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Abstract

This thesis explores interpretable methods in two natural language processing
(NLP) tasks, namely part-of-speech (POS) tagging and text classification.
Currently, the NLP field is centered on the development and deployment
of deep neural networks (DNNs), which have been established as the state-
of-the-art and exhibit high performance in a variety of benchmarks. These
models are to all intents and purposes black-boxes that lack interpretability,
which is a major disadvantage when considering their use in high-stakes
situations where transparency is essential.

The focus of this thesis is therefore on enhancing inherently transparent
(glass-box) methods, thus establishing a foundation for their use in high-
stakes scenarios. First, the task of POS tagging is considered. While often
considered a solved problem, the findings here show that several challenges
in POS tagging still remain. Based on these findings, a rule-based approach
is explored for correcting the output of POS taggers. Second, interpretable
text classification is studied with an enhanced linear classification method.
The results demonstrate that a fully interpretable classifier can achieve a
high performance when using the proposed enhancements, approaching that
of pretrained DNN-based methods.

Keywords: part-of-speech tagging, text classification, natural language pro-
cessing, glass-box methods, interpretability
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For out of olde feldes, as men sey,
Cometh al this newe corn fro yeer to yere;
And out of olde bokes, in good fey,
Cometh al this newe science that men lere.

— Geoffrey Chaucer, Parlement of Foules, ll. 22–25
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Chapter 1
Introduction and motivation

This thesis explores glass-box methods in natural language processing
(NLP). Two specific areas in NLP are considered, namely text classifica-
tion and part-of-speech (POS) tagging (i.e., the problem of assigning
word class labels to words in a text). The work described herein emphasizes
the fundamental aspects of the two areas considered, rather than focusing on
specific applications.

A subfield of artificial intelligence (AI), NLP is focused on computa-
tional processing of human language, in the form of text or speech. Methods
from this field can be used to detect patterns and extract information from
text documents, and to automate processes traditionally requiring a consid-
erable amount of human labor. The presence of language in most aspects
of human activity makes NLP relevant across numerous domains. Some
examples of these applications include meaning extraction from text (e.g.,
sentiment analysis; see Chapter 5), linguistic analysis (e.g., POS tagging;
see Chapter 4), and consumer-oriented applications, (e.g., machine transla-
tion [52], chatbots [15], and writing assistants [20]).

Over the last decade, the field has advanced considerably partly because of
an increased amount of available data, but more notably due to developments
in deep neural networks (DNNs) and their use in NLP [28], in particular
in the form of large language models (LLMs). These models consist of
huge neural networks pretrained on large amounts of data, a process which
provides them with a foundation of language structure and syntax. They
are fine-tuned for various downstream tasks, that is, specific tasks where this
broad base of language knowledge can be utilized. A central task involves
text generation, which is used in, for example, chatbot applications (e.g.,
ChatGPT), text summarization, and writing assistants. Additionally, DNN-
based systems are applied in natural language understanding, for example,
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2 CHAPTER 1. INTRODUCTION AND MOTIVATION

in question-answering, information extraction, and text classification. For a
detailed overview of the architectures and applications of LLMs see [14, 53].

The improvements in DNNs have transformed the field of AI and new
applications using the most recent technology are constantly emerging. How-
ever, DNN-based methods also have several drawbacks, some of which are
also relevant in NLP, such as reinforcement of biases from data [39] and their
tendency to sometimes produce factually incorrect outputs, often referred to
as hallucinations1 in LLMs [42].

Another major drawback, and the most important one from the view-
point of this thesis, is that DNNs are black-box models whose inner mech-
anisms are opaque to the human observer due to their highly distributed and
non-linear computations, and their typically large size, some models having
trillions of parameters [11, 51]. In many scenarios, the lack of transparency
of these models is not a problem. However, there are many domains that
deal with high-stakes decision making where a clear explanation of the out-
come is crucial for trusting the model [29, 45]. Some examples include the
medical domain, where NLP can be employed for supporting clinical decision-
making [17], and in the legal domain, where NLP may be a useful tool for
several tasks [27].

In high-stakes scenarios, glass-box models provide an alternative to
black-box models. Glass-box models are interpretable due to their trans-
parent mechanisms, and their internal workings can therefore be inspected
in order to obtain a reliable explanation for a given output. The ability to
provide a faithful explanation of a model’s output is referred to as model
interpretability. In our viewpoint, also expressed by [45], interpretability
is distinct from model explainability. We work with the definition that
explainability refers to explanations of black-box models, which are typically
formulated from analysis of the model behavior post-hoc; see Chapter 2,
where the difference between these two concepts and their relation to black-
box and glass-box models is further described.

The work in this thesis is strongly motivated by the need for interpretabil-
ity in NLP methods applied in high-stakes decision-making scenarios. Ap-
proaches to improve a glass-box method in text classification are explored
and evaluated over two text classification tasks: Classifying text as spoken or
written, and classifying text sentiment. The task of POS tagging is evaluated
over novel data sets, and an interpretable rule-based approach is considered
for correcting erroneous tagging results. The topics are studied from a gen-
eral standpoint, paving the way for applications in high-stakes scenarios.

1The term hallucination is somewhat of a misnomer [33], but it will be used here as it
is the de facto accepted terminology.
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1.1 Research questions

The main research questions addressed in this thesis are as follows:

RQ1 Does the reported performance of POS taggers reflect the true perfor-
mance on previously unseen data?

RQ2 Can POS tagging errors be corrected with a rule-based approach?

RQ3 Can linear text classification be improved such that its performance is
comparable to the performance of state-of-the-art DNNs?

RQ4 Can feature weights learned from external data sets improve linear text
classification?

RQ1 questions a common notion of POS tagging being a solved prob-
lem [22, 34] and RQ2 considers an approach for correcting errors discovered
in POS tagging. RQ3 and RQ4 are focused on various improvements that
can be made with respect to linear text classifiers.

1.2 Outline and author’s contributions

Chapter 2 outlines the differences between glass-box and black-box models,
providing more insight into the lack of transparency in the latter and the im-
portance of interpretability in high-stakes applications. Chapter 3 describes
the various data sets used for Papers A–D and (n-gram) featurization of
text into a format that is readable by a machine. Chapter 4 focuses on the
POS tagging task and the work carried out in Papers A and B. The text
classification tasks in Papers C and D are described in Chapter 5. A con-
clusion to the thesis is given in Chapter 6, followed by a summary of the
included Papers A–D in Chapter 7.

The author contributed to the research articles as follows: As main author
in Papers B and D, and as co-author in Papers A and C. The author also
carried out most of the data processing and analysis in Papers A, B and D.
The author’s contribution to the analysis in Paper C was more limited.





Chapter 2
Model interpretability

The pace of development and deployment of AI applications has increased
considerably in the past decade. These applications emerge in a wide variety
of fields, both in the private sector [19] and the public sector [6]. Interactions
with AI systems are increasingly common as they are applied in many tools
used daily, for example, in search engines, in online marketing, or in customer
service. Essentially, AI methods can be applied in any process that produces
some form of data. Here, we focus specifically on examples involving NLP
applied to text data sets.

As mentioned in Chapter 1, one of the reasons for the advancements
in AI is the use of neural models based on DNNs, for example, pretrained
LLMs in the context of NLP. The performance exhibited by such models
has transformed the AI field, creating new applications such as, for example,
coding assistants, translation services, and so on. Another reason for the
extensive use of DNNs, in particular LLMs, is the increased availability of
such models. The high performance of these models is to a great extent due
to the pretraining phase, where a model is trained on a selected task (e.g.,
predicting the next token in a sequence) using a very large data set. This
process, including the data collection, is often time-consuming and resource
intensive. Pretrained models can then be fine-tuned for use in a specific
task, eliminating the need to repeat the computationally expensive training
procedure.

However, as neural models are essentially black-boxes, their overall good
performance comes with a major disadvantage, namely their almost entire
lack of interpretability. Model interpretability is an important factor in re-
trieving reliable explanations of a decision-making process, which can make
systems more trustworthy and increase their accountability [29, 45]. Addi-
tionally, interpretability can be helpful in detecting and correcting system
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6 CHAPTER 2. MODEL INTERPRETABILITY

errors [45].
The lack of interpretability is especially relevant in so-called high-stakes

decision-making, where even small errors may have severe consequences. The
use of black-box AI in fields that deal with high-stakes decision making, such
as in healthcare or legal applications, is problematic and has raised many
discussions [29, 45]. On the one hand, in such fields, AI tools can be a valu-
able asset and save time, especially in scenarios where there is a demand that
is difficult to meet, for example, due to a lack of personnel. For example,
a chatbot service offered by healthcare providers can give initial guidance
to patients [2]. Similarly, a summarization tool can generate an overview of
legal documents [3]. On the other hand, uncontrolled and incorrect outputs
can have unexpected repercussions in such situations [36] and a lack of ex-
planation for the output can weaken the trust in the systems. Therefore,
explainability and interpretability have become areas of focus in AI [29, 45].

This thesis is focused on human-interpretable (glass-box) methods which
have a transparent structure and thus are capable of offering a reliable ex-
planation of their decision-making. Classical methods in AI are often inter-
pretable (albeit to a varying degree), even though they were not explicitly
designed for that purpose, as interpretability was arguably less relevant prior
to the appearance of DNN-based models.

By contrast, explaining the decision-making process of black-box models,
such as DNNs, is typically done post-hoc1 from the model output rather
than from the model structure. Some commonly employed techniques used
for obtaining explanations from black-boxes are, for example, LIME [44],
SHAP [12], and saliency [48]. However, such methods do not always provide
meaningful explanations and they may be misleading or even incorrect [49].
Moreover, different methods used for explaining the same model often give
conflicting results [26].

It should also be noted, however, that there are many cases where model
interpretability is not needed. For example, as noted in [38], applications
that have been well studied typically may not gain any additional value
from interpretability, such as in optical character recognition or in speech
recognition. Indeed, the specific tasks in this thesis (e.g., detecting movie
review sentiments) do not require interpretability, and the aim of this thesis
is instead to lay a foundation for building applications where interpretability
is relevant.

1An emerging approach for explaining DNNs is mechanistic interpretability, an attempt
to decompose (or reverse engineer) DNNs into a human-understandable form. At the time
of writing this thesis, this approach is still being developed [50] and it is not clear to what
degree it will impact the field.



Chapter 3
Data and features

This chapter introduces the data sets used in Papers A–D in Section 3.1,
the procedures for preprocessing in Section 3.2, and feature extraction in
Section 3.3.

Every day, massive amounts of natural language data are documented.
The data consist of formally written text, such as articles in news outlets
or online encyclopedias, as well as less formal text produced through online
communication, such as e-mails or forum discussions. Language data can
also be recorded and transcribed from, for example, radio shows and phone
calls. Much of it is in the public domain, so that it can be freely accessed
and therefore also utilized for text processing. The increased availability
of data1 has been essential in improving the performance of the methods
used in NLP. Many methods in NLP use statistical approaches, which are
data-driven, meaning that they rely heavily on large quantities of data.

In data-driven methods, a portion of the data is typically used for validat-
ing model performance. A common approach for this is holdout validation
wherein data are generally arranged into three sets: (1) a training set used
to train models, (2) a validation set to select the best-performing model, and
(3) a test set for evaluating the performance of the selected model. Another
approach is k-fold cross-validation, where the data are divided into k sub-
sets. Then, k−1 subsets are used in training and the kth set for validation in
turns throughout the training phase. In this thesis, holdout validation was
used to train and evaluate the models, and therefore the majority of the data
sets were split into to the aforementioned three portions.

The data sets need to be converted into a format that is suitable for com-
putational processing, a procedure known as text preprocessing. This pro-

1However, most of the data pertain to languages with many speakers; small languages
are less represented in the available data [4].
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8 CHAPTER 3. DATA AND FEATURES

cedure generally involves several steps, such as tokenization, spell checking,
spelling normalization, etc., further described in Section 3.2. Preprocessing
is followed by feature extraction, where the text is converted to either ab-
stract encodings (e.g., word embeddings in DNN-based models) or explicit
representations (e.g., n-grams used in the interpretable models considered in
this thesis).

3.1 Data sets

The data sets used in the POS tagging and text classification tasks in Pa-
pers A–D are briefly described in this section. Some of the data sets are well
established with previously reported performance metrics while others were
collected for the specific tasks considered in this thesis. Papers C and D
deal with binary text classification, meaning that there are two classes, here
denoted as Class 0 and Class 1. However, the categories represented by these
classes differ among the two papers and are specified where needed.

3.1.1 Standard POS data sets

Data sets for POS tagging, including the ones described here, typically con-
sist of tokenized text (see Section 3.2), where each token has been annotated
with a POS tag. Annotations are done either manually or via an automated
process, and various tag sets offering different levels of granularity have been
used in different data sets. Two data sets that are commonly used when train-
ing taggers, and thus function as relevant benchmarks in Papers A and B,
are the Wall Street Journal (WSJ) section from the Penn Treebank (PTB)
data set [35] and the Brown Corpus data set [21]. The PTB set consists
of 2,499 WSJ stories and has around 1 million annotated tokens [35]. The
Brown Corpus has 500 text samples and a total of approximately 1 million
annotated tokens [21].

Both of these data sets have been annotated manually, using different tag
sets to label the tokens; PTB uses a tag set of 45 tags and Brown uses 87
tags. However, we use a mapping to a smaller tag set (the so-called Universal
tag set [43]), which enables the comparison of tagger performance over the
two different data sets. The text in the data sets was written over 30 years
ago (PTB) and over 50 years ago (Brown), suggesting that their vocabulary
may be partially outdated, a problem which is discussed in Papers A and B.
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Data set Sentences Tagged tokens
Data set in Paper A 2,227 2,227
Data set in Paper B 1,123 5,850

Table 3.1: Some basic data regarding the two newly collected data sets for POS tagging.

Size (number of items)
Data set Training Validation Test Total
Spoken vs written (Paper C) 9,743,188 1,948,639 1,948,631 13,640,458
IMDB ([31], used in Paper D) 20,000 5,000 25,000 50,000
Rotten Tomatoes (Paper D) 20,260,968 5,059,507 N/A 25,320,475

Table 3.2: The size of the subsets in each text classification data set.

3.1.2 New POS data sets

Papers A and B introduce two new POS tagging data sets that are designed
to be challenging for existing taggers trained on the standard data sets de-
scribed above. First, in Paper A, sample sentences for words were extracted
from a web-based dictionary (Wiktionary). The resulting data set consists
of 2,227 sentences, where a single word in each sentence is annotated, mak-
ing it suitable for testing existing taggers. Building on this work, Paper B
introduces a data set generated by tagging and selecting sentences (of spo-
ken and written origin collected in Paper C, described below) where taggers
disagree on one token instance. This second procedure results in a set of
1,123 fully tagged short sentences (on average 5.2 tokens per sentence), thus
making it also suitable for training. The data set sizes are summarized in
Table 3.1. Both data sets were first annotated automatically, using the Uni-
versal tag set [43], followed by manual verification of the labels and a removal
of sentences with any erroneous annotations. The manual processing is time-
consuming, thus limiting the final size of the data sets. In their current form
these data sets are suitable for proof-of-concept analyses.

3.1.3 Spoken and written text

A data set for distinguishing between written text and spoken transcripts
was generated in connection with Paper C. It consists of single sentences
labeled as either spoken (Class 0) or written (Class 1). The spoken sentences
were collected from transcripts from radio shows, and the written sentences
from Wikipedia pages. In many cases, very short sentences lack the context
to reliably be assigned either class label. Therefore, sentences of less than 5
tokens were excluded, as they could be considered to belong to either class.
In total, 13,640,458 sentences were collected (of which 47% are in Class 0 and
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53% in Class 1). The sentences were then split into a training set, a validation
set, and a test set; see Table 3.2. The average sentence length in Class 0 is
14.79 tokens, whereas the sentences in Class 1 had an average length of 20.69
tokens, a difference which was identified as helpful in classifying the text in
Paper C.

3.1.4 Movie reviews

In Paper D, text sentiment is classified using the IMDB movie review data
set [31], which has been used frequently in sentiment analysis; see Paper D
for results over various methods. The reviews were automatically labeled
(in [31]) using a score associated with the original review. The scores were in
the range 1-10 and only strongly polarized reviews were included in the data
set, where a negative label (Class 0) was assigned for reviews with a score
≤ 4 and a positive label (Class 1) for score ≥ 7. An automated process for
labeling data introduces a possibility of label errors [16] and, in fact, around
2.9% of the ground-truth labels in the IMDB test set are incorrect [40],
possibly due to a discrepancy between the score associated with the review
and the sentiment conveyed in the review text. Despite the possibility of
introducing errors, this practice of labeling is common for polarity data sets
extracted from reviews, due to the often large sizes of these data sets. This
discrepancy has generally not been considered in studies involving the IMDB
data set. Thus, in order to reliably compare our results to those found in the
literature, the original labels from [31] are used in Paper D.

In [31], the data were divided into a training set (25,000 reviews) and
a test set (25,000 reviews) with an even split between classes. The method
in Paper D also uses a validation set, for which 20% of the training set (a
fraction commonly used for validation) was extracted, resulting in a split of
20,000 (training), 5,000 (validation) and 25,000 (test) reviews, again with an
even split between classes; see also Table 3.2.

The experiments carried out in Paper D also require an extended data
set, which was generated by collecting and processing a large set of movie
reviews from the Rotten Tomatoes platform, consisting of two sets of reviews
written by critics and users, respectively (see Paper D for the exact source
of the data sets). The reviews were compared to each other within these
two sets and to reviews in [31], and all duplicate reviews were removed.
In the Rotten Tomatoes service, critic reviews are assigned a status rotten
or fresh, which were mapped to negative (Class 0) and positive (Class 1)
reviews, respectively. The status and the mapped label were included in the
downloaded data set. The user reviews instead included a star rating in the
range 0.5−5.0. Automated labeling was applied (as in [31]); negative reviews
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(Class0) were selected from reviews with score ≤ 1.5 and positive reviews
(Class1) from reviews with score ≥ 4.5. The critic and user reviews were
combined into one set, resulting in a total of 25,320,475 reviews, with 21%
belonging in Class 0 and 79% in Class 1 (the class imbalance was considered
in the training phase, described in Chapter 5). As the extended data set was
only considered for a training phase, no test set was extracted, and the data
were split into a training set and a validation set; see Table 3.2.

3.2 Text preprocessing

Text preprocessing is a procedure where data are converted into a format that
is suitable for computational processing. A common approach for generating
data sets is to collect text from the internet via an automated process. Such
text often contains parts that are irrelevant to the task at hand, e.g., markup
tags, spelling errors, grammatical errors, or other inconsistencies, such as a
mix of regional spelling variations. In addition to the necessity of formatting
the data, an appropriate preprocessing sequence can also improve the data
quality, which in turn can increase the accuracy of a model in some tasks,
such as in text classification [23].

The exact preprocessing steps required varies between different data sets
and different tasks, but many well established practices exist [13]. Some
common preprocessing steps include removing stop words (common words
that hold limited or no semantic meaning, e.g., is, the), word stemming or
lemmatization (two processes that reduce words to their base form, e.g.,
the lemma of dancing is dance), spelling normalization (e.g., converting
words to one spelling variety of English, or expanding common abbrevia-
tions), spelling correction, and case folding (e.g., converting the text to
lowercase).

Another essential preprocessing step is text tokenization. This is the
process of splitting a text into smaller units called tokens. When processing
a training data set, it is common to form a vocabulary, i.e., the set of distinct
tokens that appear in the data set. A straightforward approach is to split
the text into individual words based on whitespace characters. Some tasks
require text to be split into smaller subword units, which can be achieved
with, for example, byte pair encoding (BPE) [47] or WordPiece [46]. This
approach makes it possible to construct a smaller vocabulary that is more
flexible in handling out-of-vocabulary words. On the other hand, subword
tokenization may result in some information loss, for example, if words are
split incorrectly [8].

In some cases, tokenization into units consisting of more than one word
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[quick, fox, jump, over, my, favorite, dog]

Tokenization

Lowercase 
text

Input

Output 

Remove 
stopwords

Correct 
spelling

Lemmatize 
words

Normalize 
spelling

Remove 
HTML

Formatting

 <p>   The   Quikc  Fox  Jumps  Over My  Favourite  Dog   </p>.

Figure 3.1: An example of a text preprocessing procedure. The different colors of the
highlighted text correspond to the actions affecting them. Spelling normalization (medium
blue) converts the text into American English in this case. The input to the preprocessor
is a text string, and the output is a list of token strings. The output can alternatively be
converted into token indices in a specified vocabulary.

can be used in order to retain more semantic information. For example, a spe-
cific meaning can be conveyed by a group of words, such as with phrasal verbs
(e.g., hang out), compound nouns (e.g., high school), or idiomatic phrases
(e.g., raining cats and dogs), where word-level splitting would result in in-
formation loss. However, maintaining larger units can also result in a more
narrow and specific vocabulary that does not generalize well to other data
sets. As with the previously introduced preprocessing steps, the appropri-
ate approach for tokenization is task-dependent. A split into smaller units
is common in text generation whereas in other tasks, such as POS tagging
(Papers A and B), maintaining word-level information is preferred.

In the text classification tasks (Papers C and D), the preprocessing steps
were (1) removing markup tags, (2) lowercasing, (3) removing consecutive
whitespaces, and (4) tokenization into words, resolving punctuation marks
as separate tokens. These preprocessing steps result in a more precise vocab-
ulary. For example, by applying lowercasing, more instances of words can be
captured, e.g., in the sentence this movie was GREAT, the word GREAT is
mapped to the same token as great, a more common spelling variation in the
data set. This preprocessing approach is suitable for the feature extraction
applied in this case, described below.
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3.3 Text features

Text features are representations that are used as the model input in the var-
ious NLP tasks. They typically aim to capture some meaningful aspects of
text, such as sentiment polarity or semantic similarity to other texts. In Pa-
pers C and D, the text was represented as n-gram features. Other methods
for feature representations exist as well, most notably word embeddings,
such as word2vec, GloVe, ELMo, and many more (see [1] for details), which
are multidimensional vector representations of text. Word embeddings are
exposed to words used in a variety of contexts during their training phase,
allowing them to capture contextual and linguistic information. While they
are an integral part in encoding the input of many state-of-the-art neural
NLP models, word embeddings lack the type of explicit interpretability that
is the primary focus explored in this thesis. In addition to the n-gram fea-
tures used in Papers C and D, Paper B makes use of some morphosyntactic
features commonly used in POS tagging.

3.3.1 n-grams

Text representations in the form of n-gram features were used frequently in
NLP applications prior to the advent of neural models and they are still rele-
vant in many NLP tasks [30]. These features are constructed from sequences
of adjacent tokens2. The basic case of n = 1 involves individual tokens (also
called unigrams), and expanding this representation to n = 2 yields token
pairs (also called bigrams). An illustration of different values of n is shown
in Fig. 3.2. For a given value of n, a set of T + 1 − n features can be ex-
tracted from a text with T tokens. The feature representation for a text can
be combined from each of the n-gram sets, up to a given maximum value of
n.

As can be seen in Fig. 3.2, the value of n can in principle be extended up
to T , where the case of n = T is the entire text. The feature representation
of a text will include a total of T (T + 1)/2 features when using all the n-
gram sets for each n in the range 1 to T . However, this approach is not
feasible in practice as the representation of the text becomes too large to
handle computationally, since one must often process several million tokens
(see Table 3.2). For example, a data set of 1 million tokens would result
in text representations of more than 500 billion features. The processing of
these features is restricted by the computational memory available.

2We construct n-grams from tokenized words, but note that the term may also refer to
n-grams consisting of characters within a word.
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n = 1: (the), (fox), (jumped), (quickly), (!)

n = 2: (the fox), (fox jumped), (jumped quickly), (quickly !)

n = 3: (the fox jumped), (fox jumped quickly), (jumped quickly !)

n = 4: (the fox jumped quickly), (fox jumped quickly !)

n = 5: (the fox jumped quickly !)

Figure 3.2: Examples of n-gram features extracted from the sentence “The fox jumped
quickly!” that was first lowercased and tokenized. For the case n = 5 the resulting n-gram
is the entire sentence.

Furthermore, larger n-grams will appear less often in out-of-sample texts.
Thus, the training procedure is likely to overfit such features, leading to a
drop in performance, for example, when applying a text classification method
on previously unseen data. A common practice is therefore to use a relatively
small value of n and to include only n-grams that appear with sufficient
frequency in the training set. Both of these practices have been implemented
in Papers C and D.

A vocabulary of n-grams can be constructed from the training set such
that each feature is associated with a unique integer index. A text featurized
in that way will thus consist of a vector of feature indices, where each value
represents the count (i.e., the number of instances) of the feature correspond-
ing to the index. These vectors can be normalized and smoothing techniques
can be applied to handle out-of-vocabulary instances. However, in the text
classification task in Paper D, the features were instead read directly from
a dictionary (in the form of a hash table, with O(1) lookup time), which is
efficient for the large set of n-grams used in the task.

The aforementioned inability to realistically extend to a large enough n is
a major drawback that limits the possibilities of capturing long-range context
and the relationships between words in the text. Despite these limitations,
n-grams are suitable for many applications. As shown in Papers C and D,
using a moderate size of n can result in sufficient representations and well-
performing models. Furthermore, n-grams are arguably easy to interpret, as
is illustrated in Papers C and D.

3.3.2 Other text features

Besides the previously mentioned categories of text representations (n-grams
and word embeddings) various other features can be extracted from text.
Such features are, for example, word length, POS tags, dependency relations,
or synonymous words. In POS taggers, for example, it is common to use



3.3. TEXT FEATURES 15

previously predicted tags, surrounding words, and affixes (e.g., prefixes and
suffixes) as additional features. In the corrective tagging approach introduced
in Paper B, surrounding words, predicted tags, and suffixes were used as
features for the rule-based approach.





Chapter 4
Part-of-speech tagging

The task of POS tagging is introduced in this chapter. The state-of-the-art
taggers described in Section 4.1 were used as a baseline for tagger perfor-
mance in Papers A and B. An overview and discussion of the results in Pa-
pers A and B is given in Section 4.2, where the research questions RQ1
and RQ2 are also addressed.

4.1 Methods

Automated POS tagging is a sequence labeling task where each word in a
sequence of words (such as a sentence) is assigned a POS tag, i.e., a label that
determines a word class and, in some fine-grained tag sets, more grammatical
details (e.g., verb forms or noun cases). In many cases, a word can belong
to multiple word classes, meaning that the correct tag for a word must be
determined from the context in which it appears. An example of a tagged
sentence is shown in Fig. 4.1. In this example, the word brown functions
as an adjective. In different sentences, it can also be a verb (e.g., Can you
brown the butter? ), a noun (e.g., I painted the walls a warm brown), or,
when capitalized, a proper noun (e.g., The tagger was trained on the Brown
corpus).

Tagging text with POS tags is a common intermediate step in various
applications. The resulting grammatical information can be useful in, for
example, word-sense disambiguation, machine translation, and keyword ex-
traction. While the popularity of POS tagging has, to some degree, declined
due to the rise of end-to-end neural networks, it can still be relevant in neural
applications as well [24, 54]. In POS tagging, the focus is on tagging individ-
ual words, but there are other sequence labeling tasks where larger portions of

17
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Sentence: The brown fox jumps over the chicken coop
Tags: DET ADJ NOUN VERB ADP DET NOUN NOUN

Figure 4.1: An example of a POS-tagged sentence. Each word has been assigned a tag
from the Universal tag set [43]. In this sentence, the last two words form a compound
noun chicken coop, for which a common convention is to tag both parts as a NOUN.

text are tagged. These include named-entity recognition (NER), where
specific actors or objects referred to by a name are labeled (often involv-
ing proper nouns, e.g., the previous example of Brown), or text chunking,
where words are grouped into meaningful units, such as noun phrases (e.g.,
the brown fox and the chicken coop in Fig. 4.1). These two tasks also typically
use POS tagging as an intermediate step.

4.1.1 Baseline POS taggers

A simple baseline for POS tagging is the so-called unigram tagger, where
words are tagged with their most frequent tag in the training corpus. This
method typically reaches a test accuracy of about 0.85 − 0.93, depending
on which data set and tag set is used. This rather high baseline accuracy
is possible to obtain since many words are either associated with just one
tag, or are frequently used as only one of their possible word classes. For
example, in the Brown corpus, the (lowercased) word brown appears 65 times
in total, of which 61 instances are adjectives and 4 instances are nouns.
Therefore, simply tagging the word as an adjective will be correct in most
cases. For many words, however, the difference in tag frequency is not so
distinct. Such cases can be resolved using a more advanced POS tagging
method that considers the context of the word.

Standard methods for POS tagging can be split into two broad categories:
(1) manually defined taggers, such as the ENGTWOL/CG tagger, which con-
sists of linguistic rules, and (2) automatically trained taggers, which can be
rule-based, such as the Brill tagger, statistical, such as the Perceptron, Stan-
ford, and Hunpos taggers, or DNN-based; see Papers A and B for references.
Papers A and B use rule-based and statistical taggers (herein referred to
as standard taggers) as a baseline. Notably, the performance difference be-
tween the methods, including DNNs, is not very large. Taggers trained with
these methods typically perform very well, with reported test accuracies be-
ing around 0.97. These results are typically obtained by running a tagger
over a held-out test set from one of the standard POS data sets described in
Section 3.1. With this high performance, the task of POS tagging is often
considered a solved problem. However, as will be discussed in Section 4.2
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(in regards to RQ1) and in Papers A and B, such a categorical statement is
somewhat premature.

4.1.2 Ambiguities in POS tagging

In many cases, there is only one correct POS tag sequence for a given sen-
tence (and given tag set). However, there are also some inherently ambiguous
cases where more than one tag sequence can be correct. For example, tag-
ging open compound nouns, which consist of more than one word separated
by whitespace characters, may not be always be straightforward. A common
convention to tag such nouns is to assign the tag NOUN to each part of the
compound noun, as can be seen in the word chicken coop in Fig. 4.1. This
convention also applies to compound nouns where the first word is typically
an adjective. For example, the noun hot dog would still be assigned the se-
quence NOUN NOUN. In the POS-tagged sentence in Fig. 4.1, it is clear that
brown fox is not a compound noun, but if the adjective were to be changed to
red, the example becomes ambiguous, as red fox is, in fact, a compound noun
(i.e., the English term for a species of animal). The sequences ADJ NOUN
and NOUN NOUN are equally correct options for red fox. The problem of
tagging compound nouns and some other ambiguities1 related to POS tag-
ging arising from tagging conventions, tokenization, and the past and present
participle forms of verbs are further discussed in Paper B. These examples
illustrate a core problem with POS tagging as a task, namely that assigning
one POS tag to each word cannot always be done unambiguously.

4.1.3 Corrective rule-based approach

In Papers A and B, we show that when standard POS taggers are applied
to our new data sets, devised so as to be challenging, their performance
drops considerably from the reported test accuracies, as also discussed in
Section 4.2. Here, it should be noted that the sentences evaluated in Pa-
per B were, in fact, selected such that they contain none of the ambiguities
mentioned above, meaning that the standard taggers make errors even in
straightforward and unambiguous cases. These errors can often be corrected
with some grammatical knowledge. Thus, a corrective rule set was generated
in Paper B to correct the tagger outputs.

1These examples are drawn from the English language, and are by no means universal
across different languages. For example, in Swedish and Finnish, compound nouns are
generally closed. Likewise, different languages may also have ambiguities that do not
apply to English.
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Sentence: BOS she started to laugh . EOS
Tags: BOS PRON VERB PRT NOUN . EOS

IF token(-1) = to

IF tokenSuffix(-2) = -ed

IF POS(-3) = PRON

THEN POS(0) = VERB

Figure 4.2: An example of a corrective rule generated from the sentence “ she started to
laugh”. The tokens BOS and EOS are appended to each training sentence to mark the
beginning and end of the sentence. In this example, the targeted token with position 0 is
laugh, which was incorrectly tagged as a NOUN. The generated rule assigns the correct
tag VERB. Note that this rule is generated in the first phase but it is subject to potential
removal in the second phase where the rule set is refined.

The rule-based approach for correcting the output of standard taggers was
proposed in Paper B, where a more detailed description of the method can
be found. A rule set was automatically generated in two steps: First, rules
were exhaustively generated from sentences in a training set and, secondly,
the exhaustive set of rules was reduced to only the most generic ones, which
are more likely to be applicable also to other data sets. The resulting set of
rules can be applied to the output of any existing tagger, if its output tags
are taken from the same tag set as in the training set.

The rules are structured as if-then rules that reassign the tag of the
incorrectly tagged word, shown in Fig. 4.2. As mentioned above, as the first
step, a set of candidate rules is generated from a training set that should
consist of sentences where each token has been assigned a tag, and where, in
our case, precisely one word has been incorrectly tagged, but its ground truth
tag is known. The rule parameters are token spellings, assigned POS tags,
and token suffixes, which are extracted from tokens surrounding the targeted
token, marked with the index 0. Preceding tokens are assigned negative
indices whereas succeeding tokens are assigned positive indices, as shown
in Fig. 4.2. As also seen in that figure, the sentence contains the additional
tokens BOS, which marks the beginning of a sentence, and EOS, which marks
the end of a sentence. These markers are appended to the sentences and
are considered as surrounding tokens when extracting parameters for the
candidate rules.

After the set of rules has been exhaustively generated, it will contain
many rules that are very specific to the training sentences, and rules that
can introduce new errors. Therefore, the set is evaluated on an external data
set, and any rules that trigger less than m times or produce at least k errors
are removed. The final set of rules can then be used to correct the output of a
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Tagger Accuracy
Brill 0.473
Hunpos 0.482
Stanford 0.673
Perceptron 0.561
DNN-based 0.868

Table 4.1: The accuracy over the new test set from Paper A for the selected taggers. The
accuracy is measured by considering only the tokens that have a ground truth label (in this
case, one per sentence).

Training set (Paper B) Test set (reduced) (Paper A)
Tagger Initial accuracy New accuracy Initial accuracy New accuracy
Brill 0.5156 0.8272 0.4647 0.5037
Hunpos 0.5209 0.8540 0.4963 0.5287
Stanford 0.8362 0.9341 0.6858 0.7032
Perceptron 0.4809 0.7845 0.5736 0.5894
DNN-based 0.9457 0.9697 0.8845 0.8878

Table 4.2: The accuracy of the selected classifiers over the new training set and test set
before and after applying the generated corrective rule set to the tagger output. The accu-
racy is measured by considering a single target token in each sentence, that is, the token
that was incorrectly tagged by at least one of the taggers; see also Paper B. Note that the
test set from Paper A has been reduced here so as to contain only unambiguous sentences.

tagger by evaluating each token in a sentence against the rules, and applying
the corrective action to tokens when all conditions in a rule are fulfilled. The
rules are evaluated in the order that they appear in the set, and once a rule
is triggered for a token, the process is terminated and no further rules are
evaluated for the specific token.

4.2 Observations

An overview of the tagger performance over the two new data sets in Pa-
pers A and B is shown in Tables 4.1 and 4.2. It is important to note that the
four standard taggers (Brill, Hunpos, Stanford, and Perceptron) were used
in the data selection process that explicitly aimed at finding challenging ex-
amples. Thus, the large decrease from their expected performance of around
0.97 is not so surprising. However, when inspecting the performance of the
DNN-based tagger, which was not involved in the data selection process, we
can observe a true out-of-sample test. In this case, the decrease from the
reported tagger accuracy of around 0.97 is substantial: For the first data set
(see Table 4.1), its accuracy is around 0.1 below its reported accuracy. The
performance (before applying corrective rules) over the second set is quite a
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bit better (0.95; see Table 4.2), but still somewhat below the reported accu-
racy. Thus, in regards to RQ1, these results show that the true performance
of POS taggers does indeed decrease when they are applied over a challenging
data set.

Paper A discusses reasons for the tagger failures, which include, for
example, effects of temporal drift (i.e., the fact that the meaning of words
changes over time), a lack of general grammatical knowledge (such as the fact
that a complete sentence should normally contain a verb), and similarities in
word morphology or surrounding context. An example of the last type can
be observed in the tagged output for the two sentences (from the data set
in Paper A), (i) He was hired to bus tables [...], and (ii) I go to church every
day. In sentence (i), three of the POS taggers incorrectly tagged the word
bus as a NOUN, when it should be a VERB, and in sentence (ii), the word
church was incorrectly tagged as a VERB by two of the POS taggers, when
it should be a NOUN. In both cases, the incorrectly tagged word is preceded
by the particle to. Further examples that were challenging for the taggers
are shown in Table 4.3.

As mentioned above in Section 4.1, there are many systems that rely on
automated POS tagging. In those cases, an incorrectly POS tagged sen-
tence can propagate additional errors downstream. The corrective approach
from Paper B focused specifically on unambiguous cases and the results,
summarized in Table 4.2, show that such an approach can indeed be used
to correct the output of the taggers, thus providing a preliminary positive
answer to RQ2. As the approach was evaluated with a small data set where
the sentences were short, these results should be seen as a proof-of-concept.
Many of the examples in the test set (Paper A), such as the two examples
mentioned above with the to particle, were not associated with a rule that
could correctly reassign the POS tags. In these cases, suitable rules were
either not generated at all (as the training set may not have contained rel-
evant examples for those cases), or were filtered out in the reduction phase
(see the last paragraph in Section 4.1.3). The final rule set also included
some rules that generated further errors, though the net result was positive
overall (see Paper B). An obvious way to improve the rules and to make
them applicable in more sentences is to use a larger training set and a fine-
grained tag set, which can provide more valuable grammatical information
(e.g., cases or tenses).
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Table 4.3: Some example sentences from the two challenging POS data sets. The token
under consideration is shown underlined and in bold. The ground truth tag is shown in the
second column, and the tags assigned by the different taggers are given in the remaining
columns.





Chapter 5
Text classification

The task of text classification, explored in Papers C and D, is described in
this chapter. Various methods from the literature as well as the linear text
classifier used in Papers C and D are described briefly in Section 5.1, in-
cluding the adjustments made to the classifier that improve the classification
accuracy. Section 5.2 includes a discussion on the results, where the research
questions RQ3 and RQ4 are considered.

5.1 Methods

Text classification is the task of automatically categorizing text. It can be
used to sort large quantities of text into predefined classes, or to gain some
general insight of the text content. Some applications where text categories
(or classes) are commonly considered are sentiment analysis (described in
more detail below), language identification, spam-filters, textual entailment
(i.e., a task where relations between texts are detected), fake news detection,
and many more, as described in [25, 37]. In binary classification there are
only two class labels (e.g., Class 0 and Class 1), such as in the two tasks
considered in this thesis, whereas multi-label classification tasks involve more
than two classes, such as in, for example, fine-grained emotion detection.

The classification task in Paper C focused on categorizing text as spoken
(i.e., transcribed text) or written. Such categorization can be useful in, for
example, determining the suitability of a sentence for a formally written
text, such as an academic report. An example of a sentence that is initially
classified as spoken, and then reformulated to match the written class, is
shown in Fig. 5.1. The features that contribute most to the classification are
highlighted using the visualization tool introduced in Paper C. Such a tool

25
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Figure 5.1: An example of the text classifier using unigram and bigram features. The first
sentence is classified as spoken, as it contains multiple features typically associated with
spoken language (highlighted in blue). The second sentence is a reformulation of the first
one, and is classified as written, since most of its features are now more associated with
the written class (highlighted in yellow). The visualization was generated with the online
tool: https: // aaiserver. m2. chalmers. se/ spoken_ vs_ written_ tool

can help in identifying the specific parts of a text that must be reformulated
such that they match one of the given classes.

Text sentiment classification (also known as sentiment analysis) is a
common special case, which is applicable in many domains [7], for example,
in market research, medical text analysis, and financial trading. The task
was explored in Paper D, where the polarity (i.e., positive or negative sen-
timent) of movie reviews was considered. In general, sentiment analysis can
involve other NLP tasks [10], such as word-sense disambiguation, sarcasm de-
tection, or anaphora resolution. Another variety of the task is aspect-based
sentiment analysis, where the focus is on extracting specific aspects and
identifying the associated opinions [9].

Several methods have been developed and used for generating text clas-
sifiers. In Papers C and D, a linear classifier was used. It was generated via
supervised learning, where the algorithm uses ground truth labels from
the training set to guide its learning process. Many other commonly used
methods in text classification are also based on supervised learning. An al-
ternative method is unsupervised learning, where the algorithm instead
groups similar texts together without any labeled examples. Another ap-
proach is also semi-supervised learning, which combines the two learning
methods. For example, the pretraining phase of LLMs is typically unsuper-
vised, followed by fine-tuning (for text classification in this case), which is
often done with a supervised learning phase.

5.1.1 Classical methods

Prior to the advent of DNN-based methods, text classification was typi-
cally carried out using classical methods, such as support vector machines

https://aaiserver.m2.chalmers.se/spoken_vs_written_tool
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(SVMs), perceptrons (also discussed further in Section 5.1.3), näıve Bayes
(NB) classifiers, k-nearest neighbor (kNN) classifiers, decision trees, and lo-
gistic regression; see also Papers C and D. In general, such methods have
a good balance between training complexity and performance. The perfor-
mance of these methods usually varies between specific tasks and data sets;
for an overview, see Table 5.1.

5.1.2 Neural methods

Early neural methods used shallow networks, which were used in parallel with
the classical methods introduced above. Such methods typically achieved ac-
curacies similar to those of the classical methods. The introduction of DNNs
in the recent years led to a leap in performance and thus established the
current state-of-the-art in text classification. Such methods include, for ex-
ample, recurrent neural networks (RNNs), in particular its variant of long
short-term memory (LSTM), convolutional neural networks (CNNs), as well
as pretrained LLMs, of which especially BERT [18] is often employed for clas-
sification. Compared to the classical methods, DNN-based methods typically
perform better (see Table 5.1) but have a more complex training procedure.
While the performance reported for LLMs specifically is typically quite high,
such results may pose an unfair comparison due to data contamination: As
LLMs are trained on a huge amount of data, it is possible that the selected
test set has been included in the training data [32].

5.1.3 Interpretable methods

This section focuses on methods that are explicitly developed to be inter-
pretable, and in particular, the method used in Papers C and D. It should
be noted that many of the classical methods introduced above are typically
transparent to some degree, and are generally more interpretable than DNN-
based methods. However, this is a more of a coincidence rather than an
intentional choice. Prior to the introduction of DNNs, model interpretabil-
ity was rarely considered to be important. As the terms interpretability
and explainability are often used interchangeably, several studies on inter-
pretable text classification use methods based on DNNs (using methods such
as LIME [44]). However, as previously discussed in Chapter 2, the explana-
tions of DNN outputs do not exhibit the type of interpretability that this
thesis focuses on, which is why the DNN-based methods used in such studies
are instead considered to be part of the neural methods described above.

Despite the dominance of DNN-based models, there have been some stud-
ies focusing on explicit interpretability as per the definition used in this thesis.
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The methods used in these studies are, for example, hidden Markov models
(HMMs) [41], and a system based on propositional logic that is referred to
as a Tsetlin machine [5].

Method used in Papers C and D

The method for text classification in Papers C and D is a linear text classi-
fier based on n-gram features. A brief description of the general procedure
is given in this section. The classification and optimization procedure for
each task is described in full detail in Papers C and D. Those descriptions
also include additional concepts used in the classification, such as a length
adjustment term introduced in Paper C. The general procedure for classi-
fying a text (herein also referred to as an item), that is, either a sentence
(as in Paper C) or a longer text (as in Paper D), begins by computing a
classification sum

s = α +
V∑

i=1

wifi (5.1)

where α is a bias term and wi are the feature weights in a vocabulary with
the size V . The feature values fi are the frequencies of the features in an
item. The predicted class Ĉ of a text then is determined by the step function

Ĉ =

{
1, s ≥ 0

0 s < 0
(5.2)

When generating the classifier, the weights are initialized in a given range,
here typically taken as [−1, 1]. A suitable performance measure (such as
accuracy or F1 score) is chosen for evaluating the classifier performance.
Each training item is classified (as described above) using the current feature
weights, and the feature errors are computed as

ei =
1

γi

N∑

j=1

vij(Ĉj − Cj), i = 1, ..., V (5.3)

where γi is the total number of instances of feature i in the training set, N is
the number of items in the training set, and vij is the number of instances of
the feature i in the training item j. The true class of the item j is denoted
by Cj and Ĉj is the inferred class. The weights are then updated

wi ← wi − ηei (5.4)

where η is a learning rate. The bias term is updated in a similar manner, but
with a simplified error computation; see Papers C and D for details. This
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weight update procedure is repeated over several epochs and the classifier
with the best performance (i.e., accuracy or F1 score) over the validation set
is selected as the final classifier.

This procedure for training a linear classifier resembles both gradient
descent in linear regression, and the perceptron algorithm. However, there
are also some differences: In linear regression, a squared weighted feature
sum is used to compute the error (i.e., mean squared error), whereas in
the method described above, the error is computed from the discrete class
assignment, and the impact of each feature is considered individually. In the
standard perceptron training algorithm, feature weights are updated after
each training item is classified, a step which involves shuffling the training
data at the beginning of each epoch in order to avoid bias towards a specific
permutation of the data set. The method described above (and in Papers C
and D) instead updates the feature weights once after the entire training set
has been classified.

Extension method in Paper D

A method for improving the classification by strongly extending the size of
the feature set was proposed in Paper D. The concept is similar to the idea
of pretraining, but the implementation is vastly different. In tasks where
the training set is relatively small, the feature set may not cover many of
the possible features in out-of-sample data (i.e., data outside of the training
set). In some cases, these features can be essential for predicting the class of
the text. In Paper D, it was found that when classifying text with a linear
classifier, text items with a larger coverage ratio (i.e., the number of all
covered features divided by the number of all potential features in a text)
were more often correctly classified. Therefore, it was hypothesizes that by
expanding the size of the feature set, as described below, the out-of-sample
performance of a linear classifier could be improved.

The approach uses the linear classification method described above, but
combines the weights from (i) the feature set of the original training set, and
(ii) the feature set of an extended training set. The feature set of the final
classifier is constructed in two steps: First, weights of the features that are
common in the two sets are averaged, and second, features that are not in
the original feature set (i), but exist in the extended set (ii), are kept with
their full weight; see also Paper D.

As the method relies on a large external training set, it is suitable mainly
in tasks where domain specific data can be collected, a task which can be
challenging in many cases. However, preliminary results show that applying
an extended feature set from one domain may also improve the classification
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Method Spoken or written Sentiment
Classical 0.834− 0.927 0.873− 0.912
Neural 0.931− 0.973 0.860− 0.965
Our classifier 0.953 0.925

Table 5.1: The performance of various classification methods measured as accuracy over
the test set in the two tasks, spoken or written text classification (Paper C), and sentiment
classification of movie reviews (Paper D). The results are summarized here by giving a
range of accuracies for the two categories (classical and neural) of methods against which
our (linear) classifier was compared. The results are presented in more detail in the cor-
responding papers.

of data from a different domain.

5.2 Observations

The linear classifier trained using the method described above displays a
competitive performance for the two tasks in Papers C and D. The results
are summarized in Table 5.1. In both cases, the classifier outperforms the
considered classical methods. Additionally, in both tasks, the classifier either
outperforms or is not far below the performance of neural methods: In Pa-
per C, the accuracy for the linear classifier is higher than that of a shallow
neural network, and is less than 0.02 below that of the DistilBERT model.
Similarly, in Paper D the accuracy of the linear classifier exceeds that of
some neural methods (e.g., MLP and LSTM) and is not far below that of
approaches relying on BERT or one of its variants. These results thus allow
us to answer RQ3 positively.

In connection with Paper D, several attempts were made to improve the
classifier. For example, the use of additional features, such as POS tags, was
explored. Additionally, an approach for detecting and adjusting the weight of
sentences that provide context (such as plot descriptions) rather than opin-
ions was explored. An additional multiplicative weight was introduced for
each sentence. For the context sentences this weight reduced their impact on
the classification. However, these different approaches either had no impact
on the output or displayed only a small improvement in the classification
of the reviews. Substantial improvements were only obtained when apply-
ing the feature set extension in Paper D: The initial accuracy of our linear
classifier was 0.8948, increasing to 0.9247 after applying the extension ap-
proach (described above in Section 5.1.3). These findings indicate a positive
answer to RQ4. By applying the method from Paper D, the coverage ratio
(i.e., the actual number of feature instances divided by the theoretical upper
limit; see Paper D) of a text item increases, as also seen for the sentence in
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Figure 5.2: A sentence that initially had a strong negative polarity of about -9.46, which
was adjusted to -6.92 after the feature set extension. This sentence had a strong contribu-
tion in the initial (negative) classification of the otherwise positive review. The full review,
with the exemplified sentence shown in bold, is as follows: “Hilarious film about divine
retribution. Camera work stinks (shot on digital video) and looks like early
MTV videos. Turn the other cheek by looking past the visual and concentrate on the
story. Laughs galore for those with a well-developed sense of irony.” The weights of the
other sentences were also adjusted such that the review was correctly classified as positive
after the extension method was applied.

Fig. 5.2.

The primary aim in Papers C and D was to provide an interpretable
approach for text classification with a competitive accuracy, rather than to
directly compete with the performance of DNN-based methods. The classi-
fiers introduced in Papers C and D are human-interpretable, such that the
exact impact of each n-gram feature on the classification output can be vi-
sualized. In Paper C, this is demonstrated with a tool for visualization (see
also Fig. 5.1). A different visualization was used in Paper D, exemplified in
Fig. 5.2.

Despite their interpretable nature, the impact of n-gram features can
sometimes be counterintuitive. As each feature in the feature set is associated
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with a weight, one might perhaps expect the weights of antonymous words
to have similar magnitudes. This is, however, not always the case, due to the
varying usage frequency of different words. In an ideal case, these weights
could be aligned such that replacing a word with its antonym in a simple
sentence would reverse the text sentiment, e.g., in the sentence this movie
was [great/terrible]. To some extent, this is what happens when extending
the feature set in Paper D. For example, before including the weights of the
extended feature set, the weights for the unigrams great and terrible were
around 1.49 and -2.24, respectively. After the extension was applied, the new
weights for these unigrams were updated to approximately 1.06 and -1.56,
respectively, which is slightly more balanced (though there still remains a
difference).

Additionally, some (unigram) features, such as those consisting only of
function words, should be associated with a small weight as they are often
mostly neutral. In the preprocessing step, the removal of neutral words (such
as stop words) was not applied, meaning that the feature set contained some
features that could be considered neutral. Instead, their weights were ad-
justed in the optimization. As one of the experiments done in connection
with Paper D, the features with weights close to 0 (i.e., nonpolar features)
were also removed. This, however, did not improve the classification. An-
other aspect to consider is the weight of unigram features that consist of
qualifiers (e.g., very, less, etc.) and negations (e.g., not, never, etc.). Instead
of associating them with a fixed weight, one could instead consider using
them as flexible features that modify the weight of the features related to
their surrounding context. For example, the weight sum of a text can be in-
creased or decreased with qualifiers (this was very good or it was a bit boring)
whereas negations should often completely invert the polarity of the text.



Chapter 6
Conclusion and future work

This chapter concludes the thesis by revisiting the research questions listed in
Section 1.1. Directions for future work, mainly concerning text classification,
are also considered below.

6.1 Conclusion

This thesis studies interpretable (glass-box) methods in two NLP tasks,
namely POS tagging and text classification. In regards to the performance
of POS taggers (RQ1), the findings in Papers A and B (also discussed in
Chapter 4) indicate that the accuracy of standard taggers drops consider-
ably when they are applied over more challenging data sets, such as the ones
introduced in Papers A and B (see also Section 3.1). For improving POS
tagging (RQ2), a rule-based corrective approach was considered (Paper B;
see also Chapter 4) that improved the POS tagger performance to some de-
gree. These findings, however, should be seen as a proof-of-concept rather
than a definitive answer to the research questions, as the size of the data sets
considered in Papers A and B is rather small.

Regarding the possibility of improving the performance of linear text
classifiers (RQ3), the results in Papers C and D (see also Chapter 5) show
that the performance of a linear text classifier can indeed be improved such
that the performance gap, relative to DNN-based methods, is narrowed. A
specific method for improving the classifier performance, where the feature
set of a text classifier was extended (RQ4), was implemented in Paper D (also
described in Chapter 5). The results of this method (Paper D and Chapter 5)
showed a considerable improvement in accuracy over a data set taken from
the same domain as the external training set (see also Section 3.1).

33



34 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Future work

The extension method in Paper D was applied in a case where a large ex-
tended data set from the same domain could be collected. As a next step,
the large data set can be further extended to include samples from multiple
domains. The method can then be evaluated over a broader set of examples,
involving, for instance, smaller data sets where a domain-specific extended
data set is difficult to generate.

Further improvements to the classification method can also be explored,
for example by evaluating various feature selection methods. Another ap-
proach for improving the classifier is to use a linguistic knowledge base in
the task. For example, token similarity scores can be collected from a neu-
ral network and mapped to a more interpretable representation, such as a
dictionary of similar tokens (involving either single words or sequences of
words, i.e., phrases). Such a dictionary of lexical items can then be used to
map synonymous tokens to their counterparts in cases where a token under
consideration is missing from the feature set.

Another potential research topic is to apply the methods described here
in applications that deal with high-stakes decision-making where an inter-
pretable approach is essential. In particular, the method for text classification
could be used in applications related to healthcare, for example, self-harm
prevention via analysis of clinical notes and patient summaries. Interpretable
text classification is likely to be useful also in applications involving education
and pedagogy. As an example, educators may (when desired and appropri-
ate) use various tools to detect text generated by an AI system in student
assignments, a task that is very challenging. Thus, being able to provide the
reasons for a classification may, in this case, be valuable from an educational
perspective.



Chapter 7
Summary of included papers

This thesis consists of four papers that explore the use of glass-box models in
two NLP tasks. The work in Paper A introduced an initial problem in POS
tagging, which motivated the extended work in Paper B, where a corrective
approach for POS tagging was considered. An interpretable text classification
method was introduced and applied in a classification task in Paper C. The
method was also used to classify text sentiment in Paper D, where the results
were further improved by expanding the coverage of potential features in the
classifier.

7.1 Paper A

In Paper A, a new data set was collected for the purpose of testing existing
POS taggers. Four standard POS taggers were used in the selection of the
data. The reported accuracy of the standard POS taggers is typically quite
high, around 0.97. When applied over the new test set, a considerable drop in
tagger performance was observed: The accuracy of the standard taggers was
found to be in the range 0.47−0.67. Furthermore, a DNN-based tagger which
was not used in the data selection process reached an accuracy of only around
0.87 over the same set, far below its reported performance. These results
indicate that there are still significant challenges regarding POS tagging.

7.2 Paper B

The work in Paper A was continued in Paper B, where new sentences were
generated and fully annotated, so that they were also suitable to use for
training POS taggers. Here, sentences with any ambiguities were discarded.
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The accuracy of the selected standard taggers over the new sentences was
around 0.48−0.84, and around 0.95 for the DNN-based tagger. An approach
for automatically generating a set of corrective rules was proposed and im-
plemented using the new data set. The rule-based approach for correcting
the output of any tagger showed improvements (albeit rather small) in the
accuracy and serves as a proof-of-concept of the proposed method.

7.3 Paper C

Classifying sentences as spoken transcripts or written text was considered
in Paper C. First, a large data set of labeled sentences was generated. The
classification task was carried out with a linear classifier, which was trained
with a novel method introduced in the paper. The accuracy obtained by
the classifier of around 0.95 is better than that obtained with other classical
methods and is also comparable to that of DNN-based methods. The results
indicate that the supposed trade-off between performance and interpretabil-
ity can be alleviated, or possibly even eliminated, by improving glass-box
methods. In connection with the paper, an tool was built and made pub-
licly available online to test the classifier and to visualize the features that
determine the class assignment for a given text.

7.4 Paper D

The classifier from Paper C was used in Paper D for sentiment classification
of movie reviews. The method was enhanced by extending the feature set
using a large additional data set in the same domain (movie reviews). The
approach showed substantial improvements in the classifier performance: Be-
fore applying the extension method, the linear classifier reached a test accu-
racy of 0.8948, and with the extension, the best test accuracy increased to
0.9247. The performance of the classifier is comparable to that of pretrained
DNNs, while maintaining full interpretability.
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