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Abstract: A new analytical equation for the electrophoretic mobility of a colloidal sphere,
homogeneously charged, is derived. This equation reduces to the well-known Henry’s
formulation for low surface potentials. For high surface potentials, the equation is compared
to the full numerical result. It is found that the equation performs well up to surface
potentials of 50 mV. For larger surface potentials, the equation performs well for κa > 10,
where κ is the inverse of Debye’ s length and a the radius of the particle. Differences
between analytical and numerical solutions for κa < 10 are studied. The case of a particle
with a constant surface charge is discussed. In that case, a very simple equation relates the
surface charge of the particle to the electrophoretic mobility for κa > 10.

Keywords: electrophoresis; colloid; zeta potential; Hückel; Smoluchowski

1. Introduction
The motion of a charged colloidal particle in an electrolyte under the influence of an

applied electric field is used routinely in many fields of science to study the changes in
interfacial properties of colloids upon changes in solvent (changes in pH or changes in ionic
strength, for example). In order to interpret the measured data, that is, the electrophoretic
velocity defined as µ = U/E0 whereby U is the velocity of a colloidal particle subjected to an
electric field E0, one makes use of theories of which the simplest ones date from the work of
Smoluchowski and Hückel [1]. A full numerical description of the electrophoretic mobility
was proposed in 1978 by O’Brien and White [2]. Numerous analytical approximations have
also been developed for different ranges of applicability: high and low ionic strength, low
surface charge, and particles coated by polyelectrolytes, for example [1]. Recently, there was
regained interest in the physical aspects of electrophoresis. Jayaraman et al. pointed out
the unusual fluid dynamics around a charged colloidal particle and provided an overview
of different theories [3]. One of the authors of the article even translated the original PhD
thesis of Overbeek from Dutch to English to help the modern reader bring this original
work into context (see web link in [3]).

In the present article, we would like to make the connection between these theories
and the approach taken in the work of Chassagne and Bedeaux [4] to study the polarization
of a double layer around a charged colloidal particle. In particular, we would like to make
the link between electrophoretic mobility and dipole coefficient β, where β is related to the
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dipole moment P (see Equation (41)) generated from the application of the electric field
E0. The main finding of the present article is Equation (75), where µ is shown to be a linear
function of β. This equation is an improved version of a similar equation presented in [4].
In the present article, we provide a mathematical derivation for Equation (75) (which was
not conducted in [4]) and discuss the validity of the three main hypotheses formulated to
obtain the equation. We hereby extend the analysis conducted by Jayaraman et al. [3] and
describe the behavior of the electric potential and electrochemical potentials for specific
cases, such as low and high ionic strengths and low and high surface electric charges.
The particular case of a particle with a constant surface charge is discussed, which is a case
that is often encountered in practice.

2. Definitions
In this section, we define the required variables and set up the relations that will be

solved in the following sections. A charged spherical and dielectric particle of radius a,
homogeneously charged, is subjected to an oscillating electric field E0 = E0 exp(iωt)ez

of radial frequency ω (rad/s). In this article, we focus on the case ω = 0. More general
equations can be found in [4]. The vector ez represents a unity vector along the z-axis,
where (x, y, z) designs the usual Cartesian coordinates and

(
er, eθ , eϕ

)
are the unit vectors

in spherical coordinates. We place ourselves in the frame of reference of the particle, and
the origin of the coordinate system is the center of the considered particle, whereby the
polar axis (θ = 0) is set parallel to E0 and hence

E0 = E0ez = E0 cos θer − E0 sin θeθ (1)

The particle is immersed in an electrolyte solution composed of one type of positively
charged ions and one type of negatively charged ions.

The main assumptions used in the derivation are as follows.

1. The Reynolds number is small so that the inertial terms in the Navier–Stokes equations
can be ignored.

2. The fluid is incompressible.
3. The applied electric field is weak compared to the local electric field around the

particle so that higher-order terms in E0 can be neglected.

In the present article, we assume that

Ψeq(a) = ζ (2)

where Ψeq is the equilibrium potential in the absence of applied electric field. The zeta po-
tential ζ is defined as the electric potential at the surface of shear. By assuming Equation (2)
to be valid, we imply that the surface of shear that will be created when the particle is in
motion is located on the surface of the particle. We will also assume that there is no Stern
layer. The Stern layer is defined as a very small region of space at the interface between the
particle and the electrolyte where solvent and ionic properties could deviate from their bulk
values. This assumption implies that the equations that will be given in the next sections
are valid between r = a (the particle’s surface) and infinity. The general relations for the
electric potential Ψ and the ionic densities ni,tot (i = +,−) are given by

Ψ(r, θ) = Ψeq(r) + δΨ(r, θ)

n+,tot(r, θ) = n+,eq(r) + δn+(r, θ)

n−,tot(r, θ) = n−,eq(r) + δn−(r, θ) (3)
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where ni,eq represents the ionic density of positively/negatively charged ions (number of
ions/m3) of valence zi and stoichiometric coefficient νi in absence of applied electric field.
Because of electroneutrality,

∑
i

νizi = 0 (4)

The functions δΨ, δn+, and δn− represent the contributions due to the presence of the
applied electric field.

Due to axial symmetry, one can define

δΨ(r, θ) = (ψ(r)− r)E0 · er

δn+(r, θ) = n+(r)E0 · er

δn−(r, θ) = n−(r)E0 · er (5)

It follows that the electric field resulting from the application of E0 is

δEr = −
(

dψ

dr
− 1
)

E0 cos(θ)

δEθ =

(
ψ

r
− 1
)

E0 sin(θ) (6)

2.1. The Double Layer

The so-called double layer surrounding the colloidal particle is composed of (a) a first
layer composed of the surface charges grafted onto the colloidal particle and (b) a second
layer (the diffuse layer) dominated by an excess of counter-ions (and a depletion of co-ions)
that are electrically interacting with the surface charges. As done by many authors, the term
“double layer” will be used when “diffuse layer” is implied. Beyond the double layer, in the
absence of an applied electric field, the concentrations of counter and co-ions are such that
electroneutrality (see Equation (4)), is respected.

The thickness of the diffuse layer is given by the Debye length, which is defined by

κ−1 =

√
ε0ε1kT

e2n∞ ∑ z2
i νi

(7)

with
n∞ = Cs×NA (8)

where Cs is the neutral salt concentration in mM (10−3 mol/L), NA is Avogadro’s number,
ε0 is the permittivity of vacuum, and ε1 is the relative permittivity of the solvent (which
will be water in the present article).

Beyond the double layer (in the bulk), we have

ni,eq

(
r � a + κ−1

)
= νin∞

2.2. The Electrochemical Potential

The electrochemical potential µ̃i is defined by

µ̃i = zieΨ + µi (9)

The chemical potential µi is defined by

µi = µ0
i + kT ln

(
ni,tot

n0

)
(10)
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where µ0
i and n0 are reference values, k is the Boltzmann constant, and T is the temperature.

Note that it is the fact that the electrochemical potentials are constant in the absence of
applied electric field, i.e.,

µ̃i,eq(r) = µ̃i,eq(∞) (11)

that leads to the Boltzmann distribution:

ni,eq = νin∞ exp
(−zieΨeq

kT

)
(12)

The electrochemical potential can also be written

µ̃i = µ̃i.eq + δµ̃i

= zie
(
Ψeq + δΨ

)
+ µ0

i + kT ln
(ni,eq + δni

n0

)
(13)

One can show that
δµ̃i = zieδΨ + kT

δni
ni,eq

(14)

Because of symmetry, we introduce the variable φi such that

δµ̃i(r) = −zie[φi(r) + r]E0 cos θ

= zie[ψ(r)− r]E0 cos θ + kT
ni(r)

ni,eq(r)
E0 cos θ (15)

This implies that

ni =
−zieni,eq

kT
(ψ + φi) (16)

2.3. The Ionic Flux

The ionic flux Ji is given by

Ji = ni,equ−Dini
kT
∇µ̃i (17)

where u is the fluid velocity in the reference frame of the particle, and Di (m2/s) is the ionic
diffusion coefficient. The ionic fluxes at equilibrium are defined by

Ji,eq =
−Dini,eq

kT
∇µ̃i,eq = 0 (18)

The fact that the electrochemical potentials are constant in the absence of an applied electric
field is correlated to Ji,eq = 0, which leads to the Boltzmann distribution, Equation (12).
The fluxes due to the application of the electric field are, to first order, given by

δJi = ni,equ−
Dini,eq

kT
∇δµ̃i (19)

2.4. The Velocity

The condition ∇ · u = 0 (which arises from the fact that the fluid is incompressible) is
used to express u(r, θ) as function of a new function h(r) such that [1]

u =
−2
r

hE cos θer +
1
r

d
dr

[rh]E0 sin θeθ (20)
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The calculations are conducted in the reference frame of the particle, which implies that

u(r = a) = 0 (no slip)

u(r → ∞) = −µE0 (far away, the fluid moves at minus the velocity of the particle)

where
µ =

U
E0

(21)

is called electrophoretic mobility (note that its symbol µ should not be confused with µi,
which is used for the ionic chemical potential).

2.5. Variable Definitions

For convenience, we use the following dimensionless variables:

no dim. with dim.
Ψ̂eq = eΨeq/(kT)
ψ̂ = κψ

φ̂i = κφi

x = κr
ĥ = h(eηκ)/(ε0ε1kT)
M̂ = M(eη)/

(
κ3ε0ε1kT

)
µ̂ = µ(eη)/(ε0ε1kT)

D̂i = Di(e2η)/
(

ε0ε1(kT)2
)

3. The Poisson–Boltzmann Equation
The Poisson–Boltzmann equation is given by

∇2Ψ =
−1
ε0ε1

∑ ezini,tot (22)

For the equilibrium part, using Equation (12) and dimensionless variables, one obtains

d2Ψ̂eq

dx2 +
2
x

dΨ̂eq

dx
=

−1
∑ z2

i νi
∑ ziνi exp(−ziΨ̂eq)

= sinh(Ψ̂eq) for a 1–1 electrolyte (23)

The Poisson–Boltzmann for the potential arising from the applied electric field is obtained
by using Equations (12) and (16)

L̂ψ̂ =
d2ψ̂

dx2 +
2
x

dψ̂

dx
− 2ψ̂

x2 =
1

∑ z2
i νi

∑ z2
i νi exp(−ziΨ̂eq)

[
ψ̂ + φ̂i

]
(24)

= cosh(Ψ̂eq)
[
ψ̂ + φ̂i

]
for a 1–1 electrolyte (25)

The operator L (with L̂ = L/κ2) is defined on an arbitrary function g(r) by

Lg(r) =
1
r

d2

dr2 (rg(r))− 2g(r)
r2 (26)

3.1. Boundary Conditions at r = a

The boundary condition for the equilibrium electric potential Ψ̂eq is given by

Ψ̂eq(x = κa) = Ψ̂0 (27)
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where Ψ̂0 = ζ̂ is the zeta potential in case there is no Stern layer and that the slip plane is
located at the surface of the particle.

The boundary condition for the equilibrium electric potential Ψeq is also given by,
following Gauss,

ε0ε2

(
dΨ2,eq

dr

)
r=a
− ε0ε1

(
dΨeq

dr

)
r=a

= σs (28)

where σs (C/m2) is the surface charge density, ε2 is the relative permittivity of the particle,
and Ψeq,2 is the electric potential inside the particle. This potential satisfies the Laplace’s
equation (∇2Ψ2,eq = 0). The solution of the Laplace’s equation is given in terms of Legendre
polynomials (see p. 350 in [5]), and, because Ψ2,eq cannot be singular in r = 0 nor be θ-
dependent, it follows that Ψ2,eq should be a constant. From the continuity of electric
potentials, i.e.,

Ψ2,eq
(
r = a−

)
= Ψeq

(
r = a+

)
(29)

it follows that
Ψ̂2,eq(x) = Ψ̂0 (30)

The surface charge density σs can usually be assessed by titration. For most colloids, one
usually has ε2 � ε1, implying that Equation (28) reduces to(

dΨeq

dr

)
r=a

=
−σs

ε0ε1
(31)

For specific suspensions such as charged sulfate latex colloidal spheres at a given pH,
the surface charge density is not expected to vary when the electrolyte concentration is
varied [6]. Equation (31) can be used to estimate the surface charge density σs, while
the potential Ψ̂0 can be estimated from electrophoretic mobility data [6]. Discrepancies
between measured data and prediction are associated with the thin layer of fluid at the
particle/electrolyte interface (Stern layer). In the Stern layer, both the ionic mobility and
the dielectric permittivity differ from their bulk values [7], and, for highly charged particles,
the use of Equation (12) can lead to unrealistically high ionic concentrations close to the
particle’s surface, as a simple estimation can show. A Stern layer parameter can then be
introduced in the equations to account for the deviation from ideality. We will not consider
Stern layers in the present article.

The boundary conditions for δΨ are given by

ε0ε2

(
d(δΨ2)

dr

)
r=a

= ε0ε1

(
d(δΨ)

dr

)
r=a

δΨ2(a) = δΨ(a) (32)

δΨ2 is the potential inside the dielectric sphere due to applied electric field and is solution
of Laplace’s equation (∆δΨ2 = 0), which yields

δΨ2 = −E2r cos θ (33)

Eliminating E2 in the equations leaves(
d(δΨ)

dr

)
r=a

=
ε2

ε1

δΨ(a)
a

(34)

which yields (
dψ̂

dx

)
x=κa
− 1 =

ε2

ε1

ψ̂(κa)− κa
κa

(35)
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The magnitude of the electric field inside the colloidal particle is given by

E2 =

(
1− ψ(a)

a

)
E0 (36)

3.2. Boundary Conditions Far Away

Far away from the particle, one finds, for any electrolyte,

d2Ψ̂eq

dx2 +
2
x

dΨ̂eq

dx
=
−1

∑ z2
i νi

∑ ziνi

(
1− ziΨ̂eq

)
= Ψ̂eq for x � κa + 1

yielding

Ψ̂+
eq(x) = Ψ̂ap

κa
x

exp(κa− x) (37)

where Ψ̂ap is an apparent surface potential as it would be the surface potential if the relation
Equation (37) would hold until x = κa (i.e., r = a). Equation (37) holds for any x for low
surface potentials (Ψ̂0 = Ψ̂+

eq(κa)) as then the approximation exp(−ziΨ̂eq) = 1− ziΨ̂eq is
valid. It follows that, for low surface potentials Ψ̂0,

Ψ̂eq(x) = Ψ̂0
κa
x

exp(κa− x) for any x

Ψ̂ap = Ψ̂0 for Ψ̂0 � 1 (38)

Assymptotically, for x → ∞, one defines

Ψ̂∞
eq = 0 (39)

The assymptotic value of ψ+ is given by (see Appendix A)

ψ̂+ =
(κa)3β

x2 (40)

where β is the dipole coefficient, related to the dipole moment

P = 4πε0ε1a3βE0 (41)

generated from the application of the electric field. The dipolar nature of the system
composed of the charged colloidal particle and its double layer is illustrated in Appendix D,
where the results of COMSOL calculations are plotted. The assymptotic form of the electric
potential is given by

δψ+(r) =
(
−r +

a3β

r2

)
E0 cos θ (42)

The approximate expressions for β are given in Appendix B. More general relations
are given in [8].

4. The Conservation of Mass Law (Nernst–Planck)
The law of conservation of mass, for the DC case considered here (which implies that

∂ni/∂t = 0), can be expressed as
∇ · Ji = 0 (43)
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To first order, the ionic flux becomes

Ji = ni,equ−Dini,eq∇δµ̃i

∇δµ̃i = ∇
(

zie
kT

δΨ +
δni
ni,eq

)
(44)

One can show that

∇.
[
ni,eq∇δµ̃i

]
= ∇ni,eq · ∇δµ̃i + ni,eq∇2δµ̃i

=

zieni,eq

(
zie
kT

dΨeq

dr

(
∂φi
∂r

+ 1
)
−
[

∂2φi
∂r2 +

2
r

∂φi
∂r
− 2

r2 φi

])
E0 cos θ (45)

This implies that the law of mass conservation can be written

L̂φ̂i =
∂2φ̂i
∂x2 +

2
x

∂φ̂i
∂x
− 2

x2 φ̂i = zi
dΨeq

dx

[
dφ̂i
dx
− 1

ziD̂i

2ĥ
x

+ 1

]
(46)

4.1. Boundary Conditions at r = a

There is no ionic flux possible perpendicular to the surface of the particle; hence,

(Ji · er)r=a = 0

(∇µ̃i · er)r=a = 0 (47)

where we have used the no-slip condition

u(r = a)= 0 (48)

We obtain (
dφ̂i
dx

)
x=κa

= −1 (49)

4.2. Boundary Conditions Far Away

In Appendix A, it was found that, for x � κa + 1,

φ̂+
+ = φ̂+

− = − (κa)3β

x2 (50)

5. Navier–Stokes
The Navier–Stokes equation provides the last fundamental equation required to solve

the problem:
η∇2u−∇P = ∑ ezini∇Ψ (51)

where P is the pressure. We used the fact that the Reynolds number Re= |ρm(u · ∇)u|/
∣∣η∇2u

∣∣
and also |ρm∂u/∂t|/

∣∣η∇2u
∣∣ are very small compared to one. To first order, the Navier–

Stokes reduces to
η∇2u−∇P = ∑ ezi

[
δni∇Ψeq + ni,eq∇δΨ

]
(52)

In order to get rid of the pressure term P, we take the curl of the Navier–Stokes equation:

η∇2(∇× u) = ∑ ezi∇× [ni∇Ψ] (53)
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For a discussion about the pressure and the peculiar form of the velocity u, we refer to [3,9].
Equation (53) can be written

η∇2(∇× u) = ∑ ezi
[
∇δni ×∇Ψeq +∇ni,eq ×∇δΨ

]
(54)

One can show that

∇δni ×∇Ψeq +∇ni,eq ×∇δΨ

=
−zieni,eq

kT

(
φi
r
+ 1
)

dΨeq

dr
sin θE0eφ (55)

and that

∇2(∇× u) =
[

∂4h
∂r4 +

4
r

∂3h
∂r3 −

4
r2

∂2h
∂r2

]
sin θE0eφ (56)

This implies that the Navier–Stokes reduces to

L̂L̂ĥ =

[
∂4ĥ
∂x4 +

4
x

∂3ĥ
∂x3 −

4
x2

∂2ĥ
∂x2

]
=

dΨ̂eq

dx
−1

∑ z2
i νi

∑ z2
i νi exp(−ziΨ̂eq)

(
φ̂i
x
+ 1
)

(57)

Note that, in the case that the colloidal sphere is uncharged but placed in a flow field such
that u(r = a) = 0 and u(r → ∞)=−U, the hydrodynamics are described by the equation

LLh = 0

The solution of this equation is

h(r) =
U
2

(
r− 3

2
a +

a3

2r2

)
(58)

yielding the equation for a Stokes flow around a sphere:

u(r) = −U
(

1− 3
2r

a +
a3

2r3

)
cos θer + U

(
1− 3

4r
a +

a3

4r3

)
sin θeθ (59)

5.1. Boundary Conditions at r = a

From the no-slip condition,
u(r = a)= 0 (60)

we obtain

ĥ(κa) = 0 (61)(
dĥ
dr

)
x=κa

= 0 (62)

5.2. Boundary Conditions Far Away

Far away from the particle,

u(r → ∞)=− µE0 (63)
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yielding

2
x

ĥ = µ̂ for x → ∞ (64)

1
x

d
dx

[
xĥ
]

= µ̂ for x → ∞ (65)

6. Analytical Solutions
6.1. Full Solution as Function of Integrals

Equation (57) can be solved analytically using boundary conditions Equations (61),
(62), (64) and (65). The solution of this fourth-order linear differential equation can be
obtained using the method of variation of parameters and the Wronskian of the general
solutions (for the method, see [10], p. 331) to yield

ĥ(x) =
∫ ∞

κa

[
− x3

30
− (κa)5

20x2 +
(κa)3

12
+ y2

(
x
6
+

(κa)3

12x2 −
(κa)

4

)]
M̂(y)dy

+
µ̂

2

(
x− 3

2
κa +

(κa)3

2x2

)
+
∫ x

κa

(
x3

30
− xy2

6
+

y3

6
− y5

30x2

)
M̂(y)dy (66)

with

µ̂ =
(κa)2

9

∫ ∞

κa

(
1− 3

x2

(κa)2 + 2
x3

(κa)3

)
M̂(x)dx (67)

and

M̂(x) =
dΨ̂eq

dx
−1

∑ z2
i νi

∑ z2
i νi exp(−ziΨ̂eq)

(
φ̂i
x
+ 1
)

=
dΨ̂eq

dx
−1
2 ∑ exp(−ziΨ̂eq)

(
φ̂i
x
+ 1
)

for a 1–1 electrolyte (68)

The term that multiplies the term µ̂/2 is the same as the one found for the Stokes flow in
Equation (58). One can verify that combining Equations (66) and (67) yields the solutions
presented by both Ohshima [11] and Jayaraman et al. [3], which they write (inserting
Equation (67) in Equation (66))

ĥ(x) = −
(

x3

30
+

(κa)5

45x2 −
(κa)2x

18

) ∫ ∞

κa
M̂(y)dy +

∫ x

κa

(
x3

30
− xy2

6
+

y3

6
− y5

30x2

)
M̂(y)dy

+
∫ ∞

κa

(
x

9κa
− 1

6
+

(κa)2

18x2

)
y3M̂(y)dy (69)

6.2. Approximated Analytical Solution

As a first approximation, we will use the relation Equation (50) assuming that φ̂i can

be approximated by φ̂+
i inside the double layer. It follows that

M̂(x) ∼
(

1− (κa)3

x3 β

)
1

∑ z2
i νi

d
dx

[
∑ ziνi exp(−ziΨ̂eq)

]
M̂(x) ∼

(
1− (κa)3

x3 β

)
dΨ̂eq

dx

[
cosh(Ψ̂eq)

]
for a 1–1 electrolyte (70)
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We will now follow the procedure adopted by Ohshima (see p. 83 in [1]), who made the
observation that the function (

φ̂i
x
+ 1
)
∼
(

1− (κa)3

x3 β

)
(71)

is varying very slowly compared to the other functions and can hence be set outside
the integral. We note that this assumption is equivalent to assume that there is a local
equilibrium and that the electrochemical potentials (we recall that δµ̃i = −zie[φi(r) + r])
are slowly varying through the double layer. This assumption was already tested in [4],
where it was found that it did not hold for low κa.

Using the assumption, we find

µ̂ =
(κa)2

9

(
1− (κa)3

x3
1

β

) ∫ ∞

κa

(
1− 3

x2

(κa)2 + 2
x3

(κa)3

)
1

∑ z2
i νi

d
dx

[
∑ ziνi exp(−ziΨ̂eq)

]
dx (72)

where x1 is the position where the function to be integrated is maximum. Ohshima has
a less general expression as he studies the case where Ψ̂0 is small. In Ohshima’s case,
β = −1/2, which corresponds to the case Ψ̂0 � 1 [4].

Integrating by parts, it is found that

µ̂ =
2
3

(
1− (κa)3

x3
1

β

) ∫ ∞

κa

((
1− x

(κa)

))
x

∑ z2
i νi

[
∑ ziνi exp(−ziΨ̂eq)

]
dx (73)

We now make the approximation that Ψ̂eq(x) can be approximated by Ψ̂+
eq(x) in the double

layer (which also implies that we assume that Ψ̂app ∼ Ψ̂0) and use Equation (37) to estimate
Ψ̂eq. This yields

µ̂ =
−2κa

3
Ψ̂0

(
1− (κa)3

x3
1

β

)[
1− 1

κa

∫ ∞

κa
x exp(κa− x)dx

]
(74)

Integrating by parts, one obtains

µ̂ =
2
3

Ψ̂0

(
1− (κa)3

x3
1

β

)
(75)

We have found, inspired by Ohshima [1] and trial and error, that a good estimation of x1

for a large range of κa and Ψ̂0 is given by (see Appendix C for a discussion on x1)

x1 = κa +
2.5

1 + 2 exp(−κa) exp
(
−Ψ̂0

) (76)

In the following section, the comparison between Equation (75) and the numerical
solution will be discussed. In particular, the following three hypotheses, formulated above,
should be studied:

Hypothesis 1. φ̂i can be approximated by φ̂+
i (given by Equation (50)) inside the double layer.

Hypothesis 2.
(
φ̂i/x + 1

)
varies very slowly compared to the other functions in Equation (70).

Hypothesis 3. Ψ̂eq can be approximated by Ψ̂+
eq (given by Equation (37)) in the double layer.
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It can already be anticipated that these conditions hold for low Ψ̂0 (for which
Ψ̂app = Ψ̂0) for all κa as this has already been demonstrated by Ohshima [1]. Note that
Ohshima uses

x1 = κa +
2.5

1 + 2 exp(−κa)
(77)

which reduces to Equation (76) for low Ψ̂0.

7. Comparison Between the Use of Equations (76) and (77)
The numerical results presented in this section (symbols) are obtained using a FOR-

TRAN code, which solves the appropriate set of electrokinetic equations using the method
from [12], which is an improvement on the Nordsieck method used previously in [4].
In particular, this numerical method enables studying the range of small κa, which was
not possible using the Nordsieck method. Additional numerical calculations were per-
formed using the Finite Element software COMSOL Multiphysics v. 6.3 ([13]). Some of
the spatial representations of the analyzed quantities for selected values of κa are given in
Appendix D. In all cases, the calculations performed using COMSOL match those obtained
using FORTRAN. We emphasize that one of the hypotheses of the article is that we do not
consider any Stern layer, and that the slip plane is located on the surface of the particle,
implying that Ψ̂0 = ζ̂ (the surface electric potential is the zeta potential).

In [4], it was found that Equation (75) using Equation (77) did not perform well at
low applied electric field frequencies (see Figure 4A in [4]) but was a good match for high
electric field frequencies (see Figure 4C in [4]). The mobility and surface electric potential
are linked by a function that we define as Henry’s function fHenry:

µ̂ = fHenryΨ̂0 (78)

The name Henry’s function is referring to the function originally derived by Henry [14]
for which Ohshima provided a simplified version [1]. Henry’s (and Oshima’s) derivation
holds for low Ψ̂0, for which fHenry is a function of κa only. Henry’s function fHenry = µ̂/Ψ̂0

is given in Figure 1. In the case of low potential (Ψ̂0 = 0.01, giving Ψ0 = 0.01 × 25 mV
if we assume that kT/e = 25 mV), one can use the expressions for the dipolar coefficient
given in Appendix B to verify that, in good approximation, β = −1/2. Using this value for
the dipolar coefficient and the fact that Ψ̂0 is low enables recovering the expression found
by Ohshima for Henry’s function, as discussed in the previous section. This function (in
cyan) is not to be distinguished from the black curve, which represents the original Henry’s
function. It can be verified that Henry’s function (as well as the condition β = −1/2) holds
for potentials up to Ψ̂0 = 0.5. For higher Ψ̂0, Henry’s function fHenry becomes a function of
both κa and Ψ̂0, as illustrated in Figure 1.

One can see that using Equation (76) for x1 enables obtaining a better approximation
at low frequencies (here, we use zero frequency) than using Equation (77), which was used
in [4]. It was verified that using Equation (76) did not change the quality of the prediction
at high frequencies and that the match between analytical and numerical solutions in this
case is as good as in Figure 4C in [4].

The agreement between numerical calculation and analytical theory is very good for
low Ψ̂0, even for Ψ̂0 = 2. For higher Ψ̂0, the agreement for κa > 10 is still good but deviates
strongly from the numerical calculations at lower κa. The reason for this deviation will be
illustrated in the following subsection. Note that the numerical calculations for very low κa
go asymptotically to a value of 0.7 instead of 2/3 = 0.66, which is the Hückel limit. This
deviation was also observed for the COMSOL calculations.
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Figure 1. Henry’s function fHenry (dimensionless units) as function of κa. The colloidal particle
has a radius a = 1000 nm and is immersed in a KCl electrolyte. The different surface electric
potentials (Ψ̂0 = ζ̂) used are given in the legend. Symbols: numerical results by solving the set of elec-
trokinetic equations. Full curves (except black one): analytical theory using Equations (75) and (76).
Black curve: original analytical solution of Henry [14]. Dashed curves: analytical theory using
Equations (75) and (77).

8. The Electrophoretic Mobility for Different κa
In order to study the behavior of the electrophoretic mobility as function of ionic

strength, we concentrate on the case where Ψ̂0 = 2, for which (see Figure 1) the agreement
between numerical calculation and analytical theory is very good. From Figure 2, upper
panel, we can compare the functions

(
φ̂+/x + 1

)
and

(
φ̂−/x + 1

)
with the function(

1− (κa)3β/x3
)

from which we deduce that Hypothesis 1 is better for higher κa. This

holds for all Ψ̂0 tested (Ψ̂0 = 0.01 − 6). By comparing the curves
(
φ̂i/x + 1

)
with the

curve
(

dΨ̂eq/dx
)
× cosh(Ψ̂eq), one finds that Hypothesis 2 is fulfilled for not too low κa.

This holds for all Ψ̂0 tested (Ψ̂0 = 0.01− 6). Hypothesis 3 (the fact that Ψ̂eq is in good
approximation given by Ψ̂+

eq) is fulfilled in all cases, as can be verified by the lower panel of
Figure 2. This hypothesis breaks somewhat down for Ψ̂0 > 4, but, for such high surface
potentials and especially at moderate/high κa, the decay of Ψ̂eq is very fast, leading to the
problem of numerical accuracy.

From Figure 1, we observe that, at high surface potential (also at Ψ̂0 = 2), a minimum
appears in fHenry. This minimum is often reported, but its origin is worth discussing. This
can be best performed by studying Equation (75). From that equation, one can directly see
that the change in curvature is linked to the change in the sign of β: at low κa, we have
β > 0, and β is decreasing when κa is increasing. As (κa)3/x3

1 is increasing, the mobility is
decreasing, leading to a lowering of µ̂. One can estimate that, at low κa, (κa)3/x3

1 scales as
(κa)3. According to the estimation leading to Equation (96), β decreases as (κa)−2, which
implies that µ̂ decreases as (κa). At high κa, we have β < 0, and |β| is increasing when κa
is increasing, leading to an increase in µ̂. In Figure 3, both the mobility µ̂ and the dipolar
coefficient β are given as a function of κa. From the points labeled in the figures, one can
see that the position where β = 0 is close to the position where the mobility µ̂ changes its
curvature. Also note how high the dipolar coefficient β becomes at low κa.
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Figure 2. (Upper panel):
(

φ̂+/x + 1
)

and
(

φ̂−/x + 1
)

in red and magenta as function of
x/x0 = κr/κa = r/a for two different κa, as found by numerically solving the set of electroki-

netic equations. The blue curve represents the function
(

dΨ̂eq/dx
)
× cosh(Ψ̂eq), also evaluated

numerically. The colloidal particle has a radius a = 1000 nm and is immersed in a KCl electrolyte.

The black dashed curve represents the function
(

1− (κa)3β/x3
)

, whereby the dipolar coefficient

β is the same numerically and analytically (see Figure 3). (Lower panel): Ψ̂eq(x) for different κa as
indicated in the figures: blue curves represent the numerical calculations and dashed black curves
the analytical approximation Equation (38).

Figure 3. (Left): electrophoretic mobility µ̂ as function of κa. (Right): (β + 1) as function of κa.
The blue curves are found numerically. The green dashed line is the function defined by β + 1 = 1.
The red dashed lines represent the curves according to Equations (75) and (A9). The colloidal particle
has an electric surface potential Ψ̂0 = 2, a radius a = 1000 nm, and is immersed in a KCl electrolyte.
The black dots represent the position where β = 0.

8.1. The Role of the Double Layer

As mentioned in the previous section, the behavior of the mobility µ̂ can be directly
linked to the dipole coefficient β. Far from the particle and its double layer, the system
(particle + double layer) can be seen as an electric dipole, creating a local electric field that
influences the particle’s velocity (mobility). Because the particle moves with a constant
velocity, the sum of all forces exerted on the particle must be zero. This is discussed in
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detail in [3], where the link with the notations of Overbeek and Wiersema [15,16] is made.
We adopt a different approach here. In particular, we do not restrict ourselves to low
surface potentials. The colloidal particle is subjected to two forces: one electric (Fe) and one
hydrodynamic (Fdrag). These forces are defined by

Fe ≡ QdynE0

Fdrag = −6πηaU (79)

where E0 is the applied electric field, which is the electric field far away from the particle
as the particle is assumed to be alone in the electrolyte solution. This electric field is different
from the electric field found close to the colloidal sphere of charge Q. The dynamic charge
Qdyn is defined by the relation given above. The force Fdrag is the Stokes drag force and
does not account for all the hydrodynamic forces defined when studying the electrokinetic
behavior of electrolytes [3]. Any “relaxation force”, due to the applied electric field or to
the velocity of the particle, is accounted for in the force Fe. By using the balance of forces
(‖Fe‖ =

∥∥∥Fdrag

∥∥∥), one obtains, using Equation (78),

Qdyn = 6πηaµ = 6πaε0ε1 fHenryΨ0 (80)

The total electric field is defined, for any position around the particle, by

Êr = −
[

dΨ̂eq

dx
kTκ

eE0
+

(
dψ̂(x)

dx
− 1
)

cos(θ)

]

Êθ =

(
ψ̂(x)

x
− 1
)

sin(θ) (81)

The velocities are given by

ûr =
−2
x

ĥ

ûθ =
1
x

d
dx

[
xĥ
]

(82)

8.1.1. Hückel’s Approximation (κa� 1)

When the double layer is thick (a� κ−1), the equilibrium electric potential is given in
good approximation by

Ψeq(r) = Ψ0
a
r

(83)

In this case, the potential decays over distances comparable to the particle size a instead
of the double layer thickness κ−1. This potential corresponds to the Coulomb potential
around a sphere as if there were no electric double layer. In that case, one has

Qdyn = Q for κa� 1 (84)

Using Gauss’ relation, Equation (31), one finds

Ψ0 =
σsa
ε0ε1

(85)

Using the relation between charge and particle surface charge, viz

σs =
Q

4πa2 (86)
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one obtains
Ψ0 =

Q
4πaε0ε1a

(87)

From Equation (80), one obtains
fHenry = 2/3 (88)

which implies that

µ =
2
3

ε0ε1

η
Ψ0

=
2
3

σsa
η

(89)

For colloidal particles, contrary to ions, it is quite uncommon to have small κa as a simple
estimation of the double layer thickness for usual ionic strengths shows. For the purpose
of illustration, the following examples are conducted with a 1000 nm colloidal particle at
unrealistically low κa.

One case of such small κa is illustrated in Figure 4, where a potential of Ψ̂0 = 0.01 is
used. The curve plotted using Equation (83) is not to be distinguished from the numerical
one. In Figure 4, the velocities ûr and ûθ are plotted. Their values at long distances are
ûr(x → ∞) = −ûθ(x → ∞) = µ̂ = 0.0068 = 2/3× Ψ̂0 (yielding Ψ̂0 = 0.0102 instead of
Ψ̂0 = 0.01). The same value of µ̂ = 0.0068 was obtained by evaluating the mobility using
Equation (67). It can also be seen that, for the whole x range

ψ̂(x) = −φ̂+(x) = −φ̂−(x) =
(κa)3β

x2 with β = −1/2 (90)

implying that ψ̂+ = ψ̂ and φ̂+
i = φ̂i (note the small mismatch between analytical and

numerical results at low x for ψ̂). The tangential electric field Êθ is also plotted for sin(θ) = 1.
It can be evaluated that

Êθ(κa) = (β− 1) sin(θ) =
−3
2

sin(θ) (91)

which can be verified from the figure. One can also demonstrate that, for the whole x range

δÊr =

(
1 +

(κa)3

x3

)
cos(θ)

δÊθ =

(
−1− (κa)3

2x3

)
sin(θ) (92)

One also obtains, from Equation (36),

E2 =
−3
2

E0 (93)

For large surface potentials and/or extremely low κa (for κa < 1, see Figure 2), it was
observed that the dipolar coefficient would deviate from β = −1/2 and rapidly increase
with decreasing κa, becoming positive and reaching extremely high values. In that case as
well, as indicated in Figure 2, Hypothesis 2 does not hold anymore. Despite the very high
values of β, as β scales roughly with (κa)−2 and the prefactor in Equation (75) with (κa)3,
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Equation (89) remains satisfied. A rough estimation to obtain the dependence of β on κ−2

can be achieved as follows. The characteristic timescale associated with the double layer is

τ ∼ 1
Dκ2 (94)

where D is an ionic diffusion coefficient. The velocity associated with the deformation of
the double layer (for small κa) is

v ∼ Q
ηa

E0 (95)

This implies that the dipolar coefficient can be estimated by

β ∼ P ∼ Q
v
τ

(96)

indeed yielding β ∼ κ−2.

Figure 4. (Top row): velocities ûr and ûθ as function of x/x0 = r/a, electric field δÊθ(= Êθ), and
(β + 1) as function of κa. The green dashed line is the function defined by β + 1 = 1. The red dashed
lines represent the curves according to Equations (75) and (A9). (Bottom row): Ψ̂eq (red) φ̂+ (red), φ̂−
(magenta), and ψ̂ (blue) as function of r/a, as found numerically. Dashed and dotted black curves are

approximations (see text for details). The numerical functions
(

φ̂+/x + 1
)

and
(

φ̂−/x + 1
)

in red
and magenta as function of x/x0 = r/a can be observed to decay over the same length as the blue

curve, which represents the function
(

dΨ̂eq/dx
)
× cosh(Ψ̂eq) (also evaluated numerically), which

contradicts Hypothesis 2 (Hypotheses 1 and 3 are fulfilled). The colloidal particle has an electric
surface potential Ψ̂0 = 0.01, has a radius a = 1000 nm, and is immersed in a KCl electrolyte with
κa = 0.23.

8.1.2. Smoluchowski’ s Approximation (κa� 1)

When the double layer is thin (a � κ−1), we can approximate that the double layer
is not deformed under the influence of the applied electric field. The ionic densities will
predominantly vary in the θ direction. When the equilibrium potential is low, it can be
given by

Ψeq(r) ' Ψ0 exp(−κ(r− a)) (97)

as the characteristic distance over which the electric field is non-zero is (r− a) ' κ−1,
which implies that

a
r
=

a
a + (r− a)

' κa
κa + 1

' 1 (98)
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Equation (97) is also the distribution found in the case of a planar surface. The main
difference with the planar case, as we will see, is that the electrophoretic mobility is mainly
influenced by the asymmetric ionic distribution in the θ direction due to the application of
an electric field (in the planar case, because of symmetry, there cannot be ionic gradients in
the direction parallel to the plane). From Gauss’ relation given by Equation (31), it then
follows that

Ψ0 =
σs

ε0ε1κ
(99)

We now do not make the assumption that the potential is low. One can consider the
system composed of the charged colloidal particle and its extremely thin double layer as an
electroneutral system, for which the electric potential δΨ should obey the Laplace equation
and the associated boundary condition (where a+ = a + κ−1)

∇2δΨ(r) = 0

(∇rδΨ)r=a+ = 0 (100)

Solving these two equations yields

δΨ+ = −
(

1 +
1
2

a3

r3

)
E0 · r

E+
θ =

(
−1
r

∂δΨ
∂θ

)
r=a+

=
−3
2

E0 sin(θ) (101)

As the pressure does not vary in the tangential (θ) direction, using the fact that
∇Ψ = −E+

θ eθ , and using Poisson ’s equation in Equation (22), the Navier–Stokes equation,
Equation (51), becomes in the tangential direction

η
∂2u+

θ

∂r2 = ε0ε1
∂2Ψ
∂r2 E+

θ (102)

Integrating Equation (102) between an arbitrary position r and r → ∞, using the fact that
∂u+

θ /∂r(r → ∞) = 0 and ∂Ψ/∂r(r → ∞) = 0 yields

η
∂u+

θ

∂r
= ε0ε1

∂Ψ
∂r

E+
θ (103)

Integrating again, this time between r = a and r = a+, making the assumption that
Eθ = E+

θ in the double layer (see Figure 5), we find

η
[
0− u+

θ

(
a+
)]

= ε0ε1[Ψ(a)− 0]E+
θ (104)

The tangential fluid velocity u+
θ (a+) can be estimated by realizing that, since there is no

net force on the liquid and no pressure gradient is applied, the liquid flow must have a
potential nature

u(r) = −∇Φ(r) (105)

As the fluid is incompressible, ∇ · u = 0 and

∇2Φ(r) = 0 (106)

As the liquid cannot penetrate the colloidal particle,

(∇rΦ)r=a = 0 (107)
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Combining these equations yields

Φ = −
(

1 +
1
2

a3

r3

)
u∞ · r

u+
θ =

(
−1
r

∂Φ
∂θ

)
r=a+

=
−3
2

u∞ sin(θ) =
3
2

µE0 sin(θ) (108)

From Equations (101), (104) and (108), we obtain

−η
3
2

µE0 sin(θ) = ε0ε1Ψ0
−3
2

E0 sin(θ) (109)

yielding

µ =
ε0ε1

η
Ψ0 (110)

from which we deduce that
fHenry = 1 (111)

A thorough discussion about the Smoluchowski limit is given in [9].
From Equation (80), one obtains

Qdyn = 6πaε0ε1Ψ0 (112)

In order to obtain a relation between Ψ0 and Q, one uses Equation (A15) found in
Appendix B, which yields

Q =
4πε0ε1kTa

e
κa

[
2 sinh

(
Ψ̂0

2

)
+

4
κa

tanh

(
Ψ̂0

4

)
− Ψ̂0

κa

]
(113)

This relation provides a good estimate for κa ≥ 0.5. In the limit of low Ψ̂0, one obtains

Q = 4πε0ε1aκaΨ0 (114)

from which it is deduced that

Qdyn =
3
2

Q
κa

for Ψ̂0 � 1 and κa� 1 (115)

Figure 5. Velocities ûr and ûθ and electric field δÊθ(= Êθ) as function of x/x0 = r/a. The red line
indicates the position where x = κa+ = κa + 1. The approximation made in the derivation of the
Smoluchowski expression, i.e., Eθ = E+

θ , seems to be justified. The colloidal particle has an electric
surface potential Ψ̂0 = 0.01, has a radius a = 1000 nm, and is immersed in a KCl electrolyte with
κa = 46.
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9. Particle with a Constant Surface Charge
Many articles present theoretical results for the electrophoretic motion of a colloidal

particle with a constant surface potential as function of κa. This is done for convenience as a
constant surface potential implies a Dirichlet boundary condition (Equation (2)), whereas
a constant surface charge implies using a Neumann boundary condition (Equation (31)),
which is a bit more complicated to implement. Nonetheless, in practice, colloidal particles
tend to have a relatively constant surface charge as a function of ionic strength (for a given
pH) and therefore represent an interesting case to study [6,17,18].

In Figure 6, results are shown for a particle of constant surface charge.

Figure 6. The black and blue curves are found numerically. (Top row): surface electric potential
Ψ̂0 and electrophoretic mobility µ̂ as function of κa. The dotted and dashed lines for Ψ̂0 represent
approximations (see text for details). (Bottom row): Henry’s function fHenry and (β + 1) as function
of κa. The green dashed line is the function defined by β + 1 = 1. The red and magenta dashed
curves for µ̂, fHenry, and β represent the curves according to Equations (75) and (A9). The colloidal
particles have a radius a = 1000 nm and are immersed in a KCl electrolyte. The black dots represent
the position where β = 0.

One notes that the curve for Henry’s function fHenry is very similar to the one given
for the constant potential case (see Figure 1) for the same reason that, in the limit of low
and high κa, the function reaches Hückel and Smoluchowski limits (which are independent
of the fact that one considers a constant surface potential or a constant surface charge).

The approximated dashed functions for high Ψ̂0 are found using the following relation
(see a more accurate formulation, i.e., Equation (A15), in Appendix B)

q∗ =
eσs

ε0ε1kTκ
' 2 sinh

(
Ψ̂0

2

)
(116)

Inverting this equation provides the desired approximation for Ψ̂0 as function of σs and κ.
For low surface charge (σs = 0.1 mC/m2), the surface potential reaches a constant value
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below κa = 1. This can be understood by estimating the potential/charge relation for low
Ψ̂0 by using Equations (31) and (38):

Ψ̂0

(
1
a
+ κ

)
=

eσs

ε0ε1kT
(117)

At low surface charge (implying low surface potential) and low κa (implying no effect of
the double layer on the surface potential), the surface potential Ψ̂0 can be approximated by

Ψ̂0 '
eσsa

ε0ε1kT
(118)

For σs = 0.1 mC/m2, this yields Ψ̂0 ' 5.6, which corresponds to the value found numeri-
cally and represented by the red dotted line.

For a particle with a constant surface charge, at low κa, the electrophoretic mobility is
given by, using Equations (89) and (117),

µlow κa =
2
3

σsa
η

(119)

This equation is valid for κa values that correspond to physically unrealistic ionic strengths
for colloidal particles. In the examples chosen, for the low surface charges of −0.1 mC/m2

and −0.2 mC/m2, the relation is valid below a concentration of 10−8 mM (!). The limit is
not reached for the higher surface charges, not even at 10−15 mM. In that case, the curves
are superposed below κa = 1. At high and increasing κa, the electrophoretic mobility
of a particle with constant surface charge is decreasing until reaching zero as its surface
electric potential Ψ̂0 is decreasing rapidly with ionic strength (see Figure 4). For low surface
potentials, the decrease is modeled by using Equations (110) and (117)

µhigh κa =
σs

ηκ
(120)

In Figure 7, it is shown that Equation (120) indeed enables approximating the electrophoretic
mobility of colloidal particles for any (constant) surface charge at high κa. Fitting the
electrophoretic mobility data for charged colloidal particles with a constant surface charge
at high ionic strength with Equation (120) therefore enables obtaining the surface charge
without the need for numerical calculations.

Figure 7. Electrophoretic mobility µ̂ found numerically as function of κa for different values of
the (negative) surface charge σs as given in the legend. The dashed lines are plotted according to
Equation (120). The colloidal particle has a radius a = 1000 nm and is immersed in a KCl electrolyte.
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10. Conclusions
In the present article, a new analytical equation has been presented for the elec-

trophoretic mobility of a colloidal sphere. It has been shown that the equation predicts the
electrophoretic mobility well for the whole range of κa provided that the electric surface
potential (where the slip layer is defined) is less than 50 mV (Ψ̂0 = 2). For higher surface
potentials, the analytical prediction deviates from the numerical results below κa = 10, and
the deviations increase with increasing surface potentials. For experimental conditions,
where usually κa > 10, the proposed equation is an easy-to-implement alternative to the
full numerical solution. From the study of the analytical equation, it was shown that the
fact that the electrophoretic mobility decreases with increasing κa for low κa and subse-
quently increases with increasing κa for high κa is linked to the change in sign of the dipolar
coefficient. In the region of intermediate κa, the electrophoretic mobility experiences a
change in curvature associated with the presence of a maximum (or minimum, depending
on the charge of the particle). As many suspensions consist of colloidal particles with
a relatively constant surface charge (for a given pH), it was shown that a simple equa-
tion (Equation (120)) enables estimating this surface charge by fitting the electrophoretic
mobility as a function of ionic strength at high ionic strength (for κa > 10 in Figure 7).
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Appendix A. Equivalence with Previous Work
For comparison with the analytical results presented in [4,8], the following variables

are introduced:

nn = n+ + n− (similarly: nn,eq = n+,eq + n−,eq)

nc = n+ +

(
z−
z+

)
n− (similarly: nc,eq = n+,eq +

(
z−
z+

)
n−,eq) (A1)

We can make the equivalence

nn,eq = ν+n∞ exp
(
−z+Ψ̂eq

)
+ ν−n∞ exp

(
−z−Ψ̂eq

)
= 2n∞ cosh

(
Ψ̂eq

)
for a 1–1 electrolyte

nc,eq = ν+n∞

[
exp

(
−z+Ψ̂eq

)
− exp

(
−z−Ψ̂eq

)]
= −2n∞ sinh

(
Ψ̂eq

)
for a 1–1 electrolyte

Similarly,

nn =
−e
kTκ

[
z+n+,eq

(
ψ̂ + φ̂+

)
+ z−n−,eq

(
ψ̂ + φ̂−

)]
nc =

−e
kTκ

[
z+n+,eq

(
ψ̂ + φ̂+

)
+

(
z−
z+

)
z−n−,eq

(
ψ̂ + φ̂−

)]
(A2)
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For a 1–1 electrolyte, these equations reduce to

nn =
ε0ε1

e
κ

[
sinh

(
Ψ̂eq

)
ψ̂− 1

2

(
exp

(
−Ψ̂eq

)
φ̂+ − exp

(
Ψ̂eq

)
φ̂−
)]

nc =
ε0ε1

e
κ

[
− cosh

(
Ψ̂eq

)
ψ̂− 1

2

(
exp

(
−Ψ̂eq

)
φ̂+ + exp

(
Ψ̂eq

)
φ̂−
)]

(A3)

It can be shown that, far from the particle [8],

Lψ =
1
r

d2

dr2 (rψ)− 2ψ

r2 =
−e

ε0ε1
∑ zini =

−ez+
ε0ε1

nc

with

n+
n (r) =

Cn

r2

n+
c (r) = Cc

1 + κr
r2 exp(−κ(r− a)) ' 0 beyond the double layer (A4)

yielding
Lψ+ = 0 (A5)

The solution of this equation is

ψ+(r) =
a3β

r2

ψ̂+(x) =
(κa)3β

x2 (A6)

where β is the dipolar coefficient. As

n+
c =

−ez+ν+n∞

kTκ

[(
ψ̂+ + φ̂+

+

)
−
(

z−
z+

)(
ψ̂+ + φ̂+

−

)]
(A7)

it follows that, using Equation (16) and the fact that n+
i ' 0

φ+
+(r) = φ+

−(r) =
−a3β

r2 (A8)

Appendix B. An Analytical Expression for β

An analytical expression for β has been derived in [4]. In [8], the link was made
between dielectric spectroscopy experiments and dipolar coefficient β. The analytical
expression for the dipolar coefficient for ω = 0 for a 1–1 electrolyte is given by

β =
−K1 + 2[K// + KU ] + K⊥

2K1 + 2
[
K//(κa/x0)

3 + KU(κa/x1)
3 − K⊥

] (A9)

The conductivities Ki are defined by
K1 = ε1ε0κ2D0

K// = −K1 In,eq −

[
I2
c,eq − I2

n,eq

]
(x0/κa)3

K⊥ =
K1 In,eq

(x0/κa)3

KU = −K1mΨ̂0 Ic,eq

[
1

4(x0/κa)3 − 1

]
(A10)
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where

x0 = 1 + κa +
3

κa
exp

(
−Ψ̂0

2

)

x1 = κa +
2.5

1 + 2 exp(−κa) exp
(
−Ψ̂0

)
m =

2
3

ε0ε1(kT)2

ηD0e2

D0 =
z+D+ − z−D−

z+ − z−
(A11)

and

Ic,eq =
1

(κa)2

∫ x0

κa
x sinh(Ψeq)dx

In,eq =
−1

(κa)2

∫ x0

κa
x
[
cosh

(
Ψ̂eq

)
− 1
]
dx (A12)

Approximated analytical expressions for β, Ic,eq, and In,eq can be found in [4,8].

Appendix B.1. Low Ψ̂0

In the case of low surface potentials, one finds that [8]

Ic,eq ∼ Ψ̂0

κa
In,eq ∼ 0 (A13)

yielding

K// =
(

Ψ̂0

)2 κa
x3

0
K⊥ = 0

KU = −K1m
(

Ψ̂0

)2 1
κa

[
1

4(x0/κa)3 − 1

]
(A14)

Appendix B.2. High Ψ̂0

For high surface potentials, one finds that [8]

Ic,eq ∼ q∗

κa
= −In,eq

q∗ = 2 sinh

(
Ψ̂0

2

)
+

4
κa

tanh

(
Ψ̂0

4

)
− Ψ̂0

κa
(A15)

where q∗ is the dimensionless surface charge density, and one finds that

K// = K1
q∗

κa

K⊥ =
−K1

(x0/κa)3
q∗

κa

KU = −K1mΨ̂0
q∗

κa

[
1

4(x0/κa)3 − 1

]
(A16)
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Appendix C. An Estimation of x1

The length x1 is defined as the position where the function

F(x) =

(
1− 3

x2

(κa)2 + 2
x3

(κa)3

)
1

∑ z2
i νi

d
dx

[
∑ ziνi exp(−ziΨ̂eq)

]
(A17)

is optimum, see discussion under Equation (72). From the numerical results, the values for
x1 for a large range of κa and Ψ̂0 were tested. In Figure A1, the values for x1 for Ψ̂0 = 4
are presented. Similar figures were obtained for Ψ̂0 = 1, 2, 3, 5, and 6. The fit given by
Equation (76) does not match the numerical result for low κa. For low κa, irrespective of Ψ̂0,
it was found that x1 = 1.63. To better approximate the numerically found x1, it is necessary
to adapt Equation (76) as follows:

x1 = κa +
1.63

1 + 2 exp(−κa) exp
(
−Ψ̂0/κa

) (A18)

Using Equation (A18) (see Figure A1), it is possible to obtain a somewhat better fit at high
Ψ̂0 (= 4 or 6), but it worsens the fit for lower Ψ̂0 (= 2). Therefore, it was decided to use
Equation (76).

Figure A1. (Top row, left figure): length x1 defined as the position where F(x) defined by
Equation (A17) is optimum. The dotted red curve represents Equation (76) and the full red curve
represents Equation (A18). (Other figures): Henry’s functions fHenry for different surface potentials
Ψ̂0, as indicated in each figure. Blue curves: numerical results. Dotted red curve: results using
Equations (75) and (76). Dashed red curves: results using Equations (75) and (A18).

Appendix D. Spatial Representation
Some of the spatial representations of the quantities analyzed for selected values of

κa are plotted in this section. The numerical calculations were performed using the Finite
Element software COMSOL Multiphysics v. 6.3 [13].
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V/m

Debye length

Figure A2. Difference between the magnitude of the electric field resulting from the applied electric
field (‖δE‖ as described in Equation (6)) and the magnitude of the electric field in the absence of
applied electric field (

∥∥∇Ψeq
∥∥). The magnitude of the applied electric field is E0 = 10,000 V/m for a

particle radius a = 1000 nm, a particle surface charge of 0.1 mC/m2, and κa = 10.39. The streamlines
in the figure represent the total electric field.

Debye length

V/mApplied electric field
10000 V/m

Figure A3. Magnitude and streamlines of the total electric field (‖E‖) resulting from the application
of E0 = E0ez with E0 = 10,000 V/m for a particle radius a = 1000 nm, a particle surface charge of
0.1 mC/m2, and κa = 10.39.
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Debye length

m/s

Figure A4. Magnitude of the r-component of the velocity, ur, resulting from the application of
E0 = E0ez with E0 = 10,000 V/m for a particle radius a = 1000 nm, a particle surface charge of
0.1 mC/m2, and κa = 10.39.

m/s

Debye length

Figure A5. Magnitude of the θ-component of the velocity, uθ , resulting from the application of
E0 = E0ez with E0 = 10,000 V/m for a particle radius a = 1000 nm, a particle surface charge of
0.1 mC/m2, and κa = 10.39.
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V/mApplied electric field
10000 V/m

Debye length

Figure A6. Difference between the magnitude of the electric field resulting from the applied electric
field (‖δE‖ as described in Equation (6)) and the magnitude of the electric field in the absence of
applied electric field (

∥∥∇Ψeq
∥∥). The magnitude of the applied electric field is E0 = 10,000 V/m for a

particle radius a = 1000 nm, a particle surface charge of 0.1 mC/m2, and κa = 0.23. The streamlines
in the figure represent the total electric field E.

V/m

Debye length

Applied electric field
10000 V/m

Figure A7. Magnitude and streamlines of the total electric field (‖E‖) resulting from the application
of E0 = E0ez with E0 = 10,000 V/m for a particle radius a = 1000 nm, a particle surface charge of
0.1 mC/m2, and κa = 0.23.
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Debye length

m/s

Figure A8. Magnitude of the r-component of the velocity, ur, resulting from the application of
E0 = E0ez with E0 = 10,000 V/m for a particle radius a = 1000 nm, a particle surface charge of
0.1 mC/m2, and κa = 0.23.

m/s

Debye length

Figure A9. Magnitude of the θ-component of the velocity, uθ , resulting from the application of
E0 = E0ez with E0 = 10,000 V/m for a particle radius a = 1000 nm, a particle surface charge of
0.1 mC/m2, and κa = 0.23.
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