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Abstract

Autonomous driving stands as one of the most complex challenges in artificial in-
telligence and robotics. These systems are expected to provide safe and efficient
navigation across diverse and dynamic environments. This thesis addresses critical
obstacles in the development of autonomous driving technologies by focusing on three
primary areas: uncertainty estimation in object detection, reduction of annotation
requirements through self-supervised learning, and the creation of scalable, realistic
simulations via neural rendering. First, we introduce a novel framework for uncer-
tainty estimation in object detection, leveraging the Random Finite Set formalism to
provide a principled approach for training and evaluating probabilistic object detectors.
This framework enables practitioners to better understand the capabilities and limita-
tions of object detectors, and effectively design and deploy safer and more reliable
systems. Second, we present LidarCLIP, a self-supervised learning method designed
to bridge the gap between lidar point clouds and language understanding. By aligning
lidar data with the CLIP embedding space through image-point cloud pairs, LidarCLIP
learns semantic scene understanding without the need for costly human annotations.
This approach has the potential to significantly reduce the dependency on labeled
data, accelerating the development and deployment of autonomous driving systems.
Last, we develop NeuRAD and SplatAD, advanced neural rendering techniques for
joint camera and lidar simulation. NeuRAD offers a state-of-the-art neural simulator
that facilitates scalable and sensor-realistic closed-loop simulations, while SplatAD
enhances this capability by improving both visual quality and computational efficiency.
These methods pave the way for scalable validation and testing of autonomous driving
systems in diverse and rare scenarios, facilitating comprehensive safety assessments.
Collectively, this thesis addresses existing challenges in autonomous driving and
opens up new avenues for future research in building safe and reliable autonomous
driving systems at scale.

Keywords: Autonomous driving, object detection, uncertainty estimation, self-
supervised learning, novel views synthesis
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CHAPTER 1

Introduction

I use the Pensieve. One simply
siphons the excess thoughts from
one’s mind, pours them into the basin,
and examines them at one’s leisure. It
becomes easier to spot patterns and
links, you understand, when they are
in this form.

Albus Dumbledore

Autonomous driving represents one of the most complex challenges in artificial
intelligence and robotics. These systems must ensure safe and comfortable journeys
in any situation, whether the vehicle cruises down a sunny Route 66 at great speed,
navigates a bustling downtown Tokyo at night, or drives on winding and snowy roads
in northern Sweden. Such a system requires algorithms that enable the vehicle to
perceive its environment, plan ahead, and take action in a split second. Autonomous
driving has the potential to democratize transportation and drastically reduce road
accidents, saving millions of lives. The rise of robotaxis has been shown to provide
safer roads by using systems that are better at avoiding collisions than what humans
are [1]. However, to bring these technologies to the wider public, their development

3



Chapter 1 Introduction

must be cost-efficient and scalable.
Much of the recent progress in the field of autonomous driving has been fueled by

the rise of deep learning. This paradigm shift has allowed algorithms, most commonly
in the form of neural networks, to learn directly from data, reducing reliance on
manually crafted rules for complicated tasks [2]. However, while deep learning has
driven rapid advancements, its use is also associated with a range of challenges,
some of which are especially crucial for a safety-critical application like autonomous
driving. These challenges span from acquiring large enough amounts of diverse data
paired with expensive human annotations to train the neural networks, to finding
accurate and efficient ways to evaluate their performance. This thesis studies multiple
such challenges and proposes solutions to overcome them, with special emphasis on
problems arising in the autonomous driving context. While the contributions made in
this work are spread out over multiple topics, they are bound together by the aim to
accelerate the development of safe and scalable autonomous driving.

1.1 Challenges in Autonomous Driving

This thesis addresses the following key challenges in autonomous driving:

Uncertainty Estimation in Object Detection Perception is one of the core
tasks in autonomous driving, as it enables the system to understand the surroundings
of the vehicle. Perception systems can, for instance, generate descriptions of the road
geometry, classify weather conditions, or detect the location and state of traffic lights.
What type of information is generated usually depends on what practitioners have
deemed important enough to influence the vehicle decisions.

One of the most common perception tasks in autonomous driving is object detection,
where the goal is to predict the class and location of objects such as other traffic
participants, lane markings, traffic signs, etc., from sensory input from a suite of
sensors like cameras, lidars, radars, and ultrasonics. Object detection is, like many
perception tasks, one with multiple sources of ambiguities, like the partial occlusion
of a car behind a truck or by a water droplet on the camera lens. Furthermore,
object detectors inherently exhibit uncertainty due to both their design and training
process. Given that autonomous driving is a safety-critical application, it is crucial
to understand the limitations of its subsystems, such as object detectors. Uncertainty
estimation is a tool that enables this type of reasoning, which also is useful for making
informed decisions.

Although object detection is a long-studied problem [3], uncertainty estimation

4



1.1 Challenges in Autonomous Driving

has often been overlooked. Also known as probabilistic object detection, it requires
reasoning about multiple sources of uncertainty jointly. These sources include the
number of objects and the individual objects’ attributes like class, location, and extent.
The task is further complicated by the fact that we do not know the correspondence
between the predicted and ground truth objects. While the topic has received some
attention, previous approaches to probabilistic object detection [4], [5] lack rigorous
theoretical justification. For instance, [4] proposes the task of probabilistic object
detection and the probability-based detection quality (PDQ), but the latter is biased
towards small objects [5]. In [5], the authors use principled methods to evaluate
the performance of individual detections but rely on ad hoc methods for assigning
predictions to ground truth objects. As a result, fair evaluation of probabilistic object
detectors is not possible with existing methods.

In Paper A [6], we propose a novel framework for modeling the uncertainty in object
detection. Our model is based on the Random Finite Set formalism [7], and comes
with a principled method for training and evaluating probabilistic object detectors.
Specifically, we view the prediction as a single random variable and show how to
reason about assigning predictions to labels in the presence of uncertainty. Our
framework is further compatible with existing probabilistic object detection models,
and only requires reinterpreting their predictions.

Self-Supervised Learning for Reduced Annotation Regardless of the type of
modeling, training deep learning algorithms for autonomous driving typically requires
large amounts of annotated data, which is both time-consuming and expensive to
obtain, hindering its scalable development. To reduce the annotation needs, the
community has primarily explored two complementary techniques, namely active
learning [8] and automatic labeling [9], [10]. The first refers to methods aiming to
maximize the performance of a neural network with fewer annotations by letting
the neural network decide which data to annotate. In this context, this often means
labeling hard and/or rare cases. The latter, automatic labeling, refers to using large
and powerful models, which are too slow to run in real-time, to label the bulk of easy
and common cases. Moreover, these types of models can often use tricks such as
hindsight or rely on higher-quality sensors to improve their performance.

Despite these advancements, there remains a significant dependency on human
annotations. Self-supervised learning (SSL) has emerged as a powerful paradigm
for extracting knowledge from unlabeled data, enabling the development of large
generalist models that require minimal fine-tuning for specific tasks. Specifically, SSL
is one of the key ingredients in the explosive development of large language models

5



Chapter 1 Introduction

[11]–[13] and empowers many pure vision models [14]–[17]. More so, some ap-
proaches utilize self-supervised learning in a multi-modal setting. One such approach
is CLIP (Contrastive Language-Image Pre-training) [18], which leverages web-scale
text-image pairs to connect the language and visual domains and learn from them
jointly. CLIP learns human-like semantics of images that reach beyond the rigidly
defined classes in human-annotated perception tasks and does so without explicit
annotations. The capabilities offer intuitive ways to interact with large amounts of
unlabeled data, e.g., finding the image that best matches a textual description, and,
further, offer a certain degree of interpretability.

A key challenge in applying similar techniques in an AD setting is the lack of
language supervision for sensors other than the camera. Many autonomous driving
systems rely on additional sensors, such as lidar and radar, for redundancy and the
sensors’ complementary strengths and weaknesses. However, there exist no web-scale
radar-language or lidar-language pairs, which hinders the training of CLIP-like models
for these sensors. Some works have studied how to use existing CLIP image models
for point cloud understanding by applying them to 2D projections of the point clouds
[19], [20]. While this approach has shown promise for object-centric data where the
same object easily can be viewed from multiple directions, it is not applicable for
understanding large outdoor scenes in the autonomous driving context.

In Paper B [21], we propose LidarCLIP, a self-supervised learning approach for
connecting outdoor lidar point clouds and text, without the need for any text-point
cloud pairs. To overcome the lack of language supervision for lidar, we propose using
images as an intermediary representation. Specifically, using prevalent image-point
cloud pairs, we supervise a point cloud encoder to match the image CLIP embedding
space. As an effect, LidarCLIP displays strong capabilities for semantic scene under-
standing, anomaly detection, data curation, and potential as a lidar generalist model,
without requiring any human labeling. For example, LidarCLIP can identify rare road
scenarios or weather conditions across massive unlabeled datasets, focusing human
attention where it matters most.

Neural Rendering for Scalable Development Even if we can reduce the
reliance on human annotation, the training and validation of autonomous driving
systems still require the collection of massive amounts of data. For instance, the
training process must contain a diverse set of scenarios for the system to generalize
well. Similarly, the validation process must cover a wide range of scenarios for
developers to trust that the system is safe and performs well in all settings before
deployment. However, trying to collect data from safety-critical scenarios by driving
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in the real world scales poorly, especially with an ever-increasing operational design
domain, as such encounters become prohibitively rare. This can be overcome to a
certain degree by using test tracks or proving grounds, i.e., closed-off areas designated
for controlled testing activities. Here, near-crash scenarios can be explored safely
using inflatable cars or other crash dummies. While giving some indication of real-
world performance for these critical scenarios, test tracks lack the complexity and
diversity of real-world driving and are a costly tool to apply at scale.

The last challenge addressed in this work is that of efficiently creating data that
cannot be collected in the real world. Traditionally, this is solved by using synthetic
data from simulators, where practitioners have full control over the environment.
Here, scenes are composed by combining human-made assets whose behavior is
dictated by predefined rules or data-driven models [22]. While the validation of
the system’s motion planning and control requires only low-level signals such as
moving bounding boxes, the perception systems further require realistic sensor data.
To achieve this, sensor data are often generated using physics-based game engine
approaches. However, reaching a level of sensor-realism sufficient to trust the results
achieved in simulation is a massive undertaking, requiring deep domain knowledge
for accurate simulation, and a workforce of human artists to create diverse assets.

Advancements in neural reconstruction and rendering offer an attractive alterna-
tive to the traditional game engine-based simulators [23]–[25]. Here, one learns a
representation directly from raw sensor data that allows for the rendering of novel
views from the same scene where the location of traffic participants, ego-vehicle
sensors, or both, have been altered. Although this approach has achieved impressive
visual quality, existing methods suffer from some drawbacks. First, these methods are
computationally expensive. Many require hours of training to reconstruct less than
a minute of video, and the inference time is not suitable for real-time applications.
Second, existing methods do not apply to the common AD sensor setup of multiple
cameras and lidar. Thus, they cannot be used as a simulation engine for a wide variety
of sensor platforms.

To address this, we propose new neural rendering approaches for joint camera
and lidar rendering. In Paper C [26], we present NeuRAD, a state-of-the-art neural
simulator for joint camera and lidar rendering. Through modeling of important
sensor characteristics such as rolling shutter effects, beam divergence, camera-specific
exposure, and non-returning lidar rays, NeuRAD outperforms previous methods
by a large margin across multiple datasets. As shown in [27], NeuRAD can be
used to rapidly reconfigure observed nominal driving scenarios into safety-critical
scenarios that require emergency maneuvers, thereby significantly accelerating safety
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validation. Although NeuRAD advances neural rendering by enabling sensor-realistic
simulations, it faces challenges in training and inference time. To address these,
we develop SplatAD (Paper D) [28], which achieves breakthrough improvements in
computational efficiency and further improves visual quality. SplatAD significantly
reduces training time and inference latency compared to NeuRAD, while producing
more photorealistic renderings as measured by standard metrics. These improvements
make neural rendering practical for large-scale validation and training, enabling
autonomous driving developers to dramatically expand their testing coverage of rare
and safety-critical scenarios.

1.2 Outline

The remainder of the thesis is divided into two parts: the first introduces the back-
ground and motivation, while the second presents the included research papers. The
first part is divided into six chapters, where each of the first four introduces a new
topic. In the first chapter, we describe the task of autonomous driving and the com-
ponents that make up an autonomous driving system. In the second chapter, we
introduce how autonomous driving systems perceive their surroundings and how
to train such systems. The topics related to this include supervised learning and
uncertainty estimation. In the third chapter, we cover self-supervised and weakly
supervised learning in general, and language supervision in particular. In the fourth
chapter, we introduce neural rendering and how it can be used to create realistic
simulations of autonomous driving scenarios. In the fifth chapter, we summarize the
included papers and their contributions. The last chapter contains concluding remarks
on both potential improvements and future applications of the included works.
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CHAPTER 2

Autonomous Driving

While the works in this thesis do not directly solve the problem of autonomous driving
(AD), their common denominator is the enablement of AD development. Thus, this
chapter introduces the task of autonomous driving, common ways of designing an
AD system, and ways to continuously improve the system’s performance. However,
it is important to note that the specifics of these components can vary significantly
across different AD systems. This chapter aims to provide a broad introduction to
autonomous driving and highlights general principles applicable to a wide range of
implementations. Further, in this thesis, the focus is on self-driving vehicles that
share the road with human drivers. However, many of the discussed systems and
methods to a large degree remain applicable also for applications such as mining,
agriculture, warehouse operations, or even general physical AI systems. In addition,
these techniques are also common in advanced driver assistance systems (ADAS),
where the discerning factor compared to AD is that ADAS has a lower level of
automation and a higher degree of human supervision.
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Sense
Internal and 
external 
sensors

Perceive
Estimate scene 
composition and 
location of 
surrounding actors

Predict
Predict how the scene 
will evolve in the future

Plan
Choose safe trajectory 
that makes progress 
toward goal in a 
comfortable way 

Map
Read out knowledge of 
the world that has 
been encoded ahead 
of time

Localize
Estimate state of 
vehicle such as 
location and velocity 
relative to a map

Control
Calculate suitable 
control action to 
actuate selected plan

eHMI
Communicate 
intentions to 
passenger and 
surroundings

Perceive and predict 
jointly from sensor data

End-to-end driving

Figure 2.1: An autonomous driving system can be divided into multiple building blocks. The
vehicle senses both the external and internal environment using sensors. Besides
sensor information, the AD system can rely on information about the world that has
been encoded ahead of time, e.g., map information. This information can be used
in all subsequent blocks with localization, perception, prediction, and planning.
Depending on the specific implementation, the subsystems might be separate with
clearly defined interfaces (modular stack), consist of a single large block (end-
to-end), or something in between. Regardless of variation, the final output from
the stack is actuation commands for steering the vehicle, and optionally an eHMI
interface to communicate with passengers and surrounding traffic participants.
Figure inspired by [29].

2.1 Building Blocks of an Autonomous Vehicle

On a high level, autonomous vehicles consist of four core components: (i) the physical
vehicle platform, (ii) an array of sensors that monitor both the external environment
and the vehicle’s internal state, (iii) computational hardware that processes sensor
data and makes decisions, and (iv) actuators that execute control commands. Each
component must meet strict requirements in terms of reliability and performance to
ensure safe autonomous operation. Additionally, the vehicle can be equipped with an
eHMI (external human-machine interface) to communicate its intent to passengers
and the surroundings. In this thesis, we define the AD system as the set of algorithms
running on the computational device used to process inputs and produce actuation
commands. The inputs to the AD system are (i) a mission specifying to which location
it should drive, (ii) sensor data, and (iii) potentially a map or other prior knowledge.
See Fig. 2.1 for an overview.
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Sensors

The types of sensors deployed in an AD system can vary between different realizations,
governed by factors such as cost, intended operational domain, and level of automation.
For instance, consumer vehicles naturally have tighter sensor budgets than robotaxis
since these are produced at a much greater scale. On the other hand, aiming to
operate in a wide range of environmental conditions, including adverse weather,
is associated with strict requirements on sensor robustness. Further, autonomous
driving systems without any human supervision have a greater need for redundancy
for safe operations. As an example, Tesla is developing a vision-only system and has
discarded any distance-measuring sensors such as lidar, radar, or ultrasonic sensors
[30]1. While this reduces the hardware costs compared to including lidars or radars,
it also makes developing safe AD much more challenging. In comparison, robotaxi
companies such as Waymo build orders of magnitude fewer cars and do not sell them
to consumers, and therefore can afford to rely on more expensive sensor setups with
multiple cameras, lidars, and radars.

In this thesis, we assume that autonomous vehicles are equipped with at least one
camera, one lidar, an Inertial Measurement Unit (IMU), and a Global Navigation
Satellite System (GNSS) device. However, it is common to also employ multiple
cameras, wheel speed sensors, radars, and ultrasonic sensors. Besides these sensors,
some works examine the use of event cameras [31] and thermal cameras [32], but
their use is still not widespread. In Fig. 2.2, the sensor setup from the Zenseact Open
Dataset [33] is shown as an example.

Figure 2.2: Sensor setup in Zenseact Open Dataset [33] with one front-looking radar, one
camera, three lidars (one VLS128 and two VLP16), and one positioning system
(OxTS).

1This choice has sparked some controversy, as cameras are notoriously sensitive to poor weather like rain,
fog, or darkness.
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Camera Cameras are used to capture images and videos. They are popular in
autonomous driving as they can perceive objects at a great distance and are relatively
cheap. On a high level, their core components are a sensor to measure the amount of
incoming light and a lens used to focus the light onto the sensor. The lens determines
how much of the scene is visible in an image and how large objects appear depending
on their relative position to the camera. As for the sensor, it can be exposed for
a varying amount of time, where long exposure times lead to brighter and less
noisy images but also make it harder to take sharp images. Any movement of the
environment or the camera itself will lead to smearing out the image, known as motion
blur. Further, some sensors use a rolling shutter, meaning that instead of exposing
the entire image at the same time, the image is exposed gradually, e.g. row-by-row.
Rolling shutter cameras are typically cheaper than global shutter cameras and can
often be run at higher frame rates, but introduce distortions known as the rolling
shutter effect. A common example of this is the skewing of nearby objects when
traveling at a high velocity.

Lidar Light detection and ranging (lidar) sensors are used to perceive the 3D
structure of the environment. As the name suggests, lidar sensors use light to perform
measurements. Unlike cameras, which are passive and only capture reflected light,
lidars actively emit laser pulses. The emitted pulses of the infrared laser are used to
measure the time-of-flight to determine the distance to surfaces. Simultaneously, the
returning power is also measured, to discern between different highly reflective and
less reflective surfaces, providing additional information about material properties and
object classifications. The most common versions are spinning lidars, where an array
of diodes is rotated around the sensor to capture 360° of the scene. The fact that lidars
actively illuminate the scene makes them great for use in darkness, a setting cameras
struggle with. In addition, they provide direct 3D information, making them useful
for understanding the distance to different objects or measuring the road geometry.
However, the range of automotive lidars is typically limited to ∼ 250 meters, which
can be compared to cameras which can typically see much further in bright conditions.
Moreover, although their price has reduced drastically over the last years, lidars are
still orders of magnitude more expensive than cameras.

Radar Radar, short for radio detection and ranging, sensors are another common
sensor in AD systems. Rather than using light, they emit radio waves and measure the
returning waves to infer the distance, direction, and radial velocity of objects relative
to the sensor. Radars are popular because of their robustness to adverse weather
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conditions, such as rain, fog, or snow. Further, in comparison to lidars, they are much
cheaper. However, radar measurements are also more sparse and less accurate, and
until recently, were limited to 2D spatially, ignoring the height component of the
environment. Newer generations of so-called 4D radars (3D + velocity) overcome
this limitation but are not yet widespread.

Software Stack

There are two dominant ways to design an AD stack, (i) the traditional modular or
layered pipeline and (ii) the end-to-end approach [34]. For clarity, when referring to
an AD system, we mean it to be modular, unless otherwise stated.

Modular pipeline

In the modular approach, the AD system is divided into subsystems, each performing
a specific task, such as traffic light detection, road geometry estimation, or pedestrian
motion prediction. As the information progresses through the stack, there are clear
APIs between subsystems defining the expected inputs and outputs. The traditional
pipeline is favored for its interpretability and ease of debugging, allowing developers
to inspect the outputs of each module to identify the root cause of issues. In addition,
each subsystem is usually connected to a well-established field of research and
development, allowing practitioners to draw upon years of experience. However, since
the subsystems are optimized separately for their specific task, it is not clear how well
their performance aligns with the overall end goal of producing a safe and comfortable
motion plan. In relation to this, it is also complicated to balance the capacity and
associated performance of the different subsystems in a resource-constrained system.

Figure 2.1 shows the high-level parts that typically make up a modular pipeline.
Note, however, that multiple modules can be combined into one, e.g., perception and
prediction. Below, we give a more detailed description of the different parts.

Sensor Preprocessing Before the sensor data can be used, it must be put into
a suitable format for an AD system. For images, this can mean running the raw
light intensity values through an image signal processor which applies, for example,
Bayer transformation, noise reduction, and tone mapping. For lidars, point clouds
might be motion-compensated, i.e., transformed to a common reference frame, and
pruned from returns from the ego-vehicle. Depending on the sensor supplier, a
varying degree of preprocessing might also be done directly by the sensor’s own
processor before reaching the rest of the AD system. Preprocessing can also entail
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different types of calibration, such as estimating changes in camera parameters due to
temperature changes. Furthermore, some AD systems might require different sensors
to be synchronized, rather than processing them in a streaming fashion.

Localization To make informed decisions, the AD system must understand where
it is. Localization refers to computing the pose of the ego-vehicle relative to a
reference. Typically, localization is done both in a local and a global frame, using
different sources of information. The local pose is updated at a high frequency to
produce a smooth trajectory and might be the basis used for ego-motion compensating
the lidar point cloud. The global pose is instead computed relative to a map, providing
information on position relative to lanes and other infrastructure. Again, there exist
different approaches, where some systems rely heavily on accurate high-definition
maps (HD maps) that have detailed information, such as lane connectivity, lane
markers, and other static structures. Others instead might use maps with a lower level
of detail (SD maps) mainly for high-level navigation.

Perception The perception module creates a description of the surrounding en-
vironment. A common part of this is classifying and localizing objects. Examples
of objects are (potentially) dynamic vehicles and pedestrians, and static structures
such as lane dividers and traffic lights. However, this module can also produce other
types of descriptions, e.g., classifications of which part of the ground is considered
drivable or which part of the surrounding space is occupied. The input to the per-
ception module is sensor data, either individual sensors, bundles, or some merged
representation. Perception modules can also rely on some priors, such as maps, to
fuse multiple sources of information.

Tracking Perception outputs are fused over time using tracking. By connecting
individual detections, tracking gives a historical context for the movements of other
actors, aiding accurate motion forecasting. Tracking also enables the reasoning
about the existence of previously seen objects, although they might currently be
obscured. Moreover, tracking can also be used simply to improve the quality of the
perception predictions. In some implementations, tracking is directly integrated into
the perception module [35].

Prediction Also known as motion forecasting, prediction is used to reason about
likely future states of the environment, i.e., answering questions such as “will that car
yield for me or drive in my way?”. [36]. Prediction is an ambiguous task by nature,
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as there are multiple plausible answers. To further complicate things, real data only
contains one possible unfolded future, complicating both the training and evaluation
of prediction systems. Similar to the tracking, the prediction module can be fused
with the perception module. Instead of using tracked detections, the prediction model
must rely on sensor data directly.

Planning Given the estimates of the current and future environment, the planning
model is tasked with creating a plan for the ego-vehicle [37]. This plan is subject
to several constraints, as it should (i) make progress toward the mission goal, (ii)
adhere to traffic rules, (iii) be safe for the passenger and other traffic participants, (iv)
be comfortable for the passengers, and (v) be physically plausible. This is further
complicated by the real world being reactive, i.e., our own actions will impact the
actions taken by surrounding actors. Planning can further be divided into different time
horizons. Long-term planning, often called route planning or navigation, determines
the overall path from the current location to the destination. Mid-term planning
focuses on maneuver decisions such as lane changes or turns at intersections. Short-
term planning, or trajectory planning, computes the precise path the vehicle should
follow in the immediate future, typically spanning a few seconds.

Control The last module is the controller, which computes high-frequency, low-
level control actions for the actuators to follow the proposed plan as best as possible
[38]. The controller typically operates at a much higher frequency than the planning
module to ensure smooth and precise execution of the planned trajectory. It must
account for the physical dynamics of the vehicle, including inertia, friction, and other
forces that affect motion. Controllers can range from classical approaches like PID
(Proportional-Integral-Derivative) controllers to more sophisticated model predictive
control (MPC) methods that optimize control actions over a receding horizon [38].

End-to-end systems

There exist different interpretations of end-to-end systems, but here we use the
definition of [34], that end-to-end AD systems are fully differentiable programs that
transform raw sensor data to motion plans or low-level control signals. While the
name might indicate a single, large, black-box system, we note that an end-to-end
system may still consist of different modules (the same as for modular systems even).
Their defining trait is that all systems can be trained jointly with gradients flowing
from the last to the first module. Further, not all subsystems must be learnable, as
long as their operations or the system as a whole [39], can be differentiated.
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End-to-end systems have garnered increasing attention as they address several
challenges associated with the modular approach [40], [41]. Most prominently,
as they are completely differentiable, they can be directly optimized toward the
ultimate goal of comfortable and safe driving. While questions regarding optimal
resource allocation among different components may persist, end-to-end systems can
be optimized more directly for key performance indicators relevant to autonomous
driving. Moreover, the interfaces between different parts are more fluid, and the
system can learn (to a certain degree) what information should be conveyed. This
way, the planning is less dependent on the specific perception outputs, and, in theory,
less susceptible to perception errors. Moreover, end-to-end systems do not necessarily
require annotations for training each subsystem, as for the modular approach.

However, the end-to-end approach instead raises issues regarding interpretability,
debugging, safety assurance, and robustness. For instance, when an end-to-end system
fails, it is hard to pinpoint where something went wrong. Some methods try to address
this by incorporating interpretable tasks, decoding the intermediate representation to
semantically meaningful outputs [34]. However, even if you can decode information
about the surrounding environment, it remains hard to tell how that information is
used to decide upon a plan. Similarly, end-to-end systems lack the mathematical tools
that can be used to prove the safety of a rule-based system [42].

2.2 Learning to Drive

With the AD stack definition in place, the remaining challenge is to figure out how to
maximize the driving performance. Regardless of modular or end-to-end, practitioners
have moved more and more toward data-driven methods like machine learning, or,
in practice, deep learning. Naturally, this shapes the way autonomous vehicles are
developed. This section describes the basic life cycle of a deep learning-powered
AD software, illustrated in Fig. 2.3. In addition to providing an understanding of
the methods themselves, the section also lays the basis for understanding the unique
challenges and pain points of AD development.

Collecting Data

One of the core activities in the development of AD is data collection. The data
collected is used to train learning-based systems and to evaluate and validate system
performance. Real-world data collection is done using either development vehicles
that are purposefully driven by professional drivers, consumer vehicles driven by
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Collect data
Collection vehicle, consumer fleet, and/or 
simulation tools are used to collect data 

Curate & label dataset
The collected data is curated to contain 
relevant scenarios and at least part of it 
is sent for annotation

Train models
Models are trained using curated data, both 
unlabeled and labeled

Evaluate models
Models are evaluated using hold-out 
validation data. Poor performance 
can trigger new data collection

Figure 2.3: The iterative life cycle of an AD system. Data collection is usually governed by
current system performance, i.e., practitioners want more data from scenarios where
the system struggles. Either this is handled directly at the data collection stage
using techniques like targeted generation in simulation or triggers during collection,
or during the curation stage. The curated data is optionally annotated, before being
used for training the models of the stack. Models can also include algorithms not
part of the stack that is running in the car but are used for development, e.g., offline
auto-annotation tools. Last, the trained models are evaluated, either in isolation, as
a whole system, or both. This could be on already collected hold-out validation
data, or by studying the driving behavior when driving in new scenarios. Collection
vehicle designed by Jesper Moberg.

customers, or a combination thereof. By using professional drivers, developers have
more direct control over what type of data is collected, making it a powerful debugging
tool. However, due to the costs of maintaining a development fleet, the data quantity
is usually limited in comparison to what is produced by an extensive consumer fleet.
Notably, the development vehicles might have a sensor setup different from the
consumer one, where additional high-resolution sensors are included as a reference.

After collection, or in some cases during collection, the collected data must be
curated. Storing all collected data would soon become prohibitively expensive (a
single car can produce several TBs of data in a day), annotating it even more so. Data
should be selected such that the AD system can reach as high performance as possible
while requiring as little human annotation as possible. What makes this challenging
is that different subsystems might require different types of scenarios and knowing
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Figure 2.4: Examples of different types of annotations, from Zenseact Open Dataset [33].

beforehand if the raw data corresponds to something useful is not straightforward.
Notably, this problem is less common in an academic setting compared to an industrial
[43], [44]. Since academic labs rarely have access to a similar scale of data, related
works on active learning [45] are done on a fairly small scale, with uncertain scaling
properties. In addition, most benchmarking for different tasks is done on public
datasets such as [33], [46]–[48] which have already been curated. As such, data
curation at scale is mainly done in industry, and exact details are trade secrets.

After curation, the data are typically annotated, see Fig. 2.4 for examples of
annotations. What type of annotations depends on which modules (as described in
Sec. 2.1) need to be trained. Notably, for the end-to-end approach, annotation can
in the simplest case mean the trajectory driven during data collection. However,
for most tasks, human annotation is required, i.e., a person looks at the data and
provides ground truth for the specific task. This approach is expensive both in terms
of cost and speed. According to [43], the cost of manually annotating objects in one
hour of data is estimated to be approximately $150,000. Another option is to use
automatic labeling. Often this entails using large, powerful offline methods. However,
since these models are not robust enough to work in all possible settings, the hardest
cases might still need human annotations even when using an auto-labeling tool [49].
Alternatively, for certain tasks, annotations can be created directly from the sensor
data, e.g., when predicting the future pose of the ego vehicle given the past and current
images and lidar data.

Once the data and annotations are in place, the relevant systems can be trained. The
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specifics of training neural networks using labels are explained closer in Sec. 3.1. But,
on a high level, neural networks are adjusted such that their predictions are close to
the annotations. This process requires a significant amount of computational power.
As a reference, Tesla’s occupancy network in 2022 required 100,000 GPU hours to
finish the training, i.e., if trained on a single GPU, it would take 11.4 years [50]. To
accelerate iteration cycles, their training cluster comprises 10,000 GPUs, with an
additional 4,000 dedicated to auto-labeling [50].

Testing the Performance

A key challenge in deploying safe AD is to ensure that it is safe before being unleashed
on the roads. Much of this work starts already before any data is collected, where
practitioners design the system, both hardware and software, to possess sufficient
capabilities for the intended design domain. For instance, the sensors must have
high enough resolution and range, the computing power must be powerful enough to
process the data and run the algorithms, the system must have redundancy to handle
unexpected failures, and the software must be designed such that it is possible to argue
for its safety. However, even with these things in place, the task of proving the safety
of a trained data-driven system remains challenging. Regulatory bodies can require
data from millions of driven kilometers for certification of the final system. Since it is
not feasible to conduct this type of testing for each update, practitioners use a range
of methods, such as data replay, test tracks, monitored real-world driving, and shadow
mode testing, to verify safety during the development.

Task-specific Evaluation The first step after training a system is generally to
evaluate the performance using task-specific metrics on a hold-out validation dataset,
i.e., data that was not used for training. While this type of evaluation cannot be used
by itself to determine if the performance is sufficient, its perk is that it quickly shows
if the performance is poor. This enables developers to keep track of performance
regression between different models. If the model performs poorly, potential reasons
include inadequate model design or insufficient data. For the latter case, which is
likely more common in matured systems, the easiest remedy is to collect more data.
This ties back to the data collection process, where developers, after identifying what
type of data is missing, request more data from the fleet of vehicles. Following a
new training, one can verify that the issue has been resolved by again evaluating the
performance for the validation data.
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Open-Loop Simulation In open-loop simulation, collected data is replayed to the
system which outputs a plan or low-level control actions. This is related to the task-
specific evaluation, but instead, we can observe system-level response as information
progresses between subsystems. For instance, we can measure the distance between
planned actions and the ones that are considered optimal, e.g., actions taken while the
data were collected. However, since we rely on collected data that cannot be altered,
the actions taken by the AD system are not truly actuated. As a result, we cannot
know whether these errors would cascade during real-world driving. An example
would be steering slightly too much away from the lane center and drifting toward the
edge of the road until we reach a point that makes the system react in an unexpected
way. Consequently, open-loop gives some indication of system behaviors, but does
not capture the full complexity of real-world driving.

Closed-Loop Simulation In contrast, for closed-loop simulation, the actions
taken by the AD system are actuated and its state is changed accordingly. Closed-loop
simulation can be used both for testing parts of the AD system, and for testing it in
its entirety. Which part of the systems that are evaluated has a significant impact on
the efforts associated with creating a realistic simulation. For instance, for testing the
motion planning of a modular AD system, the simulation should output the same type
of data that is created by the upstream system, e.g., local maps and bounding boxes
over time. Simulation fidelity can then be related to concepts such as accurate behavior
modeling of other actors and error modeling for perception and prediction modules.
Such models can be combinations of advanced data-driven machine learning models,
statistical models, or simple hand-crafted rules and heuristics. A common example
is scenario testing, e.g., other actors cutting in or a person running out on the road.
Closed-loop simulation at this level is a popular approach, as it offers controllability
and generally aligns better with real-world driving than open-loop simulation.

To include the perception modules in closed-loop simulation for full-system testing
is a more challenging endeavor, as it requires turning abstract scenario descriptions
into sensor-realistic environments. Often this is done using physics-based rendering,
powered by game-engine-like simulators. There, procedural generation can create a
variety of different static environments, which can then be coupled with a bank of
manually created assets for vehicles and other traffic participants to act within this
virtual world. While the quality of such systems has been rising steadily, questions
remain regarding realism and scalable diversity, which in turn impacts the amount of
trust which can be placed in results achieved in simulation. Further, creating realistic
assets requires many hours of work from human artists, and producing high-fidelity
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sensor data depicting the said assets further assumes deep domain knowledge and
accurate sensor models.

Monitored Real-World Driving To overcome the poor sensor-realism in closed-
loop testing, the most straightforward approach is to let the car drive itself in the
real world and inspect the behavior. Many safety arguments are often supported by
millions of autonomously driven kilometers. But, relying on this during development
has multiple flaws. First, evaluating untested software requires trained safety drivers to
monitor the vehicle and take over control if needed, making real-world testing costly
and slow. Second, real-world driving is not reproducible, meaning that we cannot
easily rerun a test when making any software updates. Finally, we have limited control
over the environment, and as the performance of the system increases, encountering
relevant scenarios becomes increasingly rare, further adding to the cost of real-world
testing.

Test Track A prevalent approach to combine the sensor-realism of real data while
having better control over the surroundings is to use test tracks, also known as proving
grounds. These are areas closed off from the public where manufacturers can conduct
targeted testing of their AD functionality. Often these have set up different types
of roads and provide crash dummies of other vehicles and pedestrians. In this way,
safety-critical scenarios can be tested without risking the safety of the driver or the
surrounding environment. A common use case is safety certifications such as Euro
NCAP [51], where functions such as automatic emergency braking are rated. A
drawback of using test tracks is that they are also limited in diversity and setting up
each scenario requires large amounts of time.

Shadow Mode Another alternative to monitored real-world driving is running the
software in shadow mode, a concept closely related to open-loop simulation. Here,
the systems are run on the live data, but the control signals are not actuated. For
example, a human, or even a previously approved version of the software, might be
driving the car, while a new software version is running in the background. Useful
cases are when the system is disengaged either manually by the user or because the
AD system is outside the current operational design domain. As a perk, shadow mode
testing does not require trained safety drivers and can thus be run on more cars at the
same time, e.g., cars purchased and driven by regular consumers. However, as for the
open-loop simulation, cascading errors cannot be evaluated using this approach.
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2.3 Pain Points of Autonomous Driving

As highlighted above, developing AD systems is a complex endeavor. All these
challenges can be derived from the fact that autonomous vehicles are safety-critical
systems, where any error can have devastating consequences. Simultaneously, AD is
expected to work in a wide range of scenarios. This combination imposes stringent
requirements on all subsystems that influence the vehicle’s decision-making processes.
This section highlights some of the most significant challenges currently encountered
in the development of autonomous driving systems, with a particular emphasis on the
perception component. Note that this is not a complete discourse, ignoring aspects
such as regulatory and ethical concerns, deployment and maintenance, or real-time
requirements.

Uncertainty

Autonomous driving systems must adeptly manage uncertainty in various forms when
operating in public environments. Firstly, while driving, we often lack complete
information about our surroundings. For example, an AD system cannot determine
whether a child is hidden behind a parked car and might suddenly run onto the road, or
not. Even with visible objects, uncertainty persists. One reason is that the sensors used
impose constraints on the information that can be gathered, such as estimating the 3D
position and size of a car from a single image. Another reason is that the perception
module might not have seen a specific object previously, but is still expected to make
a reasonable guess of its properties. Therefore, perception algorithms must be capable
of expressing their uncertainty, and this information must be formatted appropriately
for downstream modules.

Secondly, certain tasks within an AD system are inherently ambiguous. Motion
prediction, for instance, involves forecasting the future positions of other traffic par-
ticipants. While we can determine the actual outcome by observing the scene as it
unfolds, this is not the only possible scenario. The challenge lies in the fact that traffic
participants, such as vehicles and pedestrians, can exhibit a wide range of behaviors
influenced by numerous factors, including road conditions, traffic signals, and the ac-
tions of other drivers. Moreover, human behavior is inherently unpredictable, adding
another layer of complexity to motion prediction. To address this, AD systems often
rely on probabilistic models that can generate multiple potential future trajectories,
each with an associated likelihood. These models must be robust enough to handle
the inherent uncertainty and variability in human behavior, while also being com-
putationally efficient to allow real-time decision-making. Furthermore, the system
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must be capable of updating its predictions dynamically as new information becomes
available, ensuring that the vehicle can respond appropriately to sudden changes in
the environment.

Related to this, driving itself is an inherently ambiguous activity. There is seldom a
single correct action to take; rather, there is a spectrum of actions that can achieve
safe and comfortable driving. However, in real-world driving, only a single action
can be executed and its outcome observed. This complexity complicates training
and evaluation, as the decisions made by the AD system may differ from those of an
expert human driver, yet still lead to an equally successful outcome.

Scalable Training

Training an AD system to be robust to a wide range of scenarios requires a massive
amount of data. Moreover, the dataset should not only be large, but it should also
be diverse. While managing and storing data are expensive, the requirement for
data diversity is the driver for growing collection costs. As system performance
increases, relevant scenarios become increasingly rare, further adding to the cost.
Besides coming across relevant scenarios, accurately identifying them as such is also
a challenge.

Another cost is the annotation of data. While automatic annotation is possible
for some tasks, it is not always reliable. Examples might be when new objects are
encountered (think, for instance, of the introduction of electric scooters), or when the
system is not sure about a specific prediction. As such, a certain amount of data still
needs to be annotated by humans.

Beyond being expensive to collect and annotate, real-world data itself comes with
fundamental drawbacks. First, data from certain scenarios are close to impossible
to collect in a safe manner, e.g., a car crash. Such a scenario can be set up in a
controlled environment, such as a test track, but this is not the same as driving in the
real world. Unfortunately, it is these types of safety-critical scenarios that are the most
important to collect. Second, collected data are non-interactive, i.e., the system cannot
interact with the environment by taking an action and observing the outcome. Many
high-performance AI models are trained interactively using reinforcement learning
directly in the environment they are supposed to operate in, for instance, AlphaGo
[52], Agent57 [53], or, to some degree, ChatGPT [54]. Using this approach for AD is
challenging, as the system must be able to drive itself in the real world.
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Scalable Testing

One of the grand challenges in AD is to test and prove the safety of the system, and
to do so in a scalable manner. Even if provided with a fully functional AD system,
it remains challenging to assess its safety in a real-world setting. Safety drivers are
required to oversee the vehicle and take over control if needed, making real-world
testing both costly and slow. Moreover, any updates to the system likely require a
certain degree of re-testing, further complicating the process. Thus, practitioners are
constantly searching for new tools that enable scalable testing.

As highlighted earlier, simulation is one key tool for testing AD systems. By
increasing the amount of compute power, simulation enables running a larger set of
evaluation scenarios in parallel. However, current simulators are not yet able to fully
replicate the complexity of the real world. Further, while running the simulations is
relatively cheap, creating realistic simulations is expensive. Both asset creation and
implementing physics-based simulation are labor-intensive tasks. Therefore, large-
scale closed-loop simulation is often associated with only object-level simulation,
where the environment is represented by different types of abstractions [22], [55],
[56]. Running the simulation on a sensor level with sufficient realism and diversity
remains an open challenge thus far.
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CHAPTER 3

Perceiving the Surroundings

Perception is the process of acquiring information about the environment. For au-
tonomous driving, it is one of the core components, enabling the vehicle to understand
its surroundings and make informed decisions. For successful AD, the vehicle must
know what type of other traffic participants are present, where they are, and how they
are behaving. The vehicle must also know what the road looks like, and what the
traffic signs and signals say.

This chapter introduces topics needed to understand how perception systems work.
We use object detection as a concrete example, but the concepts apply to other
perception tasks as well. The vast majority of perception systems are based on
deep learning models trained on large amounts of labeled data, known as supervised
learning. Thus, this chapter begins by covering the topics of supervised learning.
However, no perception system can be perfect and it is important to understand the
limitations of the system. Thus, we also introduce uncertainty estimation, which is a
key component of safe AD perception.
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3.1 Learning from Human Supervision

Most perception systems consist of deep neural networks that have been trained
on large amounts of labeled data. One can think of these systems as a function fθ

parameterized by θ that maps an input x, such as images, to an output y, such as the
position and velocity of other traffic participants. The goal of the training process
is to learn the parameters θ such that the function fθ can be used to make accurate
predictions on new unseen data. A simple example would be to learn the slope m and
intercept b of a line y = mx + b, making m and b the parameters. In practice, the
function fθ contains millions, or even billions, of parameters.

To find good parameters using supervised learning, we need a training dataset
D = {(xi, yi)}N

i=1 of N paired examples, where X = {xi}N
i=1 is an input and

Y = {yi}N
i=1 is the corresponding ground truth output. On a high level, the training

process consists of showing the network an input example xi and adjusting the
parameters θ to minimize the difference between the network’s prediction ŷi = fθ(xi)
and the ground truth, which is also known as a label, yi. The difference is measured
using a loss function Lθ(yi, ŷi), which could be a simple mean squared error or a
more complex function that also contains learnable parameters or has some other
dependence on θ. Formally, the training process can be formulated as minimizing the
following objective function:

θ∗ = arg min
θ

N∑
i=1

Lθ(yi, fθ(xi)). (3.1)

This is also known as empirical risk minimization, as the aim is to minimize the
expected loss over the training data. Note that in most real-world applications, we
will not find a θ∗ that is globally optimal for (3.1), but rather find some local optimum
or saddle points.

To search for θ∗, most deep learning frameworks rely on gradient-based optimiza-
tion, and hence require the neural network fθ to be differentiable with respect to
the parameters θ. Given an initial guess θ0, the parameters are iteratively updated
until convergence. One of the most popular optimization methods is gradient descent,
which updates the parameters in a direction that reduces the loss function,

θk+1 = θk − η∇θ

∑
i

Lθ(yi, fθ(xi)), (3.2)

where η is the learning rate or step size. Since the number of training samples N

typically is large, the true gradient is often approximated using a minibatch of m
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samples, known as mini-batch gradient descent. In the extreme case, where m = 1, the
method is known as stochastic gradient descent (SGD). Beyond (stochastic) gradient
descent, there are many other popular gradient-based optimization methods, such as
Adam [57] and RMSprop [58]. However, the choice of optimization method is not the
focus of this thesis, and we refer the reader to [2] for more information.

The supervised learning framework is one of the most popular ways to train deep
neural networks. Compared to traditional algorithm design, where practitioners need
to know how to solve a task, supervised learning only requires samples of what the
task is. With enough high-quality data, a sufficiently expressive model, and a good
optimization method, the model can learn to make accurate predictions on new, unseen
data. Given the ever-increasing availability of computational resources, the bottleneck
of this process is often the amount of data available. Collecting the ground-truth
labels generally requires a lot of human annotation, which is both time-consuming
and expensive. Further, the annotators must have a good understanding of the task at
hand to be able to provide high-quality labels. While annotation software can aid the
annotators to speed up the process and improve the quality, it is still a manual process
that requires a lot of time and effort.

3.2 Modeling Uncertainty

When describing the ultimate goal of deep neural networks, we often do so in terms
of performance. Naturally, we want them to perform as well as possible in as many
situations as possible. In the best of worlds, a deep neural network would never
err. However, in reality, we are often constrained by things such as the amount of
available data for training our networks, or, in terms of computational power, limiting
the expressiveness of the models. As the perfect neural network remains a lucid
dream, it becomes important to understand the limitations of our trained models to
understand what they do not understand. This is especially valuable for safety-critical
applications such as AD, where, for instance, uncertainty about the location of an
oncoming vehicle should reflect upon the action taken. To formalize the concept of
reasoning about the limitations of our model, we rely on uncertainty modeling.

When training and using a deep neural network, there are multiple sources of
uncertainty. First, the input data can contain noise. For instance, a water drop on the
camera lens introduces severe distortions. Second, the labels used for supervision
can be noisy. Sources can be imperfections, or even errors, due to human errors in
the annotation process, or be due to inherent uncertainty in the task. Third, there
can be uncertainty in the model itself. Due to limited data, we cannot be certain
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about the model parameters. The first two sources of uncertainty are often referred
to as aleatoric uncertainty, whereas the latter is known as epistemic uncertainty [59].
Aleatoric uncertainty is inherent to the data, and cannot be reduced by increasing
the amount of training data. In contrast, epistemic uncertainty can be reduced by
increasing the amount of training data and arises from the model’s lack of knowledge
about the data.

A common approach to capture epistemic uncertainty for neural networks is to
use a Bayesian approach, where the parameters are modeled as random variables
[60], [61]. Specifically, we put a prior distribution over the parameters θ, such as a
Gaussian distribution θ ∼ N (µ, I). Then, given the data X and labels Y , the aim is
to find the posterior distribution over the parameters p(θ | X, Y ). This way, we can
find all plausible values for the parameters given the current data. While Bayesian
neural networks are easy to formulate, it is challenging to perform inference in them,
and hence most methods rely on different approximations [62], [63] or are restricted
to simple models.

To model aleatoric uncertainty, practitioners often apply a distribution over the
output of the network [59]. For instance, for a regression task, i.e., predicting a
continuous value such as the location of a car, the output of the network can be
modeled to be corrupted by Gaussian noise. Aleatoric uncertainty can further be
subdivided into homoscedastic and heteroscedastic. In the former, the corrupting
noise is assumed constant and independent of the input. For the latter, we are instead
interested in the variance of this distribution for different inputs and try to learn these
from the data.

To give an example, consider a regression task where the goal is to predict the
location of a traffic participant. In the homoscedastic case, if we model the output
to be corrupted by Gaussian noise we treat the output ŷ as the expected mean of the
distribution. If our loss function is the negative log-likelihood, we get

L(y, ŷ(x)) = − log
(
N (y; ŷ(x), σ2)

)
(3.3)

= 1
2σ2 (y − ŷ(x))2 + 1

2 log(2πσ2), (3.4)

where σ2 is the variance of the noise. If the noise σ2 is constant, we can treat it as a
constant factor, and hence the loss function is equivalent to the L2 loss

L(y, ŷ(x)) = (y − ŷ(x))2. (3.5)

For the heteroscedastic case, we instead model the variance of the noise to be depen-
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dent on the input, and hence the loss function becomes

L(y, ŷ(x)) = 1
2σ(x)2 (y − ŷ(x))2 + 1

2 log(2πσ(x)2), (3.6)

where σ2(x) is the variance of the noise at input x. While a larger variance will
decrease the first term, it is regularized by the second term.

The negative log-likelihood is an example of a proper scoring rule [64]. A scoring
rule is a function that maps the predicted probability of an event and the observed
outcome (label) to a scalar score. A scoring rule is proper, if the expected score is
minimized only when the predicted probability matches the true probability, i.e., if the
learned model and the underlying distribution match. This makes them useful both
for training and for evaluating the performance of a model.

3.3 Object Detection

Object detection is a common task in perception systems and is often used as a
building block for other tasks, such as tracking. Formally, the task is to, given some
sensor data, predict the set of objects present in the scene O = {(ci, li)}N

i=1, where ci

is the class of the object and li is the location of the object in the scene. In practice,
most object detection models also provide a confidence score for each prediction,
which can be used to filter out low-confidence predictions. However, for the ground
truth, the class is a discrete value, such as “car”, and is typically part of a predefined
set of classes ci ∈ C. For image and video data, the location is commonly represented
using a 2D bounding box, i.e., a rectangle that bounds the object in the image. Other
representations, such as 3D bounding boxes or segmentation masks, are possible, and
which to use depends on the task at hand and downstream applications.

As for other deep learning tasks, the progress in object detection has often been
measured using public benchmarks. One of the first major benchmarks for 2D object
detection was the PASCAL Visual Object Classes (VOC) challenge [65]. While
held for the first time in 2005, the 2007 version increased the number of classes
and provided a standardized evaluation metric, paving the way for rapid progress in
the field. Since then, many other object detection benchmarks have been proposed,
such as the COCO dataset [66], KITTI [67], or Open Images [68], introducing larger
datasets, new sensors, or a wider range of objects.
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Detection Models

A key challenge with the object detection task is that the number of objects in the
scene is usually unknown beforehand. To address this, many early works relied on
predicting a large, fixed number of bounding boxes. Common examples include the
YOLO [69] and SSD [70] models, which are so-called one-stage detectors. Both
of these models divide the image into a grid of cells, and predict a set of bounding
boxes and class probabilities for each cell. However, the YOLO model does so
directly, while SSD predicts offsets from predefined proposal boxes. In contrast,
two-stage detectors such as the R-CNN suite of models [71]–[73] first generate a set
of proposal boxes, and then run a second stage to classify each box and refine the
location of the bounding boxes. Nonetheless, both types of detectors result in many
overlapping bounding boxes. At inference, the predictions are thresholded based on
their confidence score and filtered using non-maximum suppression (NMS) to remove
overlapping duplicates.

While non-maximum suppression is a simple and effective way to remove dupli-
cates, it is a hand-crafted method based on greedy clustering, raising the question
about its optimality. In line with the reoccurring trend in deep learning of aiming to
learn the function end-to-end, multiple works have tried to either learn NMS [74] or
design the model to predict the set of objects directly [75]. However, not until the
introduction of the Transformer architecture [76] did direct prediction of the set of
objects become a competitive approach. The Detection Transformer (DETR) [77] still
predicts a fixed number of objects, however, this number is much smaller than one- or
two-stage detectors. Further, the predictions are supervised to contain no duplicates
by assigning at most one prediction to each ground-truth object and assigning the
remaining predictions to the background class. The assignment is done optimally
with respect to a cost function, ultimately enabling the set of objects to be predicted
directly. Since its original formulation, DETR has given rise to a suite of set-based
detectors through various improvements such as multiscale processing or improved
supervision [78]–[80].

Evaluation Metrics

The most common evaluation metric for object detection is the mean Average Precision
(mAP). The metric relies on precision and recall curves, where precision and recall
are defined as

P (c) = TP(c)
TP(c) + FP(c) , (3.7)
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and

R(c) = TP(c)
TP(c) + FN(c) , (3.8)

where TP and FP are the number of true positives and false positives, respectively, and
FN is the number of false negatives. Intuitively, precision measures quality, i.e., how
many of the predictions are correct, while recall measures quantity, i.e., how many of
the labels have correctly been identified. The average precision is computed as the
area under the precision-recall curve, i.e., the precision we can expect at a given recall.
The mean average precision is then the mean of the average precision over all classes.

To define a true positive, mAP, in the context of 2D object detection, relies on the
Intersection over Union (IoU) metric. As the name indicates, it is the area of the
intersection of the predicted bounding box and the ground-truth bounding box divided
by the area of their union. A prediction is considered a true positive if its IoU is greater
than a predefined threshold, typically 0.5, and is of the same class as the ground truth
object. Predictions are assigned to the ground truth object greedily, i.e., the prediction
with the highest confidence is assigned first. Notably, some benchmarks also use
multiple IoU thresholds and average the multiple mAPs. Additional breakdowns are
also common, such as by object size.

One of the perks of mAP is that it does not require any confidence threshold, as
the precision and recall curves are invariant to the scale of the confidence scores. The
only thing of importance is that the detections are ranked correctly by the detector, i.e.,
the correct detections have higher confidence scores than the incorrect ones. However,
this, in combination with treating each class independently, also means that the metric
can behave in unexpected ways, as highlighted in [81]. The confidence scores for one
class can all be within the range [0.1, 0.11], while the scores for another class can be
all within the range [0.9, 0.91], and the model still achieves a high mAP. Thus, for
deployment, relying on a single mAP score can be misleading, and models typically
need to be calibrated or use class-specific thresholds.

In the 3D object detection community, mAP is also used, but often evaluated for two
types of IoU metrics. The first is the 3D IoU, which is the volume of the intersection
of the predicted bounding box and the ground truth bounding box divided by the
volume of their union. The second is the bird’s-eye view (BEV) IoU, which is the
2D IoU from a top-down view of the bounding boxes. While 3D IoU might seem
more interesting for the perception task, BEV mAP is popular as it is more lenient
toward vertical misalignments than 3D mAP and it aligns more closely to planning
and control communities. For many such benchmarks, 3D information is disregarded,
and hence BEV mAP is a more suitable metric. Other distance measures can also be
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used for defining true positives, such as centerpoint distance. Beyond mAP, several
AD datasets [46], [47] also use custom metrics to isolate different aspects of the task.
This includes translational, scaling, and orientation errors.

Probabilistic Object Detection

The task of probabilistic object detection, as described in [4], is to detect objects while
also accurately quantifying the spatial and semantic uncertainty of the predictions.
The authors of [4] propose to use a categorical distribution over all class labels and
represent each bounding box as separate Gaussian distributions for the corners of the
bounding box. For images, as explored in [4], the two corners are described using
two 2D Gaussian distributions. To evaluate the performance of the model, the authors
propose using the Probability-based Detection Quality (PDQ) metric. The metric,
however, is biased toward predictions of a smaller extent [5], and can therefore not be
used for a fair comparison between models.

The authors of [5] instead propose to train and evaluate the predictive uncertainty of
the model using proper scoring rules. In the paper, three different types of scoring rules
are considered for learning the uncertainty of the bounding boxes, namely negative
log-likelihood, energy score, and direct moment matching. For the classification,
cross-entropy loss is used. This is applied to three different types of detectors, a
one-stage detector, a two-stage detector, and a set-based detector. For evaluation, the
authors use multiple scoring rules, such as the Brier score, the energy score, and the
negative log-likelihood. While their evaluation is extensive and makes a good case for
using multiple scoring rules to better understand the model behavior, it also overlooks
a critical aspect of the evaluation. Namely, the assignment between the prediction and
ground truth is done without any regard to the localization uncertainty, and based on
ad-hoc rules.

As we argue in Paper A [6], the assignment will color the evaluation and any
conclusions drawn from it. Consider Fig. 3.1, where we have one ground-truth
bounding box in blue, and two predictions in red and green. The red prediction has
a larger IoU with the ground truth and hence is considered a true positive by mAP
and methods in [5]. However, if considering the bounding box uncertainty, the green
prediction is a more probable match to the ground truth. Thus, the assignment problem
should be rigorously modeled for any evaluation.

Random Finite Sets To properly model the uncertainty in object detection, we
would like to have a distribution that captures all aspects of the task. For this, we need
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IoU: 0.6
IoU: 0.5

Figure 3.1: Predicted mean and covariance for two detections (red and green). mAP and
method proposed in [5] prefer the red prediction with larger IoU. Our method
considers uncertainties and multiple assignments and finds the green prediction a
more probable match to the blue ground truth.

a distribution over the variable we want to predict. As can be seen above, existing
work often considers each object as a separate variable and disregards their interaction
among them. However, looking back at the task description of object detection, the
goal is to predict a set of objects. As such, the natural choice of distribution to use for
modeling object detection uncertainty should be a distribution over sets. Fortunately,
the random finite set (RFS) formalism provides a framework for exactly this [7].

Random finite sets are probability density functions whose outcomes are sets.
They view the set as a single random variable and enable us to capture uncertainties
both in terms of cardinality and for describing the individual elements of the set.
Further, when evaluating the likelihood of a given set, e.g., we have predicted the
distribution f(Y|X) and are interested in how well it describes the observed set Y,
RFSs explicitly model the assignment problem and consider all possible assignments
and their individual likelihoods. Random finite sets have long been used in the model-
based multi-object tracking community, as they provide theoretically grounded tools to
reason about the existence and properties of multiple objects [82], [83]. Despite their
appealing properties, they have not received any attention from the object detection
community until recently [6].

To provide some intuition, we introduce some of the commonly used RFSs for
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describing a set of objects. One of the simplest RFSs is the Bernoulli RFS which can
be used to model a single object. Its density is

fB(Y) =


1 − r if Y = ∅,

rp(y) if Y = {y},

0 if |Y| > 1,

(3.9)

where r is the probability of existence and p(y) is the single-object density, i.e., the
density describing the distribution over the object itself, conditioned on its existence.
For instance, p(y) could consist of a class distribution and a distribution over the
object’s location and extent, similar to what is used in existing work. With probability
1−r, the set is instead empty and the object does not exist. Further, the Bernoulli RFS
assigns no density to the event that |Y| > 1, i.e., it can only model a single object.

To model multiple objects, we can take the union of multiple Bernoulli RFSs
and combine them into a multi-Bernoulli (MB) RFS. Formally, let Y1, . . . ,Ym be
m independent Bernoulli RFSs with densities fB1(Y1), . . . , fBm

(Ym), existence
probabilities r1, . . . , rm, and single-object densities p1(y), . . . , pm(y). Then Y =
∪m

i=1Yi is an MB RFS with multi-object density

fMB(Y) =
∑

⊎m
i=1Yi=Y

m∏
j=1

fBj (Yj), (3.10)

where
∑

⊎m
i=1Yi=Y denotes the sum over all disjoint sets whose union is Y. In other

words, when evaluating the multi-object density fMB(Y) of a set Y we sum the multi-
object densities of all possible assignments between elements in Y and Bernoulli
components in fMB. This way, RFS explicitly reasons over possible assignments
between predicted densities and observed set elements.

The Poisson Point Process (PPP) is an RFS that unlike the MB RFS has no upper
limit on its cardinality. Instead, the cardinality follows a Poisson distribution, assigning
a non-zero probability to any cardinality. To achieve this, the PPP RFS relies on an
intensity function λ(y), which is similar to a density function, with the exception that
it does not have to sum to one. The resulting multi-object density is

fPPP(Y) = exp
(
−λ̄
) ∏

y∈Y
λ(y), (3.11)

where λ̄ =
∫

λ(x′)dx′ is the expected cardinality of the set. In the multi-object
tracking community, the PPP RFS is often used to model objects that have not yet
been detected.
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We can combine the PPP and MB RFS into a Poisson multi-Bernoulli PMB RFS
by taking the union of a PPP and an MB RFS. The resulting multi-object density is

fPMB(Y) =
∑

YU⊎YD=Y

fPPP(YU)fMB(YD), (3.12)

where YU ⊎ YD refers to summing over all possible ways of partitioning Y into two
disjoint sets.

One of the main issues for using RFSs in an object detection context is that
evaluating the likelihood requires considering all possible assignments. This is often
computationally expensive when the number of objects is in the hundreds or even
thousands. The authors of [84] propose to instead approximate the likelihood by only
considering the K most likely assignments. These can be found efficiently by using,
for instance, Murty’s algorithm [85]. This enables using the negative log-likelihood
to evaluate a predicted RFS density in an object detection context, as we show in
Paper A.
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CHAPTER 4

Finding the Right Data

This chapter introduces different concepts that are commonly used to reduce the
need for expensive human annotations. First, we cover the two paradigms self-
supervised learning (SSL) and weakly supervised learning (WSL). In self-supervised
learning, one aims to learn meaningful representations directly from the data. Weakly
supervised learning instead aims to learn from cheaper labels or use more abstract
supervision. Both of these methods enable models to be trained at scales far exceeding
what is typically feasible for supervised learning. This way, the models can be exposed
to a wider range of data and scenarios, making SSL and WSL attractive alternatives
for AD practitioners. We introduce both these learning concepts closer below, with a
special emphasis on learning from language for the weak supervision setting. Further,
we cover auto-labeling, a technique that instead of avoiding labels emphasizes ways
to efficiently create labels automatically.

4.1 Self-Supervised Learning

Self-supervised learning can be defined in multiple ways [86], but broadly speaking,
it refers to any method that learns representations without using human-annotated
labels. Instead of human labels, the model is trained on a pretext task, i.e., a task that
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is related to the ultimate goal, but is easier to obtain labels. Examples of pretext tasks
include predicting a masked-out word in a sentence [87] or part of an image [15].
Following the pre-training, the model is then fine-tuned towards the ultimate goal.
What makes SSL-trained models particularly useful, is that they can be fine-tuned to
a range of tasks and domains, and often reach competitive performance with limited
amount of annotated data. Due to their wide adaptability, such models are commonly
referred to as foundation models.

The approach of training a model self-supervised on a huge unlabeled dataset,
followed by task-specific fine-tuning was first shown to be effective at scale in the
natural language processing (NLP) domain [87]. It remains one of the success factors
of large language models (LLMs), as it enables training them at unprecedented scales.
Similarly, this approach has been successful in other domains as well, such as vision.
Below we introduce the most popular SSL methods used in the image domain, but
note that they are applicable to other perceptual domains as well.

Contrastive Learning One of the most popular SSL methods is contrastive
learning [16], [88], [89]. The idea of contrastive learning is to map high-dimensional
data, such as images, to a low-dimensional latent space, where the latent space is
ordered such that semantically similar data points are close to each other. For training,
the model is fed positive pairs that should attract and negative examples that should
repel. Positive pairs are created by augmenting the same image in two different ways,
as this ensures that there is similar semantic content in both images. Negative pairs
are constructed by pairing these augmented views with other images in the dataset,
which are assumed to be dissimilar. For instance, from a mini-batch of N images, one
can create N positive pairs, resulting in 2N total data points. Further, each data point
can be paired with each of the 2(N − 1) negative examples. The loss function for a
positive pair (zi, zj) can then be defined [89] as:

li,j = − log exp(sim(zi, zj)/τ)∑2N
k=1 1(k ̸= i) exp(sim(zi, zk)/τ)

(4.1)

where sim(zi, zj) is the similarity between samples zi and zj , and τ is a temperature
parameter. The denominator is the sum of similarities between zi and all negative
examples for zi. Often, the similarity function is the cosine similarity, but other
similarity functions can also be used. The loss function encourages the latent encoding
of the positive pair to be closer to each other than to any of the negative pairs.

While conceptually simple, contrastive learning requires careful design to learn
meaningful representations, and the field has undergone a number of developments.
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Figure 4.1: Overview of different contrastive learning (needs negative samples) and self-
distillation (no need for negative samples) methods.
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MoCo [16] proposes to use two models, a query model and a key model. The query
model sees one version of the augmented data and is the one being optimized. The
key model sees a different version of the augmented data and is a moving average
of the query model. SimCLR [89] simplifies contrastive learning by using the same
model for encoding both augmented data. Instead, they introduce a small MLP after
the encoder, which maps the encoded data to a different latent space before applying
the loss function. Note that this MLP is discarded after training. Further, the authors
study the effect of different augmentations and note that SSL benefits from stronger
augmentations compared to what is used in supervised learning, and from larger batch
sizes and longer training times. See Fig. 4.1 for a visual comparison.

Self-Distillation Self-distillation is a self-supervised learning method that shares
many similarities with contrastive learning, but steps away from the need for negative
examples. One of the first works to demonstrate the perks of self-distillation at scale
was Bootstrap Your Own Latent (BYOL) [90]. Similar to MoCo, BYOL uses two
models, one that is being optimized (the student) and one that is a moving average
of the optimized model (the teacher). The model itself consists of an encoder and
a mapping MLP, similar to SimCLR. Further, each version of the model is fed an
augmented version of the same data, where the student’s prediction should be close
to the teacher’s representation. However, compared to SimCLR, BYOL introduces
an additional MLP to the student model (not used for the teacher), which is tasked to
predict the output of the teacher.

Since BYOL does not rely on negative examples, one would expect it to be prone to
collapse to a single point, i.e., all inputs are mapped to the same representation. The
authors hypothesize that the combination of the additional MLP and the slow-moving
average of the model encourages the encoding of more and more information, rather
than collapsing. Follow-up works such as SimSiam [91] investigate this closer and
show that the main reason for avoiding collapse is the use of a stop-gradient operation,
i.e., the teacher and student can be identical models as long as only the student is
updated during gradient descent.

A similar approach to BYOL is DINO, knowledge distillation with no labels
[14]. DINO uses a student-teacher setup, with the teacher being a moving average
of the student, and augments the data to create input pairs. Compared to BYOL,
the architecture is simplified, with all extra MLPs removed, and the loss function
is different. Instead, the latents of the teacher model are centered using a moving
average of teacher latents and sharpened. These two operations are sufficient to stop
the model from collapsing. Further, rather than using cosine similarity, DINO uses the
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Figure 4.2: Masked autoencoder method overview. The encoder embeds masked inputs. From
this context, a lightweight decoder is tasked to reconstruct the masked parts.

cross-entropy loss to compare the student and teacher latents, inspired by SwAV [92].
Besides providing models with strong representational capabilities, DINO also

sheds some light on why their teacher-student setup is so successful. Their experiments
show that the teacher consistently outperforms the student during training. The
proposed interpretation is that the moving averaging is a form of Polyak-Ruppert
averaging with exponential decay. This is a popular technique to simulate ensembling
multiple models, and thus improve final performance. Thus, using momentum can be
seen as constantly building an ensembled model during training.

Masked Autoencoders While contrastive learning and self-distillation both re-
sult in models with powerful representations, they come with practical issues. For
contrastive learning, the requirement to use large batch sizes with many negative exam-
ples hinders applications with high-dimensional input. The self-distillation approach
does not suffer from this, but instead requires keeping two copies of model weights in
memory, limiting the size of model that can be trained. Masked autoencoders (MAE)
[15] provide an SSL method that can handle both high-dimensional data and train
models of larger size.

The task in MAE is to, given incomplete input data, predict the missing data,
see Fig. 4.2. Specifically, a small fraction of the image (∼ 30%) is processed by
an encoder and the resulting embeddings are provided as context to a lightweight
decoder, which attempts to predict the content of the masked parts. This way, the
encoder is forced to learn to embed enough context from incomplete information. For
example, the decoder should be able to predict what a car looks like, even if only part
of the trunk is visible.
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The key enablement of MAE is the use of Vision Transformers (ViTs) [93], since
they, compared to CNNs, are more computationally efficient for sparse inputs. The
extensive masking drastically reduces the amount of computation required to train
the encoder, leading to faster training times compared to other SSL methods like
contrastive and self-distillation. Likewise, at a similar computing budget, MAE
enables the training of larger models.

4.2 Weakly Supervised Learning

Weakly supervised learning is a branch of machine learning where the supervision
signal is either incomplete, inexact, or inaccurate [94], [95]. For incomplete supervi-
sion, only a subset of the training data has associated labels. This is also known as
semi-supervised learning. The inexact supervision refers to coarse-grained labels, e.g.,
only indicating whether an object is present or not, rather than its exact location in
an image. Inaccurate labels refer to the labels not necessarily being ground truth and
correct. Compared to the fully supervised setting, these types of supervision signals
are usually less expensive to acquire and can therefore be applied at a greater scale.
Below we examine WSL through two weakly supervised settings common in the
autonomous driving context. The first example shows how web-scale text-image pairs
can be used as inexact and inaccurate supervision to learn powerful language-vision
representations. As a second example, we describe auto labeling, i.e., different ways
of automating the creation of labels for inaccurate supervision.

Learning from Language

Contrastive Language–Image Pre-training (CLIP) [18] is a method for learning power-
ful visual models from natural language supervision. CLIP is trained using web-scale
image-text pairs, i.e. images and their captions. The model consists of a text encoder
and an image encoder, where each encoder maps their respective modality to a single
vector. The encoders are trained jointly using a contrastive loss, which encourages
latent representations of pairs to attract each other while repelling representations of
other pairs.

Conceptually, the training of CLIP has commonalities with self-supervised con-
trastive learning. The difference is that CLIP uses modality-specific encoders, and
relies on pairs being aligned when collected, i.e., that the captions and images are
sensible matches, rather than creating pairs through augmented views. Thus, instead
of viewing CLIP as an SSL method, we consider the image captions to be a form of
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inexact supervision.
Using CLIP, one can compare the similarity between an image and arbitrary text

descriptions, e.g., "a photo of a cat" or "a photo of a dog". By selecting the most
similar text description, one can then use the model to perform zero-shot classification.
CLIP’s zero-shot classification capabilities are on par with SSL models fine-tuned in
a few-shot setting, i.e., using a small amount of labeled data. Further, using CLIP in a
few-shot setting, performance can be improved even further.

Vice versa, one can compare multiple images to a single text description and select
the image that is most similar to the text description. This task, known as retrieval,
is highly relevant for AD, where large amounts of unlabeled data are available, and
practitioners are often interested in finding certain types of images. This enables one
to quickly find rare cases, e.g., data with animals on the road or data collected in
severe weather conditions. Further, one can use this to retrieve data points that are
similar to a given image that an object detector is struggling with.

Auto-Labeling

A different way to reduce the need for human annotations is to use automatically
generated labels for the given task. There are many ways of building a pipeline for
auto labeling, but generally such, pipelines contain large models that do not have
real-time requirements. This can mean using huge networks or ensembles of models
and letting these use tricks such as hindsight. For example, a large ensemble of models
might accurately classify nearby traffic signs. For video data, these predictions can be
turned into accurate labels when the sign is far away by tracking its location backward
in time.

A popular application for automatic labeling is offline or offboard 3D object
detection [9], [10]. Automatically annotating objects in 3D enables more scalable
data generation for modules such as motion prediction and planning, which often
rely on object-level data in a modular stack. Most offline 3D object detectors follow
the recipe of using a large detector, tracking the detections forward and backward
in time, and refining the predictions based on the resulting tracks. In particular,
recent methods [10] claim to outperform human performance using this approach.
Nonetheless, automatic labeling in general has some fundamental drawbacks.

First, training any large and powerful network will require a significant amount of
labeling. As highlighted above, self-supervised learning can alleviate some of this,
but for the model to reliably perform a task as intended labels will be needed. Second,
it remains challenging to automatically verify the generated labels. To be completely
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certain that no erroneous labels are created, some human-in-the-loop verification is
likely needed.

4.3 Applications to Autonomous Driving

Much of the driving force behind the development of SSL methods has come from the
NLP and vision domains. Both of these domains enjoy the benefits of readily available
large-scale data, with text, images, and video being abundant. However, autonomous
driving is a multi-modal domain, where multiple types of sensors are used to perceive
the surroundings. This type of multi-modal data is often more scarce, at least publicly.
Further, while many SSL methods are trained on data collected from different types
of cameras (in the vision context) or different authors (in the NLP context), the
diversity in certain AD sensors, such as lidars, is rather limited with only a handful
of manufacturers and models. Similarly, the data itself can be considered to be more
homogenous than web-scale datasets used to train large language or vision model.
Thus, it is natural to ask whether SSL methods can be applied in the autonomous
driving setting and what gains they bring.

Lidar-based models have been trained using a range of SSL methods. Multiple
works have applied contrastive learning to learn representations from outdoor point
clouds [96]–[100]. Compared to image-based models, these generally use more
complex matching strategies, where subregions of the point clouds are matched across
different views. For instance, SegContrast [97] uses pre-processing to find segments
in the point clouds, and then contrasts these segments against each other.

The masked autoencoder framework has also proven a successful pretext task for
point cloud understanding [101]–[103]. Typically, these methods mask out entire
voxels in the point cloud and aim to predict the missing data. The reconstructive loss
differs between methods and can contain per-voxel point cloud reconstruction, voxel-
level occupancy prediction, or a combination of both. Compared to pure supervised
training, these methods are able to drastically reduce the amount of annotated data
needed to train a perception model.

Beyond single-modal SSL for lidar, multiple works have tried to learn from image-
lidar data [104]–[107]. UniPAD [106] uses an MAE-style reconstruction pretext
task. There, images and lidar point clouds as masked and encoded to a joint space,
from which images and point clouds can be decoded using differentiable volume
rendering. The other works [104], [105] instead rely on pre-trained image models
for supervision, and distill their knowledge into the lidar encoders. Their reasoning
is based on image data being more abundant than lidar data, and hence the image
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model should have a wider range of knowledge. In LidarCLIP [21] (Paper B), we
follow a similar reasoning but emphasize the use of a vision-language model, which
provides the trained LidarCLIP model with a direct connection to the language domain.
GASP [107] combines both using visual foundation models with a reconstruction-
based pretext. Given a collection of lidar scans, a lidar encoder is tasked to predict
occupancy and DINOv2 [108] features at future frames. Although they do not have a
direct connection to language, the DINOv2 features still provide semantic supervision
to the lidar encoder.

As evident, there exists a range of tools for self-supervised learning in an au-
tonomous driving context. More so, these often showcase improved performance
compared to methods trained in a fully supervised fashion, especially when the number
of annotated samples is small. This is in line with what is observed for self-supervised
methods for general image classification as well. However, the conclusions drawn
in the AD context are often based on relatively small sample sizes, as public AD
datasets are much smaller than web-scale text or image datasets used to train language
or vision foundation models. Thus, it remains an open question what the scaling
properties are of SSL for AD, and what gains to expect in a more industrial setting.
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CHAPTER 5

Going Beyond Real Data

As evident from the previous chapters, much of the development of autonomous
vehicles revolves around high-quality data. Training data-driven models for AD
requires collecting data and, to some extent, annotating it. Evaluating the performance
of AD systems and their subsystems also requires diverse data and annotations. As
such, the performance of an AD system, and practitioners’ confidence in the system’s
expected behavior, is strongly connected to the amount and quality of data available.

However, collecting sufficient amounts of real-world data for training and evaluation
is a challenging undertaking. Generally, practitioners are interested in scenarios where
the AD system is struggling. However, as the performance of the AD system improves,
the time between relevant events increases. Furthermore, certain events, especially
safety-critical ones, are rare and difficult to collect. Some are even impossible to
observe without risking human or property damage. As a result, data collection and
curation become increasingly cumbersome as the system matures.

Another factor complicating data collection is that testing the entire system from
pixel to torque requires the data to be dynamic and reactive to the decisions made
by the AD system. The easiest way to achieve this is to let the system drive in the
real world. This, however, comes with multiple drawbacks. Beyond scaling poorly,
as highlighted above, real-world testing is not reproducible, i.e., one cannot evaluate
different versions of software in the exact same scenario. It is possible to show the
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collected data to a new version of the AD stack, but its actions would not be actuated.
As such, it is hard to tell whether a bug observed in a specific scenario has been
resolved by a software update.

Simulation has been a long-standing solution to the problem of data scarcity [109],
[110]. It allows for the generation of diverse and dynamic data in a controlled envi-
ronment. Beyond data generation, simulation can also be used to test the performance
of AD systems in closed loop in a safe and cost-effective manner. Moreover, for
many simulation methods, the generated ground truth is known and there is no need
for human annotations. Nonetheless, current simulation tools have not been able to
provide a scalable path toward robust autonomy.

The main problem with simulation is that it fails to provide sensor-realistic and
diverse data at scale. Physics-based simulation, like game engines, has come a long
way but struggles to reach sensor realism unless at the cost of computational resources
and extensive modeling effort. Diversity, in turn, is bottlenecked by asset creation,
which often involves humans in the loop.

Novel View Synthesis (NVS) is the task of generating sensor data from new
viewpoints given a finite collection of observations from a scene. The field has
received increasing attention from the AD simulation community as it has the potential
to overcome the limitations of physics-based simulation. Pioneering works such as
Neural Radiance Fields (NeRFs) [25] can turn multi-view images of a static scene
into a representation that allows practitioners to generate new images from arbitrary
viewpoints. With the potential to extract assets needed for AD simulation directly
from the data, NeRFs have sparked the development of methods that can do the same
for large-scale dynamic environments with multiple types of sensors. Below we
introduce the NVS task, recent advances in the field, and their adaptations to AD
simulation.

5.1 Novel View Synthesis

Novel View Synthesis (NVS) is a task in computer vision and graphics that involves
generating new images of a scene from viewpoints that were not present in the original
set of images. Formally, given a set of images captured from different viewpoints,
NVS aims to synthesize images from novel viewpoints by learning the underlying
3D structure and appearance of the scene. This process typically involves estimating
the geometry, lighting, and material properties of the scene to produce photorealistic
renderings from any desired viewpoint.
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Neural Radiance Fields

Neural Radiance Field (NeRF) [25] is a method that aims to learn an implicit scene
representation from a set of posed camera images. It sidesteps the explicit lighting
and material modeling by only considering the radiance, i.e., the radiant flux emitted,
reflected, or transmitted from a surface. In NeRF, the underlying scene is represented
as a continuous volumetric function of 3D coordinates x = (x, y, z) and viewing
direction d = (θ, ϕ). The function is parameterized as an MLP that produces a density
σ(x) and a color c(x, d) = (cr, cg, cb) for each 3D coordinate and viewing direction.
Notably, the MLP input is embedded using positional encodings to ensure that the
network can represent high-frequency functions [111]. To produce a pixel value at a
given image coordinate, NeRFs cast a ray r(t) = o + td from the camera center o
through the image plane and query the MLP along the ray. From classical volume
rendering [112], the expected color C(r) with bounds tn and tf is given by:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t), d) dt, (5.1)

where T (t) is the transmittance along the ray expressed as:

T (t) = exp
(

−
∫ t

tn

σ(r(s)) ds

)
. (5.2)

In practice, the integral is approximated using the quadrature rule:

C(r) ≈
N∑

i=1
Ti(1 − exp(−σi∆ti))ci, (5.3)

where Ti is the transmittance at the i-th sample, σi is the density, and ∆ti is the
distance between the i-th and (i + 1)-th sample.

The search for optimal MLP parameters is posed as an optimization problem.
Relying on differentiable rendering, the parameters are found by minimizing the
difference between the synthesized and the ground-truth images. The loss function is
defined as:

L =
∑
r∈R

∥∥∥C(r) − Ĉ(r)
∥∥∥2

2
, (5.4)

where R is the set of rays, potentially sampled from multiple images, C(r) is the
ground truth color of the pixel, and Ĉ(r) is the synthesized color. Given enough
images from different viewpoints, NeRFs successfully learn a sensible geometry of
the scene, and its radiance, producing high-quality renderings.
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Since its introduction, NeRFs have been improved in multiple ways. The authors
of [113] note that when training and testing images have different resolutions, NeRFs
tend to produce blurry or aliased images because they sample the scene with a single
ray per pixel. To efficiently emulate supersampling with multiple rays per pixel, they
propose to use the expected positional embedding if one were to represent a pixel
with multiple rays. Their proposed Mip-NeRF boosts the performance of NeRFs by a
significant margin, without introducing any additional parameters or training time.

However, NeRFs still struggle to handle large, unbounded scenes and produce
blurry or low-quality images in these cases. In [114] three main challenges are
identified: (1) parameterization, NeRFs require 3D scene coordinates to be bounded,
(2) efficiency, larger scenes require more network capacity, (3) ambiguity, the content
of unbounded scenes can lie at any distance. First, Mip-NeRF 360 [114] introduces a
non-linear coordinate transformation to contract the space beyond a certain distance.
Second, Mip-NeRF 360 uses an online distillation method that relies on multiple
MLPs to represent the scene on several scales. Last, the authors propose a new
regularization loss that encourages density along rays to be concentrated in a narrow
band.

In addition to improving the quality and modeling capabilities of NeRFs, another
line of work focuses on improving the efficiency of NeRFs [115]–[122]. The original
NeRF formulation takes on the order of days to optimize the MLP for a single scene
and can run inference at < 1 FPS. The methods trying to address this can roughly be
grouped into two categories, (1) changing the scene parameterization to accelerate
both training and inference speed, and (2) baking the scene by pre-computing values
for a different scene representation. For instance, Instant-NGP [115] proposes to
exchange the positional encoding with a multi-resolution hash encoding, which allows
for a drastically smaller MLP. The method trains in seconds to minutes and can
run inference at real-time speeds. In contrast, Plenoctrees [117] first train a slightly
modified NeRF, and then convert the NeRF into an octree-based representation. While
this does not accelerate training, it allows for > 100 FPS inference.

3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [123] is an NVS method that both trains fast and
runs inference at real-time speeds. Instead of learning a neural network to represent
the scene, 3DGS uses an explicit representation of 3D Gaussians to represent the
geometry and appearance. The key to optimizing their shape and appearance is (1) a
fast GPU-based rasterization-based renderer and (2) heuristics for adaptive density
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control of the Gaussians. To render an image, all Gaussians are first projected onto
the image plane and approximated as 2D Gaussians. The rasterizer divides the image
into 16x16 pixel tiles and each Gaussian is assigned to the tile(s) they overlap with.
Before alpha-blending, the visible Gaussians are sorted globally by their midpoint’s
distance to the camera. Last, each 16x16 tile launches one thread per pixel, and these
collaboratively render the tile by traversing the sorted Gaussians front to back. As for
NeRFs, the loss function is defined as the difference between the synthesized and the
ground-truth images.

3DGS has spurred a range of follow-up works focused on improving different
aspects of the method. For instance, Mip-Splatting [124] adjusts the rendering
equation to overcome the aliasing artifacts of 3DGS. 3DGS-MCMC [125] proposes to
see the 3DGS optimization as a Markov Chain Monte Carlo (MCMC) problem, and
proposes methods to remove heuristic density control. StopThePop [126] improves
the renderer by replacing the global sorting with a hierarchical one. This remedies
popping artifacts when rotating the camera, i.e., small viewpoint changes resulting in
switches in the sorting order. All of these improve the quality of the rendered images
without introducing any computational overhead.

Some works have taken a different path, where they rely on 3D Gaussians to
represent the scene, but use ray-tracing instead of rasterization to render the images.
This allows them to model secondary effects, such as depth of field, motion blur,
rolling shutter, shadows, and specular highlights, which are hard to capture with
rasterization. Further, while the 3DGS rendering assumes a pinhole camera for 3D
to 2D projection, the ray-based formulation makes it easier to adapt other lenses,
such as fisheye lenses. 3D Gaussian Ray Tracing [127] is an example of this line
of work. There, 3D Gaussians are first converted to a proxy geometry and inserted
into a bounding volume hierarchy (BVH). Then, using NVIDIA’s general-purpose
ray-tracing engine, OptiX [128], rays are traced to compute the visibility of the 3D
Gaussians. EVER [129] also relies on BVH and OptiX for sorting Gaussians along
each ray, but also proposes a new rendering equation where the interaction between
overlapping Gaussians is modeled. While both these works enable novel applications,
they come at the cost of increased computational complexity, and run 2 − 10× slower
than 3DGS.

Generative Modeling for NVS

Generative modeling is another line of work for solving NVS. Instead of relying on
NeRF-style per-scene optimization, generative models are trained over large datasets.
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By learning the underlying distribution of the data, these models have far better
generalization capabilities than NeRFs or 3DGS. For instance, multiple such models
are capable of predicting plausible 3D scenes from a single image [130], and are
even able to generate 3D scenes from text descriptions [131]. Such problems are
unsolvable with NeRFs or 3DGs alone.

The drawback of generative methods is that they often lack built-in multiview
consistency, are harder to control with the same precision as rendering-based methods,
and run much slower at inference. Because of this, generative models are often
coupled with rendering-based methods [132], [133]. The rendering-based method is
used to encapsulate the current scene, provide multiview consistency, and query the
scene. The generative model is used to extend or regularize the existing scene, e.g.,
generate unseen views, or generate completely new scenes.

This style of approach has received increasing attention in the AD simulation
community as well [134]–[137]. Indeed, these methods are able to improve image
fidelity when shifting the ego-vehicle to a different lane, for instance. However,
generative models for AD are still in their infancy and the full potential of this
approach has yet to be unlocked. Important questions to address moving forward
include how to utilize generative models efficiently, rather than simply selecting views
for generation based on heuristics. Further, there is a lack of tools for multi-modal
data generation, e.g., how to extend the lidar properties in a scene remains an open
challenge.

5.2 Neural Rendering in AD Simulation

Neural rendering, i.e., the collection of methods that learn a 3D scene representation
from 2D images, has enormous potential for scalable AD simulation. However, AD
data come with unique challenges for novel view synthesis. First, AD scenes can
cover hundreds of meters within seconds, whereas standard NVS datasets are often
collected walking around with a handheld camera. Second, AD scenes are dynamic,
breaking one of the core assumptions of NeRF- and 3DGS-based methods that the
scene is static. Last, data are often collected using not only multiple cameras but also
other types of sensors. While several works separately address scale [138], dynamics
[139], [140], multi-modal data [141], [142], or some combination of them [143],
[144], the challenge in developing a simulator for AD is to handle all these aspects
simultaneously.
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Modeling Dynamics One of the first works that use NeRFs for AD scene recon-
struction is Neural Scene Graphs (NSG) [145]. There, the scene is decomposed into a
static background and a set of rigidly moving objects. By knowing how the objects
traverse the scene, the static and dynamic parts can be composed at any given time.
Further, this allows easy reconfiguration of the scene, i.e., changing the location of
the ego-vehicle or the objects, which is important for using the method in a simulator.
Other works have a more implicit separation of static and dynamic scenes, such as
EmerNeRF [24], where static and dynamic are two separate networks. Although this
removes dependencies of annotations for the dynamics, it also limits the possibilities
for reconfiguring the scene.

To model dynamic actors as rigid has since become a popular approach in the
AD simulation community [23], [142], [146], [147]. The main drawback is that this
is not a good approximation for deformable actors such as pedestrians and cyclists.
Recently, this limitation was overcome by OmniRe [148], a 3DGS-based method
that can handle non-rigid dynamic actors. Here, the dynamic actors are subdivided
into rigid, general deformable, and SMPL nodes. SMPL [149] is a parametric model
for representing the pose and shape of humans. The deformable nodes instead rely
on learning a small neural network to deform their parts in a more flexible but less
structured manner. This approach greatly improves the quality of the rendered images,
especially for deformable actors. However, while conceptually simple, OmniRe relies
on external tools [150] to track pedestrians before starting the optimization, thereby
adding significant processing time.

Multi-Modal Data While early work focused on camera data only, multiple meth-
ods exist for lidar data [141], [142], or for jointly modeling camera and lidar data [26],
[28]. Since many AD systems rely on lidar data for 3D understanding, the ability to
faithfully render lidar data is crucial for realistic simulation. Thankfully, since lidar is
a light-based sensor, it is possible to adapt existing NeRF-based methods to render
lidar data. However, the peculiarities of lidar data require careful modeling of the
sensor.

In NFL [142], the authors adjust the volume rendering equation to account for the
emitted beam traveling from the sensor and back, and the associated loss in energy. In
addition, they model multiple important sensor characteristics. For instance, beam
divergence, i.e., the spread of the emitted laser, is captured by tracing multiple rays
per lidar point. Further, instead of RGB, the learned scene representation contains
reflectance values and probabilities for a lidar beam not scattering back toward the
sensor (ray drop probability). This type of accurate modeling is important for a
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perception system to have the same behavior in simulation as in the real world [144],
[151].

When it comes to modeling camera and lidar data jointly, there are only a few works
that address this [26], [28]. It is common practice to use the lidar for supervising the
scene representation since it provides valuable depth information, but less common to
accurately render the lidar signal for novel views. UniSim [23] was one of the first to
report metrics for both image and lidar rendering. However, as we discuss in Paper C,
UniSim overlooks certain aspects such as beam divergence, ray drop probability, and
rolling shutter effects, limiting their performance.

One modality that has received little attention is radar data [152]–[155]. Since radars
are not light-based, it is challenging to adapt existing NeRF-based methods to render
radar data. Further, radar detections are generally sparse and noisy in comparison to
lidar or camera data, making the pure reconstruction-based optimization approach
more difficult. DART [152] tries to overcome the challenge of low spatial resolution by
using the range-Doppler domain. Unfortunately, none of the large-scale AD datasets
provide range-Doppler data, limiting the applicability of the method.

Applications The most common motivation for using NVS in AD simulation is
the ability to conduct realistic simulations at scale. NeuroNCAP [27] explores exactly
this by using a NeRF-based renderer [26] to explore safety-critical scenarios created
from real-world data, see an example in Fig. 5.1. In their closed-loop simulation,
they evaluate two end-to-end AD systems [40], [41] that previously have reported
state-of-the-art results on open-loop evaluation. The NeuroNCAP results show that
both methods fail to handle even simple scenarios, such as stationary cars parked in
the middle of the road. The observation that closed-loop evaluation does not correlate
with open-loop performance is in line with previous observations [156], [157], and
merits the development of tools for closed-loop evaluation.

However, as for traditional game-engine-based simulators, questions often arise
revolving around the realism of the rendered scenes and if results achieved in simula-
tion can be trusted and used to draw conclusion about real-world performance. Works
like UniSim [23] and NeuRAD [26] include some results to assess this real-to-sim
gap. There, perception models are first trained on real data and then evaluated on
both real and simulated data. By evaluating if the perception models’ predictions are
the same on both types of data, it is possible to assess the realism of the simulated
scenes. UniSim and NeuRAD show that perception models such as 3D object detector
BEVFormer [158] and monocular depth estimator DepthAnything [159] reach similar
performance on real and simulated data.
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Figure 5.1: Example of how NeuroNCAP [27] uses NeuRAD (Paper C) to convert a collected
real-world log (left) to three safety-critical scenarios: a parked car (second from
left), potential frontal collision (second from right), and potential side collision
(right). Image used with permission from [27].

These small-scale experiments are further extended in [160], where the authors
explore the real-to-sim gap on a larger scale. There, the gap is evaluated for nuScenes
data, using multiple 3D object detectors and an online mapping model. The results
show a clear decline in perception performance when applying the same object
detectors to the simulated data. However, this gap can be reduced by extending
the data augmentation pipeline with either simulated data or data with a similar
appearance as simulated data. Moreover, blending rare scenarios with simulated data
can increase the performance on real-world data, indicating potential applications for
neural rendering beyond verification and testing.
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A

Georg Hess, Christoffer Petersson, Lennart Svensson
Object Detection as Probabilistic Set Prediction
Published in European Conference on Computer Vision (ECCV),
pp. 550–566, 2022.
© 2022 Springer Nature. Reproduced with permission from Springer Nature.
DOI: 10.1007/978-3-031-20080-9_32.

We propose to view the task of object detection as probabilistic set prediction.
Specifically, we model the predictions from an object detector as a Random Finite
Set (RFS). We demonstrate how to acquire the required parameters from existing
probabilistic object detectors. Furthermore, we propose to use the negative log-
likelihood of the predicted RFS as a new object detection evaluation metric. This has
appealing theoretical properties, as it is minimized only when the RFS matches the
true data-generating distribution and further accounts for ambiguities when assigning
predictions to ground truth.
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Chapter 6 Summary of included papers

The original idea behind the project came from LS and was refined in project
meetings by me, LS, and CH. I implemented baselines, conducted experiments, and
summarized the results. The majority of the paper was written by me, with a large
amount of valuable feedback from LS and CH.

6.2 Paper B

Georg Hess†, Adam Tonderski†, Christoffer Petersson, Kalle Åström, Lennart
Svensson
LidarCLIP or: How I Learned to Talk to Point Clouds
Published in IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV),
pp. 7423–7432, 2024.
DOI: 10.1109/WACV57701.2024.00727
© 2024 IEEE. Reprinted, with permission, from G. Hess, A. Tonderski, C.
Petersson, K. Åström and L. Svensson, “LidarCLIP or: How I Learned to
Talk to Point Clouds”, 2024 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2024.

We propose a method for relating 3D point clouds and text, without any need for
point cloud-text pairs. Instead, we use image-point cloud pairs to supervise a point
cloud encoder with image CLIP embeddings, effectively creating a text and point
cloud coupling with the image domain as an intermediary. We find that our learned
lidar encoder is on par with the image encoder for retrieval in the autonomous driving
context. Furthermore, we propose to use both encoders for multi-modal retrieval. This
method is more robust to adverse conditions and can further be used to explicitly find
these types of scenarios.

Me and AT jointly conceptualized the project, with AT first proposing the core idea.
Together, we implemented the method, ran experiments, analyzed the results, and
wrote the paper. KÅ, LS, and CP provided feedback.

6.3 Paper C

Adam Tonderski†, Carl Lindström†, Georg Hess†, William Ljungbergh, Lennart
Svensson, Christoffer Petersson
NeuRAD: Neural Rendering for Autonomous Driving

58



6.4 Paper D

Published in IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR),
pp. 14895–14904, 2024.
DOI: 10.1109/CVPR52733.2024.01411
© 2024 IEEE. Reprinted, with permission, from A. Tonderski, C. Lindström, G.
Hess, W. Ljungbergh, L. Svensson and C. Petersson, “NeuRAD: Neural Ren-
dering for Autonomous Driving”, 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

We propose a new method for novel view synthesis in an autonomous driving con-
text. Our method is the first to jointly model lidar and multi-camera data. Furthermore,
we were the first to emphasize the modeling of rolling shutter effects for accurate
novel view synthesis. By combining this with modeling of other sensor characteristics,
such as camera antialiasing and lidar beam divergence, our method set a new state of
the art across five popular autonomous driving datasets.

AT and I came up with the original idea for the project in discussions with LS and
CP. The method was then developed by AT, me, and CL, in discussion with LS and
CP. The implementation was done by AT, me, and CL, with assistance from WL. The
final model architecture was proposed by AT. Experiments were run by CL, AT, and
me. I created much of the first draft of the paper, and writing was then done mainly
by me, CL, and AT, with support and feedback from all co-authors.

6.4 Paper D

Georg Hess†, Carl Lindström†, Maryam Fatemi, Christoffer Petersson, Lenn-
art Svensson
SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting
for Autonomous Driving
To be published in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2025.

Training NeuRAD takes several hours and using it for simulation requires a sig-
nificant amount of computational resources, as it does not run in real-time. Here, we
propose a new method for novel view synthesis based on 3D Gaussian Splatting, which
enables real-time simulation and faster training times. After a few minutes of training,
SplatAD reaches a performance comparable to that of the previous state-of-the-art.
Furthermore, longer training leads to SplatAD clearly surpassing the previous state
of the art. To enable this, we extend the original 3D Gaussian Splatting formulation
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from modeling single camera only, to jointly modeling multi-camera and lidar data.
I proposed the project in discussion with LS and CP. Me and CL designed and

implemented the method together. Me and CL ran experiments with feedback from
LS, CP, and MF on which experiments to prioritize. Me and CL wrote the paper
together, where I wrote a majority of the first draft, and LS, CP, and MF, provided
feedback.
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CHAPTER 7

Concluding Remarks

Throughout this thesis, we have addressed three different challenges in the field
of autonomous driving perception: uncertainty estimation in object detection, self-
supervised learning for reduced need for annotation, and neural rendering for scalable
development. With these contributions, perception systems can reason about occluded
objects, utilize language to learn from unlabeled data, and be trained and evaluated in
realistic simulation environments. While we believe that these contributions are a step
in the right direction, there is still a lot of work to be done before we have affordable
and safe autonomous driving in every corner of the world.

Uncertainty Estimation Evaluation Our proposed framework for modeling
object detection uncertainty enables fair and principled evaluation of different object
detectors. However, as highlighted by the emerging end-to-end AD systems, it is
not clear how these performance measures align with system-level performance. For
instance, in many perception metrics, all objects are treated as equally important, but
in reality, only a handful of objects, such as the ones closest to the ego vehicle, truly
impact the decision-making process. To figure out the impact of poor detections, we
would have to evaluate multiple "what if" scenarios. While this is not feasible in a
real-world setting, we hope that our work on novel view synthesis will enable such
features in the future.
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Scaling LidarCLIP and Introducing Additional Modalities LidarCLIP
demonstrated an impressive semantic understanding of 3D lidar data and decent
cross-dataset generalization by training on 7 million image-lidar pairs. Nonetheless,
the amount of data is still orders of magnitude smaller than what is used for training
most image-language models. Also, most AD systems rely on additional sensors, such
as radars, which is not handled by LidarCLIP. It would be interesting to see emerging
properties when scaling LidarCLIP to even larger datasets and model sizes. Both NLP
and CV fields have repeatedly shown how scaling data and models can unlock new
capabilities. Further, approaches similar to Imagebind [161] could enable methods to
include additional modalities, and, perhaps more importantly, enable the image model
to learn from these modalities. This way, instead of mapping 3D data to a semantic
embedding space, the embedding space will also contain 3D information.

While self-supervised learning reduces the need for costly human annotation, it
often requires massive datasets, leading to significant data collection and storage costs.
For reference, the best-performing LLMs such as LLama 3 [162] are trained on 15T
tokens. Translating a standard Full-HD image to about 8K tokens1, the equivalent
would be 2B images. Furthermore, text is a more readily available resource than
synchronized multi-sensor data of AD systems. This raises questions on how to
utilize the data more efficiently. Potential avenues include continual learning [163]
and meta-learning [164]. While not addressing the data collection problem, these
approaches can enable the model to learn from new data without forgetting previously
learned information.

Extending Neural Rendering Applications Both NeuRAD and SplatAD pro-
vide high-fidelity camera-lidar data for novel views close to the original training views.
In simulation, however, the ego-vehicle can diverge significantly from the original
trajectory. To extend the applicability of these methods, additional regularization is
needed. The most promising direction is to rely on the fast progress in generative
models and use them to extend the learned scene representations [132], [133]. An
open research problem is how to extend these methods to include additional modali-
ties, such as lidars and radars. Perhaps an SSL model with multi-modal embedding
space, as discussed above, can be a key to unlocking these applications.

Onboard Compute Irrespective of the amount of high-quality data, an AD system
will be bound by the amount of available onboard computing power. While there are

1A 16:9 Full-HD image has 1920x1080 pixels. Using the common 16x16 tokenization of Vision Trans-
formers, this would be 8100 tokens.
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limited studies on scaling laws for AD, other DL-driven domains clearly show that
model size and dataset size should be scaled in tandem for increasing performance
[165]. Thus, to improve AD systems, we likely need more powerful and affordable
onboard compute. Further, access to compute that is capable beyond running the
model just-in-time could open up new directions, similar to the test-time reasoning
capabilities observed in recent LLMs [166]–[168]. This way, the model could use
more compute power for complicated scenarios, and less for nominal driving.
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