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Abstract
For a graph G, a subset S ⊆ V (G) is called a resolving set of G if, for any two vertices u, v ∈ V (G),
there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v). The Metric Dimension problem takes as
input a graph G on n vertices and a positive integer k, and asks whether there exists a resolving set
of size at most k. In another metric-based graph problem, Geodetic Set, the input is a graph G

and an integer k, and the objective is to determine whether there exists a subset S ⊆ V (G) of size
at most k such that, for any vertex u ∈ V (G), there are two vertices s1, s2 ∈ S such that u lies on a
shortest path from s1 to s2.

These two classical problems are known to be intractable with respect to the natural parameter,
i.e., the solution size, as well as most structural parameters, including the feedback vertex set number
and pathwidth. We observe that both problems admit an FPT algorithm running in 2O(vc2) · nO(1)

time, and a kernelization algorithm that outputs a kernel with 2O(vc) vertices, where vc is the
vertex cover number. We prove that unless the Exponential Time Hypothesis (ETH) fails, Metric
Dimension and Geodetic Set, even on graphs of bounded diameter, do not admit

an FPT algorithm running in 2o(vc2) · nO(1) time, nor
a kernelization algorithm that does not increase the solution size and outputs a kernel with 2o(vc)

vertices.
We only know of one other problem in the literature that admits such a tight algorithmic lower
bound with respect to vc. Similarly, the list of known problems with exponential lower bounds on
the number of vertices in kernelized instances is very short.
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1 Introduction

In this article, we study two metric-based graph problems, one of which is defined through
distances, while the other relies on shortest paths. Metric-based graph problems are ubi-
quitous in computer science; for example, the classical (Single-Source) Shortest Path,
(Graphic) Traveling Salesperson or Steiner Tree problems fall into this category.
Those are fundamental problems, often stemming from applications in network design, for
which a considerable amount of algorithmic research has been done. Metric-based graph
packing and covering problems, like Distance Domination [29] or Scattered Set [30],
have recently gained a lot of attention. Their non-local nature leads to non-trivial algorithmic
properties that differ from most graph problems with a more local nature. We focus here on
the Metric Dimension and Geodetic Set problems, which arise from network monitoring
and network design, respectively. These two problems have far-reaching applications, as
exemplified by, e.g., the recent work [3] where it was shown that enumerating minimal
solution sets for Metric Dimension and Geodetic Set in (general) graphs and split
graphs, respectively, is equivalent to the enumeration of minimal transversals in hypergraphs,
whose solvability in total-polynomial time is arguably the most important open problem in
algorithmic enumeration. Formally, these two problems are defined as follows.

Metric Dimension
Input: A graph G on n vertices and a positive integer k.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and, for any pair of vertices
u, v ∈ V (G), there exists a vertex w ∈ S with d(w, u) ̸= d(w, v)?

Geodetic Set
Input: A graph G on n vertices and a positive integer k.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and, for any vertex u ∈ V (G),
there are two vertices s1, s2 ∈ S such that u lies on a shortest path from s1 to s2?

Metric Dimension dates back to the 1970s [26, 38], whereas Geodetic Set was
introduced in 1993 [25]. The non-local nature of these problems has since posed interesting
algorithmic challenges. Metric Dimension was first shown to be NP-complete in general
graphs in Garey and Johnson’s book [22], and this was later extended to many restricted
graph classes (see “Related work” below). Geodetic Set was proven to be NP-complete
in [25], and later shown to be NP-hard on restricted graph classes as well.

As these two problems are NP-hard even in very restricted cases, it is natural to ask for
ways to confront this hardness. In this direction, the parameterized complexity paradigm
allows for a more refined analysis of a problem’s complexity. In this setting, we associate
each instance I of a problem with a parameter ℓ, and are interested in algorithms running
in f(ℓ) · |I|O(1) time for some computable function f . Parameterized problems that admit
such an algorithm are called fixed-parameter tractable (FPT for short) with respect to the
considered parameter. Under standard complexity assumptions, parameterized problems
that are hard for the complexity class W[1] or W[2] do not admit such algorithms.
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This approach, however, had limited success for these two problems. In the seminal
paper [28], Metric Dimension was proven to be W[2]-hard parameterized by the solution
size k, even on subcubic bipartite graphs. Similarly, Geodetic Set is W[2]-hard parameter-
ized by the solution size [15, 31], even on chordal bipartite graphs. These initial hardness
results drove the ensuing meticulous study of the problems under structural parameterizations:
we present an overview in the “Related work” below. In this article, we focus on the vertex
cover number, denoted by vc, of the input graph and prove the following positive results.

▶ Theorem 1. Metric Dimension and Geodetic Set admit
FPT algorithms running in 2O(vc2) · nO(1) time, and
kernelization algorithms that output kernels with 2O(vc) vertices.

The second set of results follows from simple reduction rules, and was also observed in [28]
for Metric Dimension. The first set of results builds on the second set by using a simple,
but critical observation. For Metric Dimension, this also improves upon the 22O(vc) · nO(1)

algorithm mentioned in [28]. However, our main technical contribution is in proving that
these results are optimal assuming the Exponential Time Hypothesis (ETH).

▶ Theorem 2. Unless the ETH fails, Metric Dimension and Geodetic Set do not admit
FPT algorithms running in 2o(vc2) · nO(1) time, nor
kernelization algorithms that do not increase the solution size and output kernels with
2o(vc) vertices,

even on graphs of bounded diameter.

Both these statements constitute a rare set of results. Indeed, we know of only one other
problem that admits a lower bound of the form 2o(vc2) ·nO(1) and a matching upper bound [1],
whereas such results parameterized by pathwidth are mentioned in [36, 37]. Very recently,
the authors in [7] also proved a similar result with respect to solution size. Similarly, the list
of known problems with exponential lower bounds on the number of vertices in kernelized
instances is very short. To the best of our knowledge, the only known results of this kind (i.e.,
ETH-based lower bounds on the number of vertices in a kernel) are for Edge Clique
Cover [13], Biclique Cover [9], Steiner Tree [35], Strong Metric Dimension [20],
B-NCTD+ [8], Locating Dominating Set [7], and Telephone Broadcasting [39]. For
Metric Dimension, the above also improves a result of [24], which states that Metric
Dimension parameterized by k+vc does not admit a polynomial kernel unless the polynomial
hierarchy collapses to its third level. Indeed, the result of [24] does not rule out a kernel of
super-polynomial or sub-exponential size.

Recently, Foucaud et al. [20] proved that, unless the ETH fails, Metric Dimension and
Geodetic Set on graphs of bounded diameter do not admit 22o(tw) · nO(1)-time algorithms,
thereby establishing one of the first such results for NP-complete problems. Note that
n ≻ vc ≻ fvs ≻ tw and n ≻ vc ≻ td ≻ pw ≻ tw in the parameter hierarchy, where n is the
order, fvs is the feedback vertex set number, td is the treedepth, pw is the pathwidth, and tw
is the treewidth of the graph. They further proved that their lower bound also holds for fvs
and td in the case of Metric Dimension, and for td in the case of Geodetic Set [20]. A
simple brute-force algorithm enumerating all possible candidates runs in 2O(n) time for both
of these problems. Thus, the next natural question is whether such a lower bound for Metric
Dimension and Geodetic Set can be extended to larger parameters, in particular vc.
Our first results answer this question in the negative. Together with the lower bounds with
respect to vc, this establishes the boundary between parameters yielding single-exponential
and double-exponential running times for Metric Dimension and Geodetic Set.

STACS 2025
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Before moving forward, we highlight the parallels and differences between Foucaud et
al. [20] and our work. Their aim was to establish double-exponential lower bounds for
NP-complete problems, and to do so they focused on the restriction of the problems to graphs
of bounded treewidth and diameter. Our objective is to closely examine one of the very few
tractable results for Metric Dimension and Geodetic Set on general graphs by focusing
on the vertex cover parameter. While we use some gadgets from [20], overall our reductions
significantly differ from the corresponding reductions in that article. Note that we need to
“control” the vertex cover number of the reduced graph, whereas the corresponding reductions
by Foucaud et al. [20] only need to “control” the treewidth.

Related Work. We mention here results concerning structural parameterizations of Metric
Dimension and Geodetic Set, and refer the reader to the full version of [20] for a more
comprehensive overview of applications and related work regarding these two problems.

As previously mentioned, Metric Dimension is W[2]-hard parameterized by the solution
size k, even in subcubic bipartite graphs [28]. Several other parameterizations have been
studied for this problem, on which we elaborate next (see also [21, Figure 1]). It was proven
that there is an XP algorithm parameterized by the feedback edge set number [18], and
FPT algorithms parameterized by the max leaf number [17], the modular-width and the
treelength plus the maximum degree [2], the treedepth and the clique-width plus the diameter
[23], and the distance to cluster (co-cluster, respectively) [21]. Recently, an FPT algorithm
parameterized by the treewidth in chordal graphs was given in [5]. On the negative side,
Metric Dimension is W[1]-hard parameterized by the pathwidth even on graphs of constant
degree [4], para-NP-hard parameterized by the pathwidth [33], and W[1]-hard parameterized
by the combined parameter feedback vertex set number plus pathwidth [21].

The parameterized complexity of Geodetic Set was first addressed in [31], in which it
was observed that the reduction from [15] implies that the problem is W[2]-hard parameterized
by the solution size (even for chordal bipartite graphs). This motivated the authors of [31]
to investigate structural parameterizations of Geodetic Set. They proved the problem
to be W[1]-hard for the combined parameters solution size, feedback vertex set number,
and pathwidth, and FPT for the parameters treedepth, modular-width (more generally,
clique-width plus diameter), and feedback edge set number [31]. The problem was also shown
to be FPT on chordal graphs when parameterized by the treewidth [6].

2 Preliminaries

For an integer a, we let [a] = {1, . . . , a}.

Graph theory. We use standard graph-theoretic notation and refer the reader to [14] for
any undefined notation. For an undirected graph G, the sets V (G) and E(G) denote its set
of vertices and edges, respectively. Two vertices u, v ∈ V (G) are adjacent or neighbors if
(u, v) ∈ E(G). The open neighborhood of a vertex u ∈ V (G), denoted byN(u) := NG(u), is the
set of vertices that are neighbors of u. The closed neighborhood of a vertex u ∈ V (G) is denoted
by N [u] := NG[u] := NG(u) ∪ {u}. For any X ⊆ V (G) and u ∈ V (G), NX(u) = NG(u) ∩X.
Any two vertices u, v ∈ V (G) are true twins if N [u] = N [v], and are false twins if N(u) = N(v).
For a subset S of V (G), we say that the vertices in S are true (false, respectively) twins
if, for any u, v ∈ S, u and v are true (false, respectively) twins. The distance between two
vertices u, v ∈ V (G) in G, denoted by d(u, v) := dG(u, v), is the length of a (u, v)-shortest
path in G. For a subset S of V (G), we define N [S] =

⋃
v∈S N [v] and N(S) = N [S] \ S. For
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a graph G, a set X ⊆ V (G) is said to be a vertex cover if V (G) \X is an independent set.
We denote by vc(G) the size of a minimum vertex cover in G. When G is clear from the
context, we simply say vc. A vertex is simplicial if its neighborhood forms a clique. Observe
that any simplicial vertex v does not belong to any shortest path between any pair x, y of
vertices (both distinct from v). Hence, the following holds.

▶ Observation 3 ([10]). If a graph G contains a simplicial vertex v, then v belongs to any
geodetic set of G. Specifically, every degree-1 vertex belongs to any geodetic set of G.

Metric Dimension. A subset of vertices S′ ⊆ V (G) resolves a pair of vertices u, v ∈ V (G) if
there exists a vertex w ∈ S′ such that d(w, u) ̸= d(w, v). A vertex u ∈ V (G) is distinguished
by a subset of vertices S′ ⊆ V (G) if, for any v ∈ V (G) \ {u}, there exists a vertex w ∈ S′

such that d(w, u) ̸= d(w, v).

Parameterized Complexity. An instance of a parameterized problem Π comprises an input
I, which is an input of the classical instance of the problem, and an integer ℓ, which is called
the parameter. A problem Π is said to be fixed-parameter tractable or in FPT if given an
instance (I, ℓ) of Π, we can decide whether or not (I, ℓ) is a Yes-instance of Π in f(ℓ) · |I|O(1)

time, for some computable function f whose value depends only on ℓ.
A kernelization algorithm for Π is a polynomial-time algorithm that takes as input an

instance (I, ℓ) of Π and returns an equivalent instance (I ′, ℓ′) of Π, where |I ′|, ℓ′ ≤ f(ℓ),
where f is a function that depends only on ℓ. If such an algorithm exists for Π, we say that
Π admits a kernel of size f(ℓ). If f is a polynomial or exponential function of ℓ, we say that
Π admits a polynomial or exponential kernel, respectively. If Π is a graph problem, then I

contains a graph, say G, and I ′ contains a graph, say G′. In this case, we say that Π admits
a kernel with f(ℓ) vertices if the number of vertices of G′ is at most f(ℓ).

It is typical to describe a kernelization algorithm as a series of reduction rules. A reduction
rule is a polynomial-time algorithm that takes as an input an instance of a problem and
outputs another (usually reduced) instance. A reduction rule said to be applicable on an
instance if the output instance is different from the input instance. A reduction rule is safe
if the input instance is a Yes-instance if and only if the output instance is a Yes-instance.

The Exponential Time Hypothesis (ETH) roughly states that n-variable 3-SAT cannot
be solved in 2o(n) time. For more on parameterized complexity and related terminologies, we
refer the reader to the recent book by Cygan et al. [12].

3-Partitioned-3-SAT. Our lower bound proofs consist of reductions from the 3-Partitio-
ned-3-SAT problem. This version of 3-SAT was introduced in [32] and is defined as
follows.

3-Partitioned-3-SAT
Input: A formula ψ in 3-CNF form, together with a partition of the set of its variables
into three disjoint sets Xα, Xβ , Xγ , with |Xα| = |Xβ | = |Xγ | = N , and such that no
clause contains more than one variable from each of Xα, Xβ , and Xγ .
Question: Determine whether ψ is satisfiable.

Organization of the paper. We start with the results for Metric Dimension, which are
then followed by those for Geodetic Set. For each, we first present the algorithms and
then the reductions. Since space requirements prohibit us from presenting our reductions in

STACS 2025
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detail, we give an outline that discusses the main technical ideas behind our reductions for
getting the lower-bound results for both Metric Dimension and Geodetic Set. For the
complete formal proofs, we refer the reader to the full version of this paper [19].

3 Metric Dimension: Algorithms for Vertex Cover Parameterization

In this section, we prove Theorem 1 for Metric Dimension. The kernelization algorithm
exhaustively applies the following reduction rule.

▷ Reduction Rule 1. If there exist three vertices u, v, x ∈ I such that u, v, x are false twins,
then delete x and decrease k by one.

Proof that Reduction Rule 1 is safe. Since u, v, x are false twins, N(u) = N(v) = N(x).
This implies that, for any vertex w ∈ V (G) \ {u, v, x}, d(w, v) = d(w, u) = d(w, x). Hence,
any resolving set that excludes at least two vertices in {u, v, x} cannot resolve all three pairs
{u, v}, {u, x}, and {v, x}. As the vertices in {u, v, x} are distance-wise indistinguishable
from the remaining vertices, we can assume, without loss of generality, that any resolving set
contains both u and x. Hence, any pair of vertices in V (G) \ {u, x} that is resolved by x is
also resolved by u. In other words, if S is a resolving set of G, then S \ {x} is a resolving
set of G − {x}. This implies the correctness of the forward direction. The correctness of
the reverse direction trivially follows from the fact that we can add x into a resolving set of
G− {x} to obtain a resolving set of G. ◀

▶ Lemma 4. Metric Dimension, parameterized by the vertex cover number vc, admits a
polynomial-time kernelization algorithm that returns an instance with 2O(vc) vertices.

Proof. Given a graph G, let X ⊆ V (G) be a minimum vertex cover of G. If such a vertex
cover is not given, then we can find a 2-factor approximate vertex cover in polynomial
time. Let I := V (G) \X. By the definition of a vertex cover, the vertices of I are pairwise
non-adjacent.

The kernelization algorithm exhaustively applies Reduction Rule 1. Now, consider an
instance on which Reduction Rule 1 is not applicable. If the budget is negative, then the
algorithm returns a trivial No-instance of constant size. Otherwise, for any Y ⊆ X, there
are at most two vertices u, v ∈ I such that N(u) = N(v) = Y . This implies that the number
of vertices in the reduced instance is at most |X| + 2 · 2|X| = 2vc+1 + vc. ◀

Next, we present an XP-algorithm parameterized by the vertex cover number. This
algorithm, along with the kernelization algorithm above, imply1 that Metric Dimension
admits an algorithm running in 2O(vc2) · nO(1) time.

▶ Lemma 5. Metric Dimension admits an algorithm running in nO(vc) time.

Proof. The algorithm starts by computing a minimum vertex cover X of G in 2O(vc) · nO(1)

time using an FPT algorithm for the Vertex Cover problem, for example the one in [11]
or [27]. Let I := V (G) \X. Then, in polynomial time, it computes a largest subset F of I
such that, for every vertex u in F , I \ F contains a false twin of u. By the arguments in the
previous proof, if there are false twins in I, say u, v, then any resolving set contains at least
one of them. Hence, it is safe to assume that any resolving set contains F . If k − |F | < 0,

1 Note that the application of Reduction Rule 1 does not increase the vertex cover number.
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then the algorithm returns No. Otherwise, it enumerates every subset of vertices of size
at most |X| in X ∪ (I \ F ). If there exists a subset A ⊆ X ∪ (I \ F ) such that A ∪ F is a
resolving set of G of size at most k, then it returns A ∪ F . Otherwise, it returns No.

In order to prove that the algorithm is correct, we prove that X ∪F is a resolving set of G.
It is easy to see that, for a pair of distinct vertices u, v, if u ∈ X ∪F and v ∈ V (G), then the
pair is resolved by u. It remains to argue that every pair of distinct vertices in (I \F )× (I \F )
is resolved by X∪F . Note that, for any two vertices u, v ∈ I \F , N(u) ̸= N(v) as otherwise u
can be moved to F , contradicting the maximality of F . Hence, there is a vertex in X that is
adjacent to u, but not adjacent to v, resolving the pair ⟨u, v⟩. This implies the correctness of
the algorithm. The running time of the algorithm easily follows from its description. ◀

4 Metric Dimension: Lower Bounds Regarding Vertex Cover

In this section, we prove Theorem 2 for Metric Dimension. The first integral part of our
technique is to reduce from a variant of 3-SAT known as 3-Partitioned-3-SAT [32]. In
this problem, the input is a 3-CNF formula ψ, together with a partition of the set of its
variables into three disjoint sets Xα, Xβ , Xγ , with |Xα| = |Xβ | = |Xγ | = N , and such that
no clause contains more than one variable from each of Xα, Xβ , and Xγ . The objective is
to determine whether ψ is satisfiable. Unless the ETH fails, 3-Partitioned-3-SAT does not
admit an algorithm running in 2o(N) time [32, Theorem 3]. Our key result is the following.

▶ Theorem 6. There is an algorithm that, given an instance ψ of 3-Partitioned-3-SAT
on N variables, runs in 2O(

√
N) time, and constructs an equivalent instance (G, k) of Metric

Dimension such that vc(G) + k = O(
√
N) (and |V (G)| = 2O(

√
N)).

The above theorem, along with the arguments that are standard to prove the ETH-based
lower bounds, immediately imply the following results.

▶ Corollary 7. Unless the ETH fails, Metric Dimension does not admit an algorithm
running in 2o(vc2) · nO(1) time.

▶ Corollary 8. Unless the ETH fails, Metric Dimension does not admit a kernelization
algorithm that does not increase the solution size k and outputs a kernel with 2o(k+vc) vertices.

Proof. Toward a contradiction, assume that such a kernelization algorithm exists. Consider
the following algorithm for 3-Partitioned-3-SAT. Given a 3-Partitioned-3-SAT formula
on N variables, it uses Theorem 6 to obtain an equivalent instance of (G, k) such that
vc(G) + k = O(

√
N) and |V (G)| = 2O(

√
N). Then, it uses the assumed kernelization

algorithm to construct an equivalent instance (H, k′) such that H has 2o(vc(G)+k) vertices
and k′ ≤ k. Finally, it uses a brute-force algorithm, running in |V (H)|O(k′) time, to determine
whether the reduced instance, or equivalently the input instance of 3-Partitioned-3-SAT,
is a Yes-instance. The correctness of the algorithm follows from the correctness of the
respective algorithms and our assumption. The total running time of the algorithm is
2O(

√
N) + (|V (G)| + k)O(1) + |V (H)|O(k′) = 2O(

√
N) + (2O(

√
N))O(1) + (2o(

√
N))O(

√
N) = 2o(N).

But this contradicts the ETH. ◀

The reduction, presented in Section 4.2, uses tools introduced in the next subsection.
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bit-rep(X)

bits(X)

nullifier(X)

X

xi

y*

according to bin(i)

G'

N(X)

bi°

bi*

bj°

bj*

Ai

Ajbit-rep(B) bit-rep(A)

nullifier(B) nullifier(A)

AB

Figure 1 Set Identifying Gadget (left). The blue box represents bit-rep(X). The yellow
lines represent that all possible edges exist between bit-rep(X) \ bits(X) and nullifier(X), nullifier(X)
and N(X), and y⋆ and X. Note that G′ is not necessarily restricted to the graph induced by the
vertices in X ∪N(X). Vertex Selector Gadget (right). For X ∈ {B,A}, the blue box represents
bit-rep(X), the blue link represents the connection with respect to the binary representation, and
the yellow line represents that nullifier(X) is adjacent to each vertex in bit-rep(X) \ bits(X). Dotted
lines highlight absent edges.

4.1 Preliminary Tools
4.1.1 Set Identifying Gadget
We redefine a gadget introduced in [20]. Suppose we are given a graph G′ and a subset
X ⊆ V (G′) of its vertices. Further, suppose that we want to add a vertex set X+ to G′ in
order to obtain a new graph G such that (1) each vertex in X ∪X+ will be distinguished
by vertices in X+ that must be in any resolving set S of G, and (2) no vertex in X+ can
resolve any pair of vertices in V (G) \ (X ∪ X+) that are in the same distance class with
respect to X.

The graph induced by the vertices of X+, along with the edges connecting X+ to G′, is
the Set Identifying Gadget for X [20]. Given a graph G′ and a non-empty subset X ⊆ V (G′)
of its vertices, to construct such a graph G, we add vertices and edges to G′ as follows:

The vertex set X+ that we are aiming to add is the union of a set bit-rep and a special
vertex denoted by nullifier(X).
Let X = {xi | i ∈ [|X|]} and set q := ⌈log(|X| + 2)⌉ + 1. We select this value for q to
(1) uniquely represent each integer in [|X|] by its bit-representation in binary (note that
we start from 1 and not 0), (2) ensure that the only vertex whose bit-representation
contains all 1’s is nullifier(X), and (3) reserve one spot for an additional vertex y⋆.
For every i ∈ [q], add three vertices ya

i , yi, y
b
i , and add the path (ya

i , yi, y
b
i ).

Add three vertices ya
⋆ , y⋆, y

b
⋆, and add the path (ya

⋆ , y⋆, y
b
⋆). Add all the edges to make

{yi | i ∈ [q]} ∪ {y⋆} a clique. Make y⋆ adjacent to each vertex v ∈ X. Let bit-rep(X) :=
{yi, y

a
i , y

b
i | i ∈ [q]} ∪ {y⋆, y

a
⋆ , y

b
⋆} and bits(X) := {ya

i , y
b
i | i ∈ [q]} ∪ {ya

⋆ , y
b
⋆}.

For every integer j ∈ [|X|], let bin(j) denote the binary representation of j using q bits.
Connect xj with yi if the ith bit (going from left to right) in bin(j) is 1.
Add a vertex, denoted by nullifier(X), and make it adjacent to every vertex in {yi | i ∈
[q]} ∪ {y⋆}. One can think of nullifier(X) as the only vertex whose bit-representation
contains all 1’s.
For every vertex u ∈ V (G) \ (X ∪ X+) such that u is adjacent to some vertex in X,
add an edge between u and nullifier(X). We add this vertex to ensure that vertices in
bit-rep(X) do not resolve any pairs of vertices in V (G) \ (X ∪X+) that are in the same
distance class with respect to X.

This completes the construction of G. See Figure 1 for an illustration.
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4.1.2 Gadget to Add Critical Pairs
Any resolving set needs to resolve all pairs of vertices in the input graph. As we will see,
some pairs are harder to resolve than others.

Suppose that we need to have m ∈ N such “hard” pairs in a graph G. So, for each i ∈ [m],
we make a pair of vertices ⟨c◦

i , c
⋆
i ⟩ critical as follows. Define C := {c◦

i , c
⋆
i | i ∈ [m]}. We

then add bit-rep(C) and nullifier(C) as mentioned above (taking C as the set X), with the
edges between {c◦

i , c
⋆
i } and bit-rep(C) defined by bin(i), i.e., connect both c◦

i and c⋆
i with

the j-th vertex of bit-rep(C) if the jth bit (going from left to right) in bin(i) is 1. Hence,
bit-rep(C) can resolve any pair of the form ⟨c◦

i , c
⋆
ℓ ⟩, ⟨c◦

i , c
◦
ℓ ⟩, or ⟨c⋆

i , c
⋆
ℓ ⟩ as long as i ̸= ℓ. As

before, bit-rep(C) can also resolve all pairs with one vertex in C ∪ bit-rep(C) ∪ {nullifier(C)},
but no critical pair of vertices.

4.1.3 Vertex Selector Gadgets
Suppose that we are given a collection of sets A1, A2, . . . , Aq of vertices in a graph G, and
we want to ensure that any resolving set of G includes at least one vertex from Ai for every
i ∈ [q]. In the following, we construct a gadget that achieves a slightly weaker objective.

Let A =
⋃

i∈[q] Ai. Add a set identifying gadget for A as mentioned in Subsection 4.1.1.
For every i ∈ [q], add two vertices b◦

i and b⋆
i . Use the gadget mentioned in Subsection 4.1.2

to make all the pairs of the form ⟨b◦
i , b

⋆
i ⟩ critical pairs (in the way it was introduced for

⟨c◦
i , c

⋆
i ⟩).

For every a ∈ Ai, add an edge (a, b◦
i ). We highlight that we do not make a adjacent

to b⋆
i by a dotted line in Figure 1. Also, add the edges (a, nullifier(B)), (b◦

i , nullifier(A)),
(b⋆

i , nullifier(A)), and (nullifier(A), nullifier(B)).
This completes the construction. Note that the only vertices that can resolve a critical pair
⟨b◦

i , b
⋆
i ⟩, apart from b◦

i and b⋆
i , are the vertices in Ai (see Figure 1, all other vertices are

equidistant from both vertices of the pair). Hence, every resolving set contains at least one
vertex in {b◦

i , b
⋆
i } ∪Ai.

4.2 Reduction
Consider an instance ψ of 3-Partitioned-3-SAT with Xα, Xβ , Xγ the partition of the
variable set, where each part contains N variables. By adding dummy variables in each of
these sets, we can assume that

√
N is an integer. From ψ, we construct the graph G as

follows. We describe the construction of the part of the graph G that corresponds to Xα,
with the parts corresponding to Xβ and Xγ being analogous. Rename the variables in Xα

to xα
i,j for i, j ∈ [

√
N ].

We partition the variables of Xα into buckets Xα
1 , X

α
2 , . . . , X

α√
N

such that each bucket
contains

√
N variables. Let Xα

i = {xα
i,j | j ∈ [

√
N ]} for all i ∈ [

√
N ].

For every Xα
i , we construct a set Aα

i of 2
√

N new vertices, Aα
i = {aα

i,ℓ | ℓ ∈ [2
√

N ]}. Each
vertex in Aα

i corresponds to a certain possible assignment of variables in Xα
i . Let Aα be

the collection of all the vertices added in the above step, that is, Aα = {aα
i,ℓ ∈ Ai| i ∈

[
√
N ] and ℓ ∈ [2

√
N ]}. We add a set identifying gadget as mentioned in Subsection 4.1.1

in order to resolve every pair of vertices in Aα.
For every Xα

i , we construct a pair ⟨bα,◦
i , bα,⋆

i ⟩ of vertices. Then, we add a gadget to
make the pairs {⟨bα,◦

i , bα,⋆
i ⟩ | i ∈ [

√
N ]} critical as mentioned in Subsection 4.1.2. Let

Bα = {bα,◦
i , bα,⋆

i | i ∈ [
√
N ]} be the collection of vertices in the critical pairs. We add

edges in Bα to make it a clique.
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We would like that any resolving set contains at least one vertex in Aα
i for every i ∈ [

√
N ],

but instead we add the construction from Subsection 4.1.3 that achieves the slightly
weaker objective as mentioned there. However, for every Aα

i , instead of adding two new
vertices, we use ⟨bα,◦

i , bα,⋆
i ⟩ as the necessary critical pair. Formally, for every i ∈ [

√
N ], we

make bα,◦
i adjacent to every vertex in Aα

i . We add edges to make nullifier(Bα) adjacent
to every vertex in Aα, and nullifier(Aα) adjacent to every vertex in Bα. Recall that there
is also the edge (nullifier(Bα), nullifier(Aα)).
For every clause Cq in ψ, we have a pair of vertices ⟨c◦

q , c
⋆
q⟩. Let C be the collection

of vertices in such pairs. We add portals that transmit information from vertices cor-
responding to assignments, i.e., vertices in Aα, to pairs corresponding to clauses. A
portal is a clique on

√
N vertices in the graph G. We add three portals, the truth

portal (denoted by Tα), false portal (denoted by Fα), and validation portal (denoted by
V α). Let Tα = {tα1 , tα2 , . . . , tα√N

}, Fα = {fα
1 , f

α
2 , . . . , f

α√
N

}, and V α = {vα
1 , v

α
2 , . . . , v

α√
N

}.
Moreover, let Pα = V α ∪ Tα ∪ Fα.
We add a set identifying gadget for Pα as mentioned in Subsection 4.1.1. We add an edge
between nullifier(Aα) and every vertex of Pα; and the edge (nullifier(Pα), nullifier(Aα)).
However, we note that we do not add edges between nullifier(Pα) and Aα, as can be seen
in Figure 2. Lastly, we add edges in Pα to make it a clique.
We add edges between Aα and the portals as follows. For i ∈ [

√
N ] and ℓ ∈ [2

√
N ],

consider a vertex aα
i,ℓ in Aα

i . Recall that this vertex corresponds to an assignment
π : Xα

i 7→ {True, False}, where Xα
i is the collection of variables {xα

i,j | j ∈ [
√
N ]}. If

π(xα
i,j) = True, then we add the edge (aα

i,ℓ, t
α
j ). Otherwise, π(xα

i,j) = False, and we add
the edge (aα

i,ℓ, f
α
j ). We add the edge (aα

i,ℓ, v
α
i ) for every ℓ ∈ [2

√
N ].

Then, we repeat the above steps to construct Bβ , Aβ , P β , Bγ , Aγ , P γ . Now, we are ready
to proceed through the final steps to complete the construction.

For every clause Cq in ψ, as it has been already introduced above, we have a pair of
vertices ⟨c◦

q , c
⋆
q⟩ and C is the collection of vertices in such pairs. Then, we add a gadget

as was described in Subsection 4.1.2 to make each pair ⟨c◦
q , c

⋆
q⟩ a critical one.

For each δ ∈ {α, β, γ}, we add an edge between nullifier(P δ) and every vertex of C, and
we add the edge (nullifier(P δ), nullifier(C)). Now, we add edges between C and the portals
as follows for each δ ∈ {α, β, γ}. Consider a clause Cq in ψ and the corresponding critical
pair ⟨c◦

q , c
⋆
q⟩ in C. As ψ is an instance of 3-Partitioned-3-SAT, there is at most one

variable in Xδ that appears in Cq. If Cq does not contain a variable in Xδ, then we make
c◦

q and c⋆
q adjacent to every vertex in V δ, and they are not adjacent to any vertex in

T δ ∪F δ. Otherwise, suppose that Cq contains the variable xδ
i,j for some i, j ∈ [

√
N ]. The

first subscript decides the edges between ⟨c◦
q , c

⋆
q⟩ and the validation portal, whereas the

second subscript decides the edges between ⟨c◦
q , c

⋆
q⟩ and either the truth portal or false

portal in the following sense. We add all edges of the form (vδ
i′ , c◦

q) and (vδ
i′ , c⋆

q) for every
i′ ∈ [

√
N ] such that i′ ̸= i. If xδ

i,j appears as a positive literal in Cq, then we add the edge
(tδj , c◦

q). Otherwise, xδ
i,j appears as a negative literal in Cq, and we add the edge (fδ

j , c
◦
q).

This concludes the construction of G. The reduction returns (G, k) as an instance of
Metric Dimension where

k = 3 ·
(√

N + (⌈log(|Bα|/2 + 2)⌉ + 1) + (⌈log(|Aα| + 2)⌉ + 1) + (⌈log(|Pα| + 2)⌉ + 1)
)

+

⌈log(|C|/2 + 2)⌉ + 1.
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bi°bi*

b1°b1*

b√N°b√N*

Tα

Pα

Fα

Aα

A1
α

A√N
α

Ai
α

Bα

nullifier(Bα)

nullifier(Aα) nullifier(Pα)

nullifier(С)

bit-rep(С)

bit-rep(Pα)bit-rep(Aα)

bit-rep(Bα)

Vα

C

cq°

cq*

Figure 2 Overview of the reduction. Sets in ellipses are independent sets and sets in rectangles
are cliques. For X ∈ {Bα, Aα, Pα, C}, the blue rectangle attached to it via the blue edge represents
bit-rep(X), and the yellow line between a vertex and bit-rep(X) indicates that vertex is connected
to every vertex in bit-rep(X) \ bits(X). The remainder of the yellow lines represent that vertex is
connected to every vertex in the set the edge goes to. Note the exception of nullifier(Pα) which is
not adjacent to any vertex in Aα. Purple lines between two sets denote adjacencies with respect to
indexing, i.e., bα,◦

i is adjacent only with all the vertices in Aα
i , and all the vertices in Aα

i are adjacent
with vα

i in validation portal V α. Gray lines also indicate adjacencies with respect to indexing, but in
a complementary way. If Cq contains a variable in Bα

i , then c◦
q and c⋆

q are adjacent with all vertices
vα

j ∈ V α such that j ̸= i. Green and red lines between the Aα and Tα and Fα roughly transfer, for
each aα

i,ℓ ∈ Aα, the underlying assignment structure. If the jth variable by aα
i,ℓ is assigned to True,

then we add the green edge (aα
i,ℓ, t

α
j ), and otherwise the red edge (aα

i,ℓ, f
α
j ). Similarly, we add edges

for each c◦
i ∈ C depending on the assignment satisfying the variable from the part Xδ of a clause ci,

and in which block Bδ
j it lies, putting either an edge (c◦

i , t
δ
j) or (c◦

i , f
δ
j ) accordingly (δ ∈ {α, β, γ}).

We give an informal description of the proof of correctness here. See Figure 3. Suppose√
N = 3 and the vertices in the sets are indexed from top to bottom. For legibility, we omit

some edges and only show 4 out of 8 vertices in each Aα
i for i ∈ [3]. We also omit bit-rep and

nullifier for these sets. The vertex selection gadget and the budget k ensure that exactly one
vertex in {bα,◦

i , bα,⋆
i }∪Aα

i is selected for every i ∈ [3]. If a resolving set contains a vertex from
Aα

i , then it corresponds to selecting an assignment of variables in Xα
i . For example, the vertex

aα
2,2 corresponds to the assignment π : Xα

2 7→ {True, False}. Suppose Xα
2 = {xα

2,1, x
α
2,2, x

α
2,3},

π(xα
2,1) = π(xα

2,3) = True, and π(xα
2,2) = False. Hence, aα

2,2 is adjacent to the first and third
vertex in the truth portal Tα, whereas it is adjacent with the second vertex in the false portal
Fα. Suppose the clause Cq contains the variable xα

2,1 as a positive literal. Note that c◦
q and

c⋆
q are at distance 2 and 3, respectively, from aα

2,2. Hence, the vertex aα
2,2, corresponding to

the assignment π that satisfies clause Cq, resolves the critical pair ⟨c◦
q , c

⋆
q⟩. Now, suppose

there is another assignment σ : Xα
3 7→ {True, False} such that σ(xα

3,1) = σ(xα
3,3) = True and

σ(xα
3,2) = False. As ψ is an instance of 3-Partitioned-3-SAT and Cq contains a variable

in Xα
2 (⊆ Xα), Cq does not contain a variable in Xα

3 (⊆ Xα). Hence, σ does not satisfy Cq.
Let aα

3,2 be the vertex in Xα
3 corresponding to σ. The connections via the validation portal

V α ensure that both c◦
q and c⋆

q are at distance 2 from aα
3,2, and hence, aα

3,2 cannot resolve the
critical pair ⟨c◦

q , c
⋆
q⟩. Hence, finding a resolving set in G corresponds to finding a satisfying

assignment for ψ. These intuitions are formalized in the following subsection.
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C

cq°

cq*

b2°b2*

Vα

Tα

Fα

Aα

A1
α

A3
α

A2
α

Bα
π

σ

Figure 3 An example to illustrate the reduction (bit-rep and nullifier are omitted for the sets).

4.3 Correctness of the Reduction
Suppose, given an instance ψ of 3-Partitioned-3-SAT, that the reduction of this subsection
returns (G, k) as an instance of Metric Dimension. We first prove the following lemma
which will be helpful in proving the correctness of the reduction.

▶ Lemma 9. For any resolving set S of G and for all X ∈ {C}∪{Bδ, Aδ, P δ | δ ∈ {α, β, γ}},
1. S contains at least one vertex from each pair of false twins in bits(X).
2. Vertices in bits(X) ∩ S resolve any non-critical pair of vertices ⟨u, v⟩ when u ∈ X ∪X+

and v ∈ V (G).
3. Vertices in X+ ∩ S cannot resolve any critical pair of vertices ⟨bδ′,◦

i , bδ′,⋆
i ⟩ nor ⟨c◦

q , c
⋆
q⟩ for

all i ∈ [
√
N ], δ′ ∈ {α, β, γ}, and q ∈ [m].

Proof.
1. Let G be a graph. For any false twins u, v ∈ V (G) and any w ∈ V (G) \ {u, v}, d(u,w) =

d(v, w), and so, for any resolving set S of G, S ∩ {u, v} ≠ ∅. Hence, the statement follows
for all X ∈ {C} ∪ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}.

2. For all X ∈ {C} ∪ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}, nullifier(X) is distinguished by bits(X) ∩S
as it is the only vertex in G at distance 2 from each vertex in bits(X). We do a case analysis
for the remaining non-critical pairs of vertices ⟨u, v⟩ assuming that nullifier(X) /∈ {u, v}
(also, suppose that neither u nor v is in S, as otherwise, they are obviously distinguished):
Case i: u, v ∈ X ∪ X+.

Case i(a): u, v ∈ X or u, v ∈ bit-rep(X) \ bits(X). In the first case, let j be the
bit in the binary representation of the subscript of u that is not equal to the jth bit
in the binary representation of the subscript of v (such a j exists since ⟨u, v⟩ is not
a critical pair). In the second case, without loss of generality, let u = yi and v = yj .
By the first item of the statement of the lemma (1.), without loss of generality,
ya

j ∈ S ∩ bits(X). Then, in both cases, d(ya
j , u) ̸= d(ya

j , v).
Case i(b): u ∈ X and v ∈ bit-rep(X). Without loss of generality, ya

⋆ ∈ S ∩ bits(X)
(by 1.). Then, d(ya

⋆ , u) = 2 and, for all v ∈ bits(X) \ {yb
⋆}, d(ya

⋆ , v) = 3. Without
loss of generality, let yi be adjacent to u and let ya

i ∈ S ∩ bits(X) (by 1.). Then, for
v = yb

⋆, 3 = d(ya
i , v) ̸= d(ya

i , u) = 2. If v ∈ bit-rep(X) \ bits(X), then, without loss
of generality, v = yj and ya

j ∈ S ∩ bits(X) (by 1.), and 1 = d(ya
j , v) < d(ya

j , u).
Case i(c): u, v ∈ bits(X). Without loss of generality, u = yb

i and ya
i ∈ S (by 1.).

Then, 2 = d(ya
i , u) ̸= d(ya

i , v) = 3.
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Case i(d): u ∈ bits(X) and v ∈ bit-rep(X) \ bits(X). Without loss of generality,
v = yi and ya

i ∈ S (by 1.). Then, 1 = d(ya
i , v) < d(ya

i , u).
Case ii: u ∈ X ∪ X+ and v ∈ V (G) \ (X ∪ X+). For each u ∈ X∪X+, there exists
w ∈ bits(X) ∩ S such that d(u,w) ≤ 2, while, for each v ∈ V (G) \ (X ∪ X+) and
w ∈ bits(X) ∩ S, we have d(v, w) ≥ 3.

3. For all X ∈ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}, u ∈ X+, v ∈ {c◦
q , c

⋆
q}, and q ∈ [m], we have

that d(u, v) = d(u, nullifier(P δ)) + 1. Further, for X = C and all u ∈ X+ and q ∈ [m],
either d(u, c◦

q) = d(u, c⋆
q) = 1, d(u, c◦

q) = d(u, c⋆
q) = 2, or d(u, c◦

q) = d(u, c⋆
q) = 3 by the

construction in Subsection 4.1.2 and since bit-rep(X) \ bits(X) is a clique. Hence, for
all X ∈ {C} ∪ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}, vertices in X+ ∩ S cannot resolve a pair of
vertices ⟨c◦

q , c
⋆
q⟩ for any q ∈ [m].

For all δ ∈ {α, β, γ}, if v ∈ Bδ, then, for all X ∈ {C} ∪ {Bδ′
, Aδ′

, P δ′ | δ′ ∈ {α, β, γ}}
such that δ ̸= δ′, and u ∈ X+, we have that d(u, v) = d(u, nullifier(Aδ)) + 1. Similarly,
for all δ ∈ {α, β, γ}, if v ∈ Bδ, then, for all X ∈ {Aδ, P δ} and u ∈ X+, we have
that d(u, v) = d(u, nullifier(Aδ)) + 1. Lastly, for each ⟨bδ,◦

i , bδ,⋆
i ⟩, δ ∈ {α, β, γ}, and

i ∈ [
√
N ], if X = Bδ, then, for all u ∈ X+, either d(u, bδ,◦

i ) = d(u, bδ,⋆
i ) = 1, d(u, bδ,◦

i ) =
d(u, bδ,⋆

i ) = 2, or d(u, bδ,◦
i ) = d(u, bδ,⋆

i ) = 3 by the construction in Subsection 4.1.2 and
since bit-rep(X) \ bits(X) is a clique. ◀

▶ Lemma 10. If ψ is a satisfiable 3-Partitioned-3-SAT formula, then G admits a resolving
set of size k.

▶ Lemma 11. If G admits a resolving set of size k, then ψ is a satisfiable 3-Partitioned-
3-SAT formula.

Proof of Theorem 6. In Subsection 4.2, we presented a reduction that takes an instance ψ
of 3-Partitioned-3-SAT and returns an equivalent instance (G, k) of Metric Dimension
(by Lemmas 10 and 11) in 2O(

√
N) time, where

k = 3 ·
(√

N + (⌈log(|Bα|/2 + 2)⌉ + 1) + (⌈log(|Aα| + 2)⌉ + 1) + (⌈log(|Pα| + 2)⌉ + 1)
)

+

(⌈log(|C|/2 + 2)⌉ + 1) = O(
√
N).

Note that V (G) = 2O(
√

N). Further, note that taking all the vertices in Bδ and P δ for all
δ ∈ {α, β, γ}, and X+ \ bits(X) for all X ∈ {C} ∪ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}, results in a
vertex cover of G. Hence,

vc(G) ≤ 3 · ((⌈log(|Bα|/2 + 2)⌉ + 2) + (⌈log(|Aα| + 2)⌉ + 2) + (⌈log(|Pα| + 2)⌉ + 2)) +

3 · (|Bα| + |Pα|) + (⌈log(|C|/2 + 2)⌉ + 2) = O(
√
N).

Thus, vc(G) + k = O(
√
N). ◀

5 Geodetic Set: Algorithms for Vertex Cover Parameterization

To prove Theorem 1 for Geodetic Set, we start with the following fact about false twins.

▶ Lemma 12. If a graph G contains a set T of false twins that are not true twins and not
simplicial, then any minimum-size geodetic set contains at most four vertices of T .

Proof. Let T = {t1, . . . , th} be a set of false twins in a graph G, that are not true twins and
not simplicial. Thus, T forms an independent set, and there are two non-adjacent vertices
x, y in the neighborhood of the vertices in T . Toward a contradiction, assume that h ≥ 5
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and G has a minimum-size geodetic set S that contains at least five vertices of T ; without
loss of generality, assume {t1, . . . , t5} ⊆ S. We claim that S′ = (S \ {t1, t2, t3}) ∪ {x, y} is
still a geodetic set, contradicting the choice of S as a minimum-size geodetic set of G.

To see this, notice that any vertex from V (G) \ T that is covered by some pair of vertices
in T ∩ S is also covered by t4 and t5. Similarly, any vertex from V (G) \ T covered by some
pair ⟨ti, z⟩ in (S ∩ T ) × (S \ T ), is still covered by t4 and z. Moreover, x and y cover all
vertices of T , since they are at distance 2 from each other and all vertices in T are their
common neighbors. Thus, S′ is a geodetic set, as claimed. ◀

▶ Lemma 13. Geodetic Set, parameterized by the vertex cover number vc, admits a
polynomial-time kernelization algorithm that returns an instance with 2O(vc) vertices.

Proof. Given a graph G, let X ⊆ V (G) be a minimum-size vertex cover of G. If this vertex
cover is not given, then we can find a 2-factor approximate vertex cover in polynomial time.
Let I := V (G) \X; I forms an independent set. The kernelization algorithm exhaustively
applies the following reduction rules in a sequential manner.

▷ Reduction Rule 2. If there exist three simplicial vertices in G that are false twins or true
twins, then delete one of them from G and decrease k by one.

▷ Reduction Rule 3. If there exist six vertices in G that are false twins but are not true
twins nor simplicial, then delete one of them from G.

To see that Reduction Rule 2 is correct, assume that G contains three simplicial vertices
u, v, w that are twins (false or true). We show that G has a geodetic set of size k if and only
if the reduced graph G′, obtained from G by deleting u, has a geodetic set of size k − 1. For
the forward direction, let S be a geodetic set of G of size k. By Observation 3, S contains
each of u, v, w. Now, let S′ = S \ {u}. This set of size k − 1 is a geodetic set of G′. Indeed,
any vertex of G′ that was covered in G by u and some other vertex z of S, is also covered
by v and z in G′. Conversely, if G′ has a geodetic set S′′ of size k − 1, then it is clear that
S′′ ∪ {u} is a geodetic set of size k in G.

For Reduction Rule 3, assume that G contains six false twins (that are not true twins nor
simplicial) as the set T = {t1, . . . , t6}, and let G′ be the reduced graph obtained from G by
deleting t1. We show that G has a geodetic set of size k if and only if G′ has a geodetic set
of size k. For the forward direction, let S be a minimum-size geodetic set of size (at most)
k of G. By Lemma 12, S contains at most four vertices from T ; without loss of generality,
t1 and t2 do not belong to S. Since the distances among all pairs of vertices in G′ are the
same as in G, S is still a geodetic set of G′. Conversely, let S′ be a minimum-size geodetic
set of G′ of size (at most) k. Again, by Lemma 12, we may assume that one vertex among
t2, . . . , t6 is not in S′, say, without loss of generality, that it is t2. Note that S′ covers (in G)
all vertices of G′. Thus, t2 is covered by two vertices x, y of S′. But then, t1 is also covered
by x and y, since we can replace t2 by t1 in any shortest path between x and y. Hence, S′ is
also a geodetic set of G.

Now, consider an instance on which the reduction rules cannot be applied. If k < 0,
then we return a trivial No-instance (for example, a single-vertex graph). Otherwise, notice
that any set of false twins in I contains at most five vertices. Hence, G has at most
|X| + 5 · 2|X| = 2O(vc) vertices. ◀

Next, we present an XP-algorithm parameterized by the vertex cover number. Together
with Lemma 13, they imply Theorem 1 for Geodetic Set.

▶ Lemma 14. Geodetic Set admits an algorithm running in nO(vc) time.
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Proof. The algorithm starts by computing a minimum vertex cover X of G in 2O(vc) · nO(1)

time using an FPT algorithm for the Vertex Cover problem, for example the one in [11]
or [27]. Let I := V (G) \X.

In polynomial time, we compute the set S of simplicial vertices of G. By Observation 3,
any geodetic set of G contains all simplicial vertices of G. Note that X ∪ S is a geodetic set
of G. Indeed, any vertex v from I that is not simplicial has two non-adjacent neighbors x, y
in X, and thus, v is covered by x and y (which are at distance 2 from each other).

Hence, to enumerate all possible minimum-size geodetic sets, it suffices to enumerate
all subsets S′ of vertices of size at most |X| in (X ∪ I) \ S, and check whether S ∪ S′ is a
geodetic set. If one such set is indeed a geodetic set and has size at most k, we return Yes.
Otherwise, we return No. The statement follows. ◀

6 Geodetic Set: Lower Bounds Regarding Vertex Cover

In this section, we follow the same template as in Section 4 and first prove the following
theorem.

▶ Theorem 15. There is an algorithm that, given an instance ψ of 3-Partitioned-3-SAT on
N variables, runs in 2O(

√
N) time, and constructs an equivalent instance (G, k) of Geodetic

Set such that vc(G) + k = O(
√
N) (and |V (G)| = 2O(

√
N)).

The proofs of the following two corollaries are analogous to those for Metric Dimension.

▶ Corollary 16. Unless the ETH fails, Geodetic Set does not admit an algorithm running
in 2o(vc2) · nO(1) time.

▶ Corollary 17. Unless the ETH fails, Geodetic Set does not admit a kernelization algorithm
that does not increase the solution size k and outputs a kernel with 2o(k+vc) vertices.

6.1 Reduction
Consider an instance ψ of 3-Partitioned-3-SAT with Xα, Xβ , Xγ the partition of the
variable set, where |Xα| = |Xβ | = |Xγ | = N . By adding dummy variables in each of these
sets, we can assume that

√
N is an integer. Further, let C = {C1, . . . , Cm} be the set of all

the clauses of ψ. From ψ, we construct the graph G as follows. We describe the construction
for the part of the graph G corresponding to Xα, with the parts corresponding to Xβ and
Xγ being analogous. We rename the variables in Xα to xα

i,j for i, j ∈ [
√
N ].

We partition the variables of Xα into buckets Xα
1 , X

α
2 , . . . , X

α√
N

such that each bucket
contains

√
N many variables. Let Xα

i = {xα
i,j | j ∈ [

√
N ]} for all i ∈ [

√
N ].

For every bucket Xα
i , we add an independent set Aα

i of 2
√

N new vertices, and we add
two isolated edges (aα

i,1, b
α
i,1) and (aα

i,2, b
α
i,2). Let Bα = {aα

i,j , b
α
i,j | i ∈ [

√
N ], j ∈ {1, 2}}.

For all i ∈ [
√
N ] and u ∈ Aα

i , we make both aα
i,1 and aα

i,2 adjacent to u (see Figure 4).
Each vertex in Aα

i corresponds to a certain possible assignment of variables in Xα
i .

Then, we add three independent sets Tα, Fα, and V α on
√
N vertices each: Tα = {tαi |

i ∈ [
√
N ]}, Fα = {fα

i | i ∈ [
√
N ]}, and V α = {vα

i | i ∈ [
√
N ]}.

For each i ∈ [
√
N ], we connect vα

i with all the vertices in Aα
i .

For each i ∈ [
√
N ], we add edges between Aα

i and Tα and between Aα
i and Fα as

follows. Consider a vertex w ∈ Aα
i . Recall that this vertex corresponds to an assignment

π : Xα
i 7→ {True, False}, where Xα

i is the collection of variables {xα
i,j | j ∈ [

√
N ]}. If

π(xα
i,j) = True, then we add the edge (w, tαj ), and otherwise, we add the edge (w, fα

j ).
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Figure 4 Overview of the reduction. Sets in ellipses are independent sets, and sets in rectangles
are cliques. For each δ ∈ {α, β, γ}, the sets V δ and U almost form a complete bipartite graph,
except for the matching (marked by dotted edges) that is excluded. Yellow lines from a vertex to
a set denote that this vertex is connected to all the vertices in that set. The green and red lines
between the Aα

i and Tα ∪ Fα transfer, in some sense, for each w ∈ Aα
i , the underlying assignment

structure. If an underlying assignment w sets the jth variable to True, then we add the green edge
(w, tαj ), and otherwise, we add the red edge (w, fα

j ). For all q ∈ [m] and δ ∈ {α, β, γ}, let xδ
i,j be the

variable in Xδ that is contained in the clause Cq in ψ. So, for all q ∈ [m], if assigning True (False,
respectively) to xδ

i,j satisfies Cq, then we add the edge (cq, t
δ
j) ((cq, f

δ
j ), respectively).

For each i ∈ [
√
N ], we add a special vertex gα

i (also referred to as a g-vertex later on)
that is adjacent to each vertex in Tα ∪ Fα. Further, gα

i is also adjacent to both aα
i,1 and

aα
i,2 (see Figure 4).

This finishes the first part of the construction. The second step is to connect the three
previously constructed parts for Xα, Xβ , and Xγ .

We introduce a vertex set U = {ui | i ∈ [
√
N ]} that forms a clique. Then, for each ui,

we add an edge to a new vertex u′
i. Thus, we have a matching {(ui, u

′
i) | i ∈ [

√
N ]}. Let

U ′ = {u′
i | i ∈ [

√
N ]}.

For each δ ∈ {α, β, γ}, we add edges so that the vertices of U ∪V δ almost form a complete
bipartite graph, i.e., E(G) contains edges between all pairs ⟨v, w⟩ where v ∈ U and
w ∈ V δ, except for the matching {(vδ

i , ui) | i ∈ [
√
N ]}.

For each δ ∈ {α, β, γ} and i ∈ [
√
N ], we make gδ

i adjacent to each vertex in U .
For each Cq ∈ C, we add a new vertex cq. Let C = {cq | q ∈ [m]}. Since we are
considering an instance of 3-Partitioned-3-SAT, for each δ ∈ {α, β, γ}, there is at
most one variable in Cq that lies in Xδ. If there is one, then without loss of generality, let
it be xδ

i,j and do the following. Make cq adjacent to ui and if xδ
i,j = True (xδ

i,j = False,
respectively) satisfies Cq, then (cq, t

δ
j) ∈ E(G) ((cq, f

δ
j ) ∈ E(G), respectively).

This concludes the construction of G. The reduction returns (G, k) as an instance of
Geodetic Set where k = 10

√
N .
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6.2 Correctness of the Reduction

Suppose, given an instance ψ of 3-Partitioned-3-SAT, that the reduction above returns
(G, k) as an instance of Geodetic Set. We first prove the following lemmas which will be
helpful in proving the correctness of the reduction, and note that we use distances between
vertices to prove that certain vertices are not contained in shortest paths.

▶ Lemma 18. For all δ, δ′ ∈ {α, β, γ}, the shortest paths between any two vertices in
Bδ ∪ U ∪ U ′ do not cover any vertices in C nor V δ′ .

▶ Lemma 19. For all i ∈ [
√
N ] and δ ∈ {α, β, γ}, vδ

i can only be covered by a shortest path
from a vertex in Aδ

i ∪ {vδ
i } to another vertex in G.

▶ Lemma 20. If G admits a geodetic set of size k, then ψ is a satisfiable 3-Partitioned-3-
SAT formula.

▶ Lemma 21. If ψ is a satisfiable 3-Partitioned-3-SAT formula, then G admits a geodetic
set of size k.

Proof of Theorem 15. In Section 6.1, we presented a reduction that takes an instance ψ
of 3-Partitioned-3-SAT and returns an equivalent instance (G, k) of Geodetic Set (by
Lemmas 20 and 21) in 2O(

√
N) time, where k = 10

√
N . Note that V (G) = 2O(

√
N). Further,

note that taking all the vertices in Bδ, V δ, T δ, F δ, U , C, and gδ
i for all i ∈ [

√
N ] and

δ ∈ {α, β, γ}, results in a vertex cover of G. Hence,

vc(G) ≤ 3 · (|Bα| + |V α| + |Tα| + |Fα| +
√
N) + |U | + |C| = O(

√
N).

Thus, vc(G) + k = O(
√
N). ◀

7 Conclusion

We have seen that both Metric Dimension and Geodetic Set have a non-trivial 2Θ(vc2)

running-time dependency (unless the ETH fails) in the vertex cover number parameterization.
Both problems are FPT for related parameters, such as vertex integrity, treedepth, distance
to (co-)cluster, distance to cograph, etc., as more generally, they are FPT for cliquewidth plus
diameter [23, 31]. For both problems, it was proved that the correct dependency in treedepth
(and treewidth plus diameter) is in fact double-exponential [20], a fact that is also true for
feedback vertex set plus diameter for Metric Dimension [20]. For distance to (co-)cluster,
algorithms with double-exponential dependency were given for Metric Dimension in [21].
For the parameter max leaf number ℓ, the algorithm for Metric Dimension from [17] uses
ILPs, with a dependency of the form 2O(ℓ6 log ℓ) (a similar algorithm for Geodetic Set with
dependency 2O(f log f) exists for the feedback edge set number f [31]), which is unknown
to be tight. What is the correct dependency for all these parameters? In particular, it
seems interesting to determine for which parameter(s) the jump from double-exponential to
single-exponential dependency occurs.

For the related problem Strong Metric Dimension, the correct dependency in the
vertex cover number is known to be double-exponential [20]. It would be nice to determine
whether similarly intriguing behaviors can be exhibited for related metric-based problems,
such as Strong Geodetic Set, whose parameterized complexity was recently adressed
in [16, 34]. Perhaps our techniques are applicable to such related problems.
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