ½prod�0MULT2i;k

RS4;5 � hq; ii½ �0MULT2i;k
! ½e�0MULT2i;k

RS4;6 � multzi;1½ �0MULT2i;k
! ½mult0�þMULT2i;k

RS4;7 � ½prod ! prod0�þMULT2i;k

RS4;8 � ½e ! e0�þMULT2i;k

RS4;9 � ½mult0�þMULT2i;k
! ½mult1�0MULT2i;k

rem

RS4;10 � prod0 ! ½a�0M10

RS4;11 � ½e0 ! b�0MULT2i;k

RS4;12 � mult1½ �0M10 ! ½k1�0M10

Rules RS4;13 and RS4;14 coordinate the beginning of the

computation of ½p̂ki ðtÞ�þ � zki ðtÞ �
P

j2Sk

½p̂kj ðtÞ�þ in membranes

Si;k.

RS4;13 � f
jSk j
1 ! y

jSk j
4;0

328 A. Luque-Cerpa, M. Á. Gutiérrez-Naranjo

123



RS4;14 � y4;0½ �0Si;k ! ½y4;1�þSi;k
Rules RS4;15 to RS4;23 compute such difference. If the

difference is positive (negative), then objects zvarp (zvarn)

are produced.

RS4;15 � qi½ �þSi;k ! ½s0�þSi;k
RS4;16 � di½ �þSi;k ! ½di�þSi;k
RS4;17 � ½s0 ! s1�þSi;k
RS4;18 � ½d100i ! zneg�þSi;k
RS4;19 � ½d51i ! zneg�þSi;k , with q4;18 [ q4;19.

RS4;20 � ½di ! k�þSi;k , with q4;19 [ q4;20.

RS4;21 � ½s1zneg ! k�þSi;k
RS4;22 � ½s1 ! zvarp�þSi;k , with q4;21 [ q4;22.

RS4;23 � ½zneg ! zvarn�þSi;k , with q4;21 [ q4;23.

Rules RS4;24, RS4;25, and RS4;26 are just for coordination,

preparing the system for the next and final stage.

RS4;24 � ½y4;1 ! y4;2�þSi;k
RS4;25 � ½y4;2 ! y4;3�þSi;k
RS4;26 � ½y4;3�þSi;k ! ½y5;0��Si;k rem

Stage 5 (Update z(t) and output results)

Since Stage 1, we have objects c that represent zki . In this

stage, we combine them with objects zvarp or zvarn, rep-

resenting _zðtÞ, to update z(t) using Euler’s method:

zðt þ tstepÞ ¼ zðtÞ þ tstep � _zðtÞ.
Rule RS5;1 is used for coordination. Because we take

tstep ¼ 0:01, rules RS5;2 to RS5;10 are used to compute

zðtÞ þ tstep � _zðtÞ. Because nothing guarantees that the new

values satisfy 0� zki ðtÞ� 100, there are some special cases

to consider. Most of the rules from RS5;11 to RS5;38 are used

to deal with these cases, and the rest are for coordination.

These cases are further developed in section 4.2, Stage 5.

RS5;1 � ½y5;0 ! y5;1��Si;k
RS5;2 � ½zvarn100 c ! k��Si;k
RS5;3 � ½zvarn51 c ! k��Si;k , with q5;2 [ q5;3.

RS5;4 � ½zvarp100 ! p��Si;k
RS5;5 � ½c ! p��Si;k , with q5;3 [ q5;5.

RS5;6 � ½zvarn100 ! n��Si;k , with q5;3 [ q5;6.

RS5;7 � ½zvarn51 ! n��Si;k , with q5;6 [ q5;7.

RS5;8 � ½zvarn ! k��Si;k , with q5;7 [ q5;8.

RS5;9 � ½zvarp51 ! p��Si;k , with q5;4 [ q5;9.

RS5;10 � ½zvarp ! k��Si;k , with q5;9 [ q5;10.

RS5;11 � ½y5;1 ! y5;2 comp100��Si;k
RS5;12 � ½p100��Si;k ! ½over��Si;kw

100
i

RS5;13 � ½y5;2��Si;k ! ½y5;3�0Si;k y5;3;i
RS5;14 � ½p�0Si;k ! ½ �0Si;k p

RS5;15 � ½over comp100 ! k ��Si;k
RS5;16 � ½n�0Si;k ! ½ �0Si;k n
RS5;17 � ½comp�0Si;k ! ½ �0Si;k compwi

RS5;18 � ½p comp ! p1��Si;k , with q15 [ q18.

RS5;19 � ½p1�0Si;k ! ½ �0Si;kwi

RS5;20 � ½p n ! k�0k
RS5;21 � ½p compwi ! wi�0k , with q20 [ q21.

RS5;22 � ½n wi ! compwi�0k , with q20 [ q22.

RS5;23 � ½p ! err�0k , with q21 [ q23.

RS5;24 � ½n ! err�0k , with q22 [ q24.

RS5;25 � ½y5;3 ! y5;4�0Si;k
RS5;26 � ½y5;4 ! y5;5�0Si;k
RS5;27 � ½y5;5�0Si;k ! ½ �þSi;k y5;6
RS5;28 � ½y5;3;i1 . . .y5;3;ijSk j ! y5;4�0k
RS5;29 � ½y5;4�0k ! ½y5;5 v100�þk rem
RS5;30 � ½wi v ! zi�þk
RS5;31 � ½wi ! k�þk , with q5;30 [ q5;31.

RS5;32 � ½compwi ! k�þk
RS5;33 � ½v ! zi�þk , with q5;30 [ q5;33.

RS5;34 � ½y5;5�þk ! ½ �0krem
RS5;35 � zi½ �þSi;k ! ½zi�þSi;k
RS5;36 � y5;6½ �þSi;k ! ½y5;7�0Si;k
RS5;37 � y5;7½ �0RESi;k ! ½y5;8�þRESi;k
RS5;38 � zi½ �þRESi;k ! ½EXITi�þRESi;k
Rules from RS5;39 to RS5;47 are used for coordination and

for preparing the output of the P system. Objects hAUX; ni
are used to count how many iterations of Algorithm 1 have

been completed. Objects hEXIT; k; i; l; ni represent the

values zki ðtÞ at iteration n. Objects hINIT ; k; i; li are used to

reset the P system, preparing Stage 1 for a new iteration of

the algorithm.

RS5;39 � ½hAUX; ni ! hCLK; nþ 1i100hAUX1; nþ 1i�þRESi;k

RS5;40 � ½y5;8�þRESi;k ! ½y5;9��RESi;k rem

RS5;41 �½EXITi hCLK; ni��RESi;k ! ½ ��RESi;khEXIT ; k; i; l; ni, with n� 1

RS5;42 � ½hCLK; ni ! k��RESi;k , with n� 1 and q5;41 [ q5;42.

RS5;43 � ½y5;9��RESi;k ! ½ �0RESi;k y5;10
RS5;44 � ½hAUX1; ni ! hAUX; ni�0RESi;k , with n� 1
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RS5;45 �½hEXIT ; k; i; l; ni�0Si;k ! ½hINIT ; k; i; li�0Si;khEXIT ; k; i; l; ni, with n� 1

RS5;46 � ½y5;10�0Si;k ! ½ �0Si;k y5;11;i

RS5;47 �½hEXIT ; k; i; l; ni�0k ! ½ �0khEXIT ; k; i; l; ni, with n� 1

Rules RS5;48 to RS5;60 coordinate a new iteration of

Algorithm 1, sending an object y0 to membrane P and

initializing the new objects hk; i; li for Stage 1.

RS5;48 � ½y5;11;i1 . . .y5;11;ijSk j �
0
k ! ½ �0k y5;12;k

RS5;49 � ½y5;12;1. . .y5;12;N ! y0�00
RS5;50 � ½err�0k ! ½ �0kerr
RS5;51 � ½y0 ! y0;0 y0;1. . .y0;N �00
RS5;52 � y0;0½ �0P ! ½y0;0�0P
RS5;53 � y0;k½ �0k ! ½y0;0�0k
RS5;54 � ½y0;0 ! y0;1�0P
RS5;55 � ½y0;0�0k ! ½y0;i1 . . .y0;ijSk j �

0
k

RS5;56 � ½y0;1 ! y0;2�0P
RS5;57 � y0;i½ �0Si;k ! ½y0;2�þSi;k
RS5;58 � ½y0;2 ! y0�0P
RS5;59 � ½hINIT ; k; i; li ! hk; i; li�þSi;k
RS5;60 � ½y0;2�þSi;k ! ½ �0Si;k rem
To stop after L iterations of Algorithm 1

RS5;61 � ½hAUX1; Li y5;9 ! k��RESi;k

4.2 Overview of the computation

This subsection provides an analysis of the computation for

each stage of Algorithm 1. The result of the computation

analysis is that for each time step t, the number of transition

steps is upper bound by a constant. This means that the

computation time complexity of the global computation

only grows linearly with t.

Stage 1: Computation of payoff p(t) In this stage, the

payoff of the current iteration is computed. To do this, it is

necessary to consider the function f involved in Eq. (6).

The computation starts with the initial configuration. If we

only consider the membranes involved in this stage, we

have the following configuration:

C0 ¼ ½½½hk; i; liz
k
i �0Si;k �

0
k ½y0�

0
P�

0
0

After 8 transitions steps, applying rules from RS1;1 to

RS1;13, we have that each value plðtÞ of p(t) is computed:

C8 ¼ ½½ha; k; i; liplðtÞ�0k ½y6�
�
P �

0
0

We computed then p(t), as intended. Some rules in Stage 2

will transform the objects ha; k; i; li that are in the mem-

branes ½ �k, but for now, we are interested in seeing when

Stage 1 will finish. Two iterations later, after applying rules

RS1;14 and RS1;15:

C10 ¼ ½½. . .multjS
k j

0 ��k ½ �0P�
0
0

Stage 2: Computation of the sums
P
j2Sk

zkj ðtÞpkj ðtÞ

Stage 2 starts with the last configuration of Stage 1: C10.

After C2 and C8, because of the effects of rules RS1;3 and

RS1;12, there are some elements hProd; k; i; li and ha; k; i; li
in ½ �k. These membranes k changed their polarization from

0 to - in C10, initiating Stage 2. After only three transition

steps, and applying rules from RS2;1 to RS2;9:

C13 ¼ ½½½bplðtÞ½azki k1�0M1½ �
0
M2�

0
MULTi;k

&½posplðtÞi �0UPDi;k
½ �0ACUMk

remjSk j��k �
0
0

In this configuration, pl ¼ pki , so zki � pki is computed in

each membrane MULTi;k. Because the round function

multiplies by 100, the (rounded) result of the multiplication

will be 100 � zki � pki . Furthermore, each product is computed

after (at most) 43 transition steps, as proven in Appendix

A. Some objects d may be introduced as objects pos into

membranes ACUMk before finishing these 43 transition

steps. After (at most) 44 steps, having applied rule RS2;10,

and ignoring membranes MULTi;k:

C� 57 ¼ ½½½posplðtÞi �0UPDi;k
½neg100�zki �pki y2;0�þACUMk

��k �
0
0

After three transition steps, applying rules RS2;11 to RS2;18:

C� 60 ¼ ½½½posplðtÞi �0UPDi;k
½ �0ACUMk

negpk y3;0 rem�0k �
0
0

where pk ¼
P
i2Sk

zki ðtÞ � pki ðtÞ. By the end of this stage, we

computed then pk, as intended.

Stage 3: Computation of ½p̂ki �þ and
P
j2Sk

½p̂kj �þ

This stage starts with the last configuration of Stage 2:

C� 60. The change of polarization of membranes ½ �k from
- to 0 and the presence of objects y3;0 initiate Stage 3.

Following all rules of Stage 3 (RS3;1 to RS3;13), we can see

that after 7 steps we have the configuration:

C� 67 ¼ ½½½ �0UPDi;k
qrk q

½p̂ki �þ
i y3;7;i�0k �

0
0

where rk ¼
P
j2Sk

½p̂kj �þ.

Stage 4: Computation of _zki ðtÞ
Stage 4 starts with the last configuration of Stage 3: C� 67.

After objects hProd2; k; i; li were created in computation

C11, they are processed and introduced in membrane
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MULT2i;k in computation C12, but the product is not ini-

tiated until all objects y3;7;i are generated using rule RS3;13:

C� 67 ¼ ½½ ½ �0M10 ½ �
0
M20prod

zki �0MULT2i;k
½ �0Si;k q

rk q
½p̂ki �þ
i y3;7;i�0k �

0
0

Five iterations later, after applying rules from RS4;1 to

RS4;12, the multiplication in MULT2i;k can start:

C� 72 ¼ ½½ ½azki k1�0M10 ½ �
0
M20b

rk �0MULT2i;k
½ �0Si;k rem q

½p̂ki �þ
i �0k �

0
0

After at most 43 iterations, as proven in Appendix A:

C� 115 ¼ ½½ �0Si;k d
100�zki �rk
i f

jSk j
1 q

½p̂ki �þ
i �0k �

0
0

After four more iterations, using rules from RS4;13 to RS4;20,

RS4;24, and RS4;25:

C� 119 ¼ ½½y4;3 znegz
k
i �rk s

½p̂ki �þ
1 �þSi;k �

0
k �
0
0

Now, depending on the result, the objects generated will be

different. We represent by zvar(p||n) the possibility of

having objects zvarp or zvarn.

Considering that _zki ¼ ½p̂ki �þ � zki �
P
j2Sk

½p̂kj �þ, after apply-

ing rules from RS21 to RS4;23 depending on the case, and

RS4;26, we have:

C� 120 ¼ ½½y5;0zvarðpjjnÞ _z
k
i ��Si;k �

0
k �
0
0

Stage 5: Update of z(t), coordination for next iteration

and results output

This stage starts with the last configuration of Stage 4:

C� 120. In the initial multiset, there were some copies of

hAUX; 0i that have not been processed yet. Since config-

uration C1, there are also objects c in membranes Si;k that

have not been processed because the polarization has

changed from 0 to - in the last configuration for the first

time since:

C� 120 ¼ ½½½hAUX; 0i�0RESi;k y5;0 zvarðpjjnÞ _z
k
i cz

k
i ��Si;k �

0
k �
0
0

To update z(t), we use Euler’s method with

zðt þ 0:01Þ ¼ zðtÞ þ 0:01 � _zðtÞ. Depending on the objects

existing at the end of Stage 4, there are three possible cases.

Let mi ¼ zki þ 0:01 � _zki . Then:

• Case 1: If 0�mi\100, then three transition steps later

using rules from RS5;1 to RS5;11, RS5;13, and RS5;18:

C� 123 ¼ ½½½hAUX; 0i�0RESi;k y5;3 comp100�mi pmi

1 �0Si;k y5;3;i1 . . .y5;3;ijSk j �
0
k �
0
0

And finally, using rules RS5;17, RS5;19, RS5;25, and

RS5;28:

C� 124 ¼ ½½½hAUX; 0i�0RESi;k y5;4�
0
Si;k

compw100�mi
i wmi

i y5;4�0k �
0
0

• Case 2: If mi\0, then three transition steps later using

rules from RS5;1 to RS5;3, from RS5;6 to RS5;8, RS5;11,

and RS5;13:

C� 123 ¼ ½½½hAUX; 0i�0RESi;k y5;3 comp100 nmi �0Si;k y5;3;i1 . . .y5;3;ijSk j �
0
k �
0
0

And finally, using rules RS5;16, RS5;17, RS5;25, and

RS5;28:

C� 124 ¼ ½½½hAUX; 0i�0RESi;k y5;4�
0
Si;k

compw100
i nmi y5;4�0k �

0
0

• Case 3: If mi � 100, then three transition steps later

using rules RS5;1, RS5;4, RS5;5, from RS5;9 to RS5;13, and

RS5;15:

C� 123 ¼ ½½½hAUX; 0i�0RESi;k y5;3 pmi�100�0Si;k y5;3;i1 . . .y5;3;ijSk jw
100
i �0k �

0
0

Notice that, in this stage, objects y5;3;i are always

created in the same configuration in each of the three

cases. Finally, using rules RS5;14, RS5;25, and RS5;28:

C� 124 ¼ ½½½hAUX; 0i�0RESi;k y5;4�
0
Si;k

w100
i pmi�100 y5;4�0k �

0
0

Regardless of the result of each case, objects wi represent

the new zki , objects compwi represent the difference

between zki and 100, and objects p and n represent positive

and negative overflow respectively. If both overflows exist,

they will cancel each other for the next configuration.

These objects are introduced because, while using Euler’s

method, there is nothing that assures that 0� zki ðtÞ� 100

8t� 1. The next configuration, using rules from RS5;20 to

RS5;24, RS5;26, and RS5;29, is then:

C� 125 ¼ ½½½hAUX; 0i�0RESi;k y5;5�
0
Si;k

erru w
ẑki
i compw

100�ẑki
i y5;5 v100�þk rem�

0
0

Objects err are created only in case some overflow appears.

Seven transition steps later, using rules RS5;27 and from

RS5;30 to RS5;48, the objects EXIT will be in the skin. These

objects will represent the final result of z(t) for each t:

C� 132 ¼ ½½½hAUX; 1i �0RESi;k hINIT ; k; i; li
ẑki �0Si;k �

0
khEXIT ; k; i; l; 1i

ẑki y5;12;1. . .y5;12;N �00

Finally, after six more iterations, using rules from RS5;49 to

RS5;60:

C� 138 ¼ ½½½hAUX; 1i �0RESi;k hk; i; li
ẑki �0Si;k rem�

0
khEXIT ; k; i; l; 1i

ẑki ½y0�0P�
0
0

It is important to notice that, in this last configuration,

object y0 is in membrane P and the objects hk; i; li are in Ski .
This configuration is then analogous to configuration C0, so

we know that the system can run another iteration of

Algorithm 1. When rule RS5;61 is eventually triggered,

object y5;9 will be consumed, and this will prevent the

generation of new objects y0 and hk; i; li. This will even-

tually make the P system stop evolving (see rules RS5;43,

RS5;46, RS5;48, RS5;49, and from RS5;51 to RS5;59).
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In conclusion, the transition from z(t) to zðt þ tstepÞ has a
constant upper bound of 138 steps, and it does not depend

on the size of the problem or the tstep chosen. If we had to

compute GNE by using Euler’s method iteratively to

compute the evolution of z(t), we would have to update the

values zki ðtÞ in each iteration using Eqs. (6), (7), and (8) for

each k 2 P and each i 2 Sk. This would require a compu-

tation time proportional to
P

k2P jSkj for each iteration. If t

iterations of Euler’s method are required to compute the

GNE, then the computation time complexity is proportional

to Oðt �
P

k2P jSkjÞ. In contrast, the computation time our P

system requires to update z(t) is upper bound by a constant

that does not depend on
P

k2P jSkj. This implies that the

computation time complexity is proportional to OðtÞ.
Because of the massive parallelism inherent to P systems,

the computation time complexity is reduced by a factor ofP
k2P jSkj.
To define this system, it was required to select a specific

f(z(t)) to compute p(t) (see Eq. (6)). In our case, f(z(t)) was

given by the Energy Market Game (Sect. 3.1) and involves

real numbers. We also used objects that represent 1% of the

agents z(t) as explained at the beginning of Sect. 4.

Because of these decisions, we rounded every number to

two decimals. We can take smaller values of tstep to get

better approximations if we round to more decimals, but

then Euler’s method will require more time steps to com-

pute the GNE. However, this does not affect the difference

in computation time complexity stated above.

4.3 Experimental results

4.3.1 Setup

Researchers have developed different P system simulators

that are available, like P-lingua (MeCoSim) Gutiérrez-

Naranjo et al. (2008); Garcı́a-Quismondo et al. (2009);

Pérez-Hurtado et al. (2010) or UPSimulator Guo et al.

(2019, 2018). To perform experiments, we use MeCoSim

for its simplicity. This simulator allows the design of P

systems with particular properties, in this case, transition P

systems with membrane polarization.

One limitation of every P system simulator is that it still

runs on a computer, so the parallelism inherent to P sys-

tems is lost. However, we can use MeCoSim to perform

experiments and test the P system designed in Sect. 4.1.

Although some implementations of P systems on GPU

devices can be found in the literature (see, e.g., Martı́nez-

del-Amor et al. (2015); Zhang et al. (2021)), our experi-

ment was conducted on a machine with a 3.59GHz 6-core

CPU and with 16GB of RAM. We consider the possibility

of adapting the implementation to GPU devices, and

empirically studying the improvements in time, as future

work.

4.3.2 Experiment

To test the correct behavior of our P system, we have

considered a small example, where N ¼ 3, T ¼ 5,

S1 ¼ f3; 5g, S2 ¼ f1; 3; 5g, S3 ¼ ðS1Þc ¼ f1; 2; 4g, and we

randomly sample the nonzero elements of D, �J, a, b and mk

from [0, 1], [2, 4], [1, 10], [0, 1] and Debreu (1952);

Facchinei and Kanzow (2007) respectively. The parameters

are sampled from the same distributions described in

Martinez-Piazuelo et al. (2022).

In Fig. 2, we can see how the trajectories of the values zki
initialize as equally distributed for each player k as possi-

ble, and they evolve until reaching a stable distribution

after only 10 time steps: _z ¼ 0 after ten steps. At that

moment, a GNE is found. It was expected that player 3

would concentrate more agents over time slot 4 (z34) or 2

(z32) since it is the only player with access to those

resources. The difference is a consequence of the cost

difference. As expected, the results coincide with those

obtained by applying Euler’s method independently.

Notice that, as explained in Sect. 3, zki represents the

proportion of agents in population k that follow strategy i.

In the Energy Market Game that we are solving, zik is the

proportion of energy purchased in time slot i by player k.

5 Conclusions

We propose a P system based on Euler’s method that

computes approximations of GNE for population games

under BNN dynamics. If Euler’s method requires t itera-

tions to compute GNE, we have proved that the compu-

tation time complexity of the P system is linear with

respect to t, independently of the size of the problem.

Our P system presents some limitations. First, if the

function f representing the game is complex enough, it is

possible that P systems are not powerful enough to com-

pute it in constant time, increasing the system’s time

complexity. Second, the system presented only works for

population games under BNN dynamics.

This work can be extended in some directions. First, in

this paper, some of the evolution rules of the P system are

defined specifically for instances of the Energy Market

Game as a representative of population games under BNN

dynamics. As future work, we propose modifying this P

system to compute GNE for other population games under

BNN dynamics by changing the payoff function and the

corresponding rules. Second, our P system is also easily

generalizable for studying the evolution of other EDM-
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PDM systems besides population games under BNN

dynamics, even if equilibria are not reached.

Finally, as pointed out in sect. 4.3, the current study can

also be simulated in a GPU device to explore further time

improvements.

Appendix A Russian peasant multiplication
in membrane computing

A P system that computes the product of two numbers

m; n 2 N0, inspired by the Russian peasant multiplication

algorithm Cameron (1994), is defined in this appendix. The

goal is to use it as a multiplication module for the P system

defined in Sect. 4.1.

The algorithm is described in Algorithm 2.

Algorithm 2 Russian Peasant Multiplication

For example, if we want to multiply m ¼ 37 by n ¼ 16

using Algorithm 2, we get the result of Table 1, where t is

the iteration of the while loop.

The structure of the P system has three membranes: l ¼
½½�1½�2�0 and the initial multisets are w1 ¼ famk1g, w2 ¼ ;
and w0 ¼ fbng. The output region iout is the environment.

The alphabet of objects is given by:

C ¼ fa; b; c; d; f ;m; y0; y1; remg [ fki : 1� i� 6g [ fai : 1� i� 5g
[ fbi : 1� i� 4g [ fmi : 1� i� 3g [ ffi : 1� i� 4g

The ruleset of this system is the following:

RS1 ¼ ½k1 ! k2 y0�01
RS2 ¼ ½k2 ! k3�01
RS3 ¼ ½k3 ! k4�01
RS4 ¼ ½k4 ! k5�01
RS5 ¼ ½k5 ! k6�01
RS6 ¼ ½k6 ! k1�01
RS7 ¼ ½a2 ! a1 y21�

0
1

RS8 ¼ ½a ! m y1�01, with q7 [ q8
RS9 ¼ ½a1 ! a2�01
RS10 ¼ ½a2 ! a3�01
RS11 ¼ ½a3 ! a4�01
RS12 ¼ ½a4 ! a5�01
RS13 ¼ ½a5 ! a�01
RS14 ¼ ½y21 y0 ! k�01

Fig. 2 Small experiment with

three players (populations) and

five strategies, distributed such

that S1 ¼ f3; 5g, S2 ¼ f1; 3; 5g,
S3 ¼ ðS1Þc ¼ f1; 2; 4g. Players
1, 2, and 3 are represented by

lines z1i , z
2
i , and z3i , respectively

Table 1 Multiplication of m ¼
37 and n ¼ 16 using the Russian

Peasant Multiplication algo-

rithm (Algorithm 2)

t m n res

0 37 16 16

1 18 32 16

2 9 64 80

3 4 128 80

4 2 256 80

5 1 512 592
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RS15 ¼ ½y1 y0 m�01 ! ½f �01f , with q14 [ q15
RS16 ¼ ½y1 ! k�01, with q15 [ q16
RS17 ¼ ½m�01 ! ½ �01m, with q15 [ q17
RS18 ¼ ½k2y0�01 ! ½ �01y0, with q15 [ q18 and q18 [ q2
RS19 ¼ ½b ! b1�00
RS20 ¼ ½b1 ! b2�00
RS21 ¼ ½b2 ! b3�00
RS22 ¼ ½b3 ! b4�00
RS23 ¼ ½b4 ! c2�00
RS24 ¼ ½c ! b�00
RS25 ¼ ½b3½ �02 ! ½d�02c2�

þ
0

RS26 ¼ ½c ! b�þ0
RS27 ¼ ½m�00 ! ½m1�þ0 rem
RS28 ¼ ½m1 ! m2�þ0
RS29 ¼ ½m2 ! m3�þ0
RS30 ¼ ½m3�þ0 ! ½ �00rem
RS31 ¼ ½f k3 ! k�01, with q31 [ q3
RS32 ¼ f ½ �02 ! f1 ½f1�02
RS33 ¼ ½f1�02 ! ½ ��2 rem
RS34 ¼ ½f1�00 ! ½f2��0 rem
RS35 ¼ f2½ ��2 ! f3 ½f3��2
RS36 ¼ ½f3 ! f4��2
RS37 ¼ ½f3 ! f4��0
RS38 ¼ ½f4��2 ! ½ �02rem
RS39 ¼ ½f4��0 ! ½ �00f
RS40 ¼ ½d��2 ! ½ ��2 d
RS41 ¼ ½d��0 ! ½ ��0 d
RS42 ¼ ½b4 ! d��0
RS43 ¼ ½y0�00 ! ½f3��0 rem
RS44 ¼ ½b3 ! k��0
RS45 � ½rem ! k�sm, 8m 2 f0; 1; 2g, 8s 2 fþ;�; 0g

(Cleaning rule).

A.1Computation analysis

The behavior of this P system is correct. It is easy to prove

this by analyzing the following four cases: m ¼ 0, m ¼ 1,

m ¼ 2p with p� 1 and m ¼ 2pþ 1 with p� 1. Notice that,

because the rules are applied in a parallel and maximal way

as described in Sect. 2, the behavior of this P system is

deterministic, and no other sets of rules can be applied in

each configuration.

• If m ¼ 0, then m � n ¼ 0, and the following computation

takes place:

C0 ¼ ½½k1�01½ �
0
2b

n�00
C1 ¼ ½½k2y0�01½ �

0
2b

n
1�
0
0

C2 ¼ ½½ �01½ �
0
2b

n
2y0�

0
0

C3 ¼ ½½ �01½ �
0
2b

n
3f3�

�
0 rem

C4 ¼ ½½ �01½ �
0
2f4�

�
0

C5 ¼ ½½ �01½ �
0
2�
0
0f

The computation is then done in 5 iterations, and

because the output is zero copies of object d, the result

is correct.

• If m ¼ 1, then m � n ¼ n and:

C0 ¼ ½½ak1�01½ �
0
2b

n�00
C1 ¼ ½½my1y0k2�01½ �

0
2b

n
1�
0
0

C2 ¼ ½½fk3�01½ �
0
2b

n
2f �

0
0

C3 ¼ ½½ �01½f1�
0
2b

n
3f1�

0
0

C4 ¼ ½½ �01½ �
�
2 b

n
4f2rem�

�
0 rem

C5 ¼ ½½ �01½f3�
�
2 d

nf3��0
C6 ¼ ½½ �01½f4�

�
2 f4�

�
0 d

n

C7 ¼ ½½ �01½ �
0
2rem�

0
0fd

n

The computation is then done in 7 iterations, and

because the output is n copies of object d, the result is

correct.

• If m ¼ 2p with p� 1 and we follow the Russian peasant

multiplication algorithm, then the result of the partial

computation doesn’t contribute directly to the final

result. In our system, this means that no objects d will

be saved in membrane ½ �2:

C0 ¼ ½½a2pk1�01½ �
0
2b

n�00
C1 ¼ ½½ap1y

2p
1 y0k2�01½ �

0
2b

n
1�
0
0

C2 ¼ ½½ap2k3�
0
1½ �

0
2b

n
2�
0
0

C3 ¼ ½½ap3k4�
0
1½ �

0
2b

n
3�
0
0

C4 ¼ ½½ap4k5�
0
1½ �

0
2b

n
4�
0
0

C5 ¼ ½½ap5k6�
0
1½ �

0
2c

2n�00
C6 ¼ ½½apk1�01½ �

0
2b

2n�00
The computation goes from multiplying by m ¼ 2p,

represented by objects a, to multiplying by m ¼ p in 6

iterations. We can see also that no objects d were cre-

ated, and that n, represented by objects b, is raised to

2n as in the Russian peasant multiplication algorithm.

• If m ¼ 2pþ 1 with p� 1 and we follow the Russian

peasant multiplication algorithm, then in this case the

result of the partial computation contributes directly to

the final result. In our system, this means that n objects

d will be saved in membrane ½ �2:
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C0 ¼ ½½a2pþ1k1�01½ �
0
2b

n�00
C1 ¼ ½½ap1 m y2pþ1

1 y0 k2�01½ �
0
2b

n
1�
0
0

C2 ¼ ½½ap2k3�
0
1½ �

0
2b

n
2 m�00

C3 ¼ ½½ap3k4�
0
1½ �

0
2b

n
3 m1�þ0 rem

C4 ¼ ½½ap4k5�
0
1½dn�

0
2c

2n m2�þ0
C5 ¼ ½½ap5k6�

0
1½dn�

0
2b

2n m3�þ0
C6 ¼ ½½apk1�01½dn�

0
2b

2n�00rem

The computation goes from multiplying by

m ¼ 2pþ 1, represented by objects a, to multiplying by

m ¼ p in 6 iterations. We can see also that n objects d

were created in membrane ½ �02, and that n, represented

by objects b, is raised to 2n as in the Russian peasant

multiplication algorithm.

Finally, if we observe rules RS40 and RS41, we see that the

objects d will be extracted from ½ �02 when the whole

computation is finished, giving the result as output.

It takes 6 iterations to reduce the problem of multiplying

by m to the problem of multiplying by bm=2c, this is, to

complete an iteration of the while loop in Algorithm 2.

Because n doesn’t influence the number of operations, we

have an upper bound over the number of transition steps of

1þ 6 � dlog2ðmÞe.
For the P system defined in Sect. 4.1, we take advantage

of the previous bound by always doing m ¼ zki and n ¼ pki
or n ¼

P
j2Sk ½p̂kj �þ, depending on the multiplication we

have to compute. Because 0� zki � 100, we have that if we

multiply m by any number, the number of iterations will be

bounded by 1þ 6 � dlog2ð100Þe ¼ 43.

In the P system defined in Sect. 4.1, the membranes

MULTi;k will be almost exactly as described, with the

structure changing from l ¼ ½½ �01½ �
0
2�
0
0 to

l0 ¼ ½½ �0M1½ �
0
M2�

0
MULTi;k

. Membranes MULT2i;k will have

l00 ¼ ½½ �0M10 ½ �
0
M20 �

0
MULT2i;k

as membrane structure, and will

return objects di instead of d (rules RS40, RS41) and objects

f1 instead of f (rule RS39).
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