
!"#$%$ &’(!"#)#*(## ’& L%+#,!%-!# ’& E,*%,##(%,*

Spidering the Modern Web
Securing the Next Generation of Web Sites and Browser Extensions

E(%+ O.$$’,

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2025

Spidering the Modern Web

Securing the Next Generation of Web Sites and Browser Extensions

Eric Olsson

© Eric Olsson, 2025

ISSN 1652-876X

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden, 2025

ii

Spidering the Modern Web
Securing the Next Generation of Web Sites and Browser Extensions

Eric Olsson
Department of Computer Science and Engineering

Chalmers University of Technology

Abstract
Given the range of critical and sensitive services available on the Web,

securing the web applications and browser extensions in this ecosystem is
of paramount importance. However, this goal has not been achieved. Vul-
nerabilities in web applications remain undetected, and malicious browser
extensions are still available in curated app stores.

While black-box scanning is a promising method for detecting vulner-
abilities in diverse web applications, crawling these increasingly client-side
and stateful applications is challenging. To discover vulnerabilities in mod-
ern web applications, we develop two new scanning methods that take into
account these challenges.

We !rst propose a novel grey-box method, Spider-Scents, for detecting
stored XSS vulnerabilities that avoids these challenges by relaxing the prob-
lem to !nding unprotected outputs from the database. This method sup-
plements an otherwise black-box scanner with the ability to directly inject
payloads into the database. In our evaluation, we demonstrate that these
code smells are highly related to complete vulnerabilities while showcasing
the improved vulnerability detection and database coverage of our method.

We then propose a new black-box scanner, SpiderSapien, with the aim to
test deep states in modern web applications, by generating valid client-side
actions and form inputs that could unlock previously untested functionality.
In our evaluation, we show that SpiderSapien improves vulnerability detec-
tion and code coverage, while the LLM-powered method solves more diverse
forms.

Finally, we develop a framework to !nd fake reviews from the metadata
of extensions on the Chrome Web Store. We identify how reviews can be
faked, and propose !ve statistical methods to detect them. We demonstrate
how these methods !nd fake reviews, and show how this can be used to !nd
malicious extensions.

Keywords: Web application security, Web application scanning, Vulnerabil-
ity detection, Browser extensions.

iii

List of publications

This thesis is based on the following publications.
Papers A and C are published at peer-reviewed conferences, and Paper B

is a manuscript. In this thesis, the full version of each paper is presented.

Paper A “Spider-Scents: Grey-box Database-aware Web Scanning for
Stored XSS”
Eric Olsson, Benjamin Eriksson, Adam Doupé, and Andrei
Sabelfeld
33rd USENIX Security Symposium (USENIX Security), August 2024..

Paper B “SpiderSapien: Client-Centric Crawler and Security Scanner”
Eric Olsson, Benjamin Eriksson, Adam Doupé, and Andrei
Sabelfeld
Manuscript.

Paper C “FakeX: A Framework for Detecting Fake Reviews of Browser Ex-
tensions”
Eric Olsson, Benjamin Eriksson, Pablo Picazo-Sanchez, Lukas An-
dersson, and Andrei Sabelfeld
19th ACM ASIA Conference on Computer and Communications Se-
curity (ACM ASIACCS 2024).

v

Acknowledgments

My research has never been a solitary task. I am sure I would not be writ-
ing this thesis without the help and support I have received. First, I would
like to thank my supervisor Andrei Sabelfeld for all of our work together,
from !rst giving me a taste of interesting security problems in his course, to
all the papers and projects we have now worked on together. Mohammad
has also been a familiar presence throughout my time at Chalmers. While he
has now left for Stockholm, he somehow continues to lend a helping hand,
from !rst getting my Master’s thesis on track, to almost anything else (re-
ally!). Similarly, my co-supervisor Benjamin has been invaluable in assisting
me with both the broad and !ne details of our projects. My coauthors, espe-
cially Adam and Pablo, have also given me an invaluable perspective on the
larger !eld of security. This !eld only ever grows, and it seems like almost
anything can, and will, become relevant again. Thanks to all my other col-
leagues and classmates for all the discussions we’ve had and the work we’ve
done together. Finally, a big thanks to my family, and especially Anna, for
their support.

vii

Contents

Abstract iii

List of publications v

Acknowledgments vii

Overview

I Introduction 3
I.1 The modern Web . 3
I.2 Research e"orts . 4
I.3 Web applications . 5

I.3.1 Challenge . 5
I.3.2 Contributions . 6

I.4 Browser extensions . 8
I.4.1 Challenge . 8
I.4.2 Contributions . 9

II Statement of contributions 11

Bibliography 15

Web Applications

A Spider-Scents: Grey-box Database-aware Web Scanning for
Stored XSS 21
A.1 Introduction . 23
A.2 Terminology . 27
A.3 Roadblocks for current XSS scanners 28
A.4 Approach . 29

A.4.1 Overview . 30
A.4.2 Motivating Example 31
A.4.3 Preparing the web application 34
A.4.4 Choosing a database cell 36
A.4.5 Payload insertion . 37
A.4.6 Application breakage 38
A.4.7 Re#ection scanning 39

ix

Spidering the Modern Web

A.4.8 Manual analysis . 40
A.5 Evaluation . 40

A.5.1 Web applications . 40
A.5.2 Experimental setup 41
A.5.3 Comparison results 42

A.6 Analysis . 47
A.6.1 Database coverage 47
A.6.2 False positives . 48
A.6.3 What we miss . 49
A.6.4 What others miss . 50
A.6.5 Exploitability . 50
A.6.6 Drop-in testing with Spider-Scents 50
A.6.7 Manual analysis with Spider-Scents 50
A.6.8 Runtime performance of Spider-Scents 51
A.6.9 Coordinated disclosure 52
A.6.10 Summary . 52

A.7 Related Work . 52
A.7.1 Black-box scanners 52
A.7.2 White-box scanners 53
A.7.3 Grey-box scanners 54
A.7.4 Database-aware grey-box web scanning 55
A.7.5 Database synthesis 56

A.8 Conclusion . 56

B SpiderSapien: Client-Centric Crawler and Security Scanner 63
B.1 Introduction . 65
B.2 Challenges . 68
B.3 Method . 71

B.3.1 Motivating Example 71
B.3.2 Client-side Crawling 72
B.3.3 LLM-based Input Generation 75
B.3.4 Implementation . 78

B.4 Evaluation . 78
B.4.1 Web Application Crawl Evaluation Setup 78
B.4.2 Web Application Crawl Evaluation Results 80
B.4.3 Open Web Form Solving Evaluation 83

B.5 Analysis / Discussion . 86
B.5.1 Exploring Intended Code Paths 86
B.5.2 Destroying the State 87
B.5.3 False Negatives and Length of Scan 87

x

Contents

B.5.4 Coverage Metrics . 88
B.5.5 LLM Failed Form Solves 88
B.5.6 LLM Evaluation Limitations 89
B.5.7 LLM Models and Prompting Choices 90

B.6 Related Work . 90
B.7 Conclusion . 93
B.8 Ethics and Open Science . 94

B.8.1 Ethics Consideration 94
B.8.2 Open Science . 95

Browser Extensions

C FakeX: A Framework for Detecting Fake Reviews of Browser
Extensions 111
C.1 Introduction . 113
C.2 Fake Reviews on Chrome Web Store 116
C.3 FakeX: Framework . 119

C.3.1 Aggregated Time Window (ATW) 120
C.3.2 Horizontal Vertical Clustering: A Machine Learning

Approach . 121
C.3.3 Co-Reviewer . 122
C.3.4 Spam Detection . 124
C.3.5 Written Ratio . 124

C.4 Evaluation . 124
C.4.1 Aggregated Time Window 124
C.4.2 Horizontal Vertical Clustering 126
C.4.3 Co-Reviewer Analysis 127
C.4.4 Spam Detection . 129
C.4.5 Written Ratio . 130

C.5 Malicious Extensions . 132
C.5.1 Security Analysis . 132
C.5.2 Case-study of ATW clusters 133
C.5.3 New Tab Clusters . 134
C.5.4 Large Malicious Cluster 134
C.5.5 Expanding from Known Malicious Extensions 135

C.6 Discussion . 135
C.6.1 ATW and CoR . 135
C.6.2 Comparing ATW and HVC 136
C.6.3 Focus on metadata 137

C.7 Related Work . 138
C.8 Conclusion . 141

xi

Overview

I
Introduction

I.1 The modern Web

Much of the world relies on the Web to access sensitive services critical to
their daily lives. These can range from !ling taxes to voting, accessing !nan-
cial services, communicating with messengers, and many more. In fact these
Internet-accessible services are used by so many people that the Internet it-
self is seen as critical infrastructure, which entire nations depend upon [4].
While the utility of these services is obvious, the security of the ecosystem
providing these services is less apparent. In particular, the security of the
burgeoning Web ecosystem is more nuanced and sensitive to misbehaving
code, either vulnerable or malicious, in any of its various components. Our
research can be divided into securing two key aspects of the modern Web:
web applications and browser extensions.

The web applications that underpin this modern Web are not fundamen-
tally di"erent from those that existed a decade ago. Web applications for
these various services are still implemented in a dizzying variety of languages
and frameworks. These applications still need to be secured, in part by vul-
nerability scanners which can identify vulnerabilities for developers during
both their initial and continued development lifecycle. Key players in this
ecosystem still pay increasing million-dollar bounties, even for classic vul-
nerabilities such as XSS [11, 17]. Despite the relatively simple solutions for
these vulnerabilities, as web applications implement or extend their complex
business logic, there persists a substantial risk of developers inadvertently
including code escalating to a vulnerability. Furthermore, the greater diver-
sity of possible implementation choices, in decisions spanning languages and
frameworks both client- and server-side, has only made the task of vulner-
ability detection even more challenging. The prior challenges of handling

3

Spidering the Modern Web

increased client-side functionality [24] and statefulness [7], which distin-
guished an earlier version of the modern Web from its static predecessor,
also remain. While there is no unique challenge to scan the latest web appli-
cations for vulnerabilities, there is instead an increased scale of all these prior
client-side and stateful challenges.

Users can also install browser extensions to customize and extend their
browsing experience. These small applications, built with HTML and
JavaScript, can interact with and modify web pages, and are essential fea-
tures for millions of users across the world [3]. While privileged access is
necessary for crucial features of extensions, such as ad-blocking, the abil-
ity of extensions to observe, modify, and extract sensitive data from user’s
browsers has led to the proliferation of both vulnerable [10, 14, 31] and ma-
licious [9, 15, 23, 25, 30] browser extensions. This is somewhat mitigated by
the app stores o"ered by the various browser vendors, where they o"er only
extensions that are approved and validated to varying degrees. However, se-
curing extensions and their users even in these curated environments has
proved challenging [2]. Researchers and other security professionals contin-
ually uncover examples of both vulnerable and malicious browser extensions
in extension app stores, despite their extensive security and privacy policies,
and vetting through mechanisms such as code review [18].

I.2 Research e!orts

In this thesis, we focus on securing web applications and browser exten-
sions in the modern Web. To secure web applications, we develop vulnera-
bility scanners that crawl these applications to discover Cross-Site Scripting
(XSS) vulnerabilities. In the !rst paper [19], we investigate the relationship
of stored XSS vulnerabilities to more easily discovered code smells, by inte-
grating the database into a lightweight grey-box scanner. In the second pa-
per [20], we return to a true black-box setting and develop a scanner capable
of exploring more application functionality and its associated XSS vulner-
abilities, by improving the underlying crawler’s ability to interact with the
rich client-side interface in modern web applications. To secure browser ex-
tensions, we examine the Web Store platform, as it is the primary means of
distributing third-party extensions to users of the dominant Chrome browser.
In the third paper [21], we identify how fake reviews can be used to manip-
ulate the reputation of browser extensions on this platform, and further ex-
amine the relationship of clusters of extensions in fake review campaigns to
malicious extensions.

4

I. Introduction

I.3 Web applications

Discovering vulnerabilities in web applications has many similarities to the
core approaches to vulnerability detection in other settings. XSS detection,
as well as other detecting other injection vulnerabilities, can be seen as a
taint-tracking problem. A vulnerability detection approach needs to be able
to track this taint from attacker-controlled sources to vulnerable sinks in
the application. Di"erent approaches can achieve this by either dynami-
cally exercising the application’s run-time interface from a black-box per-
spective [8, 13, 20, 27], statically scanning the application’s code in a white-
box setting [5], driving a fuzzer with grey-box signals such as code cover-
age [12, 29], or combining two or more of these approaches for improved re-
sults. However, modernweb applications pose fundamental challenges for all
of these vulnerability detection approaches due to their dynamic work#ows
spanning multiple stateful client- and server-side components. Historically,
black-box web application scanners have bene!ted from their design when
compared to static methods, which need to both accurately model dynamic
languages and track work#ows across multiple component interfaces [26].
In contrast, dynamic analysis inherently aligns with the dynamic languages
of theWeb, and does not need to separately model and connect the interfaces
across application components. Therefore, commercial black-box vulnerabil-
ity scanners, such as Arachni [1], Burp [28], and ZAP [32], have entered the
work#ow of security professionals discovering vulnerabilities for tasks such
as penetration testing. However, the promise of black-box scanning for Web
vulnerabilities has been limited by the ability of these scanners to handle
modern, increasingly stateful and client-side web applications. An example
of a multi-step, stateful stored XSS unlikely to be discovered by prior scan-
ners is illustrated in Figure I.1.

I.3.1 Challenge

Black-box scanners are built with crawlers that iteratively explore an appli-
cation to discovermore of its functionality, which can then be tested for secu-
rity properties, such as XSS vulnerabilities. To be able to crawl an application
and discover its entire surface, crawlers will need to be able to interact with
the application, model its functionality, and prioritize di"erent interactions.
If any of these three core tasks is not su$ciently solved, a crawler will fail to
discover some additional application functionality, and miss all of its associ-
ated vulnerabilities. The diversity of choices made while developing appli-
cations for the modern Web makes all three of these crawling tasks harder.
These applications are implemented in myriad languages and frameworks at

5

Spidering the Modern Web

Register User

username

email

zip

biography

Server-side code

Database

nicename

approved

...

Admin User management

Approve?

safe(nicename)

Admin Site Usage

Logged in:

unsafe(nicename)

Approved

Submit

Figure I.1: State diagram of a stored XSS vulnerability. A user registers,
and their username is stored as nicename. An admin can then approve this
user. Finally, an admin will get XSS code execution from nicename when

approved users are displayed on a site usage panel.

both the client and server. A crawler that only identi!es elements by, for ex-
ample, the standard HTML types, will fail to discover all actions present on a
given page. Web applications are also increasingly stateful. These states are
presented both client- and server-side. A crawler needs to be able to model
this, in a black-box fashion that handles drastically di"erent applications.
Failing at this can lead to problems such as wasted time or in!nite scans, as
well as irreproducible vulnerability discovery. These application states also
need to be considered when prioritizing actions, the strategy for which again
needs to scale to multiple applications. Some actions only become possible
in certain states, and can disappear if an ‘incorrect’ action is selected which
leads to a necessary part of this state being removed.

I.3.2 Contributions

These challenges for black-box scanners result in the di$culty of discovering
the XSS vulnerability in Figure I.1. They can be addressed in at least the two
ways presented in this thesis, one speci!c to stored XSS, and another general
to vulnerability scanning.

In the !rst paper in this thesis [19], inspired by work in binary fuzzing,
we aim to improve the discovery of stored XSS vulnerabilities by relaxing the
requirement that a scanner must !nd the whole stored XSS. Detecting the
complete path from input source to output sink has inherent challenges to

6

I. Introduction

Source flow

Input username

Register user

Solve modification

Approve user

Insert into DB

Sink flow

<code execution>

Retrieve an approved user

Figure I.2: Source and sink #ows corresponding to Figure I.1. On the top
left, we see how a successful black-box scanner would model the steps in
the source #ow. Rather than discovering and connecting each of these

steps, Spider-Scents can use its grey-box access to the database to directly
inject a payload, and only have to observe its sink #ow execution.

both discover sources and connect them with sinks. Instead, by supplement-
ing an otherwise black-box scanner with the ability to access the database
to directly inject payloads, and crawling the application to discover the pay-
load’s re#ections, the scanner can avoid these challenges as illustrated in
Figure I.2. Thereby, the grey-box Spider-Scents scanner can discover unpro-
tected outputs where database content is included in HTML without proper
sanitization. These code smells are demonstrated to be highly related to com-
plete stored XSS vulnerabilities in our evaluation. Overall, we !nd 85 stored
XSS vulnerabilities across 7 web applications, a notable increase over other
compared black-box scanners.

In the second paper in this thesis [20], we return to the problem of general
black-box scanning, and aim to improve it without adding additional access,
or overly targeting our method to a particular implementation language or
framework. We develop a novel method for driving scanners to test deep
states in modern web applications, by focusing the scanner on generating
valid client-side actions and form inputs. This is driven by our intuition that
these actions and inputs can unlock hidden states, which contain previously
untested application functionality. Overall, the SpiderSapien crawler !nds
36 XSS in 6 web applications, vastly more than all other compared black-box
scanners, while also substantially improving the server-side code coverage of
the applications. Furthermore, we also evaluate the capabilities of the LLM-

7

Spidering the Modern Web

powered form solving component in isolation and show that this aspect of
the method also improves upon previous work.

I.4 Browser extensions

Browser extensions have become an essential feature in browsers, by en-
abling end-users to customize their browsing experience. While useful, even
for various security tasks, browser extensions can also bring additional risk
to the end-users that install these third-party code in their browsers. Besides
the original browser and web application server, the code included in these
extensions also becomes relevant to the security and privacy of a user brows-
ing a website. By design, these extensions can be highly privileged as they
need to perform sensitive actions for their core functionality. Therefore, from
early in their inception, the pressing need to analyze browser extensions
from a security perspective was recognized [16]. Prior research has found
numerous security-relevant browser extensions, including both vulnerable
and malicious examples [9, 10, 14, 15, 23, 25, 30, 31]. Vulnerable extensions,
while not including any overtly malicious functionality, nevertheless intro-
duce additional vulnerabilities for their users, possibly in particular combina-
tions including browsers, web applications, and even other extensions. These
can be exploited by malicious applications and extension developers for var-
ious goals. On the other hand, malicious extension developers directly take
advantage of the end users who are led to install the extensions they control.
In this thesis, we focus on these malicious extensions and the developers that
publish them.

Browser extensions are also similar to many other software distributed
today, in that they are primarily discovered and installed through app stores.
These are run by the various browser vendors. Extension app stores o"er
the promise of reducing the risk of vulnerable or malicious extensions, by
validating and vetting approved extensions to ensure their compliance with
regards to security and privacy policies. Furthermore, these app stores can
also o"er users assistance in selecting the best extensions for them, as these
platforms surface their most useful, popular, and overall well-liked examples
of browser extensions across categories.

I.4.1 Challenge

Browser extensions are similar to general web applications, but smaller in
their scale. Built with JavaScript, the analysis of these dynamic applications
to discover vulnerable or malicious code can be similar. Dynamic analy-

8

I. Introduction

sis [15, 30], static analysis [10, 14, 23, 31], and combined approaches [9] have
all been proposed. The small scale of these extensions can even make heav-
ier forms of analysis, such as information-#ow control [6], more suitable to
this domain than general web applications. However, even with this smaller
scale, these analyses can still fail to detect both vulnerable andmalicious code
in browser extensions. A further challenge is in the shift from discovering
vulnerabilities, to detecting malicious behaviour. Besides the general chal-
lenges of analyzing Web software, a security analyst must also contend with
malicious code that is both obfuscated against static analysis and evasive to
dynamic analysis [22]. Even from the powerful vantage point of a platform
extension reviewer, who might have additional information such as devel-
oper account details including insider information like source IPs, and more
detailed code submissions and version-tracking, this task has proven chal-
lenging by the numerous examples of published malicious extensions evad-
ing detection. Malicious code can be easily obscured by the bulk of benign
code present in an extension. Furthermore, benign extensions can be easily
copied and modi!ed to include malicious code.

I.4.2 Contributions

In the third paper in this thesis [21], we analyze the metadata of extensions,
to discover the relationship of fake reviews to clusters of extensions shar-
ing this activity. While the content of reviews can easily be faked or even
directly copied, in metadata the activity of less-than-honest actors is harder,
or at least more expensive to obscure. We !rst identify how reviews can be
faked, and propose !ve statistical methods that can detect these techniques.
Using these detectionmethods, we demonstrate how these methods !nd fake
reviews on theWeb Store. We also show that clusters of extensions with fake
reviews can be used to !nd malicious extensions.

9

II
Statement of contributions

Below we list the abstracts of the appended papers and outline the per-
sonal contributions for each.

A Spider-Scents: Grey-box Database-aware Web
Scanning for Stored XSS
Eric Olsson, Benjamin Eriksson, Adam Doupé, and Andrei Sabelfeld

As web applications play an ever more important role in society, so does
ensuring their security. A large threat to web application security is XSS
vulnerabilities, and in particular, stored XSS. Due to the complexity of web
applications and the di$culty of properly injecting XSS payloads into a web
application, many of these vulnerabilities still evade current state-of-the-art
scanners. We approach this problem from a new direction—by injecting XSS
payloads directly into the database we can completely bypass the di$culty
of injecting XSS payloads into a web application. We thus propose Spider-
Scents, a novel method for grey-box database-aware scanning for stored XSS,
that maps database values to the web application and automatically !nds un-
protected outputs. Spider-Scents reveals code smells that expose stored XSS
vulnerabilities. We evaluate our approach on a set of 12 web applications and
compare with three state-of-the-art black-box scanners. We demonstrate im-
provement of database coverage, ranging from 79% to 100% database cover-
age across the applications compared to the range of 2% to 60% for the other
scanners. We systematize the relationship between unprotected outputs, vul-
nerabilities, and exploits in the context of stored XSS. We manually analyze
unprotected outputs reported by Spider-Scents to determine their vulnerabil-

11

Spidering the Modern Web

ity and exploitability. In total, this method !nds 85 stored XSS vulnerabilities,
outperforming the union of state-of-the-art’s 32.

Statement of contributions. I was responsible for developing our method
beyond the initial idea of inserting payloads into a database and crawling for
their re#ection. This included database synthesis, reverting changes, choos-
ing cells, structuring payloads, and identifying breakage. I also implemented
this method in the published Python code, and designed and ran the majority
of the evaluation of this scanner.

Appeared in: Proceedings of the 33rd USENIX Security Symposium (USENIX
Security), August 2024.

B SpiderSapien: Client-Centric Crawler and Secu-
rity Scanner
Eric Olsson, Benjamin Eriksson, Adam Doupé, and Andrei Sabelfeld

Black-box web application crawling and scanning plays an important
role for security testing of web applications. Yet state-of-the-art scanners
fall short of addressing key characteristics of a modern web application: its
extreme dynamism and interactivity on the client side. This paper identi-
!es immersive interaction as a key ingredient for scanners to deeply explore
modern web applications. We propose SpiderSapien, a client-centric crawler
and security scanner. Driven by immersive interaction, SpiderSapien incor-
porates novel methods to detect interactable elements, order UI interactions,
and use LLMs to solve forms. In doing so, we demonstrate how to reliably
discover and test deep states of modern web applications. The evaluation
of our approach shows substantial improvements in both code coverage and
vulnerability detection over previous work, with an average increase in code
coverage of 21.5% compared to the union of the other scanners and a total
of 36 XSS vulnerabilities, across 6 of the 8 web applications, compared to
the 4 XSS others !nd. In addition, a separate empirical evaluation of Spider-
Sapien’s LLM-powered form solving capabilities on diverse real forms on the
open web demonstrates superiority over the previous approaches in gen-
erating desired input on the client side, solving at least 23.3% more of the
non-trivial forms compared.

Statement of contributions. I was responsible for developing and imple-
menting our LLM-based form solving method, and contributed to the client-

12

II. Statement of contributions

side crawling aspect. I also designed and ran the novel evaluation setup of
the form solving methods on the open Web.

Appeared in: Manuscript

C FakeX: A Framework for Detecting Fake Reviews
of Browser Extensions
Eric Olsson, Benjamin Eriksson, Pablo Picazo-Sanchez, Lukas Andersson,

and Andrei Sabelfeld

Browser extensions boost user experience on theweb. Similarly to smart-
phone app stores, browsers like Chrome distribute browser extensions via
their Web Store, enabling a thriving market of third-party developed exten-
sions. The Web Store incorporates a user review system to help users decide
which extensions to install. Unfortunately, the open nature of the review
system is subject to reputation manipulation. As browser vendors !ght rep-
utation manipulation, attackers employ more sophisticated methods to stay
under the radar. Focusing on fake reviews, we identify several techniques at-
tackers use: fake accounts, disjoint sets of fake accounts for di"erent exten-
sions, automation of generated reviews, and focusing on reviews rather than
ratings. We present FakeX, a framework to detect fake reviews by focusing
on inference from review metadata. FakeX employs !ve distinct methods,
including temporal distribution analysis, relationship clustering, and ratio-
based assessments, to unveil patterns indicative of fake reviews. Evaluation
of over 1.7 million reviews reveals the e"ectiveness of FakeX in identifying
hundreds of fake review campaigns. Furthermore, our investigation of these
fake reviews uncovers 86 malicious extensions, mounting attacks that range
from data-stealing to monetization, impacting over 64 million users. In ad-
dition, we collaborate with Adblock Plus and Avast to demonstrate FakeX
in action, expanding a seed list of newly detected malicious extensions to
discover a further 16 malicious extensions with millions of users, where, in
some cases, attackers tried to improve malicious code.

Statement of contributions. I was responsible for developing details of
the Horizontal Vertical Clustering (HVC) method, including tuning hyper-
parameters and selecting notable clusters. I also contributed to other data
analysis throughout this paper, and was responsible for the comparison of
the HVC to Aggregated Time Window (ATW) methods.

Appeared in: Proceedings of the 19th ACM Asia Conference on Computer and
Communications Security (ASIA CCS ’24), July 2024

13

Bibliography

[1] Arachni. https://www.arachni-scanner.com.

[2] D. Bán and B. Livshits. Extension vetting: Haven’t we solved this prob-
lem yet? In Proceedings of the 1st Workshop on Measurements, Attacks,
and Defenses for the Web (MADWeb), San Diego, CA, USA, Feb. 2019. In-
ternet Society. Co-located with NDSS 2019.

[3] Chrome Extensions Stats, 2023.

[4] CISA.gov. Critical infrastructure sectors. https://www.cisa.gov/top
ics/critical-infrastructure-security-and-resilience/criti
cal-infrastructure-sectors.

[5] J. Dahse and T. Holz. Static detection of second-order vulnerabilities
in web applications. In USENIX Security Symposium, pages 989–1003.
USENIX Association, 2014.

[6] M. Dhawan and V. Ganapathy. Analyzing information #ow in javascript-
based browser extensions. In ACSAC, pages 382–391. IEEE Computer
Society, 2009.

[7] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the state:
A state-aware black-box web vulnerability scanner. In USENIX Security
Symposium, pages 523–538. USENIX Association, 2012.

[8] B. Eriksson, G. Pellegrino, and A. Sabelfeld. Black widow: Blackbox data-
driven web scanning. In SP, pages 1125–1142. IEEE, 2021.

[9] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. Hardening the security
analysis of browser extensions. In SAC, pages 1694–1703. ACM, 2022.

[10] A. Fass, D. F. Somé, M. Backes, and B. Stock. Doublex: Statically detect-
ing vulnerable data #ows in browser extensions at scale. In CCS, pages
1789–1804. ACM, 2021.

[11] Google. https://security.googleblog.com/2023/02/vulnerabil
ity-reward-program-2022-year.html.

[12] E. Güler, S. Schumilo, M. Schloegel, N. Bars, P. Görz, X. Xu, C. Kay-
gusuz, and T. Holz. Atropos: E"ective fuzzing of web applications for

15

https://www.arachni-scanner.com
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors
https://security.googleblog.com/2023/02/vulnerability-reward-program-2022-year.html
https://security.googleblog.com/2023/02/vulnerability-reward-program-2022-year.html

Spidering the Modern Web

server-side vulnerabilities. In USENIX Security Symposium. USENIX As-
sociation, 2024.

[13] X. Guo, A. Kawlay, E. Liu, and D. Lie. Evocrawl: Exploring web appli-
cation code and state using evolutionary search. In NDSS. The Internet
Society, 2025.

[14] S. Hsu, M. Tran, and A. Fass. What is in the chrome web store? In
AsiaCCS. ACM, 2024.

[15] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, andV. Paxson.
Hulk: Eliciting malicious behavior in browser extensions. In USENIX
Security Symposium, pages 641–654. USENIX Association, 2014.

[16] M. T. Louw, J. S. Lim, and V. N. Venkatakrishnan. Enhancing web
browser security against malware extensions. J. Comput. Virol., 4(3):179–
195, 2008.

[17] Meta. https://about.fb.com/news/2022/12/metas-bug-bounty-
program-2022/.

[18] J. M. Moreno, N. Vallina-Rodriguez, and J. Tapiador. Did I vet you be-
fore? assessing the chrome web store vetting process through browser
extension similarity. CoRR, abs/2406.00374, 2024.

[19] E. Olsson, B. Eriksson, A. Doupé, and A. Sabelfeld. Spider-scents: Grey-
box database-aware web scanning for stored XSS. In USENIX Security
Symposium. USENIX Association, 2024.

[20] E. Olsson, B. Eriksson, A. Doupé, and A. Sabelfeld. Spidersapien: Client-
centric crawler and security scanner. Manuscript, 2025.

[21] E. Olsson, B. Eriksson, P. Picazo-Sanchez, L. Andersson, and
A. Sabelfeld. Fakex: A framework for detecting fake reviews of browser
extensions. In AsiaCCS. ACM, 2024.

[22] N. Pantelaios and A. Kapravelos. FV8: A forced execution javascript
engine for detecting evasive techniques. In USENIX Security Symposium.
USENIX Association, 2024.

[23] N. Pantelaios, N. Nikiforakis, and A. Kapravelos. You’ve changed: De-
tecting malicious browser extensions through their update deltas. In
CCS, pages 477–491. ACM, 2020.

16

https://about.fb.com/news/2022/12/metas-bug-bounty-program-2022/
https://about.fb.com/news/2022/12/metas-bug-bounty-program-2022/

Bibliography

[24] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow. jäk: Using dy-
namic analysis to crawl and test modern web applications. In RAID, vol-
ume 9404 of Lecture Notes in Computer Science, pages 295–316. Springer,
2015.

[25] P. Picazo-Sanchez, B. Eriksson, and A. Sabelfeld. No signal left to
chance: Driving browser extension analysis by download patterns. In
ACSAC, pages 896–910. ACM, 2022.

[26] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX: systematic dis-
covery of client-side validation vulnerabilities in rich web applications.
In NDSS. The Internet Society, 2010.

[27] A. Stafeev, T. Recktenwald, G. D. Stefano, S. Khodayari, and G. Pelle-
grino. Yurascanner: Leveraging llms for task-driven web app scanning.
In NDSS. The Internet Society, 2025.

[28] B. Suite. https://portswigger.net/burp.

[29] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna, C. Kruegel, R. Wang,
T. Bao, Y. Shoshitaishvili, and A. Doupé. Toss a fault to your witcher:
Applying grey-box coverage-guided mutational fuzzing to detect SQL
and command injection vulnerabilities. In SP, pages 2658–2675. IEEE,
2023.

[30] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini, W. K.
Robertson, and E. Kirda. Ex-ray: Detection of history-leaking browser
extensions. In ACSAC, pages 590–602. ACM, 2017.

[31] J. Yu, S. Li, J. Zhu, and Y. Cao. Coco: E$cient browser extension vulner-
ability detection via coverage-guided, concurrent abstract interpretation.
In CCS, pages 2441–2455. ACM, 2023.

[32] O. ZAP. https://www.zaproxy.org.

17

https://portswigger.net/burp
https://www.zaproxy.org

Web Applications

A
Spider-Scents: Grey-box Database-aware
Web Scanning for Stored XSS
Eric Olsson, Benjamin Eriksson, Adam Doupé, and Andrei Sabelfeld

33rd USENIX Security Symposium (USENIX Security), August 2024.

21

Abstract

As web applications play an ever more important role in society, so does
ensuring their security. A large threat to web application security is XSS
vulnerabilities, and in particular, stored XSS. Due to the complexity of web
applications and the difficulty of properly injecting XSS payloads into a web
application, many of these vulnerabilities still evade current state-of-the-art
scanners. We approach this problem from a new direction—by injecting XSS
payloads directly into the database we can completely bypass the difficulty of
injecting XSS payloads into a web application. We thus propose Spider-Scents,
a novel method for grey-box database-aware scanning for stored XSS, that maps
database values to the web application and automatically finds unprotected
outputs. Spider-Scents reveals code smells that expose stored XSS vulnerabili-
ties. We evaluate our approach on a set of 12 web applications and compare
with three state-of-the-art black-box scanners. We demonstrate improvement
of database coverage, ranging from 79% to 100% database coverage across the
applications compared to the range of 2% to 60% for the other scanners. We
systematize the relationship between unprotected outputs, vulnerabilities, and
exploits in the context of stored XSS. We manually analyze unprotected outputs
reported by Spider-Scents to determine their vulnerability and exploitability. In
total, this method finds 85 stored XSS vulnerabilities, outperforming the union
of state-of-the-art’s 32.

A.1 Introduction

The web is a key enabler for today’s ever-more digital world. Our society
increasingly relies on web applications to support the financial, governmental,
and military infrastructure. The dynamic functionality of web applications,
coupled with the myriad of implementation technologies, makes developing a
bug-free application challenging. Furthermore, these bugs can often manifest as
security vulnerabilities. The complexity of modern systems and ever-powerful
adversaries make securing web applications a grand challenge. Even the biggest
web players such as Google and Meta still release vulnerable applications
and services, which reflects in $12 and $2 million in bug bounties in 2022
respectively [15, 26].

Challenge of XSS. A particularly common class of web application secu-
rity vulnerability is Cross-Site Scripting (XSS) [28], allowing attackers to
inject JavaScript code into web pages. Astonishingly, XSS has persisted in the

OWASP Top 10’s list of most critical security risks to web applications for the
past 20 years [48]. This remarkable persistence is reflected in bug bounties,
with HackerOne reported paying over $4.7 million for XSS vulnerabilities in
2022 alone [17]. Securing web applications against XSS is difficult because
there is no single general solution that prevents all XSS vulnerabilities [20].
Indeed, XSS vulnerabilities are context-dependent [42, 44], requiring that the
correct output sanitization be used depending on the output context.

Stored XSS. Stored XSS, where the injection is stored and only later exe-
cuted [28], is particularly challenging due to the disconnect that storage brings
between the source flow, where the payload is input and stored, and the sink

flow, where the retrieved payload is executed. Current vulnerability detection
approaches [14, 32] have fundamental difficulties finding stored XSS.

Insufficiency of →-box approaches. The difficulty of securing a web ap-
plication against XSS motivates the development of vulnerability detection
tools [2, 7, 11, 33, 49, 54]. Web application vulnerability detection approaches
can be classified as white-box, black-box, or grey-box based on what informa-
tion is available (cf. Section A.4):

White-box approach: White-box approaches [12, 19, 22, 24] usually stati-
cally analyze source code artifacts. Such static analysis is necessarily specific
to the structure of the analyzed artifact, such as the server-side language or
framework. Unfortunately, white-box vulnerability detection is fundamentally
limited in its applicability to web applications because it is hard for white-
box static analysis to precisely model the combined interplay of increasingly
complex and dynamic client-side, database, and server-side behavior [43]. In
addition, white-box analyses depend on the availability of artifacts, further
limiting their usage.

Black-box approach: More advantageously from a usability perspective,
black-box vulnerability detection for web applications does not typically re-
quire access to source code and instead analyzes a running web application
from the perspective of a user. Black-box scanners have been developed with
various methods to better cover the increased attack surface of modern web
applications [8], such as modeling server-side state [7], tracking data flows and
fuzzing payloads [9, 10], modeling client-side state [25, 33], and combining
multiple approaches [11]. However, while coverage of the attack surface has
improved for some XSS, black-box scanners are often still unable to find even
simpler stored XSS [32].

Grey-box approach: A common solution [1, 14, 18, 49, 50] is to combine
black-box dynamic interactions of a running application, with white-box access.
How these two information sources are combined varies. Sometimes, artifacts

Spidering the Modern Web

24

Database

Code

Infrastructure

Backend

Reset

Frontend

Client Code Network

B

B
B

W

B*

W

Figure 1: Access to components involved in a web application that different

approaches need. Black-box approaches (B) have access to the front-end,

and sometimes (B*) need infrastructure access to perform resets in the

face of irreversible state changes. White-box approaches (W) have access

to both front- and back-end code. Our approach, shaded in grey, accesses

the front-end and database.

or non-standard interfaces only available with white-box access can be used to
guide the otherwise black-box scan of a web application [47] . More commonly,
a fully white-box static analysis of the application source code is combined with
a black-box scan for dynamic runtime information [1, 14]. Combining these
sources of information can mitigate some challenges inherent to otherwise
using one approach in isolation. However, this combination still has a white-box
component, from which its usability suffers.

While the previously described approaches constitute an exciting and active
area of research, we identify a key consideration in the design space of →-box
approaches. A core problem with finding stored XSS is that a black-box scanner

must find both the source and sink flows, and also understand the relationship

between the two, without any access to the web application’s source code.

Approach. Inspired by recent work in improving binary fuzzing [34], our
insight is to make stored XSS easier to find by relaxing the requirement that
the scanner must find the source of a stored XSS. To do so, we supplement an
otherwise black-box scanner with access to the database and allow the scanner
to inject payloads directly into the database while scanning the running web
application for sensitive sinks that output the inserted payload. This yields
the benefit that a scanner no longer needs to find both source and sink nor
understand their relation. The elegance of our approach is that it requires no
knowledge of the web application source, only the database. Figure 1 illustrates

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

25

the unique point our approach occupies in the design space of →-box approaches.
This unique position represents a paradigm shift from the domain of appli-

cation input to that of application state, represented in the database. Challenges
(presented in Section A.3) stemming from fundamental problems with *-box
approaches do not have to be solved by our method.

Based on these insights, we develop Spider-Scents, an approach to grey-box
database-aware web scanning for stored XSS. Spider-Scents injects payloads
directly into the database and reports where database content is used in the
HTML output without proper sanitization, flagging what we call unprotected

outputs. This does not mean that all reports are stored XSS vulnerabilities, as
the web application might be sanitizing the data on input. However, relying
on input sanitization is against best practices for XSS prevention, as it is
impossible to sanitize user input for every possible HTML output context.
Indeed, the OWASP guidelines [31] postulate: “Apply Input Validation (using
"allow list" approach) combined with Output Sanitizing+Escaping on user
input/output,” confirming that input validation alone is not enough. We term
this result a code smell, an indication that something is wrong deeper within
the application [13]. Even in the best case, where there is neither bug nor
vulnerability, the application is fragile. Any new functionality added, such as
creating a REST API, risks failing to properly sanitize user input. Therefore,
even the unprotected outputs that are not currently exploitable stored XSS
should be addressed by the web developer. Light manual analysis is required
to verify a complete stored XSS vulnerability (see Section A.6.7)

Non-vulnerable unprotected outputs constitute what we call a dormant

XSS—they would be vulnerable, except that the current web application does
not allow an exploit payload. The web application’s evolution risks elevating
a dormant XSS to a complete XSS vulnerability, even for security-wary appli-
cations. Our empirical study indeed confirms a dormant XSS vulnerability on
WordPress, elevated to a complete vulnerability by a real published plugin (see
Section A.4.2).

Evaluation. We evaluate our approach across 12 web applications and compare
our results with three state-of-the-art black-box scanners. The applications
range from reference applications used in prior work to latest versions of
modern applications. Our results show that we cover (measured as how much
of the database the scanner can change, described in Section A.5.2) between
79% to 100% across all applications. In comparison, the other scanners cover
2% to 60% on average. We also find vulnerabilities that the other scanners are
unable to detect. In total, we find 85 XSS vulnerabilities compared to 32 unique
XSS for the other scanners. To further classify the impact of our findings we
manually analyze the input protections and permission models of the Spider-

Spidering the Modern Web

26

Scents discovered vulnerabilities and determine that 59 are exploitable (and
not self-XSS).

Contributions. We offer the following contributions:
• We present a novel approach for finding stored XSS vulnerabilities by inject-

ing XSS payloads directly into the database, thus simplifying the detection
of stored XSS. We present this in Section A.4.

• We implement our approach into a prototype Spider-Scents, a semi-automated
grey-box database-aware stored XSS scanner.

• We evaluate Spider-Scents and three state-of-the-art black-box scanners on
12 web applications. We present the results in Section A.5 and analyze
these in Section A.6. Spider-Scents finds 85 XSS vulnerabilities across 7
applications.

• We systematize the relationship between unprotected outputs, stored XSS vul-

nerabilities, and exploits based on input protections and permissions models.
Following this systematization, we manually analyze unprotected outputs
reported by Spider-Scents to determine their vulnerability and exploitability.
We also present this in Section A.6.

• For the benefit of future research in this area, we share the source code of
Spider-Scents1.

Ethical considerations and coordinated disclosure. By actively scanning
only our local clones of web applications in a controlled environment, we
strictly avoid any harm caused by scanners on the web. We handle the discov-
ered security vulnerabilities in accordance with the best practices of ethics in
security [41]. We are in the process of reporting our findings to the affected
vendors, following coordinated vulnerability disclosure for all discovered vul-
nerabilities. We report responses from vendors in Section A.6.9.

A.2 Terminology

Here we attempt to systematize the terminology around XSS vulnerability
analysis. Spider-Scents finds places in the web application where database
content is used in the HTML output without proper sanitization. We term these
unprotected outputs—output sinks where the output is not protected sufficiently
against XSS. In contrast, there are also protected outputs: output sinks that are
properly sanitized against XSS.

1Our implementation is available online at https://www.cse.chalmers.se/research/
group/security/spider-scents/

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

27

We call a complete XSS vulnerability where user input flows to the unpro-
tected output. Furthermore, that input must itself be an unprotected input—an
input source lacking sufficient XSS protection. In contrast, there are also pro-

tected inputs: inputs protected with some combination of sanitization such as
validation, stripping, or escaping. An unprotected output can also fail to be a
complete XSS due to having no input.

If an unprotected input flows to an unprotected output, the web application
has an XSS vulnerability. However, an XSS vulnerability is not necessarily
exploitable, as this depends on the access control policy of the web application.
The core question is if the user (or role) that injects the XSS payload can get
the output on either another user or a role with greater permissions. We call
XSS vulnerabilities that are not exploitable self-XSS, which have significantly
less severity than exploitable XSS vulnerabilities.

A.3 Roadblocks for current XSS scanners

Automatically finding vulnerabilities in web applications remains a challenge
despite active research in improving vulnerability detection. Stored XSS is
especially difficult to find, as this type of vulnerability involves correctly in-
jecting input into the application, where it will be stored by the database, and
subsequently used in the web application’s output incorrectly sanitized.

Black-box approaches can explore entire web applications without access
or reliance on the underlying web application source code. It is possible for
black-box scanners to track an entire stored XSS vulnerability from initial
payload injection to vulnerable output. However, finding all such vulnerabilities
for a black-box scanner is difficult, due to several challenges inherent to stored
XSS that they must solve:
Vulnerable input validation. Web applications perform input validation (in
client-side JavaScript and also server-side code) to ensure that the input data
conforms to certain requirements. Web applications can check vulnerable
inputs for validation that the scanner must pass and also inject an XSS payload
into. As most black-box scanners use a pre-configured list of XSS payloads,
it is difficult for them to create a custom XSS payload that also bypasses the
vulnerable input validation.
Interdependent vulnerable input validation. Web applications validate all types
of inputs. Often, a web application requires the user to fill out a set of in-
puts together. Consider a user registration form that might require the desired
username, email address, zip code, and biography. All forms are required, the
server-side input validation requires that the username be unique, the email
address has a specific form, the zip code is five digits, and the biography has no

Spidering the Modern Web

28

validation and is vulnerable to stored XSS. Due to the interdependence of the
four inputs, to find the stored XSS a black-box scanner must be able to provide
a unique username (which is difficult for repeated injection attempts), correctly-
formatted email address and zip code. As the number of inputs interdependent
to vulnerable input increases, and as the input validation is application-specific,
it is more difficult for black-box scanners to generate the proper interdependent
input to inject stored XSS payloads.

Vulnerable input modification. Web applications can also escape or modify
user input. Consider a blog that accepts blog posts in markdown format that
is transformed to HTML before storing them in the database. Because the
black-box scanner has no knowledge of the server-side source code, it cannot
know about this modification. If a vulnerable input is modified before being
stored into the database, it is difficult for a scanner to create a custom XSS
payload that can survive the modification, and, therefore, it is difficult to detect.

Multi-step vulnerable input. Web applications are stateful applications that can
require a multi-step process before persisting user data. A classic example of
this is the multi-step stored XSS in WackoPicko [8], where commenting on a
picture requires first previewing the comment (which is output with sanitization)
and then approving the comment (where it is output without sanitization). To
our knowledge, the first black-box scanner that was able to automatically detect
this vulnerability was Black Widow [11], published 11 years after WackoPicko
was released. Therefore, vulnerable inputs that require multi-step interactions
are difficult for black-box scanners to detect.

Vulnerable input identification. The core of stored XSS is that the XSS payload
is stored in the database before being used as output. Even if a black-box
scanner can correctly inject an XSS payload, it must be able to find where that
input is output—otherwise, it will never detect the XSS.

A.4 Approach

Our goal is to overcome the challenges black-box scanners face (mentioned
in Section A.3) in detecting stored XSS vulnerabilities. Rather than take a
completely black-box approach, we use a novel grey-box approach that includes
knowledge of the database to help an otherwise black-box scanner find stored
XSS vulnerabilities. Our idea is that by injecting the XSS payload directly into
the database, and then scanning the web application for the payload’s output,
we can completely bypass several of the roadblocks black-box scanners face in
detecting stored XSS: vulnerable input validation, interdependent vulnerable
input validation, vulnerable input modification, and multi-step vulnerable input.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

29

Spider-Scents

Database

1

Database
Module

Breakage
Checker

Reflection
Scanner

Web
Application

2 3

4

5

Figure 2: Overview of Spider-Scents’ different components and their in-

teractions with both the database and web application.

‘Grey-box’. In web security, black-box has been synonymous with dynamic
testing, as white-box is to static analysis. With this view, grey-box can appear to
be defined as the combination of these two: dynamic testing and static analysis.
Recent papers [14, 49] in grey-box web testing have supplied two definitions:
the previous, based on method, or based on access or visibility to the application.
Our approach is grey-box only by the second definition: we do not use static
analysis, but we have access to the database.

Besides the application data contained, metadata such as table structure
and associated relations are also assumed to be available, through the same
database connection. In practical terms, SQL databases provide programmatic
access to such metadata in the INFORMATION_SCHEMA tables [30].

A.4.1 Overview

In contrast to existing state-of-the-art scanners, our database-aware method
requires a paradigm shift from application input to state. Instead of solving
problems associated with the input domain (such as crawling, modelling, or
payload selection), we address new challenges of preparing the application state,
selecting which part to modify, and analyzing its impact on the application.

Spider-Scents is our implementation of our novel grey-box scanning ap-
proach. Figure 2 shows a diagram of our approach. First 1 , we prepare the web
application for scanning. Next 2 , we choose a database cell to modify, and
3 insert an XSS payload into the cell. We then validate 4 that the modified

database did not break the application. Finally 5 , we crawl the web application
looking for reflections of the injected payload. This approach iterates as long
as there remain untested database cells to modify.

Spidering the Modern Web

30

Reports

Due to Spider-Scents injecting XSS payloads directly into the database, what
it reports is not XSS vulnerabilities, but rather unprotected outputs (defined
in Section A.2). Therefore, the final step is to manually analyze the results
of Spider-Scents. As our evaluation in Section A.5 shows, many unprotected
outputs are also XSS vulnerabilities—Spider-Scents finds 133 unprotected
outputs in evaluated applications and 85 XSS vulnerabilities.

An interesting side-effect of finding so many vulnerabilities with Spider-
Scents is that we realized that the impact of the discovered XSS vulnerabilities
is critically important to contextualize the results. Specifically, we found that
some of the XSS vulnerabilities were self-XSS, defined in Section A.2 wherein
the privilege required to store the XSS payload is the same as the user that
views it. Of the 85 XSS vulnerabilities found by Spider-Scents, 26 are self-XSS
while 59 are fully-exploitable.

A.4.2 Motivating Examples

Spider-Scents’ database-aware scanning is particularly well suited to finding
stored XSS vulnerabilities due to circumventing common challenges for black-
box scanners. Here, we present examples of the types of issues that Spider-
Scents is better at finding than previous work:

1. Fully-exploitable stored XSS that other scanners do not find.

2. Dormant vulnerabilities that become exploitable.

3. Self-XSS that other scanners do not find.

Fully-exploitable stored XSS. Even though they are capable of finding a
fully-exploitable stored XSS vulnerability, other scanners often fail due to
their inability to extensively explore the input surface of the web application,
including satisfying vulnerable input and interdependent input validation. In
Section A.5, we further analyze the precise reasons why other scanners miss
fully-exploitable stored XSS that Spider-Scents finds.

In addition, beyond needing a full XSS from input to output, the XSS
vulnerability also must be exploitable. Determining the exploitability of an
XSS currently requires manual analysis, as the exploitability of a vulnerability
depends on application context such as the levels of user permissions within
the application. Other presentations of scanners have generally not provided
such analysis of their XSS results.

An example of a fully-exploitable stored XSS that other scanners fail to
find is in the CMS Made Simple bookmarks functionality, which is shown in

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

31

echo "<td><a href=\"editbookmark.php".$urlext."&bookmark_id=".
$onemark ->bookmark_id."\">".$onemark ->title."</td>\n";

echo "<td>".$onemark ->url."</td>\n";
echo "<td><a href=\"editbookmark.php".$urlext."&bookmark_id=".

$onemark ->bookmark_id."\">";
echo $themeObject ->DisplayImage(’icons/system/edit.gif’, lang(’edit’),

’’,’’,’systemicon’);
echo "</td>\n";
echo "<td><a href=\"deletebookmark.php".$urlext."&bookmark_id=".

$onemark ->bookmark_id."\" onclick=\"return confirm(’".
cms_html_entity_decode(lang(’deleteconfirm’, $onemark ->title))."
’);\">";

echo $themeObject ->DisplayImage(’icons/system/delete.gif’, lang(’
delete’),’’,’’,’systemicon’);

echo "</td>\n";

Figure 3: CMS Made Simple bookmarks functionality. A bookmark con-

tains a title and a URL. Both the title and URL are correctly escaped in

their respective first two cells in this snippet from CMSMS code, but the

title is not protected in its inclusion in the delete button.

Figure 3. In this case, it is harder to find the input form, but easy to find the
output from the database. Armed with this vulnerability, a user can perform
XSS on an admin of CMSMS. Spider-Scents reports this as an unprotected
output, and we manually confirm its exploitability.

Dormant XSS. Spider-Scents reports what it finds as unprotected outputs
rather than stored XSS vulnerabilities, as it only finds the second half of a
complete XSS workflow in unprotected outputs. Unprotected outputs do not
always have an unprotected input flowing to them. However, we believe there
is significant value in reporting unprotected outputs because they are a code

smell—the web application has not followed the best practice of “always escape
late” emphasized by both WordPress and WordPress VIP [51, 52]. While not
a bug or vulnerability, an unprotected output is something that a developer
should look at and fix.

In fact, we believe that an unprotected output in isolation can be considered
a dormant XSS—it would be vulnerable, except that the current inputs for
the web application do not allow an exploit payload due to either escaping,
stripping, validation, no input possible, or some combination of these. The web
application’s evolution, either through future development or integration with
other code (plugins, for example), can elevate a dormant XSS to a full XSS.

For example, Spider-Scents found that WordPress has unprotected output
of both display_name and user_nicename from the users table. In the base
WordPress application, there are no unprotected inputs to these columns—in

Spidering the Modern Web

32

$qnn = $wpdb ->prepare("UPDATE $wpdb ->users SET user_nicename = %s
WHERE user_login = %s AND user_nicename = %s", $new_username ,
$new_username , $old_username);

$wpdb ->query($qnn);

$qdn = $wpdb ->prepare("UPDATE $wpdb ->users SET display_name = %s
WHERE user_login = %s AND display_name = %s", $new_username ,
$new_username , $old_username);

$wpdb ->query($qdn);

Figure 4: Username-Changer WordPress plugin vulnerable code:

display_name and user_nicename are not sanitized.

fact, these are not modifiable after the creation of a user. However, both are
exposed in a vulnerable version of the username-changer plugin [5] (code
shown in Listing 4), and, therefore, when this vulnerable plugin is installed this
unprotected output becomes a fully-exploitable XSS. 2 If WordPress followed
their own best practices of “always escape late”, this dormant XSS would not
be possible (and Spider-Scents would not report it as an unprotected output).

It is also possible that some inputs to the database are kept constant. For
example, in Hostel Management System, an application we evaluate in Sec-
tion A.5, a list of US states is hard-coded in the database. Spider-Scents finds
unprotected outputs in this list. While not directly exploitable, these unpro-
tected outputs could become a problem through extension of code, either in
future versions of the application or with plugins. In our manual analysis, we
quantify how many reports fall into this category and present them in the NI

column in Table 2.

Self-XSS. Finally, an XSS vulnerability is not necessarily exploitable. An
XSS can be unexploitable due to user permissions, such that the admin can
only perform an XSS on themself. This self-XSS is the counterpoint to fully-
exploitable XSS. An example of this is templates in MyBB. A template for the
calendar functionality in this application can be modified to include executable
JavaScript. However, only an admin user has the necessary permissions to add
or modify this template. Spider-Scents finds this vulnerability, and we manually
confirm that it is a self-XSS.

2Vulnerable version of WordPress username-changer plugin https://github.com/
evertiro/Username-Changer/blob/dd1976b05213d9895886da7f9a91515c52188344/
includes/functions.php#L84

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

33

Algorithm 1 Synthesizing data in the database.
rows ↑ 3
i ↑ 1
while i ↓ rows do

row ↑ []
j ↑ 0
while j ↓ columns do

append(row, increment(i))
j ↑ j+1

end while

insert(row)
error ↑ breakage()
if error then

delete(row)
end if

i ↑ i+1
end while

A.4.3 Preparing the web application

The initial step in our approach is to prepare the web application’s database for
scanning, as shown in step 1↔ in Figure 2.

Database synthesis

Ideally, our method should scan an application with a full database. Steinhauser
and Tůma note the importance of this as well [47]. However, they do not attempt
to solve this and instead rely on somewhat complete configurations provided by
the applications themselves, or other publicly-available manually-assembled
data. For an e-commerce website, this means that the database already contains
products, customers, and other data. To be able to discover an XSS-vulnerable
workflow that spans multiple tables, data must exist in each table.

To address cases where data is lacking, more specifically empty database
tables, we insert a constant number of rows of benign data matching the schema
of the empty tables. We perform this simple algorithm shown in Section A.4.3
on each empty table in the database.

columns is the number of columns in the schema for the empty table and
increment(i) modifies a base value by the increment i. For example, integers
have a base value of 0, dates have ‘1970-01-01 00:00:00’, and strings have
a. By modifying a constant value, we ensure that there are records correlated

Spidering the Modern Web

34

between tables by these deterministic values, to satisfy constraints common in
web applications using normalized databases. We always insert 3 initial rows
due to different auto-increments in the applications’ database setups—we have
observed empirically that these often start at 1, but not always.

While this naive solution is implemented and works well for our evaluation,
the more general case of database synthesis is orthogonal to this work. Related
work in this specific direction can be found in Section A.7.5.

Reverting changes

We also periodically revert modifications done by Spider-Scents to the database,
the rules for which are described in Appendix A.1.1. This is to add indepen-
dence between our payload insertions, and also reduces our reliance on detect-
ing application breakage, if we automatically revert based on other rules. Some
rules we implement enforce independence across boundaries in the database;
such as tables and columns.

To revert a database edit, from newData to oldData, perform:
error ↑ updateRow(oldData)
if error then

removeRow(newData)
insertRow(oldData)

end if

removeRow and updateRow can identify a row based on either keys or values.
It is necessary to handle reverting changes in Spider-Scents, as built-in database
functionality such as transactions cannot be open-ended, which is necessary
to allow the simultaneous manipulation of both Spider-Scents and the web
application backend of the database.

Reverting changes also happens when breakage is detected, conditions for
which are covered in Section A.4.6.

Logging in

Finally, we also must make sure that the web application itself is in a proper
state to be scanned. Among other things, this means making sure that Spider-
Scents is logged in. We automatically grab relevant details such as cookies,
user agent, and the user URL (dashboard) at the start of each scan. Spider-
Scents uses Selenium to interact with a headless Chrome instance with a
custom extension to record this information, after having been supplied with
the necessary credentials (username, password, and login page). These client
details, which web applications often use to identify users, are then re-used
throughout the rest of the scan.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

35

Algorithm 2 Discovering sensitive rows.
i ↑ 1
while i ↓ rows do

row ↑ retrieve(i)
error ↑ delete(i)
if error then

sensitive(row)
end if

crawl()
error ↑ insert(row)
if error then

sensitive(row)
end if

i ↑ i+1
end while

A.4.4 Choosing a database cell

For each cell in the database, Spider-Scents checks if the cell is suitable for our
XSS payload. We ensure that the schema for the cell’s column specifies that it
is a text field with a length that can accommodate our payload, described in
Section A.4.5.

Avoiding sensitive rows

We also must consider if the web application is particularly sensitive to chang-
ing a specific cell’s value. If the application tries to revert an injected database
value, reset a table or row, or even insert a conflicting row, various problems
can occur. This can either be due to the web application not having a robust
recovery method that can handle Spider-Scents’s admittedly unexpected med-
dling in their database tables, or due to Spider-Scents losing track of the state
the database is in. In either case, we avoid such sensitive cells by first probing
the database for their existence.

For each table in the database, we discover sensitive rows as shown in
Algorithm 2, where rows is the number of rows in the table, retrieve(i) and
delete(i) perform appropriate actions on the i

th row in the table, insert(row)
inserts the row into the table, sensitive(row) marks that this row in the table
is sensitive to changes, and crawl() crawls the application to induce reverts,
conflicts, or resets in the database.

Spidering the Modern Web

36

Choosing a cell

How a table in a database is used by an application also matters, and, unfortu-
nately, this usage is not always fully specified in the database schema.

If a table has uniform types of rows, then it might be sufficient to modify
cells in a single row. However, this assumption only holds if, for instance, the
access control policies of the application specify that all users can see the data
in all rows.

This also assumes that each entry in the table is handled identically by the
web application code, which might not be a correct assumption. Indeed, not
all tables have only such uniformly typed entries; a counterpoint is tables that
store key-value data, where the interpretation of a value cell depends on a key
cell identifying it. Given the existence of such key-value tables and the fact
that reflection code for entries can change based on the contents of a particular
entry, we must iterate across all rows in a table.

In addition, the order of cell changes does impact which XSS-vulnerable
workflows are discovered. We implement different traversal orders, primarily
based on iterating tables in alphabetical order. From there, the scanner either
chooses cells (that satisfy payload requirements and are not sensitive) based on
the iteration of rows or columns.

A.4.5 Payload insertion

In contrast to traditional black-box approaches, Spider-Scents does not interact
with the web application in an attempt to insert data from user input to a
particular database cell. Instead, Spider-Scents inserts the payload directly into
a database cell (step 3↔).

Once a suitable cell has been found, Spider-Scents generates a unique ID
to use for the payload. The payload we use is inspired by payloads used in
prior work [11]. This structure helps reduce false positives with dynamic XSS
detection. We use the following template, where ID is replaced with a unique
generated ID:
"’><script>xss(ID)</script>

While other payloads, such as a general-purpose img payload, can be more
or less suitable depending on the context of the reflection, we consider the
problem of creating smaller or context-specific XSS payloads to be orthogonal
to this work. Using this payload can lead to false negatives, for example, if the
reflection happens in a textarea or title tag.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

37

Structured data

This is with the caveat that we do consider the presence of structured data in a
cell. Spider-Scents’ iterative modification of database cells, and searching for
these individual reflections in the web page, has the implicit assumption that
it is individual data stored in database cells in a one-to-one correspondence
from web input to database cell. This might not be true—data might be split up
into multiple cells or combined within a single cell. A payload would need to
be either split across cells in the first case or multiple payloads combined in
the second. Correlating changes across cells is considered out of scope for this
work.

However, when data is combined within a single cell, we consider this as
structured data. Spider-Scents modifies payloads to fit some common types
of structured data. If a known structure is detected by parsing cell data, the
payload will be delivered to each valid location for it. Currently, Spider-Scents
implements a customized payload for PHP serialized objects and image paths.
The support for these formats is chosen to demonstrate this approach and can
lead to false negatives due to not handling more widely-used structured data
formats, such as JSON.

A.4.6 Application breakage

After inserting a payload, the changing database values can have catastrophic
effects on the web application’s functionality, which we call breakage.

While breakage can happen when using an application through its standard
functionality, it is even more likely when Spider-Scents directly modifies the
database and possibly inserts values that the application has not defensively
coded against.

From a black-box scanner’s perspective, such internal application-specification
breaking changes are not available. However, similar behavior, when reachable
on standard interfaces, is regarded as irrecoverable state changes [7]. While
it may be intended functionality, such an irrecoverable state change overlaps
with our notion of application breakage.

Guarding against breakage is inherently a tradeoff. On the one hand, chang-
ing the website’s domain to an XSS payload in a CMS such as WordPress will
rewrite all links, including admin ones, making the application unusable. On
the other hand, new vulnerable behavior of the application might have been
discovered instead.

Entirely black-box approaches will not be able to recover from such a
breaking, irrecoverable state change. Some scanners add infrastructure access
(shown in Figure 1) to be able to reset the application when this happens [7,10].

Spidering the Modern Web

38

Algorithm 3 Determining breakage.
i ↑ 1
broken ↑ 0
while i ↓ length(urls) do

current ↑ request(urls[i])
broken_url ↑ request(urls[i])
if broken_url then

broken ↑ broken+1
end if

i ↑ i+1
end while

if broken/length(urls)↗ threshold then return broken

end if

With our position in the database, while we are more prone to cause breakage,
we can also identify and fix it, without any additional access to the application.

Therefore, as noted by step 4↔ in Figure 2, Spider-Scents will dynamically
scan the application looking for signs of breakage. If any are found we can
reset the exact cell we changed that caused the breakage, even in the case when
the web application is unusable.

Web application breakage across a web application is inferred by Algo-
rithm 3, where urls is a list of URLs for distinct web pages in the application,
compare(baseline,current) compares the current status of a web page to a
baseline measurement, and threshold is a threshold specified for how many
pages can be acceptably broken in a web application.

compare(baseline,current) can be implemented to compare measurements
of a web page response based on HTTP status codes, linked content, length, or
other heuristics. The approach we take is a combination of status codes and
linked content.

A.4.7 Reflection scanning

Finally, we dynamically exercise the application with a reflection scanner (step
5↔). This scanner will crawl the application and report back on all the IDs that

it finds. Here we differentiate between reflected JavaScript payloads that are
executed, i.e. unescaped, and cases where we find the IDs in text. We do not
try to find mangled or encoded payloads.

Spider-Scents uses Black Widow [11], the source code of which is avail-
able3, with minor modifications to facilitate communication between modules,

3https://github.com/SecuringWeb/BlackWidow

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

39

as its reflection scanner.

A.4.8 Manual analysis

From the Spider-Scents reports we manually analyze the unprotected outputs
to determine if the payloads could be added from the web application. Once
an input element is found we supply valid data and ensure the database is
updated accordingly. Next, we add our payload and record if it is (1) rejected
due to validation, (2) escaped, or (3) sanitized. We then repeat this for all inputs
relating to the column.

A.5 Evaluation

We evaluate our approach by analyzing 12 different web applications and report
on the number of stored XSS vulnerabilities found.

We compare Spider-Scents with a combination of up-to-date academic and
open-source scanners that find stored XSS in Arachni [2], Black Widow [11],
and OWASP ZAP [54].

A.5.1 Web applications

Similar to previous works [7, 11, 33, 49] we test both old applications and
new modern ones. We divide the target applications into two sets. The five
reference applications (that have known CVEs) and are used in prior work
are: SCARF [45], Hospital Management System [35], User Registration &
Login and User Management System [36], Doctor Appointment Management
System [37], and Hostel Management System [38].

For modern, complex, applications we use these seven: CMS Made Sim-
ple [46], Joomla [21], MyBB [27], OpenCart [29], Piwigo [39], PrestaShop [40],
and WordPress [53], Statistics that describe the applications chosen, their ver-
sion numbers, and their usage in evaluation by prior work is provided in the
Appendix Table 4.

Applications are largely chosen based on those evaluated by the authors of
jäk [33], Black Widow [11], and Witcher [49]4, as these represent the current
state-of-the-art in academic black-box web scanners. We restrict the evaluation
to those that are database-backed.

4Witcher only supports detecting SQL Injection and Command Injection, therefore we do
not compare against it.

Spidering the Modern Web

40

Note that while we have selected applications based on the prior crite-
ria, we choose the latest version of each application. Therefore, the unique
vulnerabilities found by Spider-Scents are also new.

A.5.2 Experimental setup

In this section, we present the experimental setup used for the evaluation of
Spider-Scents and comparison with other scanners.

Performance metrics

We focus our evaluation on three metrics: database coverage, vulnerabilities,
and exploitability.

Database coverage. To successfully execute a stored XSS payload the scanner
must first write the payload to the database 5. By comparing a snapshot of the
database before and after each scan we can approximately measure what effect
each scanner has on the database.

These snapshots allow us to more precisely determine where the scanner
fails in storing a payload, and where Spider-Scents can benefit from directly
adding the payload to the database. In addition, we also classify the changes as
either benign or XSS payloads. If an XSS payload is added, we investigate if
the scanner can find it.

Vulnerabilities. To evaluate our method’s capability to find vulnerabilities we
also record the number of vulnerabilities reported by each scanner.

There is no clear method, neither in literature nor suggested by the scanners’
implementations, of how to differentiate between two different XSS vulner-
abilities. This means that for a given web application functionality, different
scanners can generate different amounts of reported XSS vulnerabilities. For
example, a vulnerable search bar included on every URL could generate a
reported XSS vulnerability for each URL. To level the playing field and allow
for a fair comparison we manually inspect each vulnerability and cluster them
based on their related functionality. This clustering is justified as an applica-
tion of root cause analysis, a process already well-established and valued in
software bug reports [16].

Furthermore, we only compare stored XSS results from other scanners.
Reports from compared scanners are manually confirmed to either be stored
XSS or non-stored XSS (reflected or DOM). During evaluation, Arachni finds

5Assuming the payload is stored in the database; see Section A.6.3 for an example of a
stored XSS in the filesystem.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

41

4, Black Widow finds 2, and ZAP finds 4 6 non-stored XSS. Our method is
unable to find these, as it is specific to stored XSS.

Exploitability. Scanners search for XSS vulnerabilities by injecting data with
XSS payloads into the application. Afterwards, they search for this data, either
statically, or dynamically. However, due to permissions, this does not guarantee
that an attacker can abuse the discovered XSS. For example, if only the super
user can inject the payload, the vulnerability is not exploitable.

As modern applications can have complex user and group permissions
with different associated application views, it is difficult for a scanner to auto-
matically reason about the exploitability of these possible injections. In this
paper, we manually verify and report on the exploitability of each reported
vulnerability. We divide this step into two parts, i) input protections and ii)
permissions.

For input protection, we ensure that it is possible to add the XSS payload
from the application to the database. If it is not possible (protected), we further
categorize the input protection for the reported vulnerability.

No Input, when there is no usable input field allowing for writing to the
database. For example, input fields that are only available during installation or
constants, such as US states.

Escaping, when the application changes the user input, to prevent it from
being interpreted in some context, before adding it to the database. E.g. trans-
forming < to < makes the symbol safe to be included in HTML context.

Stripping, when some data is removed (“stripped”) from the input. E.g.
removing <script> from the user input.

Validation, when the application refuses to add the user input to the database
if it does not satisfy some format, such as containing illegal characters.

For permissions, we consider the vulnerability exploitable if a less privi-
leged user can add a payload that is executed on a page that a user with more
privileges can access. For example, if a normal user can book an appointment
whose XSS payload is executed in the admin dashboard, then we would con-
sider this exploitable. However, if only the admin could add the payload to
such an appointment then it would be equivalent to self-XSS.

6In general, non-stored-XSS found by scanners is the difference between columns R and
S in Table 1. However, due to the false positive reports by ZAP in the Hospital Management
System (see Section A.6.2), ZAP only finds 4 non-stored-XSS in the Doctor Apt. and Hostel
applications.

Spidering the Modern Web

42

Scanner configuration

We configure other scanners to make as fair a comparison as possible. While
we focus on stored XSS, web scanners can scan for a plethora of other vulnera-
bilities, including SQL injection, command injection, and local file inclusion.

For this evaluation, we configure each scanner to only focus on finding XSS
vulnerabilities. Furthermore, to allow scanners a better chance to authenticate
and stay authenticated, we make slight modifications to the web application.
First, we ensure the index page has a link to the admin login. Secondly, we
rewrite the POST parameters server-side to match the correct user. This will
level the playing field, as scanners prefer different authentication methods.
Other scanners are configured to limit their runtime to 8 hours, similar to prior
work [11, 49]

Configuration of parameters specific to Spider-Scents can be found in
Appendix A.1.1.

A.5.3 Comparison results

In addition to the most direct comparison statistic—vulnerabilities found—
we also collect a new statistic for this problem: database coverage. This is
motivated by the different approach taken by Spider-Scents.

Database coverage. Modifying data in the database is required to detect
stored XSS in database-backed applications. As such, we record the number of
unique columns in the database each scanner modifies. In the case where an
entire row is added, we give the scanner credit for all columns in the table. In
our analysis in Section A.6.4, we look more closely at the data inserted by the
scanners.

In Appendix Table 5, we present the database coverage of each scanner
and compare them to Spider-Scents. We further visualize this in Figure 5. As
is evident, Spider-Scents can affect a much greater portion of the database
compared to the other scanners. We cover between 79% to 100% while the
other scanners cover between 2% and 60% on average. This shows that black-
box scanners are still limited in how much they can affect the database, and
subsequently, how well they can detect stored XSS.

There are cases where other scanners affect columns that Spider-Scents
does not modify: For example, on CMSMS, both Arachni and ZAP affect
columns that Spider-Scents does not. In this particular case, it is the
cms_adminlog.username and the cms_users.username columns. Both these
have a max length of 25 while our payload is 30 characters. We discuss these
cases in more detail in Section A.6.1.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

43

U
se

rL
og

in
ZA

P
O

pe
nC

ar
t

Ar
ac

hn
i

O
pe

nC
ar

t
ZA

P

Jo
om

la
ZA

P
Jo

om
la

Ar
ac

hn
i

O
pe

nC
ar

t
BW

Jo
om

la
BW

Pr
es

ta
Sh

op
ZA

P
M

yB
B

Ar
ac

hn
i

D
oc

to
rA

pt
.

BW

C
M

SM
S

Ar
ac

hn
i

Pr
es

ta
Sh

op
BW

Pr
es

ta
Sh

op
Ar

ac
hn

i

C
M

SM
S

ZA
P

M
yB

B
ZA

P

C
M

SM
S

BW
D

oc
to

rA
pt

.
ZA

P

W
or

dP
re

ss
Ar

ac
hn

i
SC

A
R

F
Ar

ac
hn

i
Pi

w
ig

o
BW

Pi
w

ig
o

Ar
ac

hn
i

SC
A

R
F

ZA
P

M
yB

B
BW

Pi
w

ig
o

ZA
P

H
os

te
l

Ar
ac

hn
i

H
os

te
l

BW
H

os
pi

ta
l

ZA
P

H
os

pi
ta

l
BW

D
oc

to
rA

pt
.
Ar

ac
hn

i

W
or

dP
re

ss
BW

H
os

pi
ta

l
Ar

ac
hn

i

H
os

te
l

ZA
P

W
or

dP
re

ss
ZA

P
U

se
rL

og
in

Ar
ac

hn
i

U
se

rL
og

in
BW

SC
A

R
F

BW

0%

20%

40%

60%

80%

100%

Our Scanner

Common

Other scanner

Figure 5: For every bar we present the fraction of database columns

affected. First, on top, the fraction of columns only Spider-Scents finds,

the middle shows the fraction of columns both scanners find, and finally,

on the bottom, the fraction of columns only the other scanner finds.

Spidering the Modern Web

44

Database application mappings. Our approach generates a mapping from
database tables and columns where a payload is inserted, to the URLs where
the payload is found. In Figure 6 we show such a mapping for the application
Piwigo, where the red lines indicate unprotected output and the black lines
indicate protected output.

languages.name admin.php?page=user_list

profile.php

sites.galleries_url admin.php?page=site_update
&site=1

themes.name

Figure 6: Subset of results from scanning the Piwigo web application.

Black lines indicate protected outputs while red lines indicate unprotected

outputs.

XSS results. In this section, we compare the reported XSS vulnerabilities
by each scanner. In Table 1, we present reports by each scanner in column
R, manually confirmed stored XSS in column S, and manually verified and
de-duplicated reported vulnerabilities in column V. Note that anything we find
in column V, all black-box scanners should report as well.

Reports by other scanners are of XSS vulnerabilities. However, the Spider-
Scents scanner reports unprotected reflections, not XSS vulnerabilities (see
Section A.4.1). Therefore, column S is inapplicable, and undefined for Spider-
Scents.

Overall, our approach finds 85 stored XSS vulnerabilities that other scan-
ners should be able to find, compared to the 15, on average, that they do find.
53 of these vulnerabilities found by our approach are unique and new.

With the exception of the Piwigo vulnerability Black Widow finds, which
we discuss in Section A.6.3, we find all stored XSS the other scanners find.

Notably, classic black-box scanners still struggle to find stored XSS, as
indicated by the relatively low numbers in Table 1. There are some notable
outliers, such as ZAP reporting 26 XSS on the Hospital Management System.
However, as later clarified by manual analysis, this is a single stored payload
being mislabeled as multiple XSS vulnerabilities.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

45

Table 1: XSS vulnerabilities reported (and manually verified) by each scanner.
R - All XSS or unprotected outputs reported by the scanner, S - Confirmed
stored XSS, V - Verified and de-duplicated with our unique finds in parentheses.

Scanner Arachni Black Widow ZAP Spider-Scents
R S V R S V R S V R S V

CMSMS 0 0 0 0 0 0 0 0 0 18 - 8 (8)
Doctor Apt. 5 2 2 1 0 0 4 1 1 8 - 4 (2)
Hospital 5 4 4 4 4 4 26 1 1 33 - 30 (22)
Hostel 13 13 13 3 3 3 0 0 0 23 - 19 (6)
Joomla 0 0 0 0 0 0 1 0 0 9 - 0
MyBB 0 0 0 0 0 0 0 0 0 6 - 6 (6)
OpenCart 0 0 0 0 0 0 0 0 0 6 - 0
Piwigo 0 0 0 1 1 1 0 0 0 5 - 1 (1)
PrestaShop 0 0 0 0 0 0 0 0 0 3 - 0
SCARF 0 0 0 10 9 9 0 0 0 12 - 11 (2)
User Login 0 0 0 0 0 0 0 0 0 3 - 3 (3)
WordPress 0 0 0 0 0 0 0 0 0 7 - 3 (3)

Total 23 19 19 19 17 17 31 2 2 133 - 85 (53)

Exploitability. While scanners report on user input being executed as JavaScript,
they fall short of understanding the exploitability of the vulnerability. In this
section, we break down the vulnerabilities we find with Spider-Scents into
unprotected output, unprotected inputs, and unprotected permissions, defined
in Section A.2. We define the unprotected input as an input field where it
is possible to add a payload without it being escaped, stripped, or subject to
validation, as described in Section A.5.2.

In Table 2 we present the results from our approach and exploitability
analysis. Interestingly, we note that there is a diverse mix of input protection
methods, even within one application. For example, in CMS Made Simple,
escaping is used for the user’s first and last name, while stripping is used for the
email, and validation is used for the content alias. Nevertheless, the application
still failed to properly sanitize its output.

Moreover, complex and dynamic user roles in modern applications make
it difficult to automatically reason about the impact of XSS. For example, in
CMSMS there is a binary option for permission to modify bookmarks, that
can be assigned to any user group. Any user with this permission can abuse
an XSS to gain privileges. In contrast, MyBB has a strict separation of admin
configurations and forum moderation configurations. This means that any XSS
a scanner finds, including ours, while authenticated as an admin in MyBB, could
be regarded as self-XSS as only trusted parties control the input. Similarly
in Piwigo, the page title is vulnerable to XSS, however, only the admin can
change it. As we see in Table 2, while both MyBB and CMSMS fail to escape

Spidering the Modern Web

46

Table 2: Exploitability of reported vulnerabilities. T - Total reflections, NI - No
Input, VA - Validation, ST - Stripping, ESC - Escaping, P - Permission, EXP

- Exploitable. * A CSRF vulnerability could be abused to exploit it. ** Poor
authentication validation allows privilege escalation.

T NI VA ST ESC P EXP

CMSMS 18 3 1 3 3 0 8
Doctor Apt. 8 4 0 0 0 2* 2
Hospital 33 3 0 0 0 6* 24
Hostel 23 4 0 0 0 4** 15
Joomla 9 5 0 4 0 0 0
MyBB 6 0 0 0 0 6 0
OpenCart 6 0 0 0 6 0 0
Piwigo 5 1 3 0 0 1 0
PrestaShop 3 0 3 0 0 0 0
SCARF 12 1 0 0 0 7* 4
User Login 3 0 0 0 0 0 3
WordPress 7 0 0 1 3 0 3

all outputs, MyBB is less exploitable due to its stricter permissions.
In the Doctor Appointment Management System, neither output protection

nor input protection is used. Despite this, two vulnerabilities are not exploitable
because of permissions. Specifically, while users can change their own email
address, only doctors (super users in this context) can change a doctor’s name.
Still, these are not fully protected, as the application with its default settings
is also vulnerable to CSRF attacks. These vulnerabilities can be combined to
exploit the XSS. Therefore, we believe it is useful for developers to learn where
unprotected outputs are so that they can be fixed, even if they are protected by
permissions.

A.6 Analysis

In this section, we investigate our results and highlight limitations of both
black-box scanners and our approach.

A.6.1 Database coverage

While our method generally achieves higher database coverage, there are some
interesting cases where other scanners still perform better in this metric.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

47

In our evaluation, the portion of the database we miss and other scanners can
reach is a result of our payload’s length. Our payload length is always at least
30 characters long, making it too big for some cells. For example, on Piwigo
Black Widow can affect the oc_customer_ip.country column, which only
holds two characters. ZAP also modifies mybb_templates.version, with a
size of 20 characters. This could be enough for some XSS payloads.

In theory, we can miss finding possible vulnerabilities if changing a non-
text (numeric or date) value is necessary to trigger a vulnerability. Foreign key
constraints can also cause problems but are less common in the text fields we
focus on.

A.6.2 False positives

Black-box scanners use a variety of methods to detect injected XSS payloads,
which can result in false positives. ZAP, for example, incorrectly identified XSS
in WordPress. It statically found the injected token ;alert(1); in a JavaScript
context. However, the token was inside a string, which in this case it is not
possible to break out of.

Confusing multiple payloads is another problem many scanners face. In the
Hospital Management System, ZAP can successfully inject an XSS payload
into the database. However, it does not detect this as a stored XSS, and is
confused when it later scans for DOM-based XSS with the same payload,
alert(5397), which ZAP does find. This is caused in part by the number
5397 not being random but a constant, defined in the code as UNLIKELY_INT.
Therefore, for a single stored XSS vulnerability, ZAP instead reports 26 DOM-
based XSS. In this case, mistaking DOM XSS for stored XSS can impact
developers who are unable to reproduce the results when the database is reset.

Our approach can avoid many of these problems by using unique IDs for
each cell in the database and dynamically testing that each payload is executed.
As such, similarly to Black Widow, we have a low rate of this type of false
positive.

In contrast to black-box scanners, our approach does not automatically
verify that an unprotected input exists. Therefore, we might report a database
cell that cannot be changed by the web application. For example, in the Hostel
Management System, the list of US states were not escaped on output, but
were all hard-coded. We argue that when more functionality is added, either
through software updates or third-party code such as plugins, it can introduce a
vulnerability, and as such these reports are important.

Spidering the Modern Web

48

A.6.3 What we miss

In the complex setting of web applications, there might always be more un-
known vulnerabilities. In the absence of ground truth, in line with previous
work [9–11, 33, 47, 49], our false negative comparison baseline is the stored
XSS results of other scanners.

In Piwigo our method can find a reflected value, but not XSS, for a value in
the configuration table. However, upon further manual analysis, we note that the
reason we did not find the XSS vulnerability was because of the payload chosen.
In this case, the value was reflected inside a textarea, meaning a </textarea>
tag was needed to break out and execute JavaScript.

Black Widow found one XSS on Piwigo that we missed. While we were
able to add the payload and find the correct URL, the URL was too late in the
reflection scanner’s queue and was therefore never visited. Increasing the re-
flection scanner’s timeout would solve this, at the cost of runtime performance.

We have only implemented a prototype that demonstrates the utility of our
approach. As with all scanners, the choices taken in that implementation can
lead to false negatives. False negatives can stem from missing SQL analysis
that can limit our interaction with the database, such as foreign keys and
other constraints, and triggers. Better authentication, and re-authentication,
mechanisms would also improve our approach. Replaceable components to
our method, such as the reflection-crawling and payload-selection modules, are
shown to be the cause for some of the false negatives in this section.

In addition to our evaluated comparison with the other scanners, we also
survey vulnerabilities from CVEs and previous academic papers to construct a
dataset of known vulnerabilities in our choice of evaluated web applications. In
this dataset, 33 previous reports covered 29 unique stored XSS vulnerabilities,
of which we find 26 (details in Table 6). In WordPress, we miss a vulnerability
that relies on an attacker-controlled server that returns a crafted message to a
link embedded in a post. For all evaluated methods, including ours, this type of
attack is out-of-scope. However, it should be noted that we do correctly mark
the database column as unprotected output. In CMSMS, we miss a stored XSS
vulnerability in the filename of uploaded files. Here the payload is not stored in
the database but rather in the filesystem. Extending our method from databases
to other storage mechanisms could be an avenue for future work. Finally, in
OpenCart, we miss a stored XSS in the category description because we do
not spend enough time crawling the application after database modifications,
to scan for reflections of the inserted payload. After extending the reflection
scanner’s timeout, Spider-Scents was able to find this vulnerability as well.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

49

A.6.4 What others miss

From the scanning results of the Doctor Appointment Management System,
we can see that ZAP fails to detect multiple XSS vulnerabilities. By analyzing
database snapshots before and after execution we note that ZAP was only able
to insert data into the tbldoctor table. While it was able to add the string
“ZAP” to the FullName column, it could not add an XSS payload. Furthermore,
ZAP misses other tables, such as tblpage and tblappointment, that our
method modifies and detects as unprotected output.

We also note cases where the compared scanners fail to find XSS due to a
lack of database coverage. For example, in MyBB, no other scanner affects the
vulnerable mybb_usergroups.namestyle column.

A.6.5 Exploitability

Both black-box scanners and our method will report on injected JavaScript
being reflected and executed. However, as we see in Table 2, not all these
executions could, in their current form, be exploitable. Interestingly, we note
that web applications are relatively equally split on using sanitization and
escaping on user input. Validation, on the other hand, is less common. Moreover,
permissions also play an important role in protecting these XSS vulnerabilities

from becoming exploitable.

A.6.6 Drop-in testing with Spider-Scents

In our evaluation, we assisted other scanners by modifying the web applications
under test, so they could evade typical login checks. While beneficial for
increasing their performance for the sake of comparison, such modifications
are not ideal.

To demonstrate the applicability of Spider-Scents, we do not modify web
applications when we run Spider-Scents. Therefore, we rely entirely on our
breakage heuristics, automatic reverting, and automatic use of captured log-in
details.

A.6.7 Manual analysis with Spider-Scents

Spider-Scents requires more manual effort to verify a vulnerability compared
to a black-box solution. However, as Spider-Scents reports the corresponding
database table and column, e.g. users.email, it is usually relatively easy to
manually find relevant input fields and test for a working XSS payload, as
described in Section A.4.8. In our evaluation, it took an author approximately

Spidering the Modern Web

50

Table 3: Runtime performance of Spider-Scents. Runtime is proportional to
the size of the database of the application, reported in both the raw number of
database cells and those that Spider-Scents can scan (satisfy payload require-
ments).

Scan time Database cells Scannable

CMSMS 7:14 11844 4339
Doctor Apt. 0:08 195 87
Hospital 0:22 282 106
Hostel 0:13 205 90
Joomla 12:59 11584 4813
MyBB 4:21 15701 5321
OpenCart 1:39 31490 11553
Piwigo 1:07 1826 520
PrestaShop 32:29 44529 10745
SCARF 0:06 36 15
User Login 0:01 10 6
WordPress 1:55 385 868

15 minutes per report, on average. Preparing Spider-Scents to scan takes a
similar time to other scanners, with the small addition of database credentials.

Further automation to ease analysis is possible, such as mapping input
fields to the database, although this will require addressing general challenges
of crawling, such as exploration and input validation [11].

A.6.8 Runtime performance of Spider-Scents

In contrast to other black-box scanners, which can run indefinitely [11], our
method runs for a time proportional to the database of the application. In
our evaluation, other black-box scanners are limited to a runtime of 8 hours.
Spider-Scents almost always completed its scans within this time window,
with the exception of modern applications Joomla and PrestaShop. Reference
applications are scanned within minutes, while modern applications are scanned
in hours.

We report the scan time of Spider-Scents in evaluation in Table 3. These
times are collected on a laptop from 2021 with 8 cores and 16 gigabytes of
RAM, running both the application’s web server and the Spider-Scents scanner.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

51

A.6.9 Coordinated disclosure

We have reported all new vulnerabilities to the affected vendors and will sum-
marize their responses here. MyBB is planning to fix the vulnerabilities we
reported in the upcoming 1.9 version. The CMSMS developers argue that any
authenticated XSS (regardless of the specific user/group permissions) is not
considered a vulnerability. Instead, they will revise their documentation to no
longer motivate their permission model as a “security mechanism”. WordPress,
on the other hand, does consider some authenticated XSS as vulnerabilities,
depending on permission. However, their security model differs from that eval-
uated. In our model, we considered any privilege escalation as a vulnerability,
while WordPress developers consider editor and admin to be equivalent. As
such, there does not seem to be a consensus among web developers as to how
application permissions should be modelled. We are still waiting for a response
from PHPGurukul for vulnerabilities in their multiple applications. However,
these vulnerabilities have a clearer precedence with similar vulnerabilities to
ours, e.g. CVE-2023-27225.

A.6.10 Summary

As the results show, Spider-Scents performs both better in database coverage
and stored XSS vulnerability detection when compared to state-of-the-art
scanners. Based on what vulnerabilities the other scanners miss and what we
uniquely find, we believe the reason for this improved performance is because
we bypass the majority of the roadblocks that current XSS scanners face (as
defined in Section A.3). Solving these challenges directly is a substantially
harder problem [8], and will require solving fundamental challenges with
crawling [11]. In many instances, the other scanners fail to get any data into the
vulnerable database column for vulnerabilities only Spider-Scents finds, and
in other cases when they do, only benign data is added. In general, the main
problem current scanners face, which we bypass, is getting the payload into
the database.

A.7 Related Work

A.7.1 Black-box scanners

Enemy of the State [7] models server-side state in different links and requests
are identified that drive such state changes. Notably, this work recognizes
the necessity of a solution to resetting a web application. In this case, the
application is run in a VM, and the machine is reset to counteract irreversible

Spidering the Modern Web

52

state changes. Spider-Scents does not need a VM, and resets can be done in a
granular and inexpensive fashion. Furthermore, Enemy of the State’s access to
the VM subsumes this paper’s access to the database.

LigRE [9] and KameleonFuzz [10] also focus on server-side state. LigRE
improves XSS detection with taint flow inference, and KameleonFuzz adds
genetic algorithms for payload generation and modification. Similar to Enemy
of the State, these approaches require the ability to reset the web application.

jäk [33] instead focuses on modelling client-side state. JavaScript APIs
are hooked to be able to model dynamic behaviour. The crawler generates a
navigation graph including this information.

CrawlJax [25] also models client-side state. Interactable candidate elements,
such as clickable ones, are interacted with to extend the crawler’s reach. A
state-flow graph models the user interface.

Black Widow [11] identifies key fundamental challenges for black-box
scanning. They mitigate them by combining navigation graphs, workflows, and
inter-state dependencies in one XSS scanner. In contrast to prior work, Black
Widow does not assume the ability to reset the web application.

A.7.2 White-box scanners

Saner [4] focuses on identifying improper sanitization to find vulnerabilities
such as XSS and SQLi. Saner is limited to analyzing PHP, and even more to
custom sanitization routines. To reduce complexities with application state –
such as the database – Saner does not interact with a live instance of the web
application, instead choosing to build a model of the sanitization process from
static analysis results.

Restler [3] does not use the entire application’s codebase, but instead only
the REST API specification. Static analysis of this specification identifies
inter-request dependencies to generate tests, which generate dynamic feedback
execution to guide further testing. Similar to Spider-Scents in both analyzing a
different artifact/interface than typical static or ‘grey-box’ analyses, Restler also
focuses on bugs. Indeed, they note that vulnerabilities in a REST specification
are unclear.

Sentinel [24] seeks to limit access to sensitive data in the database to
SQLi attacks. The authors model web applications to identify invariants for
the ‘normal’ functionality, which they use to examine queries and responses to
block malicious SQL usage.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

53

A.7.3 Grey-box scanners

Most prior grey-box approaches inform a white-box scan with some runtime
information from a black-box scan, to reduce the false positive rate and generate
a full exploit proof. We argue that only needing database access is more
general than source code 7. It is easier to apply our approach to a different web
application. Being almost black-box, we are agnostic to the coding language
and framework for the application’s implementation. White-box approaches
might not be able to handle obfuscated code. Obfuscated code can also be
present due to extensions, such as plugins. We also do not replace the database
or insert some proxy between the database and the application. This makes it
easy to adapt our approach to other storage mechanisms.

webfuzz [50] instruments code for coverage, and uses this feedback to fuzz
requests for detecting reflected and stored XSS. This approach is expensive -
WordPress reaches 27% coverage in 2000 minutes.

Witcher [49] identifies issues with using grey-box coverage to guide a web
application fuzzer for vulnerability discovery. A Fault Escalator is defined to
detect when the application is in some vulnerable state, and guide the fuzzer
to escalate that to a vulnerability. Together with a refined notion of coverage,
Witcher can fuzz URLs to find command and SQL injection. This approach is
limited to first-order reflected vulnerabilities and does not model application
state.

Gelato [18] detects reflected and DOM-based XSS. Taint analysis is used
to target exploration of the large state space of modern JavaScript.

Backrest [14] statically infers a model REST API, then uses coverage
and taint feedback to drive fuzzing of requests for detecting SQLi, XSS, and
command injection. While the motivations are to both improve coverage and
runtime, the runtime improvements are more evident. Notably, XSS detection,
especially stored XSS, is reduced when provided with feedback. The authors
point out the problem of following taint across the interface with storage in a
database.

Chainsaw [1] implements automated exploit generation, where potential
vulnerabilities derived from static analysis are dynamically tested, with suc-
cessful executions being concrete exploits. Symbolic execution of PHP is used
to find sources and sinks, as well as sanitizations/transformations along paths.
The database is regarded as an additional input to the application, with the
database schema consumed. Workflow-based vulnerabilities, such as stored
XSS, are found within a comparable 600 minutes.

7Static analysis can also be performed on compiled binaries or intermediate representations.
However, the same arguments against generality apply to those other artifacts.

Spidering the Modern Web

54

A.7.4 Database-aware grey-box web scanning

Similarly to Spider-Scents, Steinhauser and Tůma utilize a grey-box approach
for detecting context-sensitive XSS using the database alongside a normal
black-box scanner [47]. They deal with context-sensitivity in line with Context-
Auditor [23].

Steinhauser and Tůma’ s grey-box approach intercepts database and web
application communication, injecting non-XSS payloads into the application
by replacing data coming from the database.

XSS flaws are detected by black-box parsing of HTML responses from the
application matching portions of payloads in responses, to detect the payload
if the application applies some common encodings. The parser continues
with the possible XSS flaw, and payloads are iteratively modified to avoid
context encoding. Some automatic reports of XSS flaws must then be manually
analyzed to identify vulnerabilities

This approach is substantially different from that of Spider-Scents. We
achieve a different, more complete form of coverage, by iterating through the
contents of the database, instead of only modifying values as they are retrieved
by the requests from a black-box scanner. This approach 1 skips missing
database entries, with the database only populated by pre-provided configs or
manually sampled data from public demo instances. We also scale differently;
with the database modelled as additional inputs, this approach of extending
HTTP request fields can become 2 several orders of magnitude slower than
the base black-box scanner. For efficiency, all database injections are combined
per request, 3 which authors note increases breakage, without proposing a
solution. The applications under test are also 4 substantially modified to aid
the scanner. Finally, Steinhauser and Tůma’s approach is implemented by 5
extending MariaDB, which replaces the database in the tested web application.

In contrast, Spider-Scents 1 augments the database, 2 is lightweight in
our evaluation, 3 identifies and fixes application breakage, 4 works without
modifying web applications, and 5 is implemented without a heavy-weight
database replacement or proxy.

In terms of results, we share Joomla and PrestaShop. Steinhauser and
Tůma verified 5 and 12 vulnerabilities in Joomla and PrestaShop, with their
reports resulting in all Joomla and some PrestaShop flaws being fixed. As
all Joomla flaws reported were fixed, the 9 we identify either are missed by
their approach or come from further development of Joomla. Unfortunately,
source code artifacts for this paper are unavailable, so we cannot do a direct
comparison.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

55

A.7.5 Database synthesis

SynthDB [6] is a recent work addressing the tangential problem of preparing
database-backed web applications for security testing, such as vulnerability
scanning, by synthesizing a database. In contrast to our simplistic approach,
with the singular goal of having some data in every table while correlating
inserted fields across tables, SynthDB uses concolic execution of PHP source
to collect database constraints. These constraints are solved to uncover more
program paths, while not violating ‘database integrity’. Similar to Spider-
Scents, the performance of scanners such as Burp is improved with this white-
box preprocessing step.

Our approach also uncovers a separate problem - finding a minimal database.
In the osCommerce application, there are over 3 million cells in the base ap-
plication.Our approach must have its parameters tuned to handle this volume
of cells. However, we have found this application’s scale abnormal by several
orders of magnitude; other web applications typically only have hundreds to
tens of thousands of cells.

A.8 Conclusion

Black-box vulnerability scanners are the best tools currently available for
democratizing security testing—allowing web developers with no security
background or knowledge to proactively find vulnerabilities in their web ap-
plications. However, the twisted designs and logic of web applications make
it difficult for black-box vulnerability scanners to even inject XSS payloads
into the web application. Our approach cuts this Gordian Knot of properly
supplying inputs to a web application—by injecting the XSS payloads directly
into the database. We believe that this approach represents a step forward in
automatic stored XSS detection, and the evaluation results show that our Spider-
Scents prototype surpasses state-of-the-art black-box vulnerability scanners,
while our manual systematization provides the necessary contextualization of
vulnerability and exploitability to these results.

Acknowledgements This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research
(SSF), and the Swedish Research Council (VR).

Spidering the Modern Web

56

Bibliography

[1] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrish-
nan. Chainsaw: Chained automated workflow-based exploit generation.
In CCS, 2016.

[2] Arachni. https://www.arachni-scanner.com.

[3] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler:
Stateful rest api fuzzing. In ICSE, 2019.

[4] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin
Kirda, Christopher Kruegel, and Giovanni Vigna. Saner: Composing static
and dynamic analysis to validate sanitization in web applications. In S&P,
2008.

[5] Username Changer. https://wordpress.org/plugins/username-
changer/#description.

[6] An Chen, JiHo Lee, Basanta Chaulagain, Yonghwi Kwon, and Kyu Hyung
Lee. Synthdb: Synthesizing database via program analysis for security
testing of web applications. NDSS, 2023.

[7] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni
Vigna. Enemy of the state: A state-aware black-box web vulnerability
scanner. In USENIX Security, 2012.

[8] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t
pentest: An analysis of black-box web vulnerability scanners. In DIMVA,
2010.

[9] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz. Li-
gre: Reverse-engineering of control and data flow models for black-box
xss detection. In WCRE, 2013.

[10] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz.
Kameleonfuzz: evolutionary fuzzing for black-box xss detection. In
CODASPY, 2014.

[11] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. Black
widow: Blackbox data-driven web scanning. In S&P, 2021.

35

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

57

[12] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Gio-
vanni Vigna. Toward automated detection of logic vulnerabilities in web
applications. In USENIX Security, 2010.

[13] Martin Fowler. Codesmell. https://martinfowler.com/bliki/
CodeSmell.html.

[14] François Gauthier, Behnaz Hassanshahi, Benjamin Selwyn-Smith,
Trong Nhan Mai, Max Schlüter, and Micah Williams. Backrest: A
model-based feedback-driven greybox fuzzer for web applications. arXiv

preprint arXiv:2108.08455, 2021.

[15] Google. https://security.googleblog.com/2023/02/
vulnerability-reward-program-2022-year.html.

[16] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Bren-
dan Murphy. "not my bug!" and other reasons for software bug report
reassignments. In CSCW, 2011.

[17] HackerOne. https://www.hackerone.com/reports/6th-annual-
hacker-powered-security-report.

[18] Behnaz Hassanshahi, Hyunjun Lee, and Paddy Krishnan. Gelato:
Feedback-driven and guided security analysis of client-side web applica-
tions. In SANER, 2022.

[19] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. Securing web application code by static analysis
and runtime protection. In WWW, 2004.

[20] A03:2021 Injection. https://owasp.org/Top10/A03_2021-
Injection/.

[21] Joomla. https://www.joomla.org.

[22] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Static analysis
for detecting taint-style vulnerabilities in web applications. Journal of

Computer Security, 2010.

[23] Faezeh Kalantari, Mehrnoosh Zaeifi, Tiffany Bao, Ruoyu Wang, Yan
Shoshitaishvili, and Adam Doupé. Context-auditor: Context-sensitive
content injection mitigation. In RAID, 2022.

[24] Xiaowei Li, Wei Yan, and Yuan Xue. Sentinel: securing database from
logic flaws in web applications. In CODASPY, 2012.

Spidering the Modern Web

58

[25] Ali Mesbah, Engin Bozdag, and Arie Van Deursen. Crawling ajax by
inferring user interface state changes. In ICWE, 2008.

[26] Meta. https://about.fb.com/news/2022/12/metas-bug-bounty-
program-2022/.

[27] MyBB. https://mybb.com.

[28] CWE-79: Improper Neutralization of Input During Web Page Gen-
eration (’Cross-site Scripting’). https://cwe.mitre.org/data/
definitions/79.html.

[29] OpenCart. https://www.opencart.com.

[30] Oracle. https://dev.mysql.com/doc/refman/8.0/en/information-
schema.html.

[31] OWASP. https://cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.html.

[32] Muhammad Parvez, Pavol Zavarsky, and Nidal Khoury. Analysis of
effectiveness of black-box web application scanners in detection of stored
sql injection and stored xss vulnerabilities. In ICITST, 2015.

[33] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian
Rossow. jäk: Using dynamic analysis to crawl and test modern web
applications. In RAID, 2015.

[34] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: fuzzing by
program transformation. In S&P, 2018.

[35] PHPGurukul. https://phpgurukul.com/hospital-management-
system-in-php/.

[36] PHPGurukul. https://phpgurukul.com/sdm_downloads/login-
system/.

[37] PHPGurukul. https://phpgurukul.com/doctor-appointment-
management-system-using-php-and-mysql/.

[38] PHPGurukul. https://phpgurukul.com/hostel-management-
system/.

[39] Piwigo. https://piwigo.org.

[40] Prestashop. https://prestashop.com.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

59

[41] The Menlo Report. https://www.dhs.gov/sites/default/files/
publications/CSD-MenloPrinciplesCORE-20120803_1.pdf.

[42] Mike Samuel, Prateek Saxena, and Dawn Song. Context-sensitive auto-
sanitization in web templating languages using type qualifiers. In CCS,
2011.

[43] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. Flax:
Systematic discovery of client-side validation vulnerabilities in rich web
applications. In NDSS, 2010.

[44] Prateek Saxena, David Molnar, and Benjamin Livshits. Scriptgard: Auto-
matic context-sensitive sanitization for large-scale legacy web applica-
tions. In CCS, 2011.

[45] SCARF. https://scarf.sourceforge.net.

[46] CMS Made Simple. http://www.cmsmadesimple.org.

[47] Antoní n Steinhauser and Petr Tůma. Database traffic interception for
graybox detection of stored and context-sensitive XSS. Digital Threats:

Research and Practice, 2020.

[48] OWASP Top Ten. https://owasp.org/www-project-top-ten/.

[49] Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni Vigna,
Christopher Kruegel, Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili,
and Adam Doupé. Toss a fault to your witcher: Applying grey-box
coverage-guided mutational fuzzing to detect sql and command injection
vulnerabilities. In S&P, 2022.

[50] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer,
Michalis Papaevripides, and Elias Athanasopoulos. webfuzz: Grey-box
fuzzing for web applications. In ESORICS, 2021.

[51] WordPress VIP. https://docs.wpvip.com/technical-references/
security/validating-sanitizing-and-escaping/.

[52] WordPress. https://developer.wordpress.org/apis/security/
escaping/.

[53] WordPress. https://wordpress.com.

[54] OWASP ZAP. https://www.zaproxy.org.

Spidering the Modern Web

60

Table 4: Web applications used in the evaluation

Application Date Version GitHub Stars Lines of Code Prior Research

CMSMS 2022 2.2.16 ↘ 144944
Doctor Apt. 2023 2023/1/11 ↘ 65603 [49]
Hospital 2022 2022/11/8 ↘ 67667 [49]
Hostel 2021 2021/9/30 ↘ 9377
Joomla 2023 4.2.8 4.5k 747197 [11, 33, 47, 50]
MyBB 2023 1.8.33 932 153055 [33]
OpenCart 2023 4.0.1.1 6.8k 186101
Piwigo 2023 13.6.0 2.6k 280906 [33]
PrestaShop 2022 1.7.8.8 7.3k 1175530 [11, 47]
SCARF 2007 2007/2/27 ↘ 1318 [7, 11, 24]
User Login 2021 V3 ↘ 7036 [49]
WordPress 2023 6.1.1 17.6k 651599 [9–11, 33, 49, 50]

A.1 Appendix

A.1.1 Spider-Scents configuration

We have implemented a variety of tunable parameters for configuring Spider-
Scents’ choice of heuristics while scanning. Some notable parameters are:
• Avoid sensitive rows or not
• Insert rows into empty tables or not
• Configure the traversal through the database (order by table, row, column,

random, reverse)
• Breakage threshold and detection type (based on status codes, response

length, link content)
• Enforce independence across boundaries (across table, row, column)
We evaluate our approach avoiding sensitive rows, inserting into empty tables,
traversing the database by tables and then columns, with breakage sensitive
to status codes and allowing up to 50% of link content to be missing, and
independence enforced across bounds.

A. Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

61

Table 5: The number of unique database columns affected by each scanner. For
each column in the table, we present: database columns only covered by Spider-
Scents (A\B), columns covered by both scanners (A≃B), and columns covered
by the other scanner (B \A). The very last column presents the maximum
number of columns that allow arbitrary text values.

Crawler Arachni Black Widow ZAP MAX

A\B A≃B B\A A\B A≃B B\A A\B A≃B B\A

CMSMS 85 13 1 82 16 3 85 13 2 111
Doctor Apt. 6 10 0 14 2 0 12 4 0 16
Hospital 14 28 2 20 22 2 21 21 2 44
Hostel 15 19 0 15 19 0 7 27 0 36
Joomla 283 12 1 281 14 1 287 8 0 325
MyBB 194 15 5 133 76 15 184 25 7 264
OpenCart 282 3 0 272 13 1 278 7 0 326
Piwigo 37 21 1 41 17 2 32 26 2 63
PrestaShop 306 55 3 313 48 4 329 32 2 410
SCARF 10 5 0 2 13 0 8 7 0 15
User Login 2 4 1 2 4 1 6 0 0 7
WordPress 35 9 2 22 22 5 16 28 7 53

Table 6: Known stored XSS vulnerabilities from CVEs and other publications.

Application Source Description We Find

CMSMS CVE-2023-36970 File upload stored XSS ✁
Hospital https://github.com/Ko-kn3t/CVE-2020-25271 username ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 weight ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 temperature ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 medicalpres ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 BloodPressure ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 BloodSugar ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientName ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientEmail ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientGender ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientAdd ✂
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientMedhis ✂
Hospital https://www.exploit-db.com/exploits/47841 doctorspecilization ✂
Hostel CVE-2020-25270 guardianName ✂
Hostel CVE-2020-25270 guardianRelation ✂
Hostel CVE-2020-25270 corresAddress ✂
Hostel CVE-2020-25270 corresCIty ✂
OpenCart https://github.com/nipunsomani/Opencart-3.x.x-Authenticated-Stored-XSS/blob/master/README.md Category description ✁
SCARF [11] Add session ✂
SCARF [11] Comment ✂
SCARF [11] Conference name ✂
SCARF [11] Edit paper ✂
SCARF [11] Edit session ✂
SCARF [11] Delete comment ✂
SCARF [11] General options ✂
SCARF [11] User options ✂
User Login CVE-2022-43097, CVE-2020-23051, CVE-2020-24723 fname ✂
User Login CVE-2022-43097, CVE-2020-23051, CVE-2020-24723 lname ✂
WordPress https://research.securitum.com/xss-in-wordpress-via-open-embed-auto-discovery Embed in post content ✁

Spidering the Modern Web

62

B
SpiderSapien: Client-Centric Crawler and
Security Scanner
Eric Olsson, Benjamin Eriksson, Adam Doupé, and Andrei Sabelfeld

Manuscript

63

Abstract

Black-box web application crawling and scanning plays an important role for
security testing of web applications. Yet state-of-the-art scanners fall short
of addressing key characteristics of a modern web application: its extreme
dynamism and interactivity on the client side. This paper identi!es immer-
sive interaction as a key ingredient for scanners to deeply explore modern
web applications. We propose SpiderSapien, a client-centric crawler and se-
curity scanner. Driven by immersive interaction, SpiderSapien incorporates
novel methods to detect interactable elements, order UI interactions, and use
LLMs to solve forms. In doing so, we demonstrate how to reliably discover
and test deep states of modern web applications. The evaluation of our ap-
proach shows substantial improvements in both code coverage and vulner-
ability detection over previous work, with an average increase in code cov-
erage of 21.5% compared to the union of the other scanners and a total of 36
XSS vulnerabilities, across 6 of the 8 web applications, compared to the 4 XSS
others !nd. In addition, a separate empirical evaluation of SpiderSapien’s
LLM-powered form solving capabilities on diverse real forms on the open
web demonstrates superiority over the previous approaches in generating
desired input on the client side, solving at least 23.3% more of the non-trivial
forms compared.

B.1 Introduction

Black-box security scanning is an excellent !t for detecting vulnerabilities in
web applications. These scanners use a black-box crawler to interact with a
web application, iteratively discovering and security testing endpoints. Vul-
nerabilities are discoveredwith nothingmore than a runningweb application
and scanner, regardless of the frameworks or languages underlying the web
application.

Black-box Scanners and the Web. Historically, as web applications have
incorporated more functionality along with its associated complexity, secu-
rity scanning techniques have been developed in short order to handle these
new features. In the 2000s, “sitemap” style black-box crawlers such as Skip-
!sh [39] and w3af [36] could reliably scan the Web 1.0—websites composed
of primarily statically linked content. While supporting some basic interac-
tions with inputs in request parameters and forms, these scanners mainly
focused on following static links by parsing HTML.

However, by the early 2010s Web 2.0 had evolved to include dynamic
stateful web applications with multi-step "ows that could not be modelled
well by that !rst generation of scanners. New black-box scanning meth-
ods such as the Enemy of the State [12] responded by incorporating a more
complex internal state model. The additional client-side functionality of the
Web 2.0 applications also motivated the concurrent development of yet more
black-box crawlers such as CrawlJax [26] and jÄk [29], which incorporated
support for either AJAX or broader JavaScript applications.

New Scale of Complexity. In the decade since this second generation of
black-box crawlers, the characterization of Web 2.0 as consisting of stateful
web applications with rich client-side functionality has remained the same.
However, the scale of this complexity, in the dynamic statefulness and inter-
active client-side functionality of these applications, has exceeded the ability
of these prior black-box scanners to handle.

While “software is eating theworld” [33], we are now in an erawhereweb
applications eat software. Software services that were once o#ered as desk-
top applications can now often be accessed through web interfaces, with the
same functionality. For example, Microsoft and Google deliver full produc-
tivity suites online through the widely available Microsoft 365 and Google
Docs services.

These web interfaces have the same core challenges for crawling, state-
fulness and client-side interactivity, but at a new scale due to the inherent
complexity of the functionality they now include. We refer to web appli-
cations with this scale of dynamism and client-side interactivity as modern
web applications. Scanning these modern web applications requires that the
scanner either be able to reason about multi-step stateful "ows, or compose
complex structured inputs to backend services that might result from the
composition of multiple user steps in the actual application. Without this,
the deep behavior of these web applications stays hidden and untested for
vulnerabilities.

Insu!icient Current Approaches. In practice, black-box scanners do not
explore a large portion of the functionality or endpoints of these web appli-
cations. Fundamentally, this is because discovering and executing a correct
sequence of client-side actions is unlikely. Scanners that avoid client-side ac-
tions and instead work directly with server-side requests are also unlikely to
succeed, as the problem then transforms to either handling multiple stateful
requests, or generating highly structured network inputs. Therefore, these
applications are unlikely to be solved by current black-box approaches.

Security scanners that could handle these modern web applications have

Spidering the Modern Web

66

primarily been focused on identifying error "ows with either static analy-
sis or grey-box fuzzing. Static analysis [21, 3, 16, 20] can tailor their program
analysis to speci!c languages and frameworks such that some of these multi-
step stateful "ows can be identi!ed. Grey-box fuzzing [17, 34, 18] can also
incorporate additional feedback to generate complex structured inputs. Both
of these approaches generally focus on the errors present in the application,
either in a bad "ow or with error signals. While this is well-motivated, as
vulnerabilities do necessarily involve some error component, we argue that
security scanning also needs to incorporate the valid "ow or input, where
the intended code path is explored so as to generate deeper states in the ap-
plication.

Approach. We complement prior approaches by instead focusing on gener-
ating primarily valid application inputs and "ows with the overarching goal
of !nding more XSS vulnerabilities. Our approach has the aim of generating
actions in a fashion like a human would. Therefore, we focus on interacting
with the application’s client-side interface by reliably detecting interactable
elements. Rather than mainly interacting with the application through low-
level URLs, network requests, and event listeners, we develop a scanner fo-
cused on valid client-side actions.

This scanner, SpiderSapien, implements a black-box crawling approach
that can more pro!tably interact with complex client-side applications by
integrating three pillars of interactivity throughout the scanner: detecting in-
teractable elements, ordering UI interactions, and using LLMs to solve forms.

In doing so, this approach can address the key challenge of interaction
strategy, and navigate the client-side interface of modern web applications
to explore the deep states that have been the elusive target of prior works [13,
14].

We note that this goal is shared with the recent black-box evolutionary
EvoCrawl and LLM task-driven YuraScanner, and discuss di#erences in Sec-
tion B.6. However, the motivating example of Section B.3, drawn from real
evaluated applicationswith their non-standard elements and form validation,
is a challenge best met by our approach.

Evaluation. First, we evaluate crawling performance on 8 open-source web
applications compared to 4 black-box scanners. These applications represent
a set of complex modern web applications that demonstrate the new func-
tionality found by this approach. Compared to the union of all compared
scanners, our new approach !nds 21.5% more server-side code in the mea-
sured applications. Our approach also !nds a total of 36 XSS vulnerabilities
across 6 of the 8 applications, a substantial increase over the 4 found by the

B. SpiderSapien: Client-Centric Crawler and Security Scanner

67

other scanners.
We also evaluate only the form solving ability of LLMs in an open web

evaluation. Interacting with thousands of forms served on real websites from
the Tranco [30] list of top-ranked web domains, we provide evidence that
LLMs can reasonably generate valid input to forms. This novel evaluation
setting is detailed in Section B.4.3. We evaluate using our new method with
both Gemini and GPT LLMs. Among non-trivial forms, de!ned as those that
cannot be solved with no input, we observe that our new LLM method solves
between 47.1-54.2% of forms, while a baseline heuristicmethod the ZAP scan-
ner uses can only solve 40.2% of forms. After accounting for form instability
in this open web setting, we see a further improvement from 34.0-38.1% to
47.6-54.2%.

Contributions. We o#er the following contributions:
• We develop a novel method that can drive black-box scanners to test deeper
program states in modern web applications with valid client actions and
better form inputs, which we present in Section B.3.

• We implement our method into a prototype SpiderSapien, a fully black-box
crawler and XSS scanner, aided by LLMs for de!ned tasks.

• We evaluate our complete black-box scanning method as well as 4 others
on 8 web applications in Section B.4. SpiderSapien !nds 36 XSS vulnera-
bilities in these applications.

• We design a new open web setting to evaluate form solving methods on a
diverse dataset while avoiding harm. We apply this evaluation to the LLM
form solving component in isolation in Section B.4. We show a signi!cant
increase in this new method’s performance solving non-trivial forms.

• We analyze our !ndings and share insights for future works in Section B.5.

Ethics and Open Science. We discuss our ethical considerations and com-
pliance with open science policy in Section B.8.

We will open source our implementation upon publication.

B.2 Challenges

Exploring modern web applications from a black-box perspective remains an
intricate task. We identify interaction strategy as a key overarching challenge
and decompose it into three main subchallenges.

Interaction Strategy. Black-box crawlers must !rst interact with a web
application to discover the endpoints or functionality through an iterative
process. Stafeev and Pellegrino distinguish black-box crawlers by their al-
gorithms for navigation strategies, used to decide what page to visit and in

Spidering the Modern Web

68

what order, and page similarity methods, used to identify either di#erent or
duplicate application states [31].

Rather than modifying only those components, we change the whole
crawling loop, as our design interacts primarily with valid client-side actions,
rather than underlying URLs, network requests, or JavaScript event listeners.
We thereby improve a scanner’s ability to interact with and !nd vulnerabil-
ities deep in modern web applications. Modern web applications are both
stateful server-side and client-side, and have many client-side interactions.
Furthermore, these rich client-side interactions are oftenmulti-step, with dif-
ferent options presented depending on a prior client-side interaction. While
prior black-box scanners can theoretically discover new vulnerable applica-
tion behavior despite it being locked behind many stateful interactions, this
is unlikely.

We focus on improving the interaction strategy of our black-box crawler
to handlemodernweb applications. An insight gained in this paper is that the
resources typically used to determine a navigation strategy, i.e. CSS, HTML,
and JS, were not being used in such a way that the behavior of the rendered
DOM can be inferred and matched by the scanner. We identify three main
challenges in adapting a scanner’s interaction strategy—detecting interactable
elements, ordering interactions, and generating inputs for forms.

Detecting Interactable Elements. Amajor source of complexity for scan-
ners comes from the client-side JavaScript code in web applications. While
the client-side code produces links, buttons, text !elds, and other interactable
elements that are designed for users to easily identify and interact with,
this task challenges automated scanners. Part of the challenge is the lack of
HTML semantic meaning applied to interactable elements. Instead of using
the traditional a element or button element, which convey clickable HTML
semantics, modern web applications have the ability to (and often do) use se-
mantically meaningless (in terms of interactability) label elements or cus-
tom tag names, often by their usage of frameworks.

Apart from the semantic meaning of tags, JavaScript event listeners (e.g.,
onclick), can also be used to infer if an element is interactable. In the simplest
case, a static element attribute sets the event listener. However, they can also
be set dynamically in JavaScript, making it more di$cult for a scanner to
infer interactability. Furthermore, many JavaScript frameworks (e.g., jQuery)
have custom event handling and can capture all events on parent elements
or even the DOM body, which divorces the event listener from the relevant
element. From the scanner’s perspective, the individual elements will not
have any event listeners, once again hiding their interactability.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

69

Order of Interactions. In addition to correctly modeling which elements
can be interacted with, as well as the type of interaction, e.g. click, type
text, drag-and-drop, etc., the order of interactions also matters. For example,
a page might have a button that opens a form in a modal popup. For the
user it is clear that the form can now be interacted with, and not the covered
elements behind the form. However, a scanner simply looking at the HTML
and DOM will not recognize the di#erence between the now interactable
form and non-interactable elements behind it, and perform actions in the
wrong order. This will close the form prematurely, losing a chance to interact
with it in its correct state. Alternatively, trying to interact with the elements
behind the form will have no e#ect in their non-interactable state.

Another aspect that complicates this challenge is that a scanner could
even click on hidden buttons, as JavaScript allows such behavior. However,
the hidden button receiving the click will likely not have the intended e#ect
in the application. As such, scanners not only have to !nd all interactable
elements, but also need to determine which are currently interactable given the
client-side state. This challenge means that scanners which support client-
side actions, such as jÄk [29] and Black Widow [14], which might interact
with elements in the correct order, still usually fail as they pick elements at
random without prioritizing currently interactable elements.

Form Solving. The !nal challenge in achieving immersive interaction is
that even after a scanner can detect all interactable elements and understand
the proper order of interactions, a scanner will still encounter complex forms
in a modern web application. A scanner must be able to provide valid inputs
in order to reach deep program states.

Some examples of the inputs for form validation (which can be either per-
formed partially or completely by the browser, client-side JavaScript code, or
server-side code) include valid emails, numbers, URLs, and addresses. While
HTML can provide semantic attributes for the browser to enforce–that could
help the scanner determine input requirements—such annotations are op-
tional. Examples include the type attribute on the input element and the
more general regex-validation attribute pattern. When validation is per-
formed client-side and these annotations supplied, black-box crawlers such
as Black Ostrich [15], can often solve their validation constraints and provide
a matching input.

However, forms are diverse in their structure and validation. Therefore,
many forms only explain the expected type of data in descriptive text for the
intended user, making it hard for scanners to infer it. A more fundamental
problem is that server-side code, invisible to the scanners, might perform
data validation on the input. This web application logic can enforce vali-

Spidering the Modern Web

70

dations that HTML semantics does not support. For example, relations be-
tween inputs, or relations between inputs and values in a database. For user
registration forms the “password” and “con!rm password” combination is a
common example. Moreover, there are also inputs that need to be unique
across the application, such as “username” and “email”. Rather than present-
ing this validation as a constraining attribute of the element or in client-side
JavaScript code, the only hint of such validation is in error messages.

B.3 Method

We propose SpiderSapien, a black-box crawling approach driven by immer-
sive interaction. SpiderSapien contributes novel methods for detecting inter-
actable elements, ordering UI interactions, and using LLMs to solve forms.
In doing so, we aim to more reliably discover and test deep states of modern
web applications.

B.3.1 Motivating Example

To exemplify the evolution in complexity of modern web applications we
present the following example application work"ow. This particular exam-
ple is based on a combination of challenges seen in the popular applications
Piwigo and Kanboard. In a project-management web application, users can
create new tasks by clicking on a button 1→ to generate a modal pop-up in-
cluding a form. The user can then interact with the form 2→, allowing them
to !ll in the task details 3→ and submit. From the perspective of a scanner,
there are multiple challenges (as detailed in Section B.2).

Clicking on the button (Step 1→ in Figure B.1) is challenging because it is
not a button element but instead a label (as is the case in Piwigo, for ex-
ample), and the styling makes it visually appear to be a button. Furthermore,
this label does not have any event listeners directly on the element, as the
application relies on a global event handler instead.

After clicking, the form appears and the next challenge for the scanner
is to prioritize these now visible and interactive elements in step 2→. If this is
not taken into account, the scannermight try to interact with the blocked ele-
ments behind themodal, whichwill not trigger their event listeners. Clicking
outside the modal might also cause the form to disappear, resulting in future
interactions with this form failing as well.

Lastly, the form itself contains further data validation challenges as the
user must enter a numeric “number of hours” in step 3→. This validation re-
quirement is not in the standard HTML semantics, such as type="number"

B. SpiderSapien: Client-Centric Crawler and Security Scanner

71

Figure B.1: Web application !ow with scanning challenges. The sce-
nario is based on a combination of two applications.

or regex patterns, that would otherwise indicate that the values must be nu-
meric.

B.3.2 Client-side Crawling

In this work we build our open-source tool SpiderSapien, implementing im-
mersive interaction to drive the web application into deep program states by
reliably discovering and handling modern web application interactions. Spi-
derSapien is built on top of the open-source BlackWidow [14] scanner, with a
radical overhaul of the client-side crawling to enable immersive interaction.
This is accomplished by identifying interactable elements and prioritizing
the element interactions in the scanner. We re-use the core navigation graph
and XSS detection modules from Black Widow.

Interactable Element Discovery

As discussed in Section B.2, a scanner’s ability to discover new web applica-
tion behavior (and test that behavior) depends on it being able to identify the
interactable elements on any given page. Prior scanners generally approach
this task by either: (1) using prede!ned lists of interactable elements, usually
based on the semantic HTML [2], or (2) identifying elements with associated
event listeners and, possibly, hooking these event listeners. While not com-
monly used in security scanners, Firefox [8] uses a third option by applying
static analysis of JavaScript to identify custom event listeners from libraries.

Spidering the Modern Web

72

However, these approaches do not generalize, either by: (1) not including
custom element types, (2) failing to properly associate an event listener to
a speci!c element, or (3) the web application’s implementation not being
supported by a particular framework-speci!c static analysis.

In this work, we use an initial list of semantic HTML input types (a,
button, form, and input), and extend this with elements that indicate their
interactability at runtime. This allows our method to handle step 1→ of the
motivating example by correctly identifying the label acting as a button.

We rely on the observation that application developers, JavaScript frame-
works, and web browsers all aim to provide guidance to their human users,
with various hints of how they can use the web applications. Providing these
hints is also useful for other web application accessibility clients or exten-
sions, such as screen readers. However, some of these interactability hints
cannot be generalized. For instance, a user might infer interactability based
on the color scheme. Therefore, we identify further interactable elements,
regardless of HTML type or framework, by inspecting the cursor behavior
of elements.

By dynamically checking the cursor property of an element we can
draw insight into the developer’s intended element semantic. Speci!cally,
we check for the pointer value to determine if an element is clickable. Ac-
cording to the CSS speci!cation [9], this should indicate a link. However
many single-page applications and frameworks, including React, Vue, and
Angular [28], use the HTML a tag (link) to perform client-side actions by us-
ing event listeners on the tag and using fragment URLs or the javascript:
pseudo protocol. Similarly, we use the text value of the cursor to identify an
element that supports text input. This is particularly useful for complex rich-
text editor that rely on divs for user inputs. A bene!t of this abstraction is
that we do not need to consider individual JavaScript events like onKeyDown.

We also prune the list of interactable elements to prioritize active ele-
ments by inspecting the visibility of an element at runtime. Elements hid-
den underneath others cannot be clicked or otherwise interacted with, either
from the perspective of a user’s browser or Selenium automation. An alter-
native approach could use JavaScript to force interactions with hidden ele-
ments. However, we argue that this can lead to unintended client-side states,
which we try to avoid in this work. Therefore, only those elements that are
currently visible and active are included in the interactable element set.

As an optimization, we also prioritize elements that are in the current
DOM (i.e., have a valid Selenium reference). This allows the scanner to
achieve a deeper crawl of the client-side, as opposed to a shallow crawl
across the entire application where elements from di#erent URLs are se-

B. SpiderSapien: Client-Centric Crawler and Security Scanner

73

Algorithm 1 Algorithm to discover interactable elements.
semanticElements↑ <a>, <button>, <input>, ...
cursorElements↑ pointer, text ↓ element.cursor
elements↑ semanticElements↔ cursorElements
interactables↑ {}
for element ↓ elements do
{x,y}↑ element.coordinates()
topElement↑ getElementBy(x,y)
if element == topElement then

interactables.add(element)
end if

end for

lected. When picking an element that is not currently active, it will retrace
the previous steps. Overall interactable element discovery is described by
Algorithm 1.

Crawling Strategy

After discovering the valid interactable elements on a page, our scanner must
order its interactions with these elements. We attempt to prioritize client-
side interactions for exploration, aiming to reach deep modern web applica-
tion states. However, we also need to balance client-side exploration interac-
tions with possible exploit interactions, such as form submission and input
elements. Finally, the crawler must handle classic exploration with normal
static links.

Randomization is also important for coverage [31]. To accommodate this
our method can, with low probability, randomly pick edges. While this can
seem counterintuitive, there are cases where the scanner can get stuck con-
tinuously prioritizing a similar element without randomness.

Therefore, we design a two-phase approach to crawling. The crawler
tracks actions possible from states in the web application in a directed graph,
where edges represent actions, and nodes represent states. As we crawl to
perform a vulnerability scan, we also prioritize inputs where a payload can
be inserted. This crawling strategy allows our scanner to handle step 2→
of the motivating example by prioritizing the correct visible and interactive
elements in the form.

In the !rst phase, the scanner performs a short shallow scan, prioritizing
!nding pages through links until a threshold of discovered links is met, or the
scanner cannot !nd any new links. After that phase, the scanner enters the

Spidering the Modern Web

74

main phase where client-side interactions and payload injections are prior-
itized. The general prioritization follows three categories (in this order): (1)
new actions, (2) active elements on the current page, and (3) input elements.

Because we prioritize active elements, the algorithm will act similarly
to a depth-!rst search strategy. For example, a form (“input”) that is on the
current page (“active”) and not taken before (“new”) will have a high priority.

To avoid getting stuck in one part of an application (such as an in!nite
calendar module [12]), we have two mechanisms to divert the scanner. First,
if enough iterations have passed since new edges have appeared, an active
link is chosen randomly instead. With low probability (5% in the evaluation)
and if there are no new forms, we pick a random link.

Unlike scanners that separate exploration and attack, like ZAP, ourmethod
aims to always pick the best option when presented and does not need to
terminate. A high-level description of the crawling strategy is presented in
Appendix .1.5.

Other Client-side Adaptations

While improved interactable element discovery and crawling strategy are
major components of immersive interaction, we also add a few more mi-
nor adaptations for client-side crawling. First, before submitting a form we
prompt an LLM to check if the form could change the current username or
password, to avoid breaking the application. We also use an LLM to deter-
mine the correct submit button in a form, as buttons can have wildly di#erent
semantics including canceling the submission. We also implement new han-
dling for drag-and-drop. If a form supports !le upload based on the enctype,
we simulate a drag-and-drop to all elements in the form.

B.3.3 LLM-based Input Generation

As forms are one of the main ways to provide user input to a web applica-
tion, determining a set of valid inputs that allow a form to be submitted is
critical to a web scanner. The constraint validating the content of the nu-
meric “number of hours” in step 3→ of the motivating example is in custom
JavaScript code rather than a regex pattern. Previous methods cannot expect
to reliably detect a pattern while only supporting a single (or small set of)
possible implementations.

Large Language Models

Therefore, we leverage the single- or few-shot ability of Large Language
Models (LLMs) to provide reasonable form inputs. An LLM can reasonably

B. SpiderSapien: Client-Centric Crawler and Security Scanner

75

infer that an input described by “number of hours”, from step 3→ of the mo-
tivating example, should be numeric, and in an appropriate range. We use
few-shot examples [6], and error or completion feedback in our prompting
of the LLM. We also use the function-calling ability of LLMs to parse its re-
sponse and automate interactions.

These prompting techniques are widely used to improve the performance
of LLMs across application domains. In fact, while we were inspired by the
application of LLMs to vulnerability detection, the concurrently developed
YuraScanner [32] has a form solving prompt resembling this method, includ-
ing few-shot examples and summarizing some important elements of the
form. However, among other di#erences (see Section B.6), SpiderSapien’s
recurrence is new for the form solving problem. Compared to the single-
shot approach of YuraScanner, this solves forms that only present validation
hints after attempted submission. This multi-shot solving approach allows
our method to solve a step 0→ prior to the motivating example. To create
a project in Kanboard, an alphanumeric project name must be submitted.
However, the name is checked server-side to ensure that it is unique. Other-
wise, an error message presents this uniqueness requirement. Reliably solv-
ing such validation "ows requires multiple attempts with recurrence.

Implementation

The particular prompts chosen can be thought of as an initial prototype.
Not all choices have been extensively evaluated or optimized, see discus-
sion in Section B.5.7. Regardless, the performance of this method is already
equivalent—if not exceeding that—of competing methods, as seen in Sec-
tion B.4.3.

When the scanner !nds a form it provides form HTML to the LLM form
solving module. The LLM is prompted to solve this form, producing a list
of (selector, value) pairs to indicate what values should be input to which
elements. The scanner then submits the form with these values. Any errors
from these input values are provided to the completion checker. If the form is
judged to be incomplete, the input and overall form errors are introduced into
the LLM prompt for it to provide new (selector, value) pairs. Once solved, the
scanner re-submits with XSS payloads and continues scanning as depicted in
Figure B.2.

The prompting of the LLM to solve a form is described by the template
in Figure 6. Besides the form HTML in the prompt, we also present all input
elements, those marked required, and those with regex patterns.

Spidering the Modern Web

76

Figure B.2: Crawler interaction with LLM form solving

Form module

LLM form
solving

Form input
automation

Completion
checker

form HTML

[(selector, value)]

form solved

Crawler

input errors

Submit with
payloads

Form
chosen

...
Crawl
loop

...

input errors,
form errors

Function Calling. To describe the task of form solving and easily parse
model output, we provide an API that the LLM is instructed to call. This
function is supposed to be called by the LLM to input the result of a form
solve, instructing the LLM to provide the structured output as a list of (CSS
locator, user input) pairs. This API is fully described in Appendix .1.1.

Input Automation. The (CSS locator, user input) pairs are read from LLM
output, and input is automatically entered into the form elements. This in-
put automation includes support for clicking on checkbox and radio types,
choosing appropriate values from select elements, uploading !les, and typing
into text !elds. All automation is performed based on input values chosen
by the LLM, rather than any heuristics.

Few-shot Examples. The LLM is also provided additional context about the
problem domain in the form of six simple examples of forms and the type of
function calls the LLM should generate to solve them.

Error and Completion Feedback

The form solving method also takes into account error feedback. This is nec-
essary to solve validation performed server-side, either due to requirements
such as uniqueness constraints, or developer choice. Therefore, the LLM is
repeatedly prompted to solve a form.

While inputting generated input locator/value pairs, the crawler will log
errors that occur, such as invalid element locators or invalid input values. A
new message is constructed with a simple template describing these errors
and prompting a retry. Additionally, the form HTML after attempted sub-
mission is provided in a separate prompt, asking “What error messages are

B. SpiderSapien: Client-Centric Crawler and Security Scanner

77

present on this form?”. Any such errors found by this sub-prompt are also
included in the retry template.

This error feedback loop also requires a way to determine when not to
repeat solving—i.e., when the input passes validation. If the crawler has nav-
igated to a new page, this indicates a successful form solve and submission.
Otherwise, an additional sub-prompt asks “Has this form been successfully
!lled? Answer ‘Yes’ or ‘No’.”. If yes is not included in the LLM’s response,
the loop will continue until a retry threshold is reached. In our evaluation,
we set this threshold to 3 retries.

B.3.4 Implementation

We implement SpiderSapien as Python code extending the Black Widow
scanner [14]. We implement the LLM code in LangChain to be able to eas-
ily swap the underlying model. While we have tested this LLM form solv-
ing code with versions of Google’s Gemini, OpenAI’s GPT, and local Ollama
models, we primarily evaluate with Gemini.

B.4 Evaluation

We primarily evaluate the performance of the entire scanner, including both
improved client-side crawling and LLM form solving, in the task of exploring
a web application and discovering XSS vulnerabilities. This scanner evalua-
tion is performed on a set of local open-source web applications.

We also evaluate the e#ectiveness of LLM form solving in isolation on
the open web.

B.4.1 Web Application Crawl Evaluation Setup

The overall goal of this work is to better explore web applications from a
black-box perspective, by successfully navigating client-side interactions and
user input in forms. By being able to explore more states in these web appli-
cations, we also hope to !nd new vulnerabilities. To be able to gather rele-
vant performance metrics and analyze vulnerability, our primary evaluation
is on the crawling performance of our crawler on a set of local open-source
web applications. We compare our crawler’s performance to other relevant
black-box methods.

Spidering the Modern Web

78

Open-source Web Applications

We choose 8 open-source web applications for this evaluation: DokuWiki,
TinyFileManager, Kanboard, WordPress, osCommerce, HotCrp, Leantime,
and Piwigo. We describe these applications and include their versions in
Appendix .1.4. We limit the evaluation to applications written in PHP to
allow for uniform collection of server-side coverage. We strive to include
the latest version of modern applications. For the sake of comparison, we
select some applications used in previous works, for example, Kanboard in
EvoCrawl [19], and both osCommerce and Leantime used in YuraScanner [32].

We make slight modi!cations to these applications to create a level play-
ing !eld for all scanners, mainly with respect to authentication; details are
provided in Appendix .1.4.

Compared Black-box Methods

We evaluate our approach against both state-of-the-art black-box academic
and open-source scanners. This set of 4 scanners consists of: Arachni [1],
Black Ostrich [15], Wapiti [37], and ZAP [40]. When possible, we con!gure
the scanners to only detect XSS vulnerabilities. Since we modify the applica-
tions to make authentication easier we do not con!gure any authentication
parameters in the scanners. While there are other academic scanners focus-
ing on client-side code, such as jÄk, they are no longer maintained. However,
as Black Ostrich uses the same method of hooking event registration as jÄk,
the performance of Black Ostrich could shine a light on how an updated ver-
sion of jÄk might perform.

Metrics

Our main metrics are the number of XSS vulnerabilities found and code cov-
erage. For vulnerabilities, we present both the reported number by each
scanner and also the number after we manually verify reports to !lter out
false positives. Some scanner’s veri!cations of injection, including statically
searching for script tags or not using unique IDs for payloads can result in
these false positives.

In this study, we de!ne coverage in terms of unique lines of code exe-
cuted on the server-side collected using xDebug in PHP, similar to previous
work [31, 19, 14]. However, web application scanner coverage could be mea-
sured in multiple di#erent ways. Previous research has used metrics ranging
from links discovered [29], to unique JavaScript code retrieved [31], or even
client-side JavaScript code coverage [22]. In Section B.5.4 we discuss these

B. SpiderSapien: Client-Centric Crawler and Security Scanner

79

metrics in more detail and argue why we use server-side code coverage in
this evaluation.

B.4.2 Web Application Crawl Evaluation Results

While we qualitatively observe that SpiderSapien is able to reach new pro-
gram states in the evaluated applications, the empirical measurements of
coverage still show that other scanners can !nd things we miss. Despite
this disconnect between the chosen metric and scanning quality, we still see
that SpiderSapien can achieve better server-side coverage in the majority of
cases. Furthermore, SpiderSapien !nds far more XSS vulnerabilities than all
other scanners. In the following sections, we overview the results of the local
web application crawling evaluation in terms of coverage and vulnerabilities.

Coverage

In this section, we present the server-side code coverage from running all the
scanners on our set of open-source web applications. In Figure B.4 we plot
the comparison between our scanner and the others, with the exact numbers
presented in Appendix .1.6. The !gure shows that our method outperforms
the other scanners in the majority of cases. This serves as a good indicator
that a focus on client-side crawling does achieve deeper scanning of appli-
cations, even for server-side code. However, there are some notable cases
where other scanners perform well. Two of these we look closer at are ZAP
on TinyFileManager and ZAP on DokuWiki. In the !rst case, ZAP triggers
more errors, like invalid CSRF tokens, which we avoid by correctly retracing
the form submissions. We discuss the di#erences between better coverage of
intended code versus error code in Section B.5.1. In the case of DokuWiki, our
scanner is able to break the application by correctly submitting a dangerous
form that the other scanners struggle with. We explore this problem more in
Section B.5.2

In Figure B.3, we highlight a small case study on the coverage over time
on osCommerce. Note here that the commercial scanners either quit early, in
this case ZAP and Wapiti, or quickly plateau like Arachni. While the slower
academic scanners show potential of further increasing their coverage even
after the 8-hour limit. In Section B.5.3 we discuss the potential of using web
scanners for deeper and longer scans than commonly used.

Vulnerabilities

Here we present the XSS vulnerabilities found by each of the scanners. We
include both reported vulnerabilities and veri!ed vulnerabilities, which we

Spidering the Modern Web

80

Figure B.3: The "gure presents the coverage for each scanner over the
eight hour evaluation on osCommerce.

have manually checked. Verifying the vulnerabilities is an important step
as scanners can mistakenly report safe parts of the application as vulner-
able. Across almost all applications, our method is able to !nd more XSS
vulnerabilities than the other scanners. In total, we !nd 36 veri!ed XSS vul-
nerabilities across all applications. Compared to 4 for the other scanners. We
see that most state-of-the-art scanners do not !nd many XSS vulnerabilities
in these modern applications. For the vulnerabilities other scanners do !nd,
our method does also !nd most of them.

The exception is Arachni !nding two more vulnerabilities in TinyFileM-
anager. It should be noted that Arachni has a high rate of false positives in
this case, because of their imprecise method that con!rms all XSS vulnera-
bilities that reuse a shared payload. After !nding a stored vulnerability, all
subsequently attacked parameters will appear vulnerable. During our man-
ual veri!cation, 3 of these were con!rmed to valid. However, we could not
determine if Arachni actually found them or happened to mark all parame-
ters after the !rst successful stored injection.

We note that while the other scanners do cover thousands of lines of code
that we miss (see Section B.4.2), they do not !nd as many vulnerabilities,
in relative terms. This might indicate that scanners should focus more on
intended or high quality code coverage, which we discuss in Section B.5.1.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

81

os
Co

m
m
er
ce

Wa
pi
ti

H
ot
Cr

p
Wa
pi
ti

H
ot
Cr

p
Ar
ac
hn
i

os
Co

m
m
er
ce

ZA
P

Pi
w
ig
o

Wa
pi
ti

H
ot
Cr

p
ZA
P

Ka
nb

oa
rd

Wa
pi
ti

W
or
dP

re
ss

Wa
pi
ti

Ka
nb

oa
rd

Ar
ac
hn
i

D
ok

uW
ik
i

Ar
ac
hn
i

Pi
w
ig
o

ZA
P

os
Co

m
m
er
ce

Ar
ac
hn
i

Ka
nb

oa
rd

Bl
ac
k
Os
tr
ic
h

Ka
nb

oa
rd

ZA
P

Ti
ny

Fi
le
M
an
ag
er

Wa
pi
ti

H
ot
Cr

p
Bl
ac
k
Os
tr
ic
h

Ti
ny

Fi
le
M
an
ag
er

Ar
ac
hn
i

Ti
ny

Fi
le
M
an
ag
er

Bl
ac
k
Os
tr
ic
h

Le
an
tim

e
Ar
ac
hn
i

W
or
dP

re
ss

ZA
P

Le
an
tim

e
Wa
pi
ti

W
or
dP

re
ss

Ar
ac
hn
i

Pi
w
ig
o

Bl
ac
k
Os
tr
ic
h

Pi
w
ig
o

Ar
ac
hn
i

Le
an
tim

e
Bl
ac
k
Os
tr
ic
h

Le
an
tim

e
ZA
P

D
ok

uW
ik
i

Bl
ac
k
Os
tr
ic
h

W
or
dP

re
ss

Bl
ac
k
Os
tr
ic
h

Ti
ny

Fi
le
M
an
ag
er

ZA
P

D
ok

uW
ik
i

Wa
pi
ti

D
ok

uW
ik
i

ZA
P

os
Co

m
m
er
ce

Bl
ac
k
Os
tr
ic
h

0%

20%

40%

60%

80%

100%
181

1

11010332102101

2

1

1221832

2231818

Our Scanner

Common

Other scanner

Figure B.4: The X-axis denotes the application and scanner we com-
pare against while the Y-axis contains the fraction of unique lines of
code the scanners "nd. Starting at the top, each column shows the
fraction only we "nd, followed by code found by both scanners, and
"nally what only the other scanner "nds. Similarly, the number in
each bug denotes the XSS vulnerabilities found.

Spidering the Modern Web

82

Table B.1: This table presents both reported and veri!ed XSS injections from
the scanners. As scanners might incorrectly report vulnerabilities we man-
ually verify each report. We discuss the false positives (*) in more detail in
Section B.4.2.

Scanner Arachni Black Ostrich SpiderSapien Wapiti ZAP
Type R V R V R V R V R V

DokuWiki 0 0 0 0 0 0 0 0 0 0
TinyFileManager 10 3↗ 0 0 1 1 0 0 0 0
Kanboard 0 0 0 0 2 2 0 0 0 0
WordPress 0 0 1 1 2 2 0 0 0 0
osCommerce 0 0 0 0 18 18 0 0 0 0
HotCrp 0 0 0 0 0 0 0 0 0 0
Leantime 0 0 0 0 10 10 0 0 0 0
Piwigo 0 0 0 0 3 3 0 0 0 0

B.4.3 Open Web Form Solving Evaluation

We also evaluate the performance of the LLM form solving component out-
side of the crawler. Rather than construct an arti!cial testbed, we use real
forms gathered from the open web. Care is taken to not interfere with these
live external websites—we discuss our ethical considerations in Section B.8.1.

Setup

We evaluate the ability of the form solver in isolation. Given an initial URL
that contained a form, we load this URL in a separate Selenium script that
runs only the form solver.

(1) First, we force visibility so that the script can interact with the form.
(2) The LLM form solvingmethod is providedwith the form. (3) Solved values
are entered with the same input automation as in the full crawler. (4) Before
submitting, we turn o# the network in Chrome with a custom browser ex-
tension. This is to reduce the impact of this evaluation on the open web. (5)
We attempt to submit the form. (6) If the browser tries to navigate to our
extension’s local landing page, the form was successfully submitted. Other-
wise, the attempt loops up to 3 times according to the method described in
Section B.3.3. The network is re-enabled after every submission.

This setup can test solving diverse live forms on the open web, while
reducing possible harm done to these websites by not submitting data. See
Section B.5.6 for setup limitations.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

83

Compared Methods

We compare to twomethods. In each of thesemethods, we primarily alter the
second step in the form solving setup. Instead of generating input values by
prompting an LLM, we generate values by either a “No Input” method, or a
“ZAP” method. We also modify the !nal retry step, in that no error feedback
is provided, and the method is simply re-run.

In the “No Input” method, we provide no input. This serves as a base-
line method, in that forms that cannot be successfully submitted by simply
providing no input are non-trivial.

In the “ZAP” method, we recreate the form solving inputs generated by
the ZAP scanner [11]. This provides a baseline heuristic method to solve
forms in our evaluation. This method provides constants for most types of
inputs, but selects a value from an HTML-speci!ed range for numbers, and
values based on the current date/time for relevant input types.

Form Choice

Wemake a new dataset of URLs with forms from domains on the Tranco [30]
list, as detailed in Appendix .1.2. A random selection of 2000 of these URLs
was used in this evaluation. For each method, the tested URLs and forms
varies. The amount of tested URLs and forms di#ers between methods due
to testing resource availability, network conditions, and generally variable
content in the websites tested.

Results

All Forms. We include the raw results of this open web form solving eval-
uation, in terms of all successfully solved forms for each method, in Table 3.
While the “No Input” and “ZAP” rows do not use themethod of SpiderSapien,
all others indicate the LLM used in our method and its temperature.

However, the relative ability of each method to solve forms, and espe-
cially non-trivial forms, is unclear in this un!ltered presentation. The pri-
marily evaluated methods that produce inputs (“ZAP”, Gemini, and Gemini
Pro) only vary in e#ectiveness from 79.1-81.8%. In fact, the simple heuristics
of “ZAP” excel by this metric. Furthermore, the “No Input” already can solve
77.8%.

TheGPTmodels, while having the best solving performance, could not be
extensively tested due to resource availability issues. This method’s prompt
was developed with GPT, so the performance disparity from Gemini could
be due to model change without prompt adaptation (see Section B.5.7).

Spidering the Modern Web

84

Table B.2: Success rate of select form solving methods on non-trivial forms.
All methods are provided in Appendix .1.3.

All non-trivial forms
Evaluated method URLs Forms Forms solved Solve %

ZAP 606 1029 414 40.2%
Gemini (t=1.5) 604 1024 483 47.1%
Gemini Pro (t=1.0) 535 873 402 46.1%
GPT4o-Mini (t=0.5) 244 568 308 54.2%

Non-trivial forms available to GPT4o-Mini
ZAP 234 356 121 34.0%
Gemini (t=0.5) 199 315 153 48.6%
Gemini Pro (t=1.0) 198 283 134 47.4%
GPT4o-Mini (t=0.5) 244 568 308 54.2%

Non-trivial Forms. If we instead focus on non-trivial forms, we can see that
LLM form solving starts showing its potential. Non-trivial forms are de!ned
as forms that could not be solved with “No Input”. We can further normal-
ize the results to examine only those forms available to the main compared
methods. Both of these datasets are presented in Table B.2.

When examining all non-trivial forms and comparing them to the base-
line of “ZAP” solving 40.2% of these forms, Gemini models can solve 47.1%
of the forms tested. While we have a limited sample size for GPT4o-Mini, we
see a further boost to 54.2% of these forms solved.

After restricting our data to formsGPT4o-Mini encountered, we see “ZAP”
perform much worse. In Table 4 we also see this result when normalized to
forms Gemini could test.

Comparative Performance. Anotherway to comparemethods is how spe-
ci!c forms perform with pairs of (old, new) methods. We illustrate the com-
parative performance of methods by showing what forms start passing with
a new method in Figure B.5. In this !gure, we can see that methods with the
brightest colored columns (larger numbers) perform worst - they were often
improved upon by other methods. Alternatively, we can interpret methods
with the darkest rows (smaller numbers) as performing best. We see the
same results as the earlier analysis; our LLM method performs best. The
same trend is shown if we restrict the data to non-trivial forms available to
Gemini in Figure 7.

Performance Summary. While form solving performance in this openweb
evaluation setting can be hard to measure, the LLM-powered form solving

B. SpiderSapien: Client-Centric Crawler and Security Scanner

85

Figure B.5: Comparative performance of form solving methods for
all forms. Each cell at (X,Y) counts the forms that were not solved by
the Y method, but were solved by the X method.

No
In
pu

t
ZA

P

G
em

in
i 0.

0

G
em

in
i 0.

2

G
em

in
i 0.

5

G
em

in
i 1.

0

G
em

in
i 1.

5

G
em

in
i P

ro 0.
5

G
em

in
i P

ro 1.
0

G
PT

4o
-M

in
i 0.

5

No Input

ZAP

Gemini0.0

Gemini0.2

Gemini0.5

Gemini1.0

Gemini1.5

Gemini Pro0.5

Gemini Pro1.0

GPT4o-Mini0.5

0 156 195 201 184 156 188 183 168 115

21 0 79 82 80 70 83 77 70 47

110 110 0 27 61 49 41 37 67 57

92 96 15 0 56 48 26 25 58 51

86 86 42 47 0 23 36 45 37 34

107 118 88 91 78 0 86 94 87 36

90 102 28 27 45 42 0 32 50 46

131 138 61 63 87 78 67 0 62 64

95 100 60 62 49 48 56 35 0 46

14 14 6 7 6 6 7 8 7 0

method we introduce in SpiderSapien shows promising performance. There
is a substantial improvement from 40.2% of non-trivial forms solved by the
baseline “ZAP” to 47.1% in the best Gemini model, and 54.2% in the GPT
model with the most data. If we restrict the dataset to non-trivial forms avail-
able to the most promising methods, we instead see an improvement from
either 34.0% to 48.6% and 54.2%, or 38.1% to 47.6% and 54.2%.

Limitations of this evaluation are presented in Section B.5.6. Discussion
of speci!c instances where this method fails compared to the baseline meth-
ods is included in Section B.5.5.

B.5 Analysis / Discussion

B.5.1 Exploring Intended Code Paths

Our goal with this approach was to improve the exploration of what can be
seen as “intended code paths”—paths in the application that the developer ex-
pects a user to follow. This goes against the classic notion of trying to “fuzz”
the application with unintended values to !nd error-related code paths.

We believe that current web scanners focus too much on trying to !nd

Spidering the Modern Web

86

these unintended paths that they fail to explore many of the application’s
deeper functionalities, where vulnerabilities might reside. We cannot infer if
a scanner is exploring the unintended paths by total coverage. For example,
Section B.4.2 shows that ZAP has similar total coverage on TinyFileMan-
ager v.s. our approach. However, part of ZAP’s unique coverage comes from
error-handling code relating to incorrect CSRF tokens, because ZAP fuzz all
requests parameters on the network level. In contrast, our method instead
fully submits the form and avoids some unintended paths by ensuring such
tokens are valid.

We cannot claim either method of exploration is strictly superior. If any-
thing our results show the need for a combined approach or use of multiple
scanners to ensure better coverage. By manually inspecting a combination
of the coverage and state of the application after scans, it is clear that much
of the functionality in web applications is still unexplored.

B.5.2 Destroying the State

A surprising problem we face as scanners improve is their increased po-
tential to break the application. SpiderSapien performs relatively poorly on
DokuWiki, see Section B.5.1. This is not because the other scanner possesses
capabilities that our scanner lacks, but rather because our method !nds and,
thanks to the LLM-module, correctly submits the site con!guration form.
This creates an irrecoverable state by breaking the authentication method.

Future works could try to detect these dangerous actions. Either with an
LLM approach similar to ours or by allowing the scanner to reset the appli-
cation like Enemy-of-the-State [12], using heuristics to detect breakage [27].

B.5.3 False Negatives and Length of Scan

During the development of our scanner, we found vulnerabilities not repro-
duced in the !nal evaluation scan. We still report these to the developers
for ethical reasons. Our scanner still supports each interaction necessary to
!nd these additional vulnerabilities. We believe that the !nal scan did not
!nd them due to two practical limits, First, this can be due to the evaluation
time limit of eight hours. Currently, there is no consensus on the evaluation
time for web scanning, with times ranging from 4 [32] hours to 24 hours [19].
From Figure B.3, we can also see that SpiderSapien, in contrast to ZAP,Wapiti
and Arachni, has not plateaued or terminated. With the additional random-
ness in the scanner a longer evaluation could be valuable. The second reason
could simply be that we destroy the application before exploring all the po-
tential vulnerabilities, as discussed in Section B.5.2. To overcome these limits,

B. SpiderSapien: Client-Centric Crawler and Security Scanner

87

future studies on web scanning should ideally incorporate bothmultiple runs
and longer evaluation times.

B.5.4 Coverage Metrics

Server-side code coverage, such as that gathered through xDebug in PHPweb
applications, is the most common way to measure coverage in a web appli-
cation scanning or fuzzing session. However, other types of coverage can be
measured. For example, the recent SoK on web security crawlers [31] mea-
sures not only (1) server-side code coverage, but also (2) JavaScript source
coverage, and (3) link coverage. JavaScript source coverage is de!ned by col-
lecting the hashes of retrieved inline or external JS scripts.

JavaScript code coverage (4) can also bemeasured by retrieving the statis-
tics of total and unused bytes of JS code through the Chrome DevTools. This
has been used by Kang et al. [22], but has not yet been widely adopted by
other scanning works. Comparative evaluation is hard, as such metrics need
to be gathered by each scanner.

Therefore, we only present the coverage in the (1) metric: server-side
code coverage. Possible client-side metrics for coverage (2, 3, 4) are more
di$cult to compare. Dynamically generated scripts and links will perturb
these measurements.

B.5.5 LLM Failed Form Solves

As seen in Section B.4.3, despite the overall performance gains of thismethod,
“No Input” and “ZAP” both solve forms the LLM could not. When compared
to Gemini, these cases are often due to no function call being generated. Oth-
erwise, some “successful” form solves happen when dynamic form content
is not fully loaded, evading normal client-side validation.

Gemini Refusals. During the evaluation, we saw over 100 requests blocked
by the content !lter, mostly tending towards forms on adult websites. We
also saw another set of at least 130 requests pass the content !lter, but get
rejected by themodel. Instead of generating a function call, Gemini generates
some explanation of its refusal. This also usually occurs on the same type of
website. When we examine the set of forms which passed on “No Input”, but
failed on a Gemini model, 44/78 of these did not generate a valid function call.
56/83 of the failures relative to “ZAP”, and 23/33 relative to GPT models, are
due to the same reason.

GPT Failures v.s. “No Input”. Wemanually examine all 14 cases when “No
Input” solves a form that GPT4o-Mini could not. 6/14 cases had valid inputs

Spidering the Modern Web

88

when manually tested, and could be due to form instability. Other failures
included: not loading values while the network is blocked, not meeting our
success conditions by navigating before submit (when an input element is
changed), or a cookie consent popup preventing all interactionwith the form.

GPT Failures v.s. “ZAP”. We also examine some cases when “ZAP” im-
proved upon GPT. Many of the forms and reasons from the prior comparison
to “No Input” are repeated. Some new interesting examples are highlighted:

A defunct website to download YouTube videos had a search form that
could accept a search term or a URL. The LLMunderstood that a URL could be
entered in this !eld, and provided “https://testlink.com”. However, the vali-
dation actually enforced that the text is either not a URL, or only a YouTube
URL. The default text payload “ZAP” happened to work, as it was not a URL.
Additional context on the page outside the form HTML could help an LLM
correct its input.

Another form had input descriptions clashing with validation. The asso-
ciated label speci!ed that a country should be entered, while the input instead
is of type email.

Finally, some forms allow semantically incorrect inputs. One form that
speci!es that a security code should be transcribed from a picture, yet ac-
cepted no input from “ZAP”.

B.5.6 LLM Evaluation Limitations

Measuring the performance of form solving on the open web as described
in Section B.4.3 is challenging, and there are limitations to this setup. This
setting o#ers a greater variety of forms to test on, beyond the limited set-
ting of the open-source web applications otherwise tested, but brings new
challenges.

Form Instability. There is inherent instability in forms presented, due to
network conditions and application changes. This results in di#erent URLs
and forms being seen by each method in Section B.4.3. We address this by
normalizing to forms common to all compared methods in Table B.2, or by
only comparing performance changes on the same forms in Figure B.5 and
Figure 7. We observed a steady turnover in forms at URLs during evaluation;
the lifetime for these pages can be short. Moreover, forms can even load
di#erently, a#ecting what client-side validation might be present.

Evaluating a Successful Submit. The e#ects of a form successfully sub-
mitting vary. For example, a webpage might close a form dialog client-side.
The criteria we use to evaluate success is navigating away from the form.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

89

Therefore a successful form solve will not be detected, if it would normally
only result in a form dialog closing client-side without a navigation. How-
ever, we must force the form to be visible, as we do not know the client-
side steps to normally interact with the form. A full stateful crawl, such as
with SpiderSapien, could alleviate this problem, but with further potential
for harm.

FormWhisperer [23] instead judges success by intercepting a request
with injected values using a network proxy. However, this success criterion
could yield false positives with our method in this evaluation setting. The
LLM can generate non-unique data that would already be in the request, or
the request might be for input validation across the network rather than a
successful submit.

Impossible Forms. Finally, a challenge in this evaluation is impossible forms;
those that cannot be solved by any input. Some forms are also rendered im-
possible by the network-blocking setup. For example, when validation for a
client-side elements occurs with server tra$c. However, this cannot be !xed
without allowing network tra$c during submit, which could likely harm the
websites tested. We also observe that some forms seem broken, and cannot
successfully submit.

B.5.7 LLM Models and Prompting Choices

While we primarily evaluate onGemini models, we developed ourmethod on
GPT models. The performance di#erence we observe between these families
of models could therefore be due to the prompt not being re-engineered for
each model.

However, our evaluation across both Gemini and GPT shows that while
there may be performance di#erences, even the simple unoptimized prompt-
ing template used still can outperform prior methods. Future work could
optimize the prompt to a speci!c model, such as with prompt tuning [24].

B.6 Related Work

StaticAnalysis. Static analysis of application source code has been applied [10,
16, 21] to detect various vulnerabilities. Dahse et al. [10] analyze PHP to !nd
stateful second-order vulnerabilities by examining application data"ows. Huang
et al. [21] !nd !le upload vulnerabilities in PHPwith symbolic analysis. Fang
et al. [16] adapts data"ow analysis to use deep learning. Restler [3] ana-
lyzes only a REST API speci!cation rather than application code. ReactApp-
Scan [20] targets React single-page applications with abstract interpretation.

Spidering the Modern Web

90

With our general approach, we can also detect and interact with React ele-
ments. While the applications in the evaluation did not use React, we were
able to successfully both add and mark notes as completed in the TodoMVC
React example [28]. In general, black-box dynamic approaches like ours in-
herently produce fewer false positives and o#er precise support for dynamic
language features across languages and frameworks.

Grey-box Fuzzing. Grey-boxweb fuzzing [35, 17, 34] typically instruments
server-side code to provide coverage feedback to the fuzzing engine. Trickel
et al. [34] apply this to detect both SQL and command injection. This ap-
proach is limited to single-shot re"ected injection vulnerabilities. While the
fuzzer can induce application changes, this approach does not reason about
states. Gauthier et al. [17] abstract web applications into REST models, and
then use a black-box fuzzer on Node.JS applications. Güler et al. [18] add
bug oracles to provide feedback in an instrumented PHP interpreter. In con-
trast, our approach aims to instead generate structured inputs by correctly
interacting with the client-side interface.

Black-box Scanners. CrawlJax [26] infers a state "ow graph, including
support for client-side user interface changes. This has since been incor-
porated into the ZAP scanner, and is therefore included in our evaluation.
Enemy of the State [12] introduces another scanner that can model server-
side state.

jÄk [29] improves detection of possible interactions, such as events, net-
workAPIs, and dynamic URLs and forms, through dynamic analysis of JavaScript
code. This analysis through event registration hooking, is re-used in Black
Widow.

Black Widow [14] combines navigation modeling with traversing and
tracking inter-state dependencies. In this paper we evaluate SpiderSapien
against Black Ostrich, which reuses much of Black Widow while extending
input validations support. Our approach improves the core navigation mod-
eling, crawling strategy, and form handling of the crawler increasing both
coverage and vulnerability detection rate.

EvoCrawl [19] utilizes evolutionary search to crawl modern applications.
This scanner is not included in our evaluation as the source code is unavail-
able. Their approach also improves code coverage and form submissions.
However, the discovery of interactable elements is limited to a prede!ned
set of element tags. Our method’s interactable element discovery could im-
prove the performance of their evolutionary crawler.

CreatingDatabase State. SynthDB [7] prepares database-backed PHPweb
applications for security testing by synthesizing a database after collecting

B. SpiderSapien: Client-Centric Crawler and Security Scanner

91

constraints with concolic execution. Spider-Scents [27] !nd portions of XSS
vulnerabilities in web applications by inserting payloads directly into the
database. In contrast, we attempt to create application state, including the
database, with the client-side interface.

LLMs for Security Scanning. YuraScanner [32] leverages LLMs for task-
driven scanning. LLMs help to execute tasks andwork"ows, such that deeper
states multiple steps from the seed URL can be scanned for vulnerabilities.
Their task-driven approach with a goal-based agent is a departure from the
more typical crawler approach we assume, and can therefore have comple-
mentary results. The LLM form solving in this paper is also substantially
di#erent. We do not simplify and abstract the webpage for LLM form input,
nor avoid the “click” actions present on the form (including checkboxes, radio
elements, and dropdown selects). Additionally, we use error and completion
feedback in our method, rather than assuming the form solver functions on
its !rst attempt. We also o#er an evaluation of the ability for an LLM to be
easily adapted to solve forms. However, their evaluation o#ers further evi-
dence that inputting values to a form is included within training data for the
LLMs evaluated. Even though YuraScanner is not open-source and is sub-
ject to vetting, we hope to obtain the code and include it in the evaluation.
This would help shed light on the di#erences between the techniques and
the overlap of the new vulnerabilities found.

Yoon et al. [38] apply LLM agents to fetch interactable elements for task
goals in Android applications. Future extensions of web crawling could align
with the visual approach of ScreenAI [4], where a vision language model
identi!es elements like search bars in a UI.

Input Validation. Heuristics are the most commonway for scanners to sat-
isfy input validation constraints. For example, YuraScanner [32] applies the
rules to click all checkboxes and radio elements present on a form, and select
the second entry when possible in a dropdown select. In contrast to these
heuristics, we do not restrict the LLMs interaction with input elements in a
form. Despite our shared observations of the di$cult “click” action elements,
we still see acceptable performance in evaluation.

Black Ostrich [15] focuses on input validation by solving regexes with
SMT collected from JS patterns and methods. ExpoSE [25] is a symbolic exe-
cution engine for JS that can solve regex-based input validation constraints.
FormWhisperer [23] uses symbolic analysis of HTML and JS that extracts and
solves constraints on form inputs, including between multiple form !elds.
In contrast, we solve forms with more diverse input validation approaches.
However, these approaches are complementary in that regex solving could

Spidering the Modern Web

92

provide an initial input for the LLM, or vice versa.

B.7 Conclusion

Our work showcases the challenges modern web applications pose for state-
of-the-art black-box scanners. To combat these challenges and help devel-
opers secure their applications, we develop a novel method to better interact
with these applications. Our method achieves immersive interaction by im-
proving detection of interactable elements and ordering interactions with
these elements, while using an LLM-based approach to tackle the diverse in-
put validations in forms. We implement this method in our scanner Spider-
Sapien and evaluate it on 8 web applications. Our results show improvement
in both coverage and vulnerability detection, with an average increase in
coverage of 21.5% compared to the union of all scanners and a total of 36 XSS
vulnerabilities across 6 applications. Additionally, we evaluate the our LLM-
powered form solving capabilities on forms from real-world websites. Our
newmethod can solve at least 23.3% more of the non-trivial forms compared.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

93

B.8 Ethics and Open Science

B.8.1 Ethics Consideration

Responsible Disclosure of Vulnerabilities

During the development and evaluation of this scanner, we found possibly
unknown XSS vulnerabilities in six of the web applications tested. We are
handling these security vulnerabilities in accordance with the best practices
of ethics in security [5]. We are in the process of reporting our !ndings to
the a#ected vendors, following coordinated vulnerability disclosure for all
discovered vulnerabilities. Wewill report responses from vendors in the !nal
paper.

Balancing Open Science and Misuse

Risk of Scanner. As a vulnerability scanning tool, this scanner could be
misused to exploit vulnerabilities without consent of application owners.
While we believe our method can better scan modern web applications, the
basic function of this tool v.s. others. Therefore, we will open-source the
code for the scanner upon acceptance.

The LLM form-solving method could be used for unintended goals such
as fake account creation. However, the tool we release is a black-box scanner
that cannot be directly applied to such goals. This is in contrast to YuraScan-
ner [32], which also considered this harm and elected to not open-source
their scanner. Their task-driven crawler could more easily allow targeted
misuse in a way this undirected black-box scanner cannot. Furthermore, the
ability for an LLM to solve a form is not !ne-tuned by any additional data
provided in this method, but rather seems to already be present in the models
tested.

Risk of Results. We will not release all the scans generated during eval-
uation, as they would precisely indicate vulnerabilities. However, we hope
that some vendors either !x the issues we notify them of, or indicate that
they don’t consider them dangerous in their threat model, so that some scans
could be included in our open science artifact.

Mitigating Experiment Cost and Risk

Local Open-SourceWeb Applications. We evaluate our scanner’s ability
to crawl and !nd vulnerabilities in a set of locally run open-source web ap-
plications. By actively scanning only our local clones of these applications

Spidering the Modern Web

94

in a controlled environment, we avoid any harm caused by scanners on the
web.

OpenWeb Form Solving. Measuring the form solving performance of our
method has two components with possible experimental overhead: collect-
ing a dataset of form-containing URLs, and evaluating the ability of our scan-
ner to solve these forms on live websites.

We collect the dataset of form-containing URLs with a script that limited
its interaction to avoid cost. For each domain, we perform a limited crawl
starting from its index page, and only load 30 pages on this domain with one
request to the HTML content of each. We avoid crawling pages outside of
the domain, and insert sleeps between requests. We believe these pages are
intended to be public, as they can only be linked from the index page each
domain is redirected to.

We evaluate form solving performance by loading a webpage containing
a form in a browser, but disable network tra$c before attempting to submit
a form. Allowing forms to actually submit data to the website has an un-
acceptable risk of corrupting the system state of these websites. Therefore,
we disable network tra$c before form submission to prevent this possible
harm. Otherwise, this interaction should be of low cost, similar to crawling
by a search engine.

B.8.2 Open Science

Source Code

We will open source our implementation upon publication.

Artifacts

Wewill include modi!cations made to web applications to facilitate our eval-
uation across scanners in the same repository. At publication, we will also
share more artifacts of this paper, such as complete Docker setups for these
web applications, to facilitate at least functionality assessment.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

95

Spidering the Modern Web

96

Bibliography

[1] Arachni. https://www.arachni-scanner.com.

[2] Arachni. arachni ui_form.rb. https://github.com/Arachni/
arachni/blob/8e5c5d0a9fd6c5555bc3bbf411c8fa411f12b6db/
lib/arachni/element/ui_form.rb#L19C26-L19C31.

[3] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler:
stateful REST API fuzzing. In ICSE, pages 748–758. IEEE / ACM, 2019.

[4] Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan
Mansoor, Vincent Etter, Victor Carbune, Jason Lin, Jindong Chen, and
Abhanshu Sharma. Screenai: A vision-language model for UI and info-
graphics understanding. In IJCAI, pages 3058–3068. ijcai.org, 2024.

[5] Michael D. Bailey, David Dittrich, Erin Kenneally, and Douglas
Maughan. The menlo report. IEEE Secur. Priv., 10(2):71–75, 2012.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Je#rey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners.
In NeurIPS, 2020.

[7] An Chen, Jiho Lee, Basanta Chaulagain, Yonghwi Kwon, and
Kyu Hyung Lee. Synthdb: Synthesizing database via program analysis
for security testing of web applications. In NDSS. The Internet Society,
2023.

[8] Firefox code to identify elements associated with events by
frameworks. https://github.com/mozilla/gecko-dev/blob/
80a3d06820b31e1d95beb582f15e789cda9f6e03/devtools/
server/actors/inspector/event-collector.js.

[9] World Wide Web Consortium. Css basic user interface module level 3
(css3 ui). https://drafts.csswg.org/css-ui-3/#valdef-cursor-pointer, 2023.

33

B. SpiderSapien: Client-Centric Crawler and Security Scanner

97

[10] Johannes Dahse and Thorsten Holz. Static detection of second-order
vulnerabilities in web applications. In USENIX Security Symposium,
pages 989–1003. USENIX Association, 2014.

[11] ZAP default value generator code. https://github.com/zaproxy/
zaproxy/blob/4fe0566304b1d646d248f041aeec59e6e9e8bfaa/
zap/src/main/java/org/zaproxy/zap/model/
DefaultValueGenerator.java#L74.

[12] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni
Vigna. Enemy of the state: A state-aware black-box web vulnerabil-
ity scanner. In USENIX Security Symposium, pages 523–538. USENIX
Association, 2012.

[13] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t
pentest: An analysis of black-box web vulnerability scanners. In
DIMVA, volume 6201 of Lecture Notes in Computer Science, pages 111–
131. Springer, 2010.

[14] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. Black
widow: Blackbox data-driven web scanning. In SP, pages 1125–1142.
IEEE, 2021.

[15] Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp
Rümmer, and Andrei Sabelfeld. Black ostrich: Web application scan-
ning with string solvers. In CCS, pages 549–563. ACM, 2023.

[16] Yong Fang, Shengjun Han, Cheng Huang, and RunpuWu. Tap: A static
analysis model for php vulnerabilities based on token and deep learning
technology. PloS one, 14(11):e0225196, 2019.

[17] François Gauthier, Behnaz Hassanshahi, Benjamin Selwyn-Smith,
Trong Nhan Mai, Max Schlüter, and Micah Williams. Backrest:
A model-based feedback-driven greybox fuzzer for web applications.
CoRR, abs/2108.08455, 2021.

[18] Emre Güler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Görz,
Xinyi Xu, Cemal Kaygusuz, and Thorsten Holz. Atropos: E#ective
fuzzing of web applications for server-side vulnerabilities. In USENIX
Security Symposium. USENIX Association, 2024.

[19] Xiangyu Guo. Evocrawl: Exploring web application code and state
using evolutionary search. Master’s thesis, University of Toronto
(Canada), 2023.

Spidering the Modern Web

98

[20] Zhiyong Guo, Mingqing Kang, V. N. Venkatakrishnan, Rigel Gjomemo,
and Yinzhi Cao. Reactappscan: Mining react application vulnerabilities
via component graph. In CCS, pages 585–599. ACM, 2024.

[21] Jin Huang, Yu Li, Junjie Zhang, and Rui Dai. Uchecker: Automatically
detecting php-based unrestricted !le upload vulnerabilities. In DSN,
pages 581–592. IEEE, 2019.

[22] Zifeng Kang, Song Li, and Yinzhi Cao. Probe the proto: Measuring
client-side prototype pollution vulnerabilities of one million real-world
websites. In NDSS. The Internet Society, 2022.

[23] Björn Karthein, Cristian-Alexandru Staicu, and Andreas Zeller. A gen-
eralized approach for solvingweb form constraints. InASE, pages 2460–
2461. ACM, 2024.

[24] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale
for parameter-e$cient prompt tuning. In EMNLP (1), pages 3045–3059.
Association for Computational Linguistics, 2021.

[25] Blake Loring, DuncanMitchell, and Johannes Kinder. Sound regular ex-
pression semantics for dynamic symbolic execution of javascript. CoRR,
abs/1810.05661, 2018.

[26] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling AJAX by
inferring user interface state changes. In ICWE, pages 122–134. IEEE
Computer Society, 2008.

[27] Eric Olsson, Benjamin Eriksson, Adam Doupé, and Andrei Sabelfeld.
Spider-scents: Grey-box database-aware web scanning for stored XSS.
In USENIX Security Symposium. USENIX Association, 2024.

[28] Addy Osmani. Todomvc. https://todomvc.com/, 2023.

[29] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian
Rossow. jäk: Using dynamic analysis to crawl and test modern web
applications. In RAID, volume 9404 of Lecture Notes in Computer Science,
pages 295–316. Springer, 2015.

[30] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczynski, and Wouter Joosen. Tranco: A research-oriented top
sites ranking hardened against manipulation. In NDSS. The Internet
Society, 2019.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

99

[31] Aleksei Stafeev and Giancarlo Pellegrino. Sok: State of the krawlers
- evaluating the e#ectiveness of crawling algorithms for web security
measurements. In USENIX Security Symposium. USENIX Association,
2024.

[32] Aleksei Stafeev, Tim Recktenwald, Gianluca De Stefano, Soheil Khoda-
yari, and Giancarlo Pellegrino. Yurascanner: Leveraging llms for task-
driven web app scanning. NDSS, 2024.

[33] Why Software Is Eating the World. https://a16z.com/why-
software-is-eating-the-world/.

[34] Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni Vigna,
Christopher Kruegel, Ruoyu Wang, Ti#any Bao, Yan Shoshitaishvili,
and Adam Doupé. Toss a fault to your witcher: Applying grey-box
coverage-guided mutational fuzzing to detect SQL and command injec-
tion vulnerabilities. In SP, pages 2658–2675. IEEE, 2023.

[35] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer,
Michalis Papaevripides, and Elias Athanasopoulos. webfuzz: Grey-box
fuzzing for web applications. In ESORICS (1), volume 12972 of Lecture
Notes in Computer Science, pages 152–172. Springer, 2021.

[36] w3af. http://w3af.org.

[37] Wapiti. https://wapiti-scanner.github.io.

[38] Juyeon Yoon, Robert Feldt, and Shin Yoo. Autonomous large lan-
guage model agents enabling intent-driven mobile GUI testing. CoRR,
abs/2311.08649, 2023.

[39] Michal Zalewski. Skip!sh, 2015.

[40] OWASP ZAP. https://www.zaproxy.org.

.1 Appendix

.1.1 LLM Form Solving Prompt

We provide additional details about the prompt for our LLM form solving
method here.

Figure 6 contains the complete prompting template for LLM form solving
We also provide the complete speci!cation of our LLM function calling:

Spidering the Modern Web

100

Figure 6: Prompting template for LLM form solving

System prompt:

You are a webpage tester. Do make assumptions about what values
to plug into functions. Randomly generate realistic values to test.
Match the language and region.

Few-shot examples:

Example user prompt

Send user input to the following form. <form> ... example ... </form>

Example LLM response

[(CSS selector, input value), ...]

User prompt

Required elements are ...
All input elements are: ...
Input to element ... must match regex ...
Send user input to the following form. <form> ... </form>

LLM response

[(CSS selector, input value), ...]

If previous form solve failed:

New user prompt

The previous input you gave me failed for
inputting input_val to css_sel, and ...

Furthermore, the previous input you gave
me failed for locating css_sel, and ...

There are errors on this form.
... Error messages ...

Generate new user input values for the previous form.

New LLM response

[(CSS selector, input value), ...]

B. SpiderSapien: Client-Centric Crawler and Security Scanner

101

functions = {
"name": "send_user_input",
"description": "Send valid input to the website form.",
"parameters": {
"type": "object",
"properties": {
"elements": {

"type": "array",
"description": "The CSS locator and user input for the

input elements of a website form.",
"items": {
"type": "object",
"properties": {
"locator" : {
"type": "string",
"description": "A CSS locator for the website form

element.",
},
"input" : {
"type": "string",
"description": "User input for the website form

element.",
},

},
"required": ["locator", "input"]

},
},

},
"required": ["elements"]

}

.1.2 Form Dataset

We accumulate a dataset of forms by crawling a portion of the Tranco stan-
dard list of top-ranked web domains [30], downloaded at 2024-10-21. For
each of the initial 9046 domains in the Tranco list, we do a simple crawl that
follows static HTML links from a seed URL until a threshold of 30 pages are
found, or links are exhausted.

As indicated by the Stafeev [31] SoK, we use randomized BFS naviga-
tion and URL path equality + query string key page equality. During the
crawl, we log any pages that contain a form element. Across these crawled
9046 domains, we discover 118455 unique URLs with at least one form ele-
ment. These crawls were performed on 2024-10-31. Out of the 118455 form-
containing URLs, we !nd 6916/9046 domains with 1-30 URLs each, averaging

Spidering the Modern Web

102

17.1 URLs.
We randomly shu%ed these URLs, and selected the initial 2000 URLs to

use in this evaluation. This sample contains 1653 domains with 1-4 URLs
each, averaging 1.2 URLs.

Across the 2000 form-containing URLs selected for this evaluation, we
!nd 4953 forms. This evaluation was performed in November-December
2024, at which point 1994/2000 of these URLs were still live. For this evalua-
tion, we consider a form to be identical if it is in the same relative index on
the page.

During the later evaluation of form solving methods, URLs on 1649/1653
domains could be reached, with between 1-4 URLs each, averaging 1.2 URLs
per domain. 1744/1994 of these resolved URLs contained forms, with 1-279
forms per URL, averaging 2.8 forms.

.1.3 Additional Form Solving Data

We provide all form solving evaluation results on all forms in Table 3.

Table 3: Success rate of all form solving methods on all forms.

Evaluated method URLs Forms Forms solved Solve %

No Input 1974 4157 3233 77.8%
ZAP 1876 3492 2856 81.8%
Gemini (t=0.0) 1828 3308 2649 80.1%
Gemini (t=0.2) 1844 3327 2683 80.6%
Gemini (t=0.5) 1701 3017 2422 80.2%
Gemini (t=1.0) 1519 2669 2110 79.1%
Gemini (t=1.5) 1836 3243 2611 80.5%
Gemini Pro (t=0.5) 1730 3077 2430 79.0%
Gemini Pro (t=1.0) 1631 2785 2219 80.0%
GPT4-Turbo (t=0.5) 19 38 34 70.8 %
GPT4o (t=0.5) 122 181 153 84.5%
GPT4o-Mini (t=0.5) 784 1793 1519 84.7%

We provide a full version of the evaluation results on non-trivial forms
in Table 4.

We also include the comparative performance ofmethodswhen restricted
to the same set of forms available to a Gemini model in Figure 7.

.1.4 Web Applications

In Table 5 we present the exact version of each web application used in the
evaluation.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

103

Table 4: Success rate of all form solving methods on non-trivial forms.

All Non-trivial forms
Evaluated method URLs Forms Forms solved Solve %

ZAP 606 1029 414 40.2%
Gemini (t=0.0) 599 1021 472 46.2%
Gemini (t=0.2) 604 1025 473 46.2%
Gemini (t=0.5) 549 960 451 47.0%
Gemini (t=1.0) 493 822 370 45.0%
Gemini (t=1.5) 604 1024 483 47.1%
Gemini Pro (t=0.5) 562 948 432 45.6%
Gemini Pro (t=1.0) 535 873 402 46.1%
GPT4-Turbo (t=0.5) 7 16 13 81.2%
GPT4o (t=0.5) 43 65 41 63.1%
GPT4o-Mini (t=0.5) 244 568 308 54.2%

Non-trivial forms available to GPT4o-Mini
ZAP 234 356 121 34.0%
Gemini (t=0.0) 226 331 151 45.6%
Gemini (t=0.2) 228 346 153 44.2%
Gemini (t=0.5) 199 315 153 48.6%
Gemini (t=1.0) 205 310 150 48.4%
Gemini (t=1.5) 221 332 150 45.2%
Gemini Pro (t=0.5) 208 302 432 45.6%
Gemini Pro (t=1.0) 198 283 134 47.4%
GPT4-Turbo (t=0.5) 7 9 6 66.7%
GPT4o (t=0.5) 43 65 41 63.1%
GPT4o-Mini (t=0.5) 244 568 308 54.2%

Non-trivial forms available to Gemini (t=0.5)
ZAP 522 767 292 38.1%
Gemini (t=0.0) 539 836 387 46.3%
Gemini (t=0.2) 541 841 388 46.1%
Gemini (t=0.5) 549 960 451 47.0%
Gemini (t=1.0) 472 741 339 45.8%
Gemini (t=1.5) 545 853 386 45.3%
Gemini Pro (t=0.5) 518 759 353 46.5%
Gemini Pro (t=1.0) 512 783 369 47.1%
GPT4-Turbo (t=0.5) 7 4 7 57.1%
GPT4o (t=0.5) 38 52 30 57.7%
GPT4o-Mini (t=0.5) 199 315 166 52.7%

We made code changes to each application, which we will include in our
open-source artifact upon publication. In particular, we modify the applica-
tions to help scanners automatically authenticate, either by instrumenting
the authentication function or by simulating an automatic login. This is nec-
essary as many of the other scanners we evaluate fail to correctly sign in on

Spidering the Modern Web

104

Figure 7: Comparative performance of form solvingmethods for non-
trivial forms available to the Gemini (t=0.5) model

ZA
P

G
em

in
i 0.

0

G
em

in
i 0.

2

G
em

in
i 0.

5

G
em

in
i 1.

0

G
em

in
i 1.

5

G
em

in
i P

ro 0.
5

G
em

in
i P

ro 1.
0

G
PT

4o
-M

in
i 0.

5

ZAP

Gemini0.0

Gemini0.2

Gemini0.5

Gemini1.0

Gemini1.5

Gemini Pro0.5

Gemini Pro1.0

GPT4o-Mini0.5

0 62 63 73 60 67 64 60 34

22 0 6 23 15 8 11 25 17

22 6 0 21 14 5 8 21 16

21 18 16 0 7 6 19 12 15

27 33 29 28 0 22 32 29 13

30 15 13 17 15 0 14 20 17

24 10 8 19 13 5 0 16 15

20 17 16 11 10 8 15 0 13

3 3 2 2 2 1 4 3 0

some of these modern applications. It also helps the scanners re-authenticate
even if they sign out by mistake. Avoiding sign outs is an orthogonal prob-
lem, but one that all scanners face. With these modi!cations we can learn
more about the crawling capabilities of the various scanners without getting
stuck on their varying support for successful authentication.

Additionally, since we are interested in detecting vulnerable code in web
applications, we deactivate hardening functionality such as Content-Security
Policy (CSP). In practice, this only a#ects Kanboard. We argue that it is still
important to !nd XSS vulnerabilities even if they are mitigated by CSP as
someone could run an instance without CSP. Furthermore, there is prece-
dence for the Kanboard developers !xing XSS vulnerabilities [19] .

.1.5 Crawling Algorithm

A more detailed overview of the crawling strategy is presented in Algo-
rithm 2.

.1.6 Coverage Results Details

In Table 6 we present the exact numbers for the coverage evaluation.

B. SpiderSapien: Client-Centric Crawler and Security Scanner

105

Table 5: The table presents the versions and web applications used in the
evaluation.

Application Version Description

DokuWiki 2024-02-06b CMS
TinyFileManager 2.6 File Explorer
Kanboard 1.2.40 Project Manager
WordPress 6.6.2 CMS
osCommerce 4.14.63493 Ecommerce
HotCrp 9588ab0 Conference Manager
Leantime 3.3.3 Project Manager
Piwigo 14.3.0 Photo Album

Table 6: Lines of code (LoC) executed on the server. Each column represents
the comparison between SpiderSapien and another crawler. The cells contain
three numbers: unique LoC covered by SpiderSapien (A\B), LoC covered by
both crawlers (A↘B) and unique LoC covered by the other crawler (B \A).
The numbers in bold highlight which crawler has the best coverage.

Crawler Arachni Black Ostrich Wapiti ZAP
A \B A↘B B \A A \B A↘B B \A A \B A↘B B \A A \B A↘B B \A

DokuWiki 9 510 7 167 188 1 630 15 047 565 3 068 13 609 2 975 799 15 878 2 113
TinyFileManager 549 934 35 481 1 002 10 553 930 21 154 1 329 108
Kanboard 9 136 6 425 151 6 635 8 926 82 11 353 4 208 14 7 049 8 512 574
WordPress 12 961 41 750 2 843 4 586 50 125 2 474 35 197 19 514 52 15 483 39 228 1 192
osCommerce 47 679 22 611 6 029 11 855 58 435 23 266 62 447 7 843 5 60 697 9 593 467
HotCrp 26 264 4 284 23 11 639 18 909 910 26 265 4 283 18 23 658 6 890 300
Leantime 9 063 20 669 667 4 390 25 342 1 308 8 010 21 722 1 108 3 797 25 935 1 006
Piwigo 6 993 21 426 3 172 7 032 21 387 2 087 23 625 4 794 6 16 485 11 934 560

Spidering the Modern Web

106

Algorithm 2 Algorithm for crawling strategy.
elements↑ getInteractables(url)
maxInteractions↑ 10 // Checked in tryInteract
while link = elements.links.pop() do

interact(link)
updateElements(getInteractables())
if doneShallow() then

break
end if

end while
while hasWork() do

tryInteractForm()
if rand() < 0.05 or nothingRecentlyNew() then

tryInteractRandomLink()
end if
tryInteractNewActiveInput()
tryInteractNewActiveElement()
tryInteractNewInput()
tryInteractNewElement()
tryRandom()

end while

B. SpiderSapien: Client-Centric Crawler and Security Scanner

107

Browser Extensions

C
FakeX:A Framework forDetecting FakeRe-
views of Browser Extensions
Eric Olsson, Benjamin Eriksson, Pablo Picazo-Sanchez, Lukas Ander-
sson, and Andrei Sabelfeld
19th ACM ASIA Conference on Computer and Communications Security (ACM
ASIACCS 2024)

111

Abstract

Browser extensions boost user experience on the web. Similarly to smart-
phone app stores, browsers like Chrome distribute browser extensions via
their Web Store, enabling a thriving market of third-party developed exten-
sions. The Web Store incorporates a user review system to help users decide
which extensions to install. Unfortunately, the open nature of the review
system is subject to reputation manipulation. As browser vendors !ght repu-
tation manipulation, attackers employ more sophisticated methods to stay
under the radar. Focusing on fake reviews, we identify several techniques
attackers use: fake accounts, disjoint sets of fake accounts for di"erent exten-
sions, automation of generated reviews, and focusing on reviews rather than
ratings. We present FakeX, a framework to detect fake reviews by focusing
on inference from review metadata. FakeX employs !ve distinct methods,
including temporal distribution analysis, relationship clustering, and ratio-
based assessments, to unveil patterns indicative of fake reviews. Evaluation
of over 1.7 million reviews reveals the e"ectiveness of FakeX in identifying
hundreds of fake review campaigns. Furthermore, our investigation of these
fake reviews uncovers 86 malicious extensions, mounting attacks that range
from data-stealing to monetization, impacting over 64 million users. In ad-
dition, we collaborate with Adblock Plus and Avast to demonstrate FakeX
in action, expanding a seed list of newly detected malicious extensions to
discover a further 16 malicious extensions with millions of users, where, in
some cases, attackers tried to improve malicious code.

C.1 Introduction

Browser extensions are user-friendly applications that personalize the brows-
ing experience by introducing features and/or modifying the appearance
of web pages. Developed using standard web languages like HTML and
JavaScript, extensions empower developers to easily craft applications that
interact smoothly with the browser’s components and user interface. These
extensions have attracted millions of users globally [7], contributing to the
popularity of extension-enabled browsers such as Google Chrome.

Web browser vendors feature app stores for distributing approved exten-
sions. The foremost example is the Chrome Web Store, which distributes
extensions for the Chrome web browser as well as for other Chromium-based
browsers such as Brave and Opera.

Table B.1: Fake review techniques vs detection methods.

Fake Review Technique Description Detection Method(s) Section

Disjoint Sets of Fake Accounts Disjoint sets of multiple accounts for review-
ing.

ATW, HVC Sections C.3.1 and C.3.2

Fake Accounts Using a set of accounts to review multiple
extensions.

CoR Section C.3.3

Spamming Large volume of reviews within a short period
of time

Spam Detection Section C.3.4

Written Review Dominance Only writing reviews but not rating Written Ratio Section C.4.5

The Web Store incorporates a user review system, allowing users to share
feedback on their installed extensions—uniquely identi!ed by an ID1. This
system is crucial for promoting high-quality extensions and assisting users in
deciding which extensions to install [21]. Users can rate extensions on a 1 to
5-star scale and provide written reviews.

Unfortunately, the open nature of the Web Store’s review system has led
to the emergence of reputation manipulation. Reputation manipulation occurs
when individuals or groups arti!cially enhance or undermine an extension’s
reputation, often through fake reviews and ratings. The problem is exacer-
bated by security experts recommending that users read reviews to enhance
their Internet safety [43, 9, 38, 6]. This issue impacts the platform’s credibility
and may cause users to install low-quality or malicious extensions [45].

Faking reviews has become an attractive target for monetization on the
black market [31], with several websites and communities o"ering to sell
reviews online [42, 51, 16, 15, 52, 50]. These activities thrive despite vendors
like Google explicitly forbidding reputation manipulation [19], including
attempts at in#ating reviews and ratings [18].

At the same time, detecting fake reviews is challenging, which explains
why they persist on stores like theWeb Store [27]. As we will see, modern fake
reviews attempt to stay under the radar by avoiding obvious faking techniques
so they will not be #agged for anomalies, such as excessive reviews from a
single user. Motivated by these challenges, we propose two research questions:

RQ1: Can fake reviews be detected on the Chrome Web Store?

RQ2: Can methods for detecting fake reviews help discover malicious
extensions?

The text of fake reviews is often generic, making it hard to distinguish
from benign reviews. Sometimes, there is even no distinction as vague text can
be copied from legitimate reviews to reapply as fake reviews to a broad swath

1For example, the o$cial Google Translate extension has the unique ID aapbdb-
domjkkjkaonfhkkikfgjllcleb. All IDs used in this study are included in Appendix C.5.

Spidering the Modern Web

114

of extensions. Furthermore, fake review authors employ various concealment
techniques to stay undetected. Indeed, we identify several techniques fake
review authors use to operate while staying under the radar: fake accounts,
disjoint sets of fake accounts for di"erent extensions, automation of generated
reviews, and focusing on reviews rather than ratings. A key observation is
that we can still track these techniques through the temporal metadata of the
reviews and user IDs.

To investigate our research questions, we introduce FakeX, a framework
for detecting fake reviews. A principal strength of FakeX is that it does not
rely on the reviews’ content but focuses on the metadata, which includes
the timestamps associated with users’ Web Store reviews. In particular, we
focus on 1) the temporal distribution of reviews, 2) the relationship between
reviewers, and; 3) the ratios between ratings and reviews.

FakeX comprises !ve main methods, where three focus on the temporal
distribution of the reviews, whereas the other two use the relationships
between reviewers. In particular, FakeX o"ers 1) ATW, a novel method for
identifying multiple accounts who post reviews in close temporal proximity;
2) HVC, a machine learning-based approach that clusters reviews by their
timestamps, not only within the same extension but also across multiple
extensions; 3) Spam Detection, a method focused on extracting bursts of high
review activity in a short period within an extension; 4) CoR, a method that
focuses on discovering clusters of reviewers who consistently review the same
extensions, and; 5) Written Ratio, a method that use the ratio between rating
and reviews to !nd extensions with an exceptionally high fraction of written
reviews. Table B.1 summarizes the methods used to create fake reviews and
which of our methods detect them.

To evaluate FakeX, we download all 1,782,702 reviews of all 115,124 ex-
tensions in the Web Store as of February 9, 2023. Answering RQ1 positively,
FakeX uncovers hundreds of review campaigns sharing large numbers of
reviewers, some consisting of thousands of accounts. One method in FakeX
!nds 59 clusters of 286 extensions sharing temporal patterns in their fake
reviews.

Turning to RQ2, we examine extensions with fake reviews to determine if
they are also malicious. In total, we !nd 86 malicious extensions, with attacks
ranging from stealing search query data from users to redirecting users to
fake surveys to win prizes. These extensions share a total of over 64 million
users. Although the number of downloads can also be manipulated [38], it is
still staggering.

In addition to our manual analysis, we collaborate with Adblock Plus
and Avast to demonstrate how FakeX can be leveraged to expand a seed

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

115

list of malicious extensions. Using Adblock Plus’ list of 18 newly discovered
malicious extensions [36], we discover 16 new associated malicious extensions
with millions of users, where attackers sometimes tried to improve malicious
code. This practical deployment of FakeX resulted in public acknowledgments
of our !ndings by Avast and Adblock Plus [36, 35] and the removal of all of
these extensions from the Web Store by Google.

In summary, the paper’s contributions are the following:
• We analyze reviews in the Web Store and identify four techniques for
fake reviews (Section C.2).

• Based on these techniques, we propose FakeX and describe our !ve
novel methods to detect fake reviews (Section C.3)

• We evaluate our methods on all reviews in theWeb Store to demonstrate
how FakeX detects fake reviews (Section C.4).

• We show how clusters of extensions with fake reviews can be leveraged
to !nd malicious extensions (Section C.5).

We discuss limitations in Section C.6, present related work in Section C.7,
and conclude the paper in Section C.8.

We stress that although we uncover a correlation between fake reviews
and malicious extensions, the techniques used by FakeX discover fake reviews
rather than malicious extensions. Indeed, many of the extensions found
with our method and highlighted in our analysis, whose review patterns
indicate reputation manipulation, are not malicious as of February 2023 (see
Appendix C.5).

Coordinated Disclosure, Ethical Considerations, and Open-source
Artifacts.. We have reported our !ndings to Google, including the malicious
extensions we !nd with FakeX. In total, we !nd 86 and of these 44 have been
removed so far.

In line with the ethical principles for cybersecurity research from the
Menlo Report [41], our research does not cause any harm to users or develop-
ers. We include extension and user IDs and names to aid the reproducibility
of the results presented in this paper. We open-source the code for FakeX2.

C.2 Fake Reviews on Chrome Web Store

Reviews on Web Store. The Chrome Web Store [17] is the main repository
for Chrome browser extensions. The Web Store allows users to write reviews
and rate extensions. To submit a review, users must log in and install the

2FakeX code and sample data: https://www.cse.chalmers.se/research/group/sec
urity/fakex

Spidering the Modern Web

116

Figure B.2: Distribution of the number of browser extensions users review,
with at least one review, in the Web Store as of February 2023. On average
these users review 1.16 extensions.

by arti!cially increasing the rating. We identify spam reviews as reviews
within three minutes of each other (as we detail in Section C.3.4). Around
2019, a larger spam campaign took place, after which we can see that the
combined rating is higher than the non-spam one. We also include an example
of reviewers demoting another extension4. In Figure B.1b, we see a large
amount of 1-star spam-marked reviews around the 21st.

Fake review techniques. We identify four techniques aimed at manipulat-
ing the reputation of extensions on the Web Store while evading detection.
We refer to these reviews produced with the goal of reputation manipulation
as fake reviews. The four techniques we focus on are fake accounts, disjoint
sets of fake accounts, spamming, and written ratio reviews. Furthermore, we
de!ne a review campaign as a coordinated e"ort using multiple reviews to
manipulate the reputation of one or more extensions. For example, if someone
pays for 20 fake reviews to promote two extensions, these 20 reviews would
be part of the same campaign.
1) Disjoint Sets of Fake Accounts. A motivated attacker might use disjoint—or

partially disjoint, sets of fake accounts to write reviews. Using unique
accounts makes fake reviewers less likely to be detected [31]. For example,
!ve can review one extension from a set of ten accounts while the other
!ve review another, making it harder to track the campaign.

2) Fake Accounts. A weaker version of the previous attack is to use multiple
accounts, but not necessarily unique ones. Still, attackers might prefer

4!ikommddbeccaoicoejoniammnalkfa

Spidering the Modern Web

118

to use a set of accounts instead of simply using one account to write
all fake reviews to avoid detection. In Figure B.2, we show how many
extensions reviewers review. We observe that the majority of reviewers,
over 91%, who review at least one extension only review one. That is, an
overwhelming majority of reviewers only review one extension.

3) Spamming. Fake review authors may use automated tools or bots to submit
many reviews without the need for human interaction. Unlike the previous
methods, this approach requires analyzing the frequency and timing of
reviews to distinguish them from legitimate user feedback.

4) Written Review Dominance. The Web Store allows users to rate extensions
(1-5 stars) or write a review and rate the extensions. Since a valid account
is needed for rating and reviewing, the attacker has no additional technical
challenge. Adding text together with a rating is more persuasive. In the
case of malicious extensions, malicious reviewers can include keywords
such as “safe” and “secure” to trick users. Full-text reviews are also what
is being provided by fake review services [50, 51, 15, 52].

Motivated by these manipulation techniques, we set out to propose a
general framework for detecting fake reviews and evaluate it on reviews from
the Web Store.

C.3 FakeX: Framework

This section presents FakeX, a framework that combines !ve methods to
detect fake reviews of extensions in the Web Store. Our primary goal is to
detect review campaigns (RQ1) and only then identify potentially malicious
extensions (RQ2).

Detecting Fake Reviews in the Web Store. In the following, we present
three methods to detect fake reviews of the Web Store: Aggregated Time
Window (ATW), Horizontal Vertical Clustering (HVC), and Co-Reviewer (CoR)
analysis. While all three methods attempt to detect abnormal review patterns
by detecting coordinated reviews on extensions and generating clusters of
extensions with shared behavior, they have di"erent approaches. As we
will see, the main di"erence between these methods is that CoR primarily
targets clusters of reviewers reusing their accounts, while both ATW and
HVC address the case where fake review authors create new accounts or
multiple accounts are otherwise used.

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

119

C.3.1 Aggregated Time Window (ATW)

Intuition. The ATW method aims to link reviews posted within close tem-
poral proximity. This is known in the literature as a burst and is formally
de!ned as short periods of intensive activity followed by long periods of
inactivity [3]. By focusing on the temporal aspect, instead of reviewer IDs
or relationships, we can detect attacks using disjoint sets of accounts, as
explained in Section C.2.

Figure B.3 presents an example with two extensions, A and B, with circles
representing the reviews they get over time. ATWwill connect reviews one-to-
one within the same time bursts. This e"ectively creates a graph with reviews
as nodes and edges connecting them if these reviews are within the same burst.
Multiple burst connections are possible. Review 2 can connect to either review
1 or 3 in this example. We maximize the number of connections. Note that if
review 2 connects with review 3, then 1 and 4 will not be connected. ATW
does not consider internal connections such as 1 to 3. Finally, we consider
the individual and common (shared) number of reviews before clustering and
!ltering those that do not meet a speci!ed threshold. In this example, reviews
1, 2, 3, and 4 are in common, while review 5 is not. This !lter is crucial to
avoid clustering all extensions with very frequently reviewed extensions.

Method. First, we connect all reviews in the same burst. At this stage, we
do not have a one-to-one constraint. Second, we !lter these connections
with a threshold for the ratio of burst shared between two extensions to
the max of the two extensions’ total reviews. We remove any connection
where the extensions share less than four bursts to further remove noise.
This helps remove coincidental connections where one extension with few
reviews happens to be paired up with a frequently reviewed extension with
potentially hundreds of reviews. Given the constructed graph, we face the
issue of overlapping connections, as the algorithm connects every review to
every other in close temporal proximity. On this graph, we apply discrete
optimization to match every review with at most one other, optimizing the
total number of connections.

When implementing this algorithm, a critical detail is that no review is
connected to another review of the same extension. The lack of such con-
nections naturally makes the graph of one extension pair bipartite. Bipartite
graphs are graphs in which vertices can be divided into two separate, non-
intersecting groups. If a graph is bipartite, it also implies that the incidence
matrix of that graph is guaranteed to be unimodular [30]. This property
allows discrete optimization to be applied with low computational overhead.

Finally, after the discrete optimization ensures the reviews are connected

Spidering the Modern Web

120

Extension A

Extension B Time

1

2

3

4 5

Figure B.3: Example of two extensions with reviews and the connections ATW
makes. The dotted line shows non-maximizing connections that discrete
optimization will remove.

one-to-one, we perform a second !ltering. Similar to the !rst !ltering, we
ensure that the connected reviews make up a signi!cant portion of the total
reviews.

C.3.2 Horizontal Vertical Clustering: A Machine Learning Ap-
proach

Inspired by previous research comparing timeseries [39], we implement a
ML-based approach. This approach involves clustering reviews into what we
call “horizontal clusters” for reviews in the same time series of one extension
and “vertical clusters” for clustering multiple time series/extensions using the
centroids of the horizontal clusters produced before. Intuitively, a horizontal
cluster represents a burst of review activity for one extension, and a vertical
cluster represents a shared burst for multiple extensions. After this core idea,
we denote our method, Horizontal Vertical Clustering (HVC). Similar to ATW,
the focus is on temporal data, allowing us to detect attacks using disjoint sets
of accounts, as explained in Section C.2.

Speci!cally, we use the DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm for horizontal and vertical clustering.
DBSCAN [5] is an unsupervised clustering algorithm that groups based on an
epsilon hyperparameter, which is the local radius for expanding clusters. In
this method, epsilon is the threshold for the maximum time distance between
reviews, or centroid of review clusters, within a group. This group consists
of either reviews for a single extension or centroids of multiple extensions.
It is worth mentioning that DBSCAN has been previously used in malware
analysis [26] and clustering browser extensions for malware detection [37].

While DBSCAN performs well in its role as the clustering algorithm for
this method, we are not taking advantage of some of its unique characteristics,
such as !nding arbitrarily-shaped clusters. Therefore, we believe that it can
be substituted for other algorithms.

In Table B.2, we include a real example illustrating how we use HVC to
form clusters of extension reviews horizontally and vertically. In this example,

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

121

Table B.2: Example of a vertical cluster DBSCAN produces together with
its horizontal clusters. We use 0.0001 and 1.5e-06 as the epsilons for the
horizontal and the vertical clusters, respectively. All the reviews of this table
were written on the same day (2023-01-11) between 09:46:42 and 10:44:15.

Extension Username Time Centroid

C7 Dennis 09:46:42 10:11:33
Yuriy 09:57:52 10:11:33
William 10:08:38 10:11:33
!"#$%&’ 10:23:55 10:11:33
Jamie 10:40:36 10:11:33

B6 Dennis 09:48:46 10:13:19
Yuriy 09:59:13 10:13:19
William 10:10:18 10:13:19
!"#$%&’ 10:25:16 10:13:19
Jamie 10:43:03 10:13:19

A5 Dennis 09:49:59 10:14:38
Yuriy 10:00:31 10:14:38
William 10:11:53 10:14:38
!"#$%&’ 10:26:32 10:14:38
Jamie 10:44:15 10:14:38

we consider a vertical cluster comprising of three extensions A5, B6, and C7.
We !rst create the horizontal clusters, i.e., grouping reviews written close
enough in time per extension. This forms a summary of the review activity for
a single extension. For instance, we can see that HVC clusters all the reviews
within a timestamp of over 30 minutes (i.e., 9:46:42 and 10:40:36) of the C7

extension in the same horizontal cluster (see “Horizontal Cluster” column of
Table B.2).

After that, we compute the centroid (Horizontal Centroid in the table),
which serves as the datetime value for clustering extensions vertically (see
Vertical Cluster column). Interestingly, in this example, the centroids of the
reviews for these three extensions are within a radius of less than two minutes
(0:01:32.3). We also include a graphical representation of the same example in
Figure B.4.

C.3.3 Co-Reviewer

This method identi!es connections between accounts that frequently review
the same extensions, regardless of when this shared activity occurs in bursts.

5geokkpbkfpghbjdgbganjkgfhaafmhbo
6mpiihicgfapopgaahidedijlddefkedc
7lgjdgmdbfhobkdbcjnpnlmhnplnidkkp

Spidering the Modern Web

122

09
:46

:42

09
:48

:46

09
:49

:59

09
:57

:52

09
:59

:13

10
:00

:31

10
:08

:38

10
:10

:18

10
:11

:53

10
:23

:55

10
:25

:16

10
:26

:32

Extension A

Extension B

Extension C

10
:40

:36

10
:43

:03

10
:44

:15

10:11:33

10:13:19

10:14:38

0000000630906fd8 000000f6258c354e 0000005e72ce4550 000000074a4dd1f1 000000248830fcc7

Cluster 1

Cluster 2

Cluster 1

Users

Cluster 18051

Figure B.4: Example of !ve reviewers of three real extensions A5, B6, and C7

that DBSCAN groups in the same vertical cluster (18051) using 0.0001 and
1.5e-06 as the epsilons for horizontal and vertical clustering. We mark the
centroid of every horizontal cluster with a star.

This approach helps uncover clusters of fake accounts, a technique we dis-
cuss in Section C.2, which manipulates the reputation of a common set of
extensions. The primarily targeted model of reputation manipulation for this
method is reviews campaigns, detected when accounts are reused and review
several heavily overlapping extensions.

In contrast to ATW or HVC, we preprocess the data here to !lter out all
accounts with only one written review. Since many reviewers only write one
review (see Figure B.2), we also improve runtime performance by removing
them early in the process.

After this preprocessing, the algorithm iterates through each account and
the extensions they reviewed, calculating the overlap between the current
account and other accounts that reviewed the same extensions. This process
establishes the degree of overlap between accounts. We use a threshold to
form clusters of accounts with a high degree of overlap. Based on these
clusters of accounts, we !nally extract the list of shared extensions they
reviewed.

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

123

C.3.4 Spam Detection

Spam detection aims to !nd attackers who post as many reviews as possible
in a very short time. For example, an extension might get a legitimate review
once a day but then get ten reviews in just three minutes. Our spam detection
method aims to detect this type of attack. To achieve this task, we de!ne the
time between two consecutive reviews in an extension as ωt. Then, for every
pair of consecutive reviews, we mark them as suspicious if the ωt is less than
a threshold, which we set to three minutes in this study. In Appendix C.3,
we look closer at the general distribution of ωt for all extensions and further
motivate our choice of threshold.

C.3.5 Written Ratio

This method leverages users’ choice to leave a rating or attach text to their
review. Since it takes extra e"ort to write text, we suppose that not all users
who leave a rating will also write a review. We detect some abnormal review
patterns by analyzing the ratio between the written reviews and ratings. An
example of this type of attack is on the extension “D365-UI-Test-Designer”8.
This extension has 141 ratings, all of which include written reviews, resulting
in a written ratio of 100%. As such, this method will report extensions with a
suspiciously high fraction of written reviews.

C.4 Evaluation

We implement FakeX in Python and deploy the framework on a Windows
computer using an AMDRyzen 5 5600X CPU and 32GB of RAM. In this section,
we present the results of FakeX together with our analysis and insights.

We crawled the Web Store as of February 9th, 2023. In total, we collected
the extension’s name, ID, and all written reviews of 1,782,702 reviews across
55,107 extensions (out of a total of 115,124 extensions). For every review of
an extension, we have associated metadata: user’s name, user’s ID, review
text, rating, timestamp of the initial review, and timestamp of the latest
modi!cation.

C.4.1 Aggregated Time Window

The ATWmethod uncovers 59 clusters with three or more extensions, with an
exceptionally high number of temporally shared reviews. For this evaluation,
we use a burst length of 60 minutes. In Table B.3, we present the number of

8lfcoehhlodiaehjepemaogbgadfoipog

Spidering the Modern Web

124

Burst (min) Clusters Extensions

1 14 29
2 35 81
3 47 124
4 55 156
5 69 189
10 85 243
15 92 282
20 115 329
30 133 387
45 154 458
60 176 520

Table B.3: Number of ATW clusters and included extensions for di"erent
bursts.

Table B.4: Visualization of extensions with temporally shared reviews. The
second and third columns represent the time and author of each review of
Ninja Cut Unblocked, and the same goes for columns four and !ve, respec-
tively, for X-Trial Racing Unblocked.

Date Ninja Cut Unblocked X-Trial Racing Unblocked DeltaTime Reviewer Time Reviewer

05/01 15:47:21 Caden 15:49:37 Patricia 2m 16s
16/01 10:32:32 Tracey 10:33:46 Monika 1m 14s
17/01 15:53:06 Lea 15:54:21 Ahsan 1m 15s
23/01 15:23:44 Hobart 15:24:36 Hobart 52s
24/01 19:02:13 Claire 19:03:34 Bernadette 1m 21s
02/02 17:35:35 Mason 17:36:58 Mason 1m 23s
07/02 15:14:24 Aroni 15:15:36 Aroni 1m 12s

clusters, including small clusters with only two extensions and extensions for
di"erent burst lengths. As we allow for a larger burst length, reviews farther
apart in time can be clustered, and as such, the number of clusters increases.
Using an excessive burst length will result in less precise results, including
false positives.

To help visualize the context of temporally shared reviews, Table B.4
shows the timestamp and the username from each review of two separate ex-
tensions9. Note that while some shared reviewers exist in this example, ATW
would still cluster the extensions even if the reviewers were entirely di"erent.
In this example, the two extensions share all their reviews temporally, with
less than 3 minutes between every correlated review.

9iehblepfbknonbbncbidbaggofaomjop, ebllbagoalbkholngmhdlbcgfjhapdpk

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

125

Figure B.5: Cluster size (X-axis) of ATW instances based on di"erent burst
thresholds (Y-axis). Cluster size is in terms of extensions included.

To better understand the impact of burst length on the number and size
of ATW clusters, we plot the sizes of clusters for di"erent burst lengths in
Figure B.5. The highest density of clusters is always around 2-4 included
extensions regardless of burst length. However, as the burst length increases,
the largest clusters increase, as expected. This is shown in the !gure by
the increasing number of cluster size outliers. Increasing the burst period
naturally lowers accuracy, though this is not a problem in the shown bursts.
We can see in Appendix C.3 that the review density for extensions in this
dataset should, on average, be far more than our max burst length of one
hour. Because of the low density of reviews, i.e., long time between reviews
on average, the probability that reviews are written in short succession across
multiple extensions is very low.

In Appendix C.2, we include two examples of real extensions that ATW
detects and clusters together.

C.4.2 Horizontal Vertical Clustering

The HVC method, con!gured with a horizontal epsilon of 0.005 and a ver-
tical epsilon of 5e-06, generates 69,618 vertical clusters. As mentioned in
Section C.3.2, these vertical clusters can be interpreted as a shared burst of
review activity for multiple extensions. This shared burst could be part, one
execution, of a larger review campaign. Therefore, these clusters can be

Spidering the Modern Web

126

repeated—some extensions will be repeatedly grouped together.
Of these 69,618 vertical clusters, 30,344 are unique (not repeated). Of the

55,107 extensions, 11,226 (20.4%) are in these clusters. The unique clusters
have an average membership of 2.09 extensions, with 6,241 clusters including
more than two extensions. Of those clusters with more than two extensions,
they have an average membership of 3.44.

Manually analyzing these 30,444 unique clusters, or even only the 6,241
clusters with more than two extensions, is infeasible. However, knowledge
of some extensions being repeatedly grouped together can inform which
extensions we select for analysis from these clusters. One simple way to
select extensions is to pick those that most frequently occur. This can be
interpreted as these extensions being most frequently manipulated in review
campaigns.

Another way, which we ended up using, is to select maximal clusters—
those that are not subsets of other clusters. The intuition here is that this
!lters out the noise of popular extensions being included in the clusters which
otherwise describe a review campaign’s single execution. Both extension or
cluster selection mechanisms yield similar results, with the maximal cluster
selection having slightly better quality in our opinion. Selecting maximal
clusters with lengths greater than 2 yields 5,585 extensions, comprising 10.1%
of the extensions in the entire dataset.

Even with smaller time epsilons, some interesting patterns of relationships
between reviews that indicate fake reviews are evident in these clusters. In
particular, we see in Table B.5 that clusters often rediscover the relationship
of extensions sharing a common developer (we share the extension IDs in
Appendix C.5). These relationships can be found even when the extensions
have a di"erent scale in the number of reviews or have many reviews. This
ability is unique to HVC among our methods (see Section C.6.2). At the
same time, HVC is liable to false positives due to coincidental reviews of
popular extensions—in this example, a popular grammar and spelling checker
plugin, unlikely to have been part of the review campaign with some obscure
extensions by the same developer, is included in a cluster.

C.4.3 Co-Reviewer Analysis

The Co-Reviewer analysis results in a total of 275 clusters. As we see in
Table 12 (see Appendix C.1), only 9% of reviewers post more than one re-
view, making the natural occurrence of these larger clusters of co-reviewing
accounts uncommon.

This method produces clusters of extensions and reviewers similar to
ATW. We can see the clusters generated by this method in Figure B.6. The

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

127

Table B.5: A selection of HVC clusters that re-discover relationships that
indicate fake reviews, namely a shared developer. These fake reviews are
correlated even when extensions have many reviews and di"erent scales of
the number of reviews. With horizontal and vertical epsilons of 1e-06 and
5e-06.

Cluster Extension name Dev Reviews

1 Grammar and Spelling checker. . . Ginger 667
1 YT Thumbnail Downloader Sagor 26
1 Ultimate Auto History Cleaner Sagor 20

2 Share Google Contacts with. . . GAPPS 84
2 Share Google Contacts Plugin GAPPS 48

3 Aliexpress Search by image ganes 227
3 Aliexpress Seller Check ganes 183

4 SelectorsHub Sanjay 903
4 SelectorsHub Pro Sanjay 5

5 SelectorsHub Sanjay 903
5 TestCase Studio Sanjay 87

Figure B.6: Clusters generated by ATW. Every point represents a cluster of a
given number of extensions and reviewers.

Spidering the Modern Web

128

Table B.6: High scoring CoR cluster with 76 reviewers and !ve extensions.
The table also includes the number of reviewers from the cluster that reviewed
the extension and the ratio of all reviewers included in the cluster.

Extension name Reviews from cluster Ratio

Search by Image on Aliexpress 73 96.05%
Just vpn 71 93.42%
Search by Image on Alibaba 70 92.11%
Product search by image 69 90.79%
Boomtubes 35 46.05%

graph shows that the average cluster size is still very low, like the ATW
results, but there are substantially more instances of large clusters. There
are also generally more reviewers and extensions in the clusters of CoR. We
hypothesize this is due to it being a more common attack that is also easier
to detect. In the visualization, we also include the number of reviewers in
clusters—notice that there are many reviewers in many clusters, emphasizing
that this is a widely used attack technique. There is one extreme case of
the massive outlier cluster in terms of included reviewers, that is a cluster
containing 2,322 reviewers. This case results from these 2,322 reviewers
mainly co-reviewing three extensions relating to the “Sui” cryptocurrency.

As expected, CoR analysis results reveal some overlap with the ATW
method, as coordinated reputation manipulation on the same accounts across
extensions creates patterns that both CoR and ATW discover in their clusters.
ATW clusters occur when reviewers manipulate reputation simultaneously,
creating a temporal correlation between their accounts.

In Table B.6, we present a high-ranking cluster with 76 reviewers and !ve
extensions. One of the reviewers in this cluster is “Mark”, who reviewed all
of the top four extensions in the table in only three minutes, which we regard
as extremely fast and suspicious. Interestingly, the !fth extension in the table,
“Boomtubes”, was also reviewed by Mark three weeks later and has a much
lower ratio than the other extensions. This could indicate that this cluster is
comprised of two separate review campaigns, using slightly di"erent sets of
reviewers.

C.4.4 Spam Detection

The spam detection method uncovers 86,894 reviews, about 4.9% of all reviews,
which are within three minutes of each other. In Table B.7, the top ten
extensions containing spam reviews are shown, where the method is run
with the threshold of three minutes, meaning that every time the extension

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

129

Table B.7: Reviews detected as spam when executed with a threshold of three
minutes. The ratio column shows the ratio between spam reviews and total
reviews.

Rank Name Spam Reviews Ratio Rating

1 Ethos Sui Wallet 10,250 80% 5.0
2 Sui Wallet 4,095 79% 5.0
3 Swash 3,790 76% 4.8
4 Price Tracker... 3,752 68% 4.7
5 Glass wallet ... 3,713 55% 5.0
6 Fewcha Move Wallet 2,491 49% 5.0
7 Adobe Acrobat: PDF ... 2,317 14% 4.3
8 FlipShope - Price Tracker ... 1,961 45% 4.6
9 Morphis Wallet 1,832 75% 5.0
10 Bit!nity Wallet 1,672 74% 4.9

receives a review within three minutes after the last review was submitted,
the spam count is increased by one. These numbers are incredibly high, a
view supported by the vast top density. Also, notice that in the top ten, there
are almost exclusively crypto-related extensions and price trackers, besides
Adobe Acrobat. Adobe has a high number of spam reviews but a lower ratio
compared to the others. Still, it is quite high compared to other popular
extensions on the Web Store, e.g., NordVPN10 (1%), MetaMask11 (0.5%), and
Skype12 (0.5%).

In Appendix C.4, we include a visual example of how spammed reviews
look on the Web Store, including the timestamp of the reviews. We also
highlight the rating distribution between spam reviews. The vast majority of
spam reviews leave a rating of 5.

C.4.5 Written Ratio

Figure B.7 depicts the distribution of written ratios, illustrating how unlikely
extensions are to have these high ratios, especially considering how many
reviews they have. The x-axis indicates the number of reviews the extension
has to have strictly above to be included in the subset. For example, the !rst
distribution includes all extensions. A big spike at the top indicates that many
extensions have close to a 100% ratio. This is mainly due to extensions with
few reviews, explaining the spikes at 33%, 50%, 66%, and 100% when including
all extensions. However, as in the other distributions, the distribution quickly
moves to the bottom for extensions with more reviews. The data reveal that

10fjoaledfpmneenckfbpdfhkmimnjocfa
11nkbihfbeogaeaoehlefnkodbefgpgknn
12lifbcibllhkdhoafpjfnlhfpfgnpld#

Spidering the Modern Web

130

Figure B.7: Relationship between thresholds (on number of reviews) and
written ratios.

extensions with a 100% written review ratio are highly improbable to occur
naturally, especially in the subsets of extensions with above 25 reviews.

Table B.8 presents the total ratings, written reviews, and written ratio for
the top 10 scoring extensions. Every single one of the selected extensions has
a written ratio of 100%. The “Percentile” column shows at what percentile
the speci!c extensions rank if we exclude all extensions with strictly fewer
reviews and compare the written reviews between the remaining extensions.
For example, the top rowmeans that no extension exists with the same number
of reviews or more with the same written ratio, 100%.

Many cases in Table B.8 present other types of suspicious behavior or
other indications of being fake reviews. For example, in both “D365-UI-Test-
Designer” and “DigiNovo screen sharing for A1 shop” all reviews contain the
exact same review text, “I like it!”. Many of the other ones show other signs of
fake reviews, for example, a large number of reviews in a short time period.

Consider the distribution data shown in Figure B.7—while extensions
with only a few reviews can, and do, have high written ratios, extensions
with many reviews should not consist of solely written reviews. Given this
distribution, the near-100% written reviews of the extensions with 100s of
reviews in Table B.8 should be exceptionally rare. Every single extension in
Table B.8 is at least in the top sub-one percent of their respective threshold in
Figure B.7.

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

131

Table B.8: Top 10 scoring extensions by the Written Ratio method with their
total ratings, written ratio, and percentile.

Name Ratings Written Ratio Percentile

Opened or Not - Free Email... 705 100% 100.00%
TwitterScan - Find NFT Gems... 384 100% 99.96%
D365-UI-Test-Designer 141 100% 99.96%
DigiNovo screen sharing for... 136 100% 99.94%
AliExpress Search By Image... 126 100% 99.93%
Cashback beruby 116 100% 99.91%
RippleHouse 103 100% 99.87%
Jetstream 103 100% 99.87%
BROSH for LinkedIn and Gmail 102 100% 99.87%
Marucast Desktop Capture 99 100% 99.86%

C.5 Malicious Extensions

In this section, we explore the relationships between extensions with fake
reviews and their maliciousness. We both present qualitative examples and
a more quantitative case-study of the clusters generated by ATW. While we
would want to analyze the maliciousness of all extensions, generating this
ground truth is prohibitively slow and labor intensive.

C.5.1 Security Analysis

To evaluate the correlation between fake reviews and malicious extensions we
!rst need a ground truth of malicious and benign extensions. While there are
a plethora of malicious actions extensions can perform, we limit our analysis
to the following attacks.
1) Query stealing [9]. This attack steals users’ search queries from popular

engines, either by presenting a search bar in a new tab or injecting code
into search engines. A common pattern is that the attacker’s search form
will lead to a third-party server, which in turn redirects the user to the real
search engine.

2) History stealing [9]. This attack focuses on tracking every URL a user visits.
For example, by injecting code that fetches data from a third-party server
on every URL.

3) A!liate fraud [25]. In this attack, attackers try to make money when users
shop online. If a user buys something on, for example, Amazon.com, a ma-
licious extension might use cookie stu!ng to give the extension developer
a commission on any purchase.

4) Survey scams [8]. Survey scams force or trick users into completing online
surveys in order to use a service. The surveys usually collect personal data

Spidering the Modern Web

132

Table B.9: ATW cluster containing “New Tab” extensions. A connected review
is a review that happened within the same burst as another in the cluster.

Extension Name Total Reviews Connected Reviews

SimpleTab 11 11
TopTab 10 8
NWTab 10 7
Handy Tab 9 6
Summer Tab 10 6
Amazing Tab 10 6
ToDoTab 10 6
Charming Tab 11 6
AmTab 10 5

while tricking the user into paying for a “prize” and stealing their credit
card number.
We choose these attacks because they were explored in previous works

and are relatively straightforward to detect. More speci!c attacks, like stealing
information from social media sites, are di$cult to detect as theymight require
valid accounts.

We manually analyze extensions by inspecting their source code and exe-
cuting them to ensure malicious behavior exists. This task is labor-intensive,
averaging over 10 minutes per extension. Since we are analyzing clusters, in
most cases, the !rst extension takes longer to review. We can then generate a
code signature to identify other extensions exhibiting similar characteristics.
In total, we manually analyzed 299 extensions for malicious behavior.

C.5.2 Case-study of ATW clusters

To better understand the relationship between fake reviews andmaliciousness,
we perform a security analysis of the 286 extensions in the 59 clusters found
by ATW. We detect 12 suspicious clusters (ratio of malicious extensions above
80% in Table B.10). After a manual analysis, we !nd a cluster composed of
“New Tab” extensions (see Table B.9), which are notoriously malicious and
often involve query stealing [9]. This con!rms that ATW detects malicious
extensions.

In Table B.10, we report on the clusters with three or more extensions
that ATW !nds using bursts of 60 minutes. Interestingly, we note that many
clusters are either strictly benign or strictly malicious. This indicates that
review campaigns for malicious extensions do not mix with review campaigns
for benign extensions. Furthermore, this supports ATW’s ability to !nd
meaningful clusters of related extensions.

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

133

Table B.10: Number of clusters and percentage of malicious extensions in the
clusters. From ATW using 60-minute bursts.

Maliciousness #Total0% 0%-25% 25%-50% 50%-75% 75%-100% 100%

#Clusters 39 2 1 4 2 11 59
#Extensions 180 17 3 19 22 45 286

C.5.3 New Tab Clusters

We further explore the extensions marked by all methods to !nd new mali-
cious ones. We focus on a particular breed of extensions known for malicious
behavior, the “New Tab” extensions [9]. These hijack the browser’s home tab,
replacing it with an alternative that modi!es its functionality and appearance.
In many cases, they also maliciously steal the users’ search queries by redi-
recting tra$c to their servers before redirecting them back to a real search
engine.

Currently, there are 111 extensions #agged by all our methods. Among
them, 13 are classi!ed as “New Tab” extensions and, consequently, subjected
to a thorough manual inspection. Astoundingly, each of these 13 turns out to
be a query stealer. This discovery led to a further exploration of the clusters
these culprits were associated with, according to the ATW and CoR methods.
Following an exhaustive analysis of these clusters, the tally of malicious query
stealers swells to 26. Interestingly, these extensions are dispersed across four
distinct clusters, with the largest cluster harboring 16 of the 26 extensions.

C.5.4 Large Malicious Cluster

We look closer at the largest ATW cluster, composed of 18 extensions, of
which 17 are malicious. All the malicious extensions use the same attack,
namelymalicious surveys. These are web pages that look like genuine surveys
but trick the user into expensive subscriptions or malicious !le downloads.
For extensions, they also act as “human validation” needed before exposing
malicious behavior.

Using FakeX, we !nd the game extension “Bloons Tower Defense Un-
blocked”13 that was #agged by all methods except Spam Detection. We manu-
ally verify that the extension presents userswith a survey from stallmobiles.com,
which is part of a malware list [44]. However, the extension uses one level of
redirection by !rst loading the http://gameunblocked.pl/bloonstdgame-

13monljmeefnongjlfefogaoldojpchhpg

Spidering the Modern Web

134

newtabweb page, which redirects to stallmobiles.com, making static code
analysis harder. Interestingly, the only extension in this cluster that is not
malicious had the same code structure, but no URL.

C.5.5 Expanding from Known Malicious Extensions

Finally, we demonstrate that FakeX can be used to expand a list of known
malicious extensions. We collaborate with Adblock Plus and Avast on this
particular deployment of FakeX. Utilizing a list of newly discovered 18 popular
yet malicious extensions from Adblock Plus [36], we compare it against the
results from ATW and CoR.

Interestingly, at least one of our methods #agged 16 of the 18 extensions.
On delving into the clusters in CoR and ATW, we !nd that the union of clus-
ters having at least one of these 16 extensions comprises 40 extensions. We
present this list to Adblock Plus for further analysis. Based on this, Adblock
Plus !nds and con!rms by Avast that 16 more extensions contain similar
malicious code [36]. Furthermore, 8 of these used an improved version of
the malicious code, compatible with the new manifest v3 [35]. Adblock Plus
publicly acknowledged [36, 35] our contribution to discovering the additional
16 malicious extensions, and Google subsequently removed all of these exten-
sions from the Web Store.

C.6 Discussion

In this section, we compare our methods, exploring their implications and
relevance in the broader context. Additionally, we address the limitations
inherent in our study, providing transparency about potential constraints and
avenues for future research.

C.6.1 ATW and CoR

The main di"erence between ATW and CoR is that CoR primarily detects
accounts with many reviews. In contrast, ATW often detects new accounts
with only one singular review and strong temporal connections within clusters
of unique accounts.

Since both ATW and CoR create clusters, we want to explore if overlaps
in these clusters can help us !nd new malicious extensions. Since we already
generated the ground truth for the ATW clusters, we search for CoR clusters
that overlap with the ATW clusters. We present one such cluster in Table B.11.
If only ATW were used, only three malicious extensions would be found.
However, combining ATW and CoR allows us to !nd three new extensions,

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

135

Table B.11: A cluster of malicious extensions found by CoR compared with a
subset found by ATW.

Extension ATW Malicious

Film Links Now | Default Search ↭
Autumn Tab ↭ ↭
Primary Tab ↭ ↭
Tasks Area ↭
Black Tab ↭ ↭
Age Calculator ↭

which manual analysis con!rms to also be malicious. This shows the power
of combining the methods to !nd more malicious extensions.

C.6.2 Comparing ATW and HVC

Since bothATWandHVC base their clustering on temporal data, a comparison
of the two methods is valuable. The methods are not directly comparable
as ATW combines reviews from multiple time windows while HVC only
considers two time radii.

In Table B.9, ATW detects a cluster of nine extensions with fake reviews.
However, it does miss the “NiceTab StartPage” 14 extension that HVC !nds in a
cluster together with “Charming Tab” 15. ATW misses this extension because
compared to the other nine in the cluster, this one had multiple reviews
before the shared review campaign. Since ATW only clusters extensions
with a signi!cant overlap in reviews, it is not included. In general, ATW has
di$culty clustering extensions that already had many reviews before getting
fake reviews in the course of a review campaign. Reducing the threshold for
the needed overlap could decrease the number of false negatives and allow
ATW to cluster all ten of these extensions. However, it might also increase
the false positive rate and possibly add unrelated extensions to this cluster.

On the other hand, HVC does not cluster the other nine as a separate
cluster. This is because other popular extensions, like NordVPN 16, also got
reviews within only 20 minutes of the other new tabs. A general pattern we
note is that ATW is often more precise in its clustering, with the downside of
occasionally missing some extensions HVC !nds in its clusters.

14dobmhnlkolhhklmcaodfefhejoonalni
15kbnpeiabjlfcakokkpbcgalbgiljoddf
16fjoaledfpmneenckfbpdfhkmimnjocfa

Spidering the Modern Web

136

Goals of ATW and HVC - FP vs FN

While we do not have labeled fake review data to train a model on, we can
still compare these two methods for detecting fake reviews based on related
metrics. One metric can be malware labeling performance—which extensions
containing malware are #agged by each method?

An obstacle is the lack of labeled data. A relatively independent labeling is
that used by the Chrome browser—extensions can be labeled “malware”, which
will a"ect their ability to be loaded into the browser. Conversely, Chrome
also has a notion of “good” extensions. The Chrome browser can allow some
extensions in ESB (Enhanced Safe Browsing), which can be interpreted as
being “safe” extensions. Using these labels provided by Chrome, we label
“true positives” as being on the malware list, and “true negatives” as being
on the ESB allowlist. False positives by this metric are extensions #agged by
ATW or HVC that are not included in the Chrome malware list. Similarly,
false negatives are extensions #agged by ATW or HVC that are considered
safe by Chrome—on the ESB allowlist.

Metrics based on this labeling are conservative—we can establish some
#oor on false positives and false negatives. These Chrome-provided labels
still do not cover the entirety of our dataset of extensions with reviews.
Furthermore, these metrics are not an accurate description of performance.

This is plotted in Figure B.8. The trends of ATW and HVC illustrate
our previous observation of ATW having more accurate clusters—it has low
false positives. When scanning for malware, a low false-positive rate can be
valuable. ATW provides this low false-positive solution, while HVC can be
used for better recall.

C.6.3 Focus on metadata

In this work, we solely focus on metadata to detect fake reviews of browser
extensions in the Chrome Web Store. While content can also be used to detect
fake reviews (see Section C.7), we argue that detection mechanisms reliant
on content are more easily eluded. Content can be faked easily and cheaply —
fake review authors can copy existing review text, or generate them with a
variety of methods. Metadata can also be faked, including with the fake review
techniques discussed in Section C.2. However, timestamps and user relations
are harder and more expensive to fake, in that obscuring these temporal and
user connections requires more time and user pro!les to conduct a review
campaign.

This metadata is not unique to the Chrome Web Store, and the fake
review detection techniques we propose should be applicable to other online

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

137

Figure B.8: Performance of ATW and HVC according to Chrome malware
labels, with each data point being a di"erent parametrization of the respective
methods. In general, ATW provides a low false-positive solution, while HVC
o"ers low false-negatives.

marketplaces. However, the timestamps utilized by the ATW, HVC, and Spam
Detection methods are not always readily available - we note that the Yelp
[23] and Amazon [34] datasets only have coarse date precision for their review
timestamps.

C.7 Related Work

Browser extensions. Researchers explore methods for detecting malicious
extensions, ranging from scrutinizing downloads [38] and dynamically an-
alyzing extension behavior, including information sent to external parties
[9], to examining the sequences of API calls of common malicious actions
[1]. Furthermore, studies have explored trends and values, detecting anoma-
lous ratings [37], and monitoring extension executions to identify content
modi!cations, such as injecting advertisements [2]. Static analysis to detect
malicious JavaScript code could also be repurposed to detect malicious ex-
tensions [11]. Conversely, extensions have also served as vectors for attacks,
i.e., exploiting some vulnerabilities in the extensions’ source code, enabling
activities like user tracking [49, 47, 48], acquiring sensitive information such
as user history [6, 12], and facilitating remote code execution [46, 12]. Static
analysis has been employed to discover such vulnerabilities [53, 13].

Pantelaios et al. [37] analyze anomalous extension ratings, code changes,
and keyword pattern matching. However, their methods are limited to ex-
tensions with at least 50 reviews. FakeX focuses on the time component

Spidering the Modern Web

138

rather than the content of the reviews, and therefore, has no limitation on
the number of reviews.

Despite the signi!cant progress in browser extension security [24, 43, 9,
25], the orthogonal focus on user reviews and reputation manipulation in the
Web Store, as highlighted in our research, represents a promising and fruitful
direction that complements the prior studies.

Fake reviews. Fake review detection has been studied in other marketplaces,
where users can also post reviews of products. However, prior methods in
this area are often supervised and require ground truth labeling. This is not
available for our application to extensions in the Web Store. Furthermore, the
labeled datasets used in prior works can lead to biased results and methods.
For example, datasets derived from Yelp business reviews are commonly
used [4, 33, 22]. These methods assume that the user-submitted reviews Yelp
does not label as “Trustful” are fake. This can introduce a bias towards learning
the techniques Yelp uses internally for its !ltering. Other approaches [10, 20]
solicit fake reviews through Amazon Turk. This could also introduce a bias
towards detecting fake reviews produced with a speci!c generating system.
Unsupervised methods, such as FakeX, avoid being biased in this fashion.

Despite these di$culties with either applying previous fake-review de-
tection approaches to the browser extension ecosystem, or evaluating their
performance, these works are still useful to compare to the methods of FakeX.
Fake review detection approaches can be grouped by the data used. Some
methods use reviewer networks [40, 22, 28], similar to the CoR analysis in this
paper. Methods using timestamps [29] have some similarities to ATW, HVC,
and Spam detection in this paper. The Written Ratio method uses review
text (in its presence/absence), similar to [33, 20]. Finally, some methods also
combine multiple features [10, 4, 32] as FakeX does. Despite these surface
similarities, FakeX o"ers a novel unsupervised framework for detecting fake
reviews with methods that are suited to !nding malware in browser exten-
sions, primarily using temporal review graph features. We expand on this by
comparing it to the mostly closely related works below.

Rathore et al. [40] obtain partial ground-truth information about fraud
reviewer IDs by soliciting fake reviews for applications on the Google Play
Store, using Fiverr, a platform that connects freelancers to people or businesses
looking to hire. While a partial ground truth would be valuable to informing
both our method and evaluation, soliciting fake reviews could lead to bias in
the data. Furthermore, buying fake reviews will not provide useful temporal
data, necessary for the central ATW and HVC methods of FakeX.

Li et al. [28] also use partial ground-truth, assuming fake review labels
from the review-hosting site Dianping have high recall. This enables a Positive

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

139

and Unlabeled (PU) learning approach, where the reviewer graph with ‘fake
reviewer’ labels is iteratively extended from an initial set, using the association
of shared IPs. The Web Store does not o"er either fake review labels or user
IP addresses.

He et al. [22] form a ground truth about Amazon product reviews by
monitoring Facebook groups that act as marketplaces for buying and selling
fake reviews. From these groups, they identify which products buy fake
reviews and train a model on the review network to detect these. Given the
absence of evidence linking concrete buyer-seller networks, such as Facebook
groups, to fake reviews in the Web Store, investigating such a relationship
emerges as a potential avenue for future research. Unlike the focus of this
paper, FakeX employs CoR analysis to identify highly clustered fake reviewer
networks, while ATW or HVC can uncover more nuanced relationships that
exploit disjoint sets of fake accounts.

The method proposed by Liu et al. [29] is perhaps the closest to our appli-
cation of ATW and HVC, in that they utilize review timestamp metadata to
identify anomalous review activity. The authors crawl Amazon China for re-
view records, then apply di"erent time windows to bucket review activity for
a particular product. The authors use an unsupervised clustering algorithm
(isolation forest) to identify products whose review activity is anomalous.
When applying this simple bucketing approach, we were unable to recre-
ate the interesting fake-review and malware clusters produced by FakeX. A
potential issue with applying their method to extension data is the larger
timespan considered. Simple bucketing will yield a list of buckets from the
dataset start time to end time, most of which will be empty. Comparing these
high-dimensional points is challenging. In contrast, FakeX’s HVC performs
horizontal clustering to ease the somewhat analogous vertical clustering task.

Barbado et al. [4] propose a Fake Review Framework (F3), which combines
reviewer and review text features, and apply this to the Yelp dataset. Reviewer
features are mainly about the reviewer’s activity, though this does include
direct relationships such as friend networks. In contrast to this work, FakeX
utilizes indirect relationships by reviewing the same extension through related
reviews (ATW, HVC, Spam Detection, Written Ratio) or accounts (CoR).

Mukherjee et al. [32] also combine reviewer and review text features. They
use expert labels of Amazon fake reviewer groups to hand-craft a set of spam
indicator features containing reviewer behavior, relationships, and content
similarity. The ‘spamicity’ of reviewers and groups is then iteratively re!ned
with these features. This method does seem applicable to the Web Store
setting, but the base features will likely have to be adjusted when transposed
from the original setting. We did not re-implement this method to evaluate,

Spidering the Modern Web

140

as the source code is unavailable.
Other solutions are based on the links of the reviewers, reviews, products,

and merchants [10], or the sentiment analysis of the reviews [33, 20]. FakeX
does not use these additional features. While the knowledge graph proposed
by Fang et al. [10] can contain the review graph features used in this paper,
this method is inapplicable without both a more complete understanding of
the fake review ecosystem for browser extensions, and labeled data to train
models to both use the knowledge graph and evaluate its complex construction.
The integration of additional features into the analysis of browser extensions
is a promising avenue for future research.

C.8 Conclusion

We propose FakeX, a framework for detecting fake reviews in browser exten-
sions. FakeX leverages !ve methods, ATW, HVC, CoR, Written Ratio, and
Spam Detection, to identify extensions with fake reviews. Our evaluation
unveils hundreds of review campaigns used on the Web Store, as well as,
di"erent attack techniques used in the campaigns. In particular, we !nd
59 clusters across 286 extensions with fake reviews sharing temporal pat-
terns. This positively answers our !rst research question, whether reputation
manipulation exists on the Web Store.

While fake reviews do not necessarily imply malicious intent, they put
extensions with fake reviews into the spotlight and motivate further scrutiny
for security risks. This leads to the positive answer to our second research
question on leveraging our methods to detect malicious extensions. Using
FakeX we !nd a total of 86 extensions with a total of 64 million users. After
reporting to Google, 44 of these extensions were removed. Finally, we collabo-
rate with Adblock Plus and Avast to demonstrate FakeX in action, expanding
a seed list of newly detected malicious extensions to discover a further 16
malicious extensions with millions of users, where in some cases attackers
tried to improve malicious code.

Acknowledgements. This work was partially supported by the Wallen-
berg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic
Research (SSF), and the Swedish Research Council (VR).

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

141

Spidering the Modern Web

142

Bibliography

[1] A. Aggarwal, B. Viswanath, L. Zhang, S. Kumar, A. Shah, and P. Ku-
maraguru. I spy with my little eye: Analysis and detection of spying
browser extensions. In 2018 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 47–61, Washington, D.C., 2018. IEEE Computer
Society.

[2] S. Arshad, A. Kharraz, and W. Robertson. Identifying extension-based
ad injection via !ne-grained web content provenance. In F. Monrose,
M. Dacier, G. Blanc, and J. Garcia-Alfaro, editors, Research in Attacks,
Intrusions, and Defenses, pages 415–436, Cham, 2016. Springer Interna-
tional Publishing.

[3] A.-L. Barabási. The origin of bursts and heavy tails in human dynamics.
Nature, 435(7039):207–211, 2005.

[4] R. Barbado, O. Araque, and C. A. Iglesias. A framework for fake review
detection in online consumer electronics retailers. Information Processing
& Management, 56(4):1234–1244, 2019.

[5] D. Birant and A. Kut. St-dbscan: An algorithm for clustering spatial–
temporal data. Data & knowledge engineering, 60(1):208–221, 2007.

[6] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage
from browser extensions. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’18, page 1687–1700,
New York, NY, USA, 2018. Association for Computing Machinery.

[7] Chrome Extensions Stats, 2023.

[8] P. Ducklin. Anatomy of a survey scam – how innocent questions can
rip you o", Jun 2020.

[9] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. Hardening the security
analysis of browser extensions. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, SAC ’22, page 1694–1703, New York,
NY, USA, 2022. Association for Computing Machinery.

[10] Y. Fang, H. Wang, L. Zhao, F. Yu, and C. Wang. Dynamic knowledge
graph based fake-review detection. Applied Intelligence, 50:4281–4295,
2020.

31

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

143

[11] A. Fass, M. Backes, and B. Stock. Jstap: a static pre-!lter for malicious
javascript detection. In Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC ’19, page 257–269, New York, NY, USA,
2019. Association for Computing Machinery.

[12] A. Fass, D. F. Somé, M. Backes, and B. Stock. Doublex: Statically detecting
vulnerable data #ows in browser extensions at scale. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’21, page 1789–1804, New York, NY, USA, 2021. Association for
Computing Machinery.

[13] A. Fass, D. F. Somé, M. Backes, and B. Stock. Doublex: Statically detecting
vulnerable data #ows in browser extensions at scale. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’21, page 1789–1804, New York, NY, USA, 2021. Association for
Computing Machinery.

[14] FreeAddon. Warning: Fake one-star reviews & ratings are bombarding
freeaddon extensions!, Sep 2018.

[15] GetReview. Seo agency/company london uk | digital marketing agency
in high wycombe. https://getreview.co.uk, Jan. 2024.

[16] R. GG. Buy positive reviews online at cheap prices on review community.
https://reviewgg.com/, Jan. 2022.

[17] Google. Chrome web store, 2023.

[18] Google Developers. Spam and abuse. https://developer.chrome.c
om/docs/webstore/program-policies/spam-and-abuse/, 2022.

[19] Google Developers. Spam policy faq. https://developer.chrome.c
om/docs/webstore/spam-faq/#ratings-and-reviews, 2022.

[20] P. Hajek, A. Barushka, and M. Munk. Fake consumer review detection
using deep neural networks integrating word embeddings and emotion
mining. Neural Computing and Applications, 32:17259–17274, 2020.

[21] M. A. Harris, R. Brookshire, and A. G. Chin. Identifying factors in#u-
encing consumers’ intent to install mobile applications. International
Journal of Information Management, 36(3):441–450, 2016.

[22] S. He, B. Hollenbeck, G. Overgoor, D. Proserpio, and A. Tosyali.
Detecting fake-review buyers using network structure: Direct evi-
dence from amazon. Proceedings of the National Academy of Sciences,
119(47):e2211932119, 2022.

Spidering the Modern Web

144

[23] Y. Inc. Yelp open dataset. https://www.yelp.com/dataset, Jan. 2024.

[24] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab,
and K. Thomas. Trends and lessons from three years !ghting malicious
extensions. In 24th USENIX Security Symposium (USENIX Security 15),
pages 579–593, Washington, D.C., Aug. 2015. USENIX Association.

[25] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson.
Hulk: Elicitingmalicious behavior in browser extensions. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 641–654, San Diego,
CA, Aug. 2014. USENIX Association.

[26] J. Kinable and O. Kostakis. Malware classi!cation based on call graph
clustering. Journal in computer virology, 7(4):233–245, 2011.

[27] B. Krebs. Using fake reviews to !nd dangerous extensions, 2021.

[28] H. Li, Z. Chen, B. Liu, X. Wei, and J. Shao. Spotting fake reviews via
collective positive-unlabeled learning. In 2014 IEEE International Con-
ference on Data Mining, pages 899–904, Washington, D.C., 2014. IEEE
Computer Society.

[29] W. Liu, J. He, S. Han, F. Cai, Z. Yang, and N. Zhu. A method for the
detection of fake reviews based on temporal features of reviews and
comments. IEEE Engineering Management Review, 47(4):67–79, 2019.

[30] J. Matou%ek and B. Gärtner. Understanding and using linear programming,
volume 33. Springer, New York, NY, USA, 2007.

[31] R. Mohawesh, S. Xu, S. N. Tran, R. Ollington, M. Springer, Y. Jararweh,
and S. Maqsood. Fake reviews detection: A survey. IEEE Access, 9:65771–
65802, 2021.

[32] A. Mukherjee, B. Liu, and N. Glance. Spotting fake reviewer groups in
consumer reviews. In Proceedings of the 21st international conference
on World Wide Web, pages 191–200, Lyon, France, 2012. Association for
Computing Machinery.

[33] A. Mukherjee, V. Venkataraman, B. Liu, N. Glance, et al. Fake review
detection: Classi!cation and analysis of real and pseudo reviews. UIC-
CS-03-2013. Technical Report, 2013.

[34] J. Ni. Amazon review data (2018). https://nijianmo.github.io/a
mazon/, Jan. 2018.

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

145

[35] W. Palant. How malicious extensions hide running arbitrary
code. https://palant.info/2023/06/02/how-malicious-extens
ions-hide-running-arbitrary-code/, 2023.

[36] W. Palant. More malicious extensions in chrome web
store. https://palant.info/2023/05/31/more-malicious-
extensions-in-chrome-web-store/, 2023.

[37] N. Pantelaios, N. Nikiforakis, and A. Kapravelos. You’ve changed: De-
tecting malicious browser extensions through their update deltas. In
Proceedings of the 2020 ACM SIGSAC conference on computer and commu-
nications security, pages 477–491, New York, NY, USA, 2020. Association
for Computing Machinery.

[38] P. Picazo-Sanchez, B. Eriksson, and A. Sabelfeld. No signal left to chance:
Driving browser extension analysis by download patterns. In Proceedings
of the 38th Annual Computer Security Applications Conference, ACSAC
’22, page 896–910, New York, NY, USA, 2022. Association for Computing
Machinery.

[39] I. Portugal, P. Alencar, and D. Cowan. A framework for spatial-temporal
trajectory cluster analysis based on dynamic relationships. IEEE Access,
8:169775–169793, 2020.

[40] P. Rathore, J. Soni, N. Prabakar, M. Palaniswami, and P. Santi. Identi-
fying groups of fake reviewers using a semisupervised approach. IEEE
Transactions on Computational Social Systems, 8(6):1369–1378, 2021.

[41] T. M. Report. The menlo report. https://www.dhs.gov/site
s/default/files/publications/CSD-MenloPrinciplesCORE-
20120803_1.pdf, 2012.

[42] G. Reviews. Get reviews. https://getreviews.buzz/, Aug. 2020.

[43] F. Schaub, A. Marella, P. Kalvani, B. Ur, C. Pan, E. Forney, and L. F.
Cranor. Watching them watching me: Browser extensions’ impact
on user privacy awareness and concern. In NDSS workshop on usable
security, volume 10, Reston, Virginia, U.S., 2016. The Internet Society.

[44] ShadowWhisperer. Malware. https://github.com/ShadowWhisper
er/BlockLists/blob/master/Lists/Malware, 2023.

[45] R. Soares, C. P. Benjamin Ackerman, and A.-A. Team. Keeping spam o"
the chrome web store, Apr 2020.

Spidering the Modern Web

146

[46] D. F. Somé. Empoweb: Empowering web applications with browser
extensions. In 2019 IEEE Symposium on Security and Privacy (S&P), pages
227–245, Washington, D.C., 2019. IEEE Computer Society.

[47] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis. Unnecessarily
identi!able: Quantifying the !ngerprintability of browser extensions due
to bloat. In The World Wide Web Conference, WWW ’19, page 3244–3250,
New York, NY, USA, 2019. Association for Computing Machinery.

[48] O. Starov and N. Nikiforakis. Extended tracking powers: Measuring
the privacy di"usion enabled by browser extensions. In Proceedings of
the 26th International Conference on World Wide Web, WWW ’17, page
1481–1490, Republic and Canton of Geneva, CHE, 2017. International
World Wide Web Conferences Steering Committee.

[49] O. Starov and N. Nikiforakis. Xhound: Quantifying the !ngerprintability
of browser extensions. In 2017 IEEE Symposium on Security and Privacy
(S&P), pages 941–956, Washington, D.C., 2017. IEEE Computer Society.

[50] B. R. Store. Provide online reviews marketing !ve star rating & reviews
services. https://buyreviewstore.com, Jan. 2024.

[51] R. Sub. Free or buy google reviews, amazon reviews & more. https:
//www.reviewsub.com/, 2022.

[52] B. S. World. Buy smm world - digital marketing and reviews service
provider. https://buysmmworld.com, Jan. 2024.

[53] J. Yu, S. Li, J. Zhu, and Y. Cao. Coco: E$cient browser extension vulner-
ability detection via coverage-guided, concurrent abstract interpretation.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, page 2441–2455, New York, NY, USA,
2023. Association for Computing Machinery.

C.1 Browser Extensions Reviewers

In Table 12, we include the overall number of extensions with reviews (!rst
row), reviewers (second row), and reviews (third row). We further break
down both the reviewers and the reviews they post by the type of reviewer.
Reviewers are either Single, if they have posted only one review, or Multi, if
they have posted multiple.

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

147

Table 12: Reviews distribution as of February 2023

Reviewers
Metric Single Multi Total

Total Extensions 55,107
Total Reviewers 1 402 687 (91.29%) 133,819 (8.71%) 1 536 506
Total Reviews 1 402 687 (78.68%) 380,015 (21.32%) 1 782 702

C.2 Aggregated Time Window Examples

Figure 9 depicts visual examples of high-scoring clusters. Notice the similari-
ties in amount of reviews, which are closely related in quantity. They also
share a temporal pattern of when the reviews were submitted, which is why
ATW clustered them.

Figure 9: Visual example of two clusters found by the ATW method.

Figure 10 compares reviews of two extensions from the Gmail cluster.
Notice that they got reviews at the same time between extensions. In this
case, it also happens to be the same reviewers, resulting in this particular
pattern being clustered by CoR as well.

C.3 Review time distribution

In Figure 11 we see how reviews are distributed in time. Interestingly, the
data seem to follow a log-normal distribution (the x-axis is in a logarithmic

Spidering the Modern Web

148

Figure 10: Temporally shared reviews between extensions, clustered by both
ATW and CoR. Last names are removed from reviewers for ethical reasons.

scale) where the average ωt is over 19.5 days. Also notice the spike at 1,
which only contains reviews with a second or less time delta, which is the
most extreme case of spam. We even observe 14 cases of sub-millisecond
deltas; since the Web Store has only millisecond accuracy, these have the
same recorded timestamp. Approximately, 95% of the reviews have a ωt of
more than three minutes, making three minutes a reasonable threshold to
!nd abnormally fast reviewing activity.

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

149

Figure 11: Data distribution of the di"erence in time between reviews (deltas)
in an extension.

C.4 Spam detection rating

Figure 12 shows how spammed reviews look on the Web Store, including the
timestamp of the reviews. Note that there are only a few seconds between
each review, except for two reviews in the same second.

Figure 12: Spammed reviews with timestamps on the extension Ethos Sui
Wallet.

Figure 13 presents the distribution of ratings within spam reviews, i.e.,
reviews made in less than three minutes of each other. The graph shows that
a large majority of the spam reviews are !ve star reviews, indicating these
reviews are mainly used to promote extensions.

Spidering the Modern Web

150

Figure 13: Rating distribution of spam marked reviews, using a threshold of
three minutes.

C.5 Extension IDs for examples named in tables

In Table 13, we present all the extensions used in tables throughout the paper
together with their IDs, and if we consider them malware.

C. FakeX: A Framework for Detecting Fake Reviews of Browser Extensions

151

Table 13: Extension IDs for examples named in tables.

Table Extension name Extension ID Malware

Table B.5 YT Thumbnail Downloader ak!kgmhbajiaekdbgchbmhkceclncda No
Aliexpress Search by image jkcacbjiofjgbnaknoojjboeiinempoa No
Grammar and Spelling checker by Ginger kd!eneakcjfaiglcfcgkidlkmlijjnh No
SelectorsHub Pro kodoloplfbnhlfcepehlafnbojbfgglb No
TestCase Studio loopjjegnlccnhgfehekecpanpmielcj No
Ultimate Auto History Cleaner nfnjemoofkhppjhjcehbddolbalmibkg No
Aliexpress Seller Check mibmplg#abdmnnoncnedjfdpidjblnk No
SelectorsHub ndgimibanhlabgdgjcpbbndiehljcpfh No
Share Google Contacts with Shared Contacts nhmihkokjnmeaagjihlamgohjfmapehj No
Share Google Contacts Plugin nllecbomigehlngfclbgjeghfmfajfgp No

Table B.6 Just vpn apmomfapnjopaiiidbockbmbkklcfgni Yes
Search by Image on Aliexpress chdmkeeecofpljchimdkliaknhaibkgm Yes
Boomtubes igjenkfpfgfhoaagnmbbidjfbobmkohe No
Product search by image inbbmabopknohmlmilkhjdidlmbhhofd Yes
Search by Image on Alibaba pamfkmlimebecnfjoikmacloehbkhhoj Yes

Table B.7 Flipshope: Price Tracker and much more adikhbfjdbjkhelbdn"ogkobkekkkej No
Swash cmndjbecilbocjfkibfbifhngkdmjgog No
Fewcha Move Wallet eb!dpplhabeedpnhjnobghokpiioolj No
Adobe Acrobat: PDF edit, convert, sign tools efaidnbmnnnibpcajpcglcle!ndmkaj No
Morphis Wallet heefoha"omkkkphnlpohglngmbcclhi No
Price Tracker - Auto Buy, Price History hegbjcdehgihjohghnmdpebepnoalode No
Bit!nity Wallet jnldfbidonfeldmalb#bmlebbipcnle No
Glass wallet | Sui wallet loinekcabhlmhjjbocijdoimmejangoa No
Ethos Sui Wallet mcbigmjiafegjnnogedioeg"booigli No
Sui Wallet opcgpfmipidbgpenhmajoajpbobppdil No

Table B.8 BROSH for LinkedIn and Gmail bhjeblnbniahjoghbcngookdjdjjllde No
RippleHouse dbjdhpndplhpppleinigdfnbibilkmod No
Opened or Not - Free Email Tracker dmchdoholidpalbigibcgkkifklkcnil No
TwitterScan - Find NFT Gems & Trending Tokens dmlbdfmbofhfnkneodciekpgaacbgdfo No
Jetstream ijancdlmlahmfgcimhocmpibadokcdfc No
Marucast Desktop Capture fjfnbddkahphhfhpmgknhgfbbnbbajkh No
D365-UI-Test-Designer lfcoehhlodiaehjepemaogbgadfoipog No
AliExpress Search By Image | Rovalty lijlkcihmpnnaijedioieaafmghjdnca No
Cashback beruby lldknh"mfbndpbknmcckoelpidapidf No
DigiNovo screen sharing for A1 shop pmpmejbonomjlbhphkkbeeeecpnknkpn No

Table B.9 NWTab abcmjdhbopfnfkdonmkadfdghgipdeic Yes
Amazing Tab agpoehmhgoieigdbjhgphpagmloehamn Yes
SimpleTab ajjhojeehlipcemlodoncklkdo!cgdi Yes
Summer Tab dclbdlgnlaodfbjghpdjiodbnlicgalo Yes
AmTab jalfhdofagnilegabknbiollkndbebei Yes
ToDoTab jgealhbknfjh"edciigejkicpdnmhli Yes
Charming Tab kbnpeiabjlfcakokkpbcgalbgiljoddf Yes
Handy Tab kfnpaphhpnngikfmnofpkakbaekba!l Yes
TopTab oilcbojeghcfkidelcmjbnbmaplfegbj Yes

Table B.11 Black Tab coadpnfaiboiicgpgeggcpkkgpbbcele Yes
Age Calculator gbaakccc"klmhhjhfamehdfcieojmbb No
Film Links Now | Default Search hfgpkllpjcfpakbldligbhmkgkajjndk No
Primary Tab mkakgkpinfpfapnliafpjkeccjphjgjf Yes
Autumn Tab omcgiabgadgmpcplhdlniiddjbcocaah Yes
Tasks Area | Task Management Tool pahcgdhpimolppohfdgcnfjeglelonab No

Spidering the Modern Web

152

	Abstract
	List of publications
	Acknowledgments
	Overview
	Introduction
	The modern Web
	Research efforts
	Web applications
	Challenge
	Contributions

	Browser extensions
	Challenge
	Contributions

	Statement of contributions
	Bibliography

	Web Applications
	Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS
	Introduction
	Terminology
	Roadblocks for current XSS scanners
	Approach
	Overview
	Motivating Example
	Preparing the web application
	Choosing a database cell
	Payload insertion
	Application breakage
	Reflection scanning
	Manual analysis

	Evaluation
	Web applications
	Experimental setup
	Comparison results

	Analysis
	Database coverage
	False positives
	What we miss
	What others miss
	Exploitability
	Drop-in testing with Spider-Scents
	Manual analysis with Spider-Scents
	Runtime performance of Spider-Scents
	Coordinated disclosure
	Summary

	Related Work
	Black-box scanners
	White-box scanners
	Grey-box scanners
	Database-aware grey-box web scanning
	Database synthesis

	Conclusion

	SpiderSapien: Client-Centric Crawler and Security Scanner
	Introduction
	Challenges
	Method
	Motivating Example
	Client-side Crawling
	LLM-based Input Generation
	Implementation

	Evaluation
	Web Application Crawl Evaluation Setup
	Web Application Crawl Evaluation Results
	Open Web Form Solving Evaluation

	Analysis / Discussion
	Exploring Intended Code Paths
	Destroying the State
	False Negatives and Length of Scan
	Coverage Metrics
	LLM Failed Form Solves
	LLM Evaluation Limitations
	LLM Models and Prompting Choices

	Related Work
	Conclusion
	Ethics and Open Science
	Ethics Consideration
	Open Science

	Browser Extensions
	FakeX: A Framework for Detecting Fake Reviews of Browser Extensions
	Introduction
	Fake Reviews on Chrome Web Store
	FakeX: Framework
	Aggregated Time Window (ATW)
	Horizontal Vertical Clustering: A Machine Learning Approach
	Co-Reviewer
	Spam Detection
	Written Ratio

	Evaluation
	Aggregated Time Window
	Horizontal Vertical Clustering
	Co-Reviewer Analysis
	Spam Detection
	Written Ratio

	Malicious Extensions
	Security Analysis
	Case-study of ATW clusters
	New Tab Clusters
	Large Malicious Cluster
	Expanding from Known Malicious Extensions

	Discussion
	ATW and CoR
	Comparing ATW and HVC
	Focus on metadata

	Related Work
	Conclusion

