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Abstract

A numerical analysis for the fully discrete approximation of an operator Lyapunov
equation related to linear stochastic partial differential equations (SPDEs) driven by
multiplicative noise is considered. The discretization of the Lyapunov equation in space
is given by finite elements and in time by a semiimplicit Euler scheme. The main result
is the derivation of the rate of convergence in operator norm. Moreover, it is shown
that the solution of the equation provides a representation of a quadratic and path
dependent functional of the SPDE solution. This fact yields a deterministic numerical
method to compute such functionals. As a secondary result, weak error rates are
established for a fully discrete finite element approximation of the SPDE with respect
to this functional. This is obtained as a consequence of the approximation analysis
of the Lyapunov equation. It is the first weak convergence analysis for fully discrete
finite element approximations of SPDEs driven by multiplicative noise that obtains
double the strong rate of convergence, especially for path dependent functionals and
smooth spatial noise. Numerical experiments illustrate the results empirically, and
it is demonstrated that the deterministic method has advantages over Monte Carlo
sampling in a stability context.
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1 Introduction

Lyapunov and Riccati equations have been studied for linear quadratic control and
filtering of stochastic partial differential equations (SPDEs for short) since the late
1970s (see references below). Riccati equations are operator equations containing
a nonlinear quadratic term. Their solutions provide optimal feedback controls for
stochastic control problems and the covariance operators of the filtering distribution
in optimal filtering with the Kalman—Bucy filter (see, e.g., [19] for a Hilbert-space-
valued setting with bounded generators and trace-class noise). Removing the quadratic
term, linear operator equations called Lyapunov equations are obtained. They are
crucial for stability analysis and connected to quadratic functionals of SPDEs driven
by multiplicative noise.

In this work we establish a complete error analysis for numerical discretizations
of Lyapunov equations by the semiimplicit Euler method in time and a finite ele-
ment method in space. We connect these approximations to approximations of path
dependent quadratic functionals of SPDEs. This connection allows us to show weak
convergence rates of the SPDE approximation which are twice the strong rates. Our
analysis can be used as a stepping stone for approximation results on Riccati equations
in future work.

The two main equations that we connect are the linear parabolic SPDE

dX(t) + AX () dt = BX(t) dW(¢) (1)

with initial condition X(0) = Xj in a Hilbert space H and the operator valued
Lyapunov equation, written in variational form,

d
3 (L@ ¥) +aL)p, ¥) +a(lL )Y, §) = (Rp, RY) + (L(1) B, BY) 1
@

with L(0) = G*G, where [,g refers to a class of Hilbert—Schmidt operators. We show
in Sect. 3 that these are connected via

(L(T)x, x) = ®(x) 3)

with respect to the quadratic functional
T
D(x) = E[/ IRX(O)I dr + 1GX(T)2|X(©) = x]. )
0
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Here a(-, -) denotes the bilinear form corresponding to the operator — A that generates
an analytic semigroup and W is a cylindrical Wiener process. This includes the classical
case of a O-Wiener process with trace-class covariance. For the complete details on
the setting, the reader is referred to Sect. 2.

We study Lyapunov equations in a new generality suitable for numerical analysis
with an emphasis on regularity. It was surprising to us that the literature does not cover
the setting of cylindrical noise (cf. [15, 20-22, 24, 27, 28, 35]). We therefore develop
the solution theory for the Lyapunov equation and prove existence and uniqueness by
the Banach fixed point theorem and the Gronwall lemma.

To show (3), we use tools from numerical analysis. We approximate both equations
(2) and (1) on a finite-dimensional subspace V}, such as a finite element space and
show that (3) holds in the semidiscrete setting. Convergence establishes equality in
the limit and gives as a byproduct convergence to the Lyapunov equation and weak
convergence of the SPDE approximation.

For the fully discrete approximation of the Lyapunov equation (2), we discretize
the above semidiscrete approximation by a semiimplicit Euler method in time. Results
on numerical methods for Lyapunov and Riccati equations for stochastic problems are
rare. The results of this paper are most closely related to those of [32], which only
considers one-dimensional noise in an abstract approximation framework for Riccati
equations. Connected to our problem are also [31], in which a time-independent Lya-
punov equation related to an approximation of (1) is employed as part of a bigger
problem, and [6], which assumes convergence of an approximation of a Riccati equa-
tion to derive strong convergence of a finite element approximation of a controlled
version of (1). To the best of our knowledge, this work is the first to provide rigorous
a priori convergence rates for a fully discrete numerical approximation of the Lya-
punov equation (2) in the infinite-dimensional noise setting and the first to connect
such approximations to weak convergence for the related SPDE (1).

Weak convergence of numerical approximations of SPDEs with additive noise is a
well understood topic, see, e.g., for implicit Euler in time [37] and for finite element
and spectral Galerkin methods in space [2, 9, 14]. For multiplicative noise the literature
is still restricted to special cases. Weak rates of convergence have been obtained for
discretization in time with implicit [8, 17] and exponential [25] Euler schemes and in
space with a spectral Galerkin method [12]. For the finite element method, proofs are
restricted to the spatially semidiscrete setting with (essentially) linear multiplicative
space-time white noise [2]. The fully discrete setting and more regular noise are still
open. One reason for this is the appearance of an extra term [2] which is not present
in the spectral Galerkin method [12].

Based on the convergence analysis of the fully discrete approximation of the Lya-
punov equation and the connection (3), we are able to extend the existing weak
convergence analysis for finite element approximations. In the fully discrete setting of
(2) and (1), we establish (3) up to a small error and are thus the first to show conver-
gence for path dependent quadratic functionals with multiplicative white or colored
noise in the finite element setting. The rate is twice that of strong convergence and
coincides with that for additive noise.

Our numerical schemes for (1) and (2) and their convergence open up for two
methods to approximate (4): either deterministically for all initial conditions x with (2)
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or combining (1) with a Monte Carlo method. Depending on the application one or the
other method might be more suitable. If the problem at hand is the computation of (4)
with respect to all initial conditions in parallel, our Lyapunov method is preferable.
This method also has an advantage

(i) if the operator R is non-local, since then multiplication with a dense matrix needs
to be repeated for each time step and each sample in a Monte Carlo simulation. In
a Lyapunov method, a similar dense matrix operation only needs to be repeated
once for each time step.

(i) under multiplicative noise of large magnitude, since this causes stability prob-
lems [1]. More precisely, the zero solution X = 0 can be asymptotically stable in
the almost sure sense but asymptotically mean square unstable, simultaneously.
In this setting, the Monte Carlo method fails to approximate ® while our deter-
ministic Lyapunov method faces no problem. We demonstrate this phenomenon
in an example in Sect. 6.

The manuscript is organized as follows. In Sect. 2 the abstract setting and notation
of the paper are introduced along with assumptions on the family of approximation
spaces (Vi)ne(0,1]- Existence and uniqueness of a mild solution to (2) and its spatial
and temporal regularity are established in Sect.3. Furthermore, (3) is shown via an
analogous equality in the semidiscrete setting, i.e., (1) and (2) are solved on V},. Sec-
tion4 and Sect.5 are devoted to convergence analyses of fully discrete semiimplicit
approximation schemes for (2) and (1), respectively. In Sect. 6, numerical experiments
conclude the manuscript that illustrate the theoretical results and compare the deter-
ministic approach via (2) with a Monte Carlo simulation of (1) with respect to the
stability issues named in (ii) above. For completeness we include proofs based on
standard arguments in the Appendix.

2 Notation and Abstract Setting

We start by introducing the necessary notation. For separable Hilbert spaces
U, (-, yy) and (V, (-, -)y) with corresponding norms, we denote by L(U, V) the
Banach space of all bounded linear operators U — V equipped with the operator
norm, where we abbreviate L(U) = L(U, U). The space £ (U) C L(U) is the closed
subspace of all self-adjoint operators and ¥+ (U) C Z(U) is the restriction to all
operators that are additionally non-negative definite. By Lo (U, V) C L(U,V) we
denote the space of Hilbert—Schmidt operators U — V. This is a Hilbert space with
norm and inner product given by

1Tz, @y = D ITeilly. (T, S)eyw.wy =Y (Tei, Sei).
ieN ieN

where (e; )72, is an orthonormal basis of U . The definition is independent of the choice
of basis. For an interval I C R, we denote by C(I, L(U)) and Cs(I, L(U)) the spaces
of continuous and strongly continuous functions from I to L(U), respectively.
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The beta function B: (0, oo) x (0, 00) — R is given by B(x, y) = fol 11—
1)Y~1 dr. By a change of variable the following very useful identity is obtained: For
allt) <, x,y € (0,00),

5]
/ (s —t) (2 —s)Tds =B(x,y) | — 1y [ ®)
n

We next introduce the setting that we consider throughout the article. Here U and
H are fixed separable Hilbert spaces and by (-, -) and || - | we denote the inner product
of H and its induced norm, respectively.

Assumption 2.1 Equations (1) and (4) satisfy the following conditions:

(i) The linear operator A : D(A) C H — H is densely defined, self-adjoint and
positive definite with compact inverse.
(ii) The process W = (W (t));eT is an adapted cylindrical idyy-Wiener process on a
filtered probability space (2, F, (F)seT, P).
(iii) For a fixed regularity parameter 8 € (0, 1], the linear operator B satisfies
IAP=DRB 2oy, 2o, 1)) < 0.
(iv) The linear operators R and G satisfy || R| 2y < o0 and |G|l z¢my < o0.

Fractional powers (A’/?),cgr of A, such as A(ﬁ"l)/ 2 in the assumption above, are
well-defined and enable us to define the spaces (H"),<gr, which are used to measure
spatial regularity. More specifically, for r > 0

H ={peH, l¢llg =IA2¢] < oo}

and for r < 0 the space H' is the closure of H under the ||A”/% - ||-norm and H" =
(H™"Y, the dual space of H~" with respect to (-, -). In that way we obtain a family
(H")rer of separable Hilbert spaces with the property that H” C H* whenever r >
s € R, where the embedding is dense and continuous. Moreover, by [7, Lemma 2.1],
for every s € R, A’/? can be uniquely extended to an operator in L(H*, H*™").
We make no notational distinction between A’/2 and its extension and define the
corresponding bilinear forma : H' x H! — R for ¢, ¥ € H! by

a(g. ¥) = (AZ¢, ATy). ©6)

The operator —A is the generator of an analytic semigroup S = (S(¢));>0 of
bounded linear operators on H that extends to H" ,r < 0. As for A, we do not differ-
entiate between the semigroup S and its extension. The analyticity of the semigroup
implies the existence of constants (Cg)g>0 such that for all 8 € [0, oo)

6 6
supr2 | A28 || £y = Co M
t>0
and for all 9 € [0, 2]

sugf% |A=2(5@) —idn)] gy, < Co- )
>
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These regularity estimates play an essential role in our proofs. We refer to [30,
Appendix B] for a detailed introduction to this setting.

By acylindrical id;7-Wiener process in Assumption 2.1(ii), we refer to a generalized
Wiener processs in U with covariance idy in the sense of [16, Sect. 4.1.2]. This setting
includes white noise in H (by letting U = H) as well as H-valued trace-class Q-
Wiener processes (by setting U = Q!/2(H), the reproducing kernel Hilbert space
of the corresponding Q-Wiener process, cf. [33, Theorem 7.13]). We introduce the
notation Eg = Lo(U,H) and set T = [0, T] for T > 0. Note that for predictable
stochastic processes ¥ € L3(T x Q; Lg) the stochastic integral fOT Y()dW(t)
L2(S2: H) is well-defined.

We are now in place to introduce the setting for the SPDE (1). By [5, Theorem

2.9] (1) admits an up to modification unique mild solution, i.e., a predictable process
X: T x 2 — H that satisfies forall ¢t € T, P-a.s.

t
X)) =S1)Xy —i—/ St —s)BX(s)dW(s) )
0
and
sup | Xl 2 1y S 1Xoll < o0, (10)
teT

where we denote a < b if there exists a generic constant C such that ¢ < Cb and the
size of the constant is of minor relevance.

Next, we introduce spatial approximation spaces. Let (Vj)ne(0,17 be a family of
finite-dimensional subspaces of H I where h denotes the refinement parameter. We
equip Vj with the same inner product as H so that for an operator T € L(V}),

||TH£(V,1) = ”TPh ”L(H)'

Here P, : H~' — Vj, is the generalized orthogonal projector (see, e.g., [30, Sect. 3.2])
which coincides with the standard orthogonal projector when restricted to H. Let
Aj 1 Vi, = V), be the unique operator defined for ¢y, ¥, € Vj, by

(Andn, ¥n) = a(dn, ¥n).

This implies that Ay, is self-adjoint and positive definite on V},. Therefore, — A, gen-
erates an analytic semigroup Sy, : [0, c0) — L(V}) on V}, and fractional powers of
Ay, are defined in the same way as for A. For brevity we write AZ/ ? for AZ/ 2 Py, and
Sp(t) for Sp(t) Py, 6 € R, t € [0, T]. By [30, (3.12)] and [30, Lemma B.9(ii)] there

exist constants (Dg)g>¢ so that for all 6 > 0

0 2]
sup  12]|A; Sl ccy < Do (11)
he(0,1],r>0
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and for all 6 € [0, 2] that

_o. -5
sup 17 2[|A, 2 (Su(®) — Pw)ll ey < De- (12)
he(0,1],1>0

Here and below we use the notation Dy for a constant depending on the choice of
(Vi)he(o,17 but not the specific value of & € (0, 1]. The optimal value may differ from
line to line.

To guarantee that (V},)¢(0,1] has appropriate approximation properties and includes
finite element approximations, we make the following assumptions.

Assumption 2.2 There exist constants (Dg)ge[—1,2] such that

(i) for@ € {1,2}, h € (0, 11: [ (A, ' PhA —idy)A~0/? ||£(H) < Dgh?,
(i) for 6 €[0,2],h € (0, 1]: [|A~72(Py —idp) |l £crry < Doh?,
(iif) for 6 € [0, 2], h € (0, 11: | A}%| ;) < Doh™® and

. . 60/2
@iv) for0 e [—1,1],¢ € HY: SUPje(0,1] HAh/ ¢H < Dg ||A0/2¢||.

Example 2.3 Assumption 2.2 holds in the following finite element setting. Let H =
L2(D) for some bounded, convex polygonal domain D C R, d e {1,2,3} and
A = —A denote the Laplace operator with zero Dirichlet boundary conditions. Let
(Th)he(,1] be a regular family of triangulations of D and let V}, be the space of all
continuous functions that are piecewise polynomials of some fixed degree on 7j,.
Then (i) and (ii) hold true, see, e.g., [36, Chaps. 1-3]. If we assume in addition to this
that the family (7)x¢(0,17 is quasi-uniform, then we also have (iii) and (iv), see, e.g.,
[36, (3.28)] and [13].

A consequence of (iv) and the definition of Ay, (see [2, p. 1341]) is the existence of
constants (Dg)ge[—1,1] such that for all 0 € [—1, 1]

Dyg. (13)

0 _0
D AZA,° =
=Dy :3)1,)1)“ hAn ”L(H)

g%
sup [A24, ”E(H)

he(0,1)

Using also (i) and (iii) one can show (cf. the proof of [29, Theorem 4.4]) the existence
of constants (Dg)ge[—1,2] such that for all 6 € [—1, 2]

9 e 0 -5
sup [|A;AT2 ||£(H) < DpfA2A ”[,(H) = Dy. (14)
he(,1)

Let E, : (0,11 — L(H) denote the error operator E;, = S — S. As another

consequence of (i) we obtain that there exist constants (Dg)ge[o,1] such that for all
he@©,1,ue[0,2)and b € [0, 1] with u + 6 < 2,

16 [4 ut6 [4 M
supt 2 |Ep(t)A2 |l gy =supt 2 |A2ER(Dllccny < Doh™. (15)
t>0 t>0
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This is proven analogously to [3, Lemma 5.1], replacing the use of [30, Lemma 3.12]
with [30, Lemma 3.8], using also (14) and the fact that Ej,(¢) is self-adjoint for all
t € T. In the next sections, we frequently use this bound with u = 2p.

We next introduce the setting for the full discretization in space and time. Recall
that T = [0, T'] and set To = (0, T'] for T > 0. For t € (0, 1], let (1)nefo,...,N,} be
the uniform discretization of T given by #, = tn with N;7 < T < (N, + 1)t. Let
us denote by S, ; the implicit Euler approximation of the semigroup at time 7, i.e.,
Spr=(Pn+ 7A,) L. The discrete family (S,’Z’T)ne{ome} of powers of Sy  acts as
a fully discrete approximation of the semigroup S. We again write, for brevity, S;l"r
for S;lz,r Py.

Let us now collect three properties of the discrete approximation Sy of the semi-
group and the error operator E Z,r = SZ’T — Si(t,). There exist constants (Dg)ee(0,2]
such that for all & € [0, 2] and T € (0, 1]

0 0
sup ti 1A, S ey < Des (16)
he(0,1],nef{l,..., N:}

foralld € [0, 1], p € [0,2] and T € (0, 1]

p+0 9
sup tn® IAZE} N < DotP!?; (17)
he(0,1],ne{l,...,N}
and forall 6 € [0, 1] and T € (0, 1]
sup 1A, (Sne — Pu)llceay < Dot’. (18)

he(0,1]

For a proof of (16), see, e.g., [36, Lemma 7.3]. We show (17) in Proposition B.1 and
the well-known result (18) can be shown in a similar way, see, e.g., [30, Lemma B.9].
We use the abbreviations b = ||A(/3_1)/ZB||£(H’£8) = 1Bl oy cow. g1y T =

IRl zcay and g = Gl 2my-

3 Theory of the Lyapunov Equation and the SPDE

The goal of this section is threefold. We start with existence, uniqueness and regularity
of the solution to the Lyapunov equation (2) in Sect. 3.1. Second, we present in Sect. 3.2
an error analysis for semidiscrete space approximations of the Lyapunov equation (2)

and the SPDE (1). This is used in Sect. 3.3 to show (3). As an immediate consequence
we obtain weak convergence rates for the semidiscrete SPDE approximation to (1).

3.1 Existence, Uniqueness and Regularity

While the variational form (2) of the Lyapunov equation is natural for numerics, it is
more natural to work in the semigroup framework for the regularity analysis. The mild
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form of the Lyapunov equation reads: Find L: T — L(H) such that for all # € T and
e H

t
L($ = S)G*GS(t)¢ +/ St —s)(R*R + B*L(s)B)S(t — s)¢ ds. (19)
0

We note that the mapping [0,¢] > s — S(r — s)(R*R + B*L(S)B)S(t —s) €
L(H) is not necessarily Bochner integrable due to the semigroup being only strongly
measurable, which requires ¢ being inside the integral.

With some abuse of notation, we write B* for the operator in L(L, (U, H'-P), H)
that for all K € £,(U, H'"#) and v € H satisfies

18 o1
(B*K,v) = (K, Bv) g = (A2 K, AT Bu)pg.

Here, A s regarded as an operator in £(Lo(U, H'~#), [,(2)) through AR K being
defined as the mapping U > u — A% Ku. Moreover, it holds that

B AT k|, = B*AT K. )| = k.A"2' B
|| I = supge.ign=1l( )| = supgen gi=1 |(K- 9l cy

p-1
<1477 Bl £y ) 1K 20 (20)
and similarly that ||A(/3’1)/2B||£(H,£(2)) < ||B*A(5’1)/2||£(L8’H). Therefore, we
obtain ||B*A<ﬂ—1>/2||£(£gﬂ) = ||A(/3_1)/2B||L(H!Lg) =b.

Let V be the space of all operator-valued functions Y: T — L(H) satisfying
Y € Cy(T, L(H) N C(To, LHP!, H'™))

for B € (0, 1] as fixed in Assumption 2.1(iii) and
1-B 1-8 1-B
sup ”T(I)HL(H) +sup ' P AT Y (M)A ”L(H) < 0.
teT teTy
On this space we introduce the family (||| - |||, )ser of equivalent norms given by

1- 1-
1Tl = supe™ [ Y@ ) + sup ' Peo [ AT DAT | 1.
teT teTy
The space (V, ||| - ) is a Banach space since the norm is the sum of two proper
Banach norms.

An operator-valued function L € V is called a mild solution to (2) if it satisfies
(19) forall t € T and ¢ € H. Existence, uniqueness and regularity of a mild solu-
tion to (19) are stated in Theorem 3.1 below and the equivalence of solutions to (2)
and (19) in Theorem 3.2. Surprisingly, the results seem to be new in our context. Since
the proofs are based on standard techniques such as the Banach fixed point theorem
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and the Gronwall lemma, we omit them here but include them for completeness in
Appendix A.1 and A.2. In an ongoing work, these results are extended to Riccati
equations, an analysis being much more involved.

Theorem 3.1 There exists a unique mild solution L € V to (19) that satisfies L(T) C
SV (H). Moreover, the solution satisfies the following regularity estimates:

(i) Forall 0,6, € [0,2)with0;+6, < 2, L(Ty) C E(H_ez, ].'101) and there exists
a constant C > 0 such that for all t € T

_ 016

0 o
ILO -0 o1y = || A2 L(1)AT ||£(H) < Ct

(ii) Forall 01,6, € [0,2), & € [0, 1) with 61 4 0, + 2& < 2, there exists a constant
C > O such that forall0 < t; <ty

o1 )
IL(22) = LD g2 fyony = |AZ (L) = LOAT | £,
_ O1+6p+2¢
<Ct, T n—-nl.

Theorem3.2 Let L € V satisfy Lo = G*G. Then, L satisfies (19) if and only if
it satisfies the variational form (2) of the Lyapunov equation for all test functions
b,V € H? and in that case (2) is valid for all ¢, € H®, ¢ > 0.

3.2 Semidiscrete Approximations in Space

Let us consider semidiscrete approximations of the Lyapunov equation (2) and the
SPDE (1) in this subsection. For this purpose we use the approximation spaces
(Vi)he(,17 introduced in Sect.2 with related operators. Let V;, be the space V), =
C(T, L(V})) endowed with the norm

1= 18
Ty, = sup “Th(’)”z:(vh) +sup ' P A,7 1A, HE(Vh)'
teT teTy

The semidiscrete Lyapunov equation reads in variational form: Given L;(0) =
P,G*G Py, find Ly, € Vy, such that for all ¢y, ¥, € V),

d
E(Lh(t)q)hv Yu) +a(Lp(OQn, ¥i) +a(Lp@)Yn, én)

(21)
= (Ron, RYn) + (L () Py Bdn, BYn) -
The mild formulation related to (21) is given for all r € T and ¢, € V), by
Ly()pn = Sp(t)G*G Sy ()b
(22)

t
+ / Su(t — $)(R*R + B*Ly(s) Py B) Sy (t — s)¢p, ds.
0
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Existence and uniqueness of a solution to both equations follow from Theorems 3.1
and 3.2 applied to V. In the next proposition, we show that the regularity bounds in
Sect.3.1 are uniform in 4 and convergence of the approximation (22).

Proposition 3.3 Let (Ly)ne(0,11 C Vi be the family of unique mild solutions to (22).

(i) Forall 01,6, € [0,2) with 01 + 6, < 2, there exists a constant C > 0 such that
forallh € (0, 1)

01+6>

o %
1A LaA, Nz < Ct™ 2

(ii) Forall 01,6, € [0, 2), & € [0, 1) with 01 4 0, + 2§ < 2, there exists a constant
C > O such that forallh € (0,1)and 0 <t; <t

01+0)+2¢

o ) _
|47 La(t2) = La D AT | £y < €1y I —nf.
(iii) Forall 01,6, € [0, 1], p € (0, B) with 01 4+ 0, + 2p < 2, there exists a constant
C > 0 such that for h € (0, 1], t € Ty

0 0
|24 @ Py = LO| ggyoon oy = A% (La@ Py = LO)AT |
( JH1) (H)

_91+(‘)2+2/)
<Cr= = .

Proof For every h € (0, 1], Theorem 3.1 guarantees the existence of a constant C =
Cp, > 0 such that (i) and (ii) hold.

Uniformity in & follows from the uniformity in (11) and (12). More precisely,
every constant Cyp in the proof of Theorem 3.1 can be replaced by a corresponding
constant Dy in the semidiscrete setting. The only place where some extra care is
needed is the estimate corresponding to (53). First, by an argument analogous to (20),

-/2 -2
1AL 2Bl 2 ey = 187 AL 20 ). So, by (13),

B*Y P, B = B*A/SZ;IA%YA#A/SZ;]B

” h HC(H)_H h h h h HL(H)
< |B*A, ”c(cg,y)”“‘h YA | e

(23)

1-8

p=1 1-8
2 W L(H)

12 1-B B-1 2 1=
< [B*A ”c(cg,H) |A=" A2 ”L(H) |A,> YA
1-8 1-8
<b’Di 4|47 YA’ | ey
for any Y € £(V}). This implies the uniform bound corresponding to (53).
Having shown the first two claims of the proof, we are ready to prove (iii). First we

rewrite Ly P, — L using (19) and (22) to obtain for ¢ € H
Lp(t) P — L(2)¢
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= Sh(G*GSp(t)p — S(HG*GS ()¢

t
+/ (Su(t — s)R*RSy(t —s) — S(t — s)R*RS(1 — ))p ds
0
t
+ / (Sh(t — $)B*Ly(s)P,BSp(t —s) — S(t —s)B*L(s)BS(t — s))qb ds,
0
which yields

”A%l (Ln(t) Py — L(l))A%2 ”c(H)

< 4% (106" G5u(0) — SOG*GSO)A% | 1y

t
+/ ||A971(Sh(t —$)R*RS,(t —s) — S(t —)R*RS(t — s))A%2 ||£(H) ds
0

t
+/ ||A971(Sh(t — $)B*Ly(s)PyBSy(t — 5)
0

[
— S(t —s)B*L(s)BS(t _s))ATZ”E(H) ds
=I+J+K.

We treat the three error terms separately. Using (7), (11) and (15) the term [ can be
bounded by

0 )
1< |A% (Si0)GGE,0)AR | 5,
o * %
+ |AZ (Ex()G*GS(1))A? ”L(H)

< 2Dt ™% | EinA% [ gy,

+ 82C92’_972 ||A67]Eh(t)H£(H)
9]+922+2p

< gDy, (Dg, + Co,)h* 1~

and similarly the second term satisfies

01+62+2p 1+02+2p

t )
J < Dy, (Dg, + Cez)rzth/ (t—s)" 2 ds ShPr'T 2
0
Adding, subtracting, and applying the triangle inequality, we split K into
4 0 ()
K 5/ |A2 (Sh(t — s)B*Ly(s) Py BE(t —s))A7||L(H) ds
0
tooa . 9
+/0 |A2 (En(t — s)PaB*Li(s)PyBS(t —5))A? ||£(H) ds
! ) )
+/ |AZ S( — s)(PyB*Li(s)PsB — B*L(s)B)S(t —s)A72||£(H) ds.
0
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The first term is treated by inserting A;el/ zAzl/ % and applying (13), (7) for Ay, (23),

(15) with u = 2p, and (5). Using also the fact that by (i),

_ 1— 2 1— 2
D= sup s"PIANTPPL ) AN TP py < o, (24)
s€To,he(0,1]

this bounds the term up to a constant times Dy > £~ @ +02420)/2 The second term
is treated in an analogous way. For the third term, we split

[A% S —)(PuB*Lu(s)PaB — B*L($)B)SG — AT |
01 ?
< [AZTPS( =) (AP (Py —idn) B*Li(s) PaB)S(t — $)AT || 1,

o1 %
+ A2 S —5)(B*(Li(s)Ph — L(s)B)SUt = )AT | ).
The first part is bounded similarly to the first two terms of K by (7), (11), Assump-
tion 2.2(ii), (23) and (24), while we just apply (7) twice to the second part. Together
this yields

01+02+2p

K <Dph* P~

! 04t 1 1=
+/ (t—5)" 2 A2 (L) Py — LENAZ || £y ds.
0
Collecting all estimates we obtain

||A97](Lh(t)Ph — L(t))A%2 ||L‘,(H)
(25)

01+6)+2 ! 0] +6 1-8 1-8
S ”h2P+/ (=) "2 AT (La()Py — LEDA 2 | 5y ds,
0

where we bound all terms in ¢ by the strongest singularity from /. Choosing 61 =
6, = 1— B and p < B ensures that the exponent is bigger than —1, so that Gronwall’s
lemma (see, e.g., [26]) yields

18 15 —p—
|A= @h@ Py = LA | gy S P77 102 (26)

The general claim follows by a bootstrap argument using (26) in (25) and (5), which
completes the proof. O

Having analyzed the convergence of the semidiscrete Lyapunov equation, let us
continue with the semidiscrete SPDE. Let (X,)ne,1y C C(T; L2(2; Vi) be the
family of mild solutions on the finite-dimensional spaces V}, satisfying

sup sup [ Xn(O)ll 2. ) S 1 Xoll (27)
he(0,1]teT
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and forall h € (0,1],¢ € T, P-a.s.
t
Xn(t) = Sp(t)Xo +/(; Sp(t —s)BXp(s)dW(s). (28)

Existence follows from [5, Theorem 2.9(ii)], where uniformity of (27) in £ is deduced
from (11). The proof of strong convergence is standard, cf., e.g., [30, Theorem 3.10].
Therefore we state the following proposition without proof.

Proposition 3.4 Let X be the mild solution to (9) and (Xp)ne,1) be the family of
unique mild solutions to (28). For all p € (0, B), there exists a constant C > 0 such
that forall h € (0, 1] andt € Ty

X0 = X0 2.y < C1™ZR 1 XolI.
(S, H)

3.3 Connection Between the Lyapunov Equation and the SPDE

We are now in place to prove (3) in Theorem 3.6 below. As a first step we show the
equality in the semidiscrete setting of Sect.3.2. We therefore define for 2 € (0, 1],
xeVyandr eT

t
(3, 1) = E[/O IRX ()2 ds + 16X, (0] Xo = ¥

used in the following lemma.

Lemma3.5 Let (Lp)ne(,1) be the family of unique mild solutions to (22). For all
he@©,1),teT, xeV,

(Lp(H)x, x) = Op(x,1).
Proof Fixt € Tg and let vy: T x V), — R satisfy for x € V}, that
vp(t, x) = (Lp(t)x, x).
In a first step, we observe that by (22) and the definition of vy,
va (0, X4 (1)) = va(t, X(0)) = |GX4 0> = (La(t)X4(0), X4(0)).
The main part of the proof is based on applying the It6 formula to deduce that

vp(0, X5 (1)) — vp(t, X5 (0))

r 5 t 29)
= _fo | RX 7 (s) d5+2/0 (Ln(s)Xn(s), PhBXp(s)dW(s)).
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Once this has been established, taking expectations on both sides completes the proof
since the stochastic integral vanishes.

We now prove (29). In the following application of the Itd formula, we use explicit
expressions for the derivatives dvy, /dt, dvy/0x, a%h/axz. From (21), for x, ¢, ¢ €
V), the time derivative dvy, /0t satisfies

d
= S0 = 2ALa (0%, Agx) = [RxIP = Y (La0) Pa(Bx)en, Pa(Br)en),
! neN
(30)

where (e,);° | C U denotes an arbitrary orthonormal basis. By direct calculations the
space derivatives dvy,/dx and 8%vy, /x> are for x, ¢, ¥ € Vj, given by

2

0 0
%(r, X)(@) = 2(Ln(0)x. §), W’Z’a,m@, V) =2(La()¢. ). (31

Since A, € L(V}), the semidiscrete solution X, is a strong solution, meaning that
P-a.s.

t t
Xh(t):Xh(O)—/ Ahxh(s)ds+[ PyBXp(s)dW(s).
0 0

Therefore we can apply the 1t6 formula [11, Theorem 2.4] to the function [0, t] x V}, 3
(s, x) — vu(t — s, x) to obtain

v (0, X5 (1)) — vp (2, X,(0))

" vy, L vy
= —/ ——(t =5, Xn(s))ds —/ —— (1 =5, Xn(s))(ApXn(s)) ds
0 as 0 dax

r vy
+/ — (=5, Xp())(PnBXp(s) AW (s))
0 ox
1 ! azvh
+35 /o W(t =5, Xn($))((PnBXp(s))en, (PrBXp(s))ey)ds.
neN

Inserting the expressions from (30) and (31) proves (29) by cancellations. O

We are finally in place to show (3) even in the time dependent setting. Therefore
we set with a slight abuse of notation

t
(x, 1) = E[/O IRX ()|2ds + IGX (1)) | Xo = x].

The proof of the following theorem is based on the convergence of the semidiscrete
approximations in Sect. 3.2 and the equality in V},.
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Theorem 3.6 Let X, L be the mild solutions to (9) and (19), respectively. Then for all
teToand x € H

(L()x, x) = P(x,1)
and more specifically (3) is satisfied settingt = T.
Proof By the triangle inequality we have that

HL(®)x,x) — D(x, )] < {(L(@) — Lp(@)Pr)x, x)| + [{(Lp(t) Ppx, x) — Op(Prx, t)]
+ | Pp(Prx,t) — P(x,1)].

We prove that the right hand side converges to zero as h goes to 0. Proposition 3.3
with 61 = 6, = 0 guarantees that

li L(t) — L, (t)Py)x, x)| <lim||L(t) — Ly (¢)P, 2=0.
hlirol“( () R(t) Pp)x x>|_h1i%” ®) RO Prll can x|l

The second term vanishes by Lemma 3.5 since (Lj(¢) Ppx, x) = (Lp(t) Pyx, Ppx).
The strong convergence in Proposition 3.4 and the uniform moment bounds (10) and
(27) imply in particular convergence of the quadratic functional and thus

1
}lliglq’h(l’hx,t) — Q0 = lhli% ‘E [/0 (IRXx (I — IRX ()] )dS} ’

+1im [E[1GX,0))” ~ IGX0)”]| = 0.

i.e., the convergence of the last term. O

Using the polarization identity one can extend the result to bilinear forms. More
specifically, let Y be the mild solution to (9) with initial condition Yy, then for all
teToandx,y e H

t
(L(D)x, y) = IE[/O (RX(s), RY (5)) ds + (GX (1), GY (1)) | Xo = x, Yo = y].

Given the connection between the Lyapunov equation and ®, Theorem 3.6 implies
weak convergence with twice the strong rate of the semidiscrete scheme (28) in a non-
standard way. This extends the weak convergence result (in the multiplicative noise
setting) of [2] to smooth noise with 8 € [1/2, 1], albeit for a different class of test
functions.

Corollary3.7 Let ® and ®), be the quadratic functionals in Theorem 3.6 and
Lemma 3.5, respectively. Then, for all p € (0, B), there exists a constant C > 0
such that for all h € (0, 1) and t € Ty

|®(Xo, 1) — ®4(PiXo, )| = Ct ™ h*"|| X%
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Proof Lemma 3.5 and Theorem 3.6 imply that
| @4 (PuXo, 1) = ®(Xo. )| = [{(Ln () Pr — L)) X0, Xo)|-

The claim follows by Proposition 3.3(iii). O

4 Fully Discrete Approximation of the Lyapunov Equation

This section is devoted to the stability and convergence analysis of a fully discrete
scheme for the Lyapunov equation (2). It is based on the £(V},)-valued implicit Euler
approximation (SZ,r)ne{O ,,,,, N,} of the semigroup S, introduced in Sect.2. Inspired
by the mild solution (19), we define the fully discrete approximation Lj . of L(ty),

n € {l1,..., N}, by the discrete variation of constants formula
n—1 ) ) )
he=Sp.G*GS} +tY S /(R*R+ B*L;  PyB)S, (32)
j=0

with Lg : = PyG*G Py. As recursion it reads

Ly = ShoL} ' Shr + She(tR* R+ TB*L) . P4 B)S) ¢ (33)
or equivalently

(Py+TARL) (Py+TAp) =L} '+ TPyR*RP, + T P,B*L} ' P,BP.

\T

(34)

Note that LZ’T € X(Vp) foralln € {1,..., N;}.

Before proving convergence, let us first show regularity of the fully discrete approx-
imation, which is the analog result to Theorem 3.1 and Proposition 3.3. We remark
that the time step restriction 7 < ch?(!=#) stems from the assumed irregularity of the

operator G. This assumption can be removed for A =h G*GA% € L(H). The same
is valid in Theorem 4.2, Corollary 4.3, Theorem 5.2, and Corollary 5.3 below. We also
point out that if B is given by a linear Nemytskij-type operator as in Sect.6.1.2, and
if U is given by Q'/?(H) for some trace-class operator Q, then Assumption 2.1(iii)
is satisfied with 8 = 1. Thus, in this case the time step restriction disappears.

Theorem 4.1 Forallc > 0and 9y, 6, € [0, 2) with 0, +6, < 2, there exists a constant
C > O such that forh € (0,1], 7 < ch*"P andn € {1,..., N;}

ﬁ 072 79]+02
A7 LY A e < Cty
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Proof We fixn € {1, ..., N;}. By multiplying (32) with A}"/? from the left and A?*/>
from the right we obtam

[47 L7 A | o

]
||A S,”G*GS,” 2||£(H)+IZ||A sy jR*RSZTJAZHE(H)
j=0

. &
+TZUA 5B PuBSI AR | o
z%‘n _— 2 N g% n—j 2 %
= &1 A7 Shcll o IShc A | oy +7 TZ”Ah Sh,z ”L(H)”Sh,r A | 2
=0

n—1 0
o 3 1A S e 1B PuB 155 A
j=0

For the term containing B, we have by (23) that

||B*L PhB||£(H)<b D3 sllA, o L A ||£(H)

For the other terms we use the fact that by (16), withi =1,2and j =1,...,n

bi

147 8% L = 15147 |y = Daty *

This then yields
o )
A7 Lo A7 | 2oy
_ 6116 n=l 940 =l g4e  1op PR
Sta 7 +Tzfn_j2 +Tzfn—j2 | A, Ly Ay’ ||£(H)'
j=0 Jj=0

For the first sum we have © Z;’ (1) ;7(31-1-62)/2 < fot” 1~ O+0/2 qr < 1mOF0/2
taking 61 = 6, = 1 — B and using the discrete Gronwall lemma (cf. [18]) proves the
claim for this special case and implies for 61,6, € [0, 1), (61 + 62)/2 < 1, in the

above estimate that

61+6

AR L A L St T (24 oA L0 A o) + Z
n LA oy S T nen” lean) 7

9.+9
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The proof is completed by observing that

n—1 P
_ 1+62 In 6146 _91+92
7 B-1 B—1 _Ara 2
thn_j t 5/0 Pty — "7 dr <1

j=1

and that, by Assumption 2.2(iii) and the bound 7 < ch?1=B)

1-8 1-8
70 47 2,.2,26-2 2.2
t|A,7 LY. A,° ”L(H) <tcdg?h®? <l < 1.
O
We are now in place to prove convergence of the fully discrete approximation
of (19) with the same convergence rate 2o in space as in the semidiscrete setting in

Proposition 3.3 and rate p in time.

Theorem 4.2 Forallc > 0, p € (0, B) and 0 € [0, 1) with p + 6 < 1, there exists a
constant C > 0 satisfying for h € (0,1), T < ch?0=B)/1=p) gnd n {1,..., N}

n 9 rn ¢
L}, e Po = L) | pigr-o oy = A2 (LG o Ph — L)) A2 || £
< Ct, P (W + 2P).

Proof With Proposition 3.3, the triangle inequality, (13) and (14) it suffices to prove
that under the conditions of this theorem, there exists C > 0 such that for & € (0, 1),
T <ch*1=A/0=P andn e {1, ..., N}

§ )
|AZ (L oo = Lit) Pa)AZ | oy < Cti? 0.

We introduce the right-continuous interpolation S = (S‘ (t)zefo,1) of Sp,¢ given by
N
NGRS AESIGN
n=1

for which we by (13) and (16) have for r € [0, 1] the existence of a constant D, such
that for all r € Ty

ISA ey = 1A2 SOl 2oy < Drt ™2 (35)

We also introduce the corresponding error operator E = § — S}, and extend the fully
discrete solution to continuous time by L(¢) = LZ’T Py, fort € [t,, ty+1). Applying
(17) with parameters 6 and 2p to the first summand and (11) with parameter 6 + 2p
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and (12) with parameter 2p to the second summand, we obtain the existence of a
constant Dy , such that forall# > O with,_; <t <1,

6+2p

0 _ 0 042p B
1A, EOlcy = 1A, EL . + A7 S AL (Suty — 1) — Pl 2oy (36)

_0_
< D@ypl 27 PP,

Using this notation it follows from (32) that foralln € {1,..., N;}and ¢ € H

t

L(t)p = S; .G*GS}l .o+ / S, — s)(R*R + B*L(s)PyB)S(ty — 5)¢ ds.
0

Since AZ/ 2, Sn, S ,Lp., Ly and E are self-adjoint at all times, this equality and (22)
along with

’

Sl

o o o
|47 (Zhe = La@) A [ oy = sup — [(AF(L] - = Lu()) A7 6. 6)

peH. [¢ll=1

yield
Sirn 5
lA; (L. — L) A; ||£(H)
0 0
< &2 A (Sie + Su@) | oo VEn < A7 | 2oy

n 0 ~ [
2 [T 147 (300 =)+ 5100 = 9) | | £ = 94 |

0

In 0 ~
+/0 |AZ (S(tn — ) + Spta — s))uwl) |B*Li(s)PhBE(ty, — 5)A} ||L(H> ds

In 0 - ~ [ 4
+/0 |AZ Sty — s)B*(L(s) — Ly(s)) PaBS(ty — 5)A} ||£(H) ds =: le.".

i=1
For the first term we obtain with (17), (16) and (11) that
n 2 % n n % % 2n12,—p—0
Iy =g ” A Eh,rHL(H)(” Sh,e Al HE(H) + ”Ah Sh(t”)Hﬁ(H)) <2g Dy, " T”.
Similarly we use (35), (16) and (36) for the next term to see that
tn
Iy < 2r2D9D9,p</ (tn — )" 0" ds)rp < 77,
0
Using (35), (11), (23), (24), (36) and (5) yields

n
I3 < 2b2D%_ﬂDLD9D9,p(/ sP 1, —s)7 P70 ds)tp < t,’f*pfetp.
0
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For the last term we add and subtract a piecewise constant approximation of Ly,
Lp(t) = Lp(ty) fort € [t,, t,41). With (23) we obtain

18 1-5
(Lhs) = L) A | o

1-$
2

th 0 .
1 =620 [ 14750, =) (14

5 18
F1AT (0~ D)4 [ ) b

Proposition 3.3(ii) yields the existence of a constant Dg , so that forall s € [z, 7;11)
and j € {1, ..., n — 1} the first of the two terms in the sum is bounded by

= N = B=p=1,. _ op B—p—1_p
|A,2 (La(tj) — Li())A, }|£(H)gDﬁ,ptj ltj =517 < Dp.pt; .

For s € [0, ), however, we use (24) and Assumption 2.2(iii) to bound it by

1076 GAT |y + 14,7 LA |y = £2D3 0252 4 DL

Noting also that by (16), ||f32/2§(r,, = 9lean < Dyt,*? for s € [t;.1j41) and
je€l{0,...,n—1}and that L,(s) — L(s) = 0 for s € [0, t1), we find that

T
If§t;9</() sﬂ_lds+rh2’3_2) 1+pZt_9 A

1-8 : 18
+thn GJHA P (Ly. — LaGp)A,” ”C(H)

n—1
Su (P )+ ey A,
=1

1z 120
( — Ly(1))A, ”E(H)’

where the last inequality follows by 7 > "~ 1 ¢ R < fé” (th—s)"0sP~1=rds <

J=1in—=j%j
1f7"7% and the fact that the coupling T < ch2(1=A)/(1=0) yields Tt =Ph2P~2 < c1P,

Collecting the estimates, the sum of all four terms is bounded by
1—

s g
ZI” < gfr "+rzfn ClAr (Lie = LaD) AL | 2oy

The choice 8 = 1 — B implies with the discrete Gronwall lemma that

14,7 (L = L) Ay | gy S 160120
h hn L(H) ~

which shows the claim for this special case. Similarly to Proposition 3.3, the proof is
completed by a bootstrap argument. O
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As a consequence, we obtain convergence of the approximation of the quadratic
functional (4) by the Lyapunov equation of up to rate 8 in time and double this rate in
space.

Corollary 4.3 For all ¢ > 0 and p € (0, B), there exists a constant C > 0 satisfying
forh e (0,1), < ch?0=P/0=p) gnd x € H

|®(x) — ) ()] < CTP (1> + 7°) x|,
where ®); _(x) = (L} Pyx, Pyx).

Proof Using Theorems 3.6 and 4.2 with x € H? we directly obtain

|©00) = @ (0] = HELT) = Ly P)x, x)]
< L35 Py = LD | g IxIP S TP +2)x)”. 0

5 Fully Discrete SPDE Approximation

In Sect. 3 we have shown the connection (3) between the Lyapunov equation and the
SPDE by the analogous equality of the space approximations of the equations. In
this section we prove that a similar relation holds in the fully discrete setting up to
a sufficiently fast converging error. This connection implies weak convergence of a
fully discrete approximation of the SPDE (1).

The fully discrete approximation of (1) is obtained by a semiimplicit Euler—
Maruyama scheme. Let (X, )5, ze0,1) be the family of discrete stochastic processes
satisfying X)) . = P,Xo and foralln € {1,..., N¢} P-as

Xy +TAX) =X+ BXTHAw ! (37)

where AW"™ = W (t,+1) — W(t,) denotes the increment of the Wiener process. Using
the fact that S, ; = (Pp, + rAh)_1 the recursion can be rewritten as

Xp =S X+ SnBXEHAW! (38)

which leads to the discrete variation of constants formula

n—1
Xp o =St Xo+ Y S, (BX; )AW. (39)
Jj=0

An induction shows that X} . € LP(Q; H) forallh,t € (0,1),n € {1,..., N},

p € [2,00) and by a class1cal Gronwall argument one obtains for all p > 2 and
0 < r < B the existence of a constant D, , such that
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sup sup tnj”AZXZJ”LP(Q;H) < Dyl Xoll. (40)
h,7e(0,1) nefl,...,Ne}

We omit the details and refer to [3, Proposition 3.16] for a proof of a similar stability
result. Apart from this, we use the following lemma in our weak convergence proof.
Lemma5.1 Let K € L(H). For all 6 < B, there exists a constant C > 0 such that
foralln € {1,..., N:}and h € (0, 1]

|E[((Sh.e — POKX) o X3 )] < C 0K Nl ooy 1 Xol1

Proof We firstnotice that the sum in (39) can be written as an It6 integral with piecewise
constant integrand. We use the It6 isometry and the fact that the centered increment
AW/ is independent of X; _ in (39) to find that

E[((Shr — PKX] .. X} )]
= E[{(Sh.c — P0K S} Xo, S} . Xo)]

n—1
+7 Y E[((She — POKS, BX; . S BX) ) o],
j=0

In a first step, this gives that

[E[((Sh,e — POKX} . X1 ]|
< (457 (Sh,c — POK S} Xo, AZSZ,TXMI

n—1

+1)y |E[(4; (Sh,—Ph)KA S;:TJA T BX] ..

1-B+20

. Bl .
n—j 2 J
Ay * Shoe Ay’ BXh,r>£3]|
< 1A, Sne — Pl can 1K o

x (155 N 147 S5l can 1 ol

n—1

1-B+26
+r2||AZSZ,’||L<H)||A B||£0||A 2 S leanELIXG | ]).
j=0

Using (18), (16), (14) and (40) completes the proof. O

We are now in place to state the fully discrete version of (3), which implies weak
convergence stated in Corollary 5.3 below. We set

n
@nreom =B |63 P+ 0 Y IRXAP [xE = x| @
k=1
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forn=0,..., N;.

Theorem 5.2 Let @y, - be the functional given by (41) and let Ly, . be given by (32).
Forall c > 0 and p € (0, B), there exists a constant C > 0 satisfying for h € (0, 1),
T < ch?1-P/1=p) p ¢ {1,...,N;}andx € H

i(LZ,rPhx’ Phx) — @ (x, n)i < CTPHXHZ.
Proof By a telescoping sum argument and the fact that L%,r = P,G*G P, we obtain

(LZ’TPhx, Phx)
n
= (L) Xy X5 )+ Y Lk Xp K X k) = (L xR X e
k=1
n
= E[H GXi |+ DLk xp 7k xp k) — (LA X XZ;"“)}
k=1

so that

(Lz,rphxv Phx> — ®p (x,n)

sT

n
= S E[(Lh  xp7h xp ) = (L X X e — o Rxp )
k=1

n
= > tE[((SheB*Ly ' PuBShc — B*Sn. L} 'S B)X; X X3 M) 42
k=1
+ TE[(R(Py + Sh0) X} R(Shr — P0X) )]

n

. n,l n,2
=y I+
k=1

The second equality follows from the identity
B{{Lhe X5 X
k—1 —k —k k—1 —k —k
= E[(Sh)TLh,r ShaTXZ,r ’ XZ,t )] + TERB*S}"TLh,r Sh’TBXZ,r ’ XZ,r )]’

obtained by (37), the Itd isometry applied to the integral with piecewise constant
integrands as in Lemma 5.1 and the independence of AW” % and X Z;k, along with
(33) and that [[u]|®> — |v]? = (u + v, u — v).

For the first term I,? ’l, since Lg’r = P, G*G Py, by the triangle inequality, (16),
(14), Assumption 2.2(iii) and (40) we obtain for k = 1

2l p-1
2 2

1 1-8 1-8
11 = t|E[((Sh,: B*A,> A,> G*GA,> A, BSp.
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1-8

— B* A A sh,G GShTA A )X,'; 2L
< 2t8° |1, 17 IIA BII 1A 7 PIx, P
< 2eh?P- ”g2DéD,g,1sz%,ﬁDz,o||x||2 S Th? D |x) 2,

In the case that k = 2, ..., n, we use the fact that L’,‘l;l € X (Vp) to obtain the split

I = tE[((She — P B L} PuB(She + POXE XN
— tE[(B*(Sh,r — Ph)L (She + PO BX) K X k)] A

The term |J,?’1| is for k # n handled by Lemma 5.1 with
K = B*L; 7' B(Sp.c + Pn)
which is by (14), Theorem 4.1 and (16) bounded by
IK |2y < D3_1b°DY_g 1 1l (1 + Dy),

where DQL1 0 01,0, € [0, 2), denotes the constant C in Theorem 4.1. For k = n we
note that (18) implies

|((She — P)Kx,x)| < IISne = Pullcan | K Lz Ix 11 < Doll K Nl zeanllx 12

The term |I,:”2| is treated similarly to |J,?’1 |, using for K = R*R(Pj, + Sp.r) the bound
1Kl 2y < r2(L+11Sh.ell 2¢ay) < r?(1+ Do) in Lemma 5.1 and (5). We obtain that
|J,:' ! | is bounded by a constant times t“”’t’3 ltn k||x||2 in the case that k # n, and a
constant times rtn_l ||x ||2 for k = n. Similarly, |1, A | is bounded by a constant times
r”ptn__pk||x||2 and 7||x||? for k # n and k = n, respectively.

For the term |J,?’2|, with k # n, we obtain from (14), (18), Theorem 4.1, (16) and
(40) that

n,2

—p—1 —p—1
P2 < T D2 B2 D,DE g (Do + DD3 gl S T 2.

For k = n one obtains the same bound without the term D%,() since (40) is not used.
Collecting the estimates, we bound (42) for n > 1 by

(LY Pyx, Ppx) = ®p ¢ (v, )| S (rhz(ﬁ_l) R G

n—1

1
e A
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We note that © < ch?>1=P/1=0) yields th*B—D = grgl=rPp2B=D < cl=prr,
Moreover, the identity (5) implies

IZ(tk L T Py S e ST T,

These facts, along with the bounds tlﬂ’tn_f] <, rtf:II = rﬁrl_ﬂtfjll < 7P and
14p,B—p—1 _ 14+p—p B—p—1 :
TP = Brlte ﬁtn_l < h, yield

(L} . Phx, Ppx) — @p o (x, m)| < 2°I1x]|1%.
This shows the claim for n > 1. The case n = 1 is treated similarly. O

We now obtain our weak convergence result as a direct consequence of Theorem 5.2
and Corollary 4.3. We write ®j ;(x) = & . (x, N) forx € H.

Corollary 5.3 Let ® and @y, . be the functionals given by (4) and (41), respectively.
Forall c > 0 and p € (0, B), there exists a constant C > 0 satisfying for h € (0, 1),
7 < ch?0=P/0=p) gnd x € H

|®(x) — @y (x)| < CTP(R* + ) |Ix|I.

We conclude this section by relating our approach to prove weak convergence to the
most common in the literature. That approach is based a joint use of the It6 formula
and the solution to a Kolmogorov equation, see references in the introduction. For
additive noise the solution to the Kolmogorov equation is regular enough to show
weak convergence rates. For multiplicative noise the solution is less regular and a
straight forward generalization of the methodology for additive noise to multiplicative
noise leads to suboptimal rates for 8 € [1/2, 1] with finite element approximations,
see [2]. This has been solved in [8, 25] but restricts to spectral methods. In our setting
the Kolmogorov equation is solved by the quadratic form of the solution L of the
Lyapunov equation with R = 0, see Theorem 3.2. By Theorem 3.1 it has the same
regularity as for additive noise. Therefore, a weak convergence proof with desired
convergence rates could be carried out by adapting the method of [17]. Our approach
is advantageous since it has no regularity assumption on the initial condition as in
[4] and can treat path-dependent functionals, where we are only aware of [4, 10] for
SPDE:s.

6 Numerical Implementation and Simulation
The goal of this section is to show how the numerical approximations of Sects.4 and 5
are implemented in practice. We demonstrate our theoretical results by numerical

simulations in the specific setting of Example 2.3. Solving the Lyapunov equation is
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then compared to the Monte Carlo method, both by an empirical stability analysis as
well as a theoretical computational complexity discussion.'

6.1 Implementation and Convergence Analysis
6.1.1 Implementation of the Fully Discrete Lyapunov Approximation

First, we describe how the fully discrete approximation L, N " from (34) of the solution
L(T) to the Lyapunov equatlon (2) is implemented numerlcally Let Ny denote the
dimension of V}, and let (th) | beabasisof V. By My, Ay, G, and R;, € RNV we
denote the symmetric matrlces with entries given by (Mh)l = (¢h, ¢h) (Ap)i,; =

1/2 1/2 i j
a(@). ¢]) = (4, / bh Ap / 1), (Gn)ij = (G} Ggj). and (Ry);.j = (R}, Rj).
i,j e {l,2,..., Np}, respectively. For n € {0, ... N}, let LZ’T be the matrix con-

taining the coefficients in the expansion L} = = Z,{V;:KLZ,I)L ion ® qb}{ of the
approximation given by (34). Here qbﬁl ®¢,{ is given by (¢;l ®¢,{ YW, = (q&}{, wh)qb;; for

all Y, € V. By (B, (LZ rl)) we denote the matrix with entries (B, (LZ;I)),',.,' given
by

(i PuB($)), B@])) g = Z(L ke (B@)(B(@h) of. ¢F).

k,£=1

where the adjoint of B(qb;;) is taken with respect to L(U, H).
The matrix version of (34) is now given by

™My, + ‘L’Ah)LZ’r(Mh + 1Ay) = L" th + Ry, + ‘L'Bh(L ) 43)

with initial value L?l : = M_lGhM;I. With this in place, one approximates P (x),
x € H, by <I> (X)) =x, MhL " M;,x,. Here, X,T denotes the transpose of the vector

x;, of coefﬁ01ents xh in the expansion Ppx = ZN" xj, ¢>h
6.1.2 Empirical Convergence Analysis

Next, we illustrate, by numerical simulations, our theoretical results (specifically
Corollaries 4.3 and 5.3). The same setting as in Example 2.3 is considered, where
we recall that A = —A. We choose U = H, so that the equation is driven by
space-time white noise, and assume that B is a linear Nemytskij operator (i.e., that
((Bu)v)(x) = u(x)v(x) forall u,v € H = L*(D) and almost every x € D C R%).
Then b = ||A03—1>/23||£(H7£(H,Eg)) < oo forall B < 1/2ind = 1 and for no
positive 8 when d > 1. We further specify D = (0,1), R=0,G =idy, T =1 and
rescale A and B by factors A = 0.05 and o = 0.65, respectively. We choose an initial

! The MATLAB code used to generate the results presented in Sect. 6 is archived on Zenodo and available
at https://doi.org/10.5281/zenodo.15274082.

@ Springer


https://doi.org/10.5281/zenodo.15274082

66  Page 28 of 42 Applied Mathematics & Optimization (2025) 91:66
Fig. 1 Estimates of the errors \
|®L(Xg) — @7 (Xo)| and oy
|®p. 7 (X0) — D(X0)| for a fixed *
XO eH ¥
X
*
102 o
- X
e *
@ %
*
X
1073} *
X
*
* IR (%)~ #(Xo)]
X[ ®hr(Xo) — (X))
o(h)
107 :
1072 107 10°

value Xo(x) = x1j0,1/2)(x) + (I — x)11/2,1)(x) for x € D and compute CD};’T(XO)
and @ . (Xop) for v = h2and h = 271,272 ... 278 The latter quantity is com-
puted in a deterministic way by tensorizing the matrix equation system corresponding
to (38) and applying the expectation on both sides. We refer to [34] for computational
details on this tensor product approach. This approach was employed for a reference
solution instead of a Monte Carlo method due to the stability problems of the latter,
see Sect. 6.2.1. The errors |<I>I;;’T (X0) — D (Xo)| and | Py, (Xo) — P (Xp)| are shown in
Fig. 1. Here we have replaced @ (X() with the reference solution @, . (Xo) computed
with & = 2710 and r = h%. All matrices and vectors are computed exactly, which is
possible by our choice of U, except for the initial value, which is interpolated onto the
finite element space. Since b < oo for all 8 < 1/2, we expect from Corollaries 4.3
and 5.3 a convergence rate of essentially O(#). The results of Fig. 1 are consistent
with this expectation.

6.2 Comparison to the Monte Carlo Method

The most straightforward way of utilizing a finite element method for the approx-
imation of ®(x) in (4), with x fixed, is by a Monte Carlo method, i.e., by
computing

M N:—1
12 T 12
SN () = My (HGX;X’;X’(’)H + Y o |rx| ) (44)
=1 0

n=

Here M is the number of iid samples (XZ:f’(j ) 4L of X}7 computed by the recur-

sion (38). The Monte Carlo method has a low memory requirement, is easy to
parallelize and can be improved by multilevel methods (see, e.g., [23] as well as
the comment at the end of the next section). There are, however, certain situations in
which the Lyapunov method of computing <I>I,;_T (x) is preferable for the approximation
of @ (x), which we now outline.
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6.2.1 Empirical Stability Analysis

The zero solution X (¢) = 0 to an SPDE with multiplicative noise such as (1) (or a
discretization thereof) can be simultaneously asymptotically stable in a P-a.s. sense
and unstable in a mean square sense. In a Monte Carlo type method, this results
in the number of samples needed for a satisfactory approximation in practice being
prohibitively large. We discuss this challenge to such methods in detail, in the setting
that R =0and G = idy.

Consider the rescaled semidiscrete stochastic heat equation

dX (1) + AAR X5 (1) df = o Py BX, (1) AW (1). (45)

Here, 1, 0 > 0 while all other parameters are as in Sect. 6.1.2. Following [1], the zero
solution to (45) is said to be asymptotically stable P-a.s. if, for any € € (0, 1) and
€' > 0, there exist

(1) 8 > O such thatif || X, (0)| < &, then P(|| X, (?)|| > €’) < e forallt > 0 and
(ii) & > 0 such that for any initial value X} (0) satisfying || X,(0)| < & P-as.,
lim;— 00 | Xn ()| = 0 P-as.

It is said to be asymptotically mean square stable if for every € > 0, there exist

(i) 8 > 0 such that if | X, (0)] < & then E[|| X (t)]|?] < € for all # > 0 and
(ii) 8’ > 0 such that if | X, (0)]| < & then lim;_, o0 E[[| Xx(#)]|?] = O.

In [1], the authors consider a discretized stochastic heat equation, similar to (45) but
with finite differences instead of finite elements. They prove that as o increases, the
zero solution becomes simultaneously asymptotically stable P-a.s. and asymptotically
mean square unstable. While their results do not directly translate to our setting, we also
expect that for large T and o, E[|| X, (T) ] becomes very big while most sample paths
of X}, are very small, possibly zero within machine accuracy. If the time discretization
of X}, shares this property as assumed in [1], CDhM)SM (X0) approximates E[|| X, (T)||*],
and therefore also E[|| X (T)||?], poorly.

To investigate this in practice, we choose Xo and A = 0.05 as in Sect.6.1.2 and
compute approximations of E[|| X (T') 2] for various values of o and T'. The results
from the Lyapunov method and the Monte Carlo method are compared. We choose
h = 273 and © = h? for both methods, with M = h~> = 1024 samples in the
Monte Carlo method. In Fig.2a we see the results of the two methods for 7 = 1
and o € [0, 1]. They seem to agree reasonably well for small values of o, while
the variance of ¢>th 1 (Xo) increases as o increases. For moderately larger values
of T, we already see the consequences of the mean square instability and the P-a.s.
stability of the zero solution to (45). In Fig.2b, with T = 5, the difference between
the two approximations is of several orders of magnitude. This behavior is even more
pronounced for T = 10 in Fig.2c. Even if we increase the number of samples to
M = 10h—2 (see Fig.2d), the results do not improve for o ~ 1. In other words, even
for moderately large values of o and 7', the Monte Carlo method fails to give reliable
results. As noted in [1], replacing this simple Monte Carlo estimator with a multilevel
Monte Carlo method does not solve this issue. Indeed, if empirical variances are used
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Fig.2 Lyapunov and Monte Carlo approximations of E[|| X (T") HZ] forT =1,5and 10 and o € [0, 1]

to estimate the number of samples needed at each level this method can suffer even
more from this stability problem.

6.2.2 Computational Complexity Comparison

Even under parameter choices for which the stability problems outlined in the previous
section do not occur, there may be other reasons for why one would prefer to approx-
imate E[|| X (7)||?] by means of the Lyapunov method rather than by Monte Carlo.
First, the computation of QDI,YIS » (x) can be expensive if R is a non-local operator.
Then the matrix Ry, is typically dense. This matrix is applied for the computation of
the term containing R in (44) a total of M x N; times. By the law of large numbers, M
should be chosen to be proportional to the inverse of the square root of the weak error
in Corollary 5.3 in order for the Monte Carlo error not to asymptotically dominate the
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full mean squared error. Therefore, the computational cost can become prohibitively
large.

Second, the Lyapunov method yields a way of approximating ®(x) for all x € H
simultaneously. The Monte Carlo method can be adapted to this setting by iterating (38)
to obtain

n—1

X3t = | T She (P BRAOAWT) | Pox =2 Fyt Pax

j=0
and then computing
MC
th,r,M(')
_ <M—1 Z ((Fﬁ;’(J))*G*GF,fY;’(]) + Z r(F;’”:”)*R*RF,Z’;”) Py, >
j=1 n=0

However, forming the matrix corresponding to the sum of operators requires, again,
the multiplication and addition of dense matrices, leading to great costs in terms of
both computational power and memory. In fact, in the setting of the simulations of
Sect. 6.1.2, it can be seen that the computational cost of CIJI,;’ .18 O(h™*). This can be
compared to O~ for <I>1;f$ 1 (), the cost of the iterated Monte Carlo method if one
chooses M ~ h~? so that the additional Monte Carlo error does not dominate.

In conclusion, we have demonstrated that there may be several situations in which
the Lyapunov method of computing QDI};’T (Xo) is preferable for the approximation of
® (X) compared to a Monte Carlo method. It should, however, be noted that it may be
fruitful to combine these methods. For example, the Lyapunov method, computed at a
coarse grid, may be used to indicate the presence of mean square instability combined
with P-a.s. stability in a system such as (45), suggesting that remedies such as the ones
discussed in [1] should be taken.

Appendix A: Proofs for Sect. 3.1
A.1. Proof of Theorem 3.1

As a first step we prove a result that is needed to ensure that the integrals in the proof
of Theorem 3.1 are well-defined. The setting and notation is the same as in Sects.2
and 3 of the main text.

LemmaA.1 Forallt € Ty, 01,62 > 0and Y €V the mappings

[0.£)55 > ATS(t — s)R*RS(t — )AZ € L(H)
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and
0,t) 35— A%IS(I —$)B*Y(s)BS(t — s)AQ72 e L(H)

are strongly continuous.

Proof We prove the strong continuity of the second mapping in detail. The proof of
the first is done in the same way.

The second mapping is a composition of the mappings (0, ) 5 s > A%/2S(t—s) €
L(H), (0,1) 3 s — B*Y(s)B € L(H) and (0,1) 3 s > S(t — s)A%/?2 € L(H).
The first and third are strongly continuous as mappings (0,7) — L(H?, H) and
0,1 — ,C(H‘)2 H), respectively. This property can be extended to (0,7) — L(H)
in both cases by considering an approximating sequence in H? and H®, respectively.
Using (7), the strong continuity of S and uniform continuity of T we obtain for
s,5 € (0,¢) and ¢ € H that

o1 ) 1 )

[(AZ St —s)B*Y()BS(t —5)AZ — A2 S(t —$)B*Y(5)BS(t —5A7T)¢|

< (A% S —5) — A% St — 5))B*Y(5)BS(t — 5)A% ¢
+ ||A9718(t —5)B*(Y(s) — Y(5)BS(t — s)A%z(pH
0 0y 0y
+ AT St —5)B*YE)B(St —)AT —S(t —5)A?)9|
0 0 0
<|(A2S@t—s)—AZS(t—3))B*Y(s)BS(t —s)AT ¢|
2 L _by 128 ~ 1-8
+b2Co Cop(t —=§) "2t =) 2 A2 (X(s) = TENA T | 10

0 o B

+ b2 Co,(t =5 2FPIT [ (S¢ — 9)AT — St —5AT)g|
with the constant notation introduced in Sect. 2. Since B*T(s)BS (t—s5)A%22¢p ¢ H
and S is strongly continuous and since Y: To — L(H?~!, H'=#) is uniformly

continuous, the right hand side converges to zero as § tends to s. This completes the
proof. O

The rest of the proof of Theorem 3.1 is based on a global fixed point argument in
V. Equation (19) is written in the form of a fixed point equation

withZ, J € V,K:V — Vactingon ¢ € H by
I(t)p = St)G*GS(1)¢,

t
Jt)¢ = / St —s)R*RS(t — s)¢p ds,
0

t
K)o = / St —s)B*Y (s)BS(t — s)¢p ds.
0
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Existence of a unique solution in V follows by the Banach fixed point theorem by
proving that H is well-defined and that for some o > 0 the fixed point map H is a
contraction, i.e., that there exists n € (0, 1) such that for all Yy, Y, € V

IMHOD) = HOD)le = L) = K()lle = KT = T2)lle <7l = T2lls-
(46)

The proof'is organized as follows: We start by proving that ||| Z|||o+II| 7 lo+II/Clllg < o0
and continue by showing that Z, 7 and K(Y') with T € V are strongly and uniformly
continuous on T and Ty, respectively. From this we conclude that Z, 7, K are well-
defined and derive bounds to show the contraction property (46) of H and the claimed
regularity estimates.

To prove that || Z]||; < oo we observe, using (7), that for all 61,6, > O and t € Ty

o ) 210 ) ) _oith
|AZZmA? ||£(H) <g’[AaTsm ”[,(H) [Nore ”L(H) =8°CyCot™ "7 .(47)

Setting 6y = 6, = 1 — B and 6] = 6, = 0, respectively, shows the desired bound
IZllo < &*(C5 + C7_p) < 0. (48)

For 7 we use (7) to obtain that for all 61,6, > 0,7 € To,s € [0,¢t) and ¢ € H

o . % ) _0146)
|A2 St —)R*RS(t — 5)AZ $|| < r*Co, Co,llpli(t —s)~ "2 . (49)

Together with the strong continuity of the mapping shown in Lemma A.1, this bound
implies that A%/2S(r — YR*RS(r — -)A%/2¢ € L'([0, t], H) when 61,6, € [0, 2)
with 61 + 6> < 2, and in particular that the Bochner integral in 7 is well-defined.
It also shows that 7 can be extended to a mapping To — L(H %, H?'). Next, for
teTy

0 3 oo . %
|A2T0A% |0 = sup H/ A3 S - R RS —5)AT ¢ ds|
pet.lgl=1 1 Jo

! 9 1)
5/ sup HATIS(t—s)R*RS(t—s)ATquHds (50)
0 eH.Ipl=1

t 0 0
= / A S(t — s)R*RS(t — 5)A? ds.
0 L(H)
Using (49) we have for t € Ty
o] ) 2r2C9 Co 61-6»
A2 J()AT < 077 =T 51
H J@) HE(H) —2-0,—6, GDh
Setting ) = 6, = 1 — B and 0] = 6, = 0, respectively, shows that
17l < r2 (C3T + CLpp™'T7) < 0. (52)
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We now turn our attention to /C. For all 61,6, > 0,¢t € Ty, s € (0,1), Y € V, and
¢ € H, we have by using (7) that

[A% S~ 5)B*T(5)BS( —5)A ¢ (53)

01+62

< b*Cy, Co, T lll5 Iplle”*sP~ (e — )™ 2 .

Combining this with Lemma A.1 implies that for 01,6, € [0,2) with 8; + 6, <
2, AN2S(t — )B*Y(-)BS(t — )A%/2¢ € L'([0, ], H) and in particular that the
Bochner integral in /C is well-defined. Similarly to 7, it also implies that (') can be
extended to T — L(H %, H?). Using (53) we obtain, similarly to (50), the bound

9

o % 2 " oos pel _01t6
|AZ KO ®AT ) < b°Co,Coy /0 S sPl e — )77 ds Il (54)

For the case o = 0, we conclude from (5) that

01+ 6
2

0146
2

A% KAt | £oay < b°Coy Cort”~

B(B. 1 - =—=2)ITllp (55

Setting again ) = 6, = 1 — B and 8; = 6, = 0, respectively, yields
IOl < b (C3BB, DT + CLgB@B AT )ITlg <00 (56)

and combining (48), (52), (56) implies that || H(T)|llp < oo.

Next we show continuity of Z, 7 and JC(Y') on Ty and T. For this purpose we
prove Holder continuity in operator norms on (0, 7)) and strong continuity at zero
separately. The Holder continuity also implies (ii) once existence and uniqueness
have been established. For all 61,6, > 0, & € [0, 1] and 1, © € Ty with #; < 1, we
bound using (7), (8) and the semigroup property of S

o 0
|47 () —T())AT | 1y,
o o
< S| AT SUDAT £ A5 (S — 1) — i) | gy I SEDAT | £

0 0 57)
+g° ”ATIS(U)HL:(H) [(S@2 — 1) —idy)A~* ”E(H) ”ASS(“)A72 ||£(H)

01162 _

-t
< g%Ca (Co,42:Co, + Co, Coppe)t; 2 It — 115
This shows in particular strong continuity Z € Cs(To, £L(H)) and uniform continuity

T € C(To, L(HP~', H'=#)). To prove T € V it remains to prove strong continuity
7T € C(T, L(H)) and for this we have by the strong continuity (8) of S for ¢ € H

lim ||(Z(6) = ZO)¢ | < lim [(S®) —idm)G*GSW)$]
+ ,hi% [G*G(S(t) —idm)g| = 0.

@ Springer



Applied Mathematics & Optimization (2025) 91:66 Page350f42 66

Let us continue with IC. We observe that for ¢ € H, T € V and 11, 1, € Ty with
11 < tp that

(K(0)(t2) — K()(t1)) ¢
t
= f 1(S(tz —8) =St —$)B*Y(s)BS(tp — s)¢ ds
0
t
+/ l Sty — $)B*Y(s)B(S(ty — s) — S(t1 — 5))¢p ds
0

5]
+ / S(ty — s)B*Y (s)BS(tp — s)p ds.
3]
Similarly to (50), this yields by using the semigroup property of S and (8) that

|47 (O @) — K0@)AT | 1,
<’ /0’1 [4% 50 - 5)45 | A7 (S =) —idn) |
x |4 T)AT ||L(H)HS(’2 A3 | ccuny ds
w0 [ 4% 50 =0l o l4F YA T
xS = 9AT | g |47 (52 = 1) = i) g d
+b2/t1 |A% s =9 2y [45 )4 ||z:(H)

[}
x| Stz = )AT || £y ds

and thus using (7) and (8)

o b
[AZ (K(0)(t2) — K(Y)(t1))A? ”[:(H)
H 0 é
5 b2C§C91+2$C02”|T”|0</ P =) FE (1 —5) 7 ds>|t2 —nft
0

+b2C25C91C92+2s|||T|||0( f P — )~ fds)nz—mé
0

5 n p1 01+0
+b C91C92|||T|||0/ PN —8)” ds.

n

Since for s € [0, t1), (& — s)"92/2 < (1 — $)"%2/2 and for s € (1, 2], sP1 <
Tﬂt;E*(Ql+92)/25§’+(91+92)/2—1 < Tﬁt;S7(6] TO/2 (5 4)EHO+0)/2-1 e have
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[ 4% (KCr) @) = K@) AT | 1

0146y

1
< b*Ca¢ (Coy 126 Co, + Co, Cez+2s)|||Tlllo</ P -7 dS)Itz -
0

4] -;—92 01+6p

2 g, —E-13%2 (1 FRIE Oty
+0°Co, Co, I Mlo 771, : f (s —11) (2 —s)" 7 ds.
1

Using (5) we therefore obtain

6,46

[ A% (K (D) @) = KOD)A® | gy 11 Sl = 1. (58)

This implies the desired continuity on T. For the continuity at zero, we use (7) to see
that

t
| K0 @) — KD = H/O S(t — s)B*Y(s)BS(t — $)¢ ds H

22,8
< b=Cgt” Il
B
and as a consequence lim;_.q [|(L(Y)(t) — K(Y)(0))¢|| = 0. We conclude that
K(Y) € V. The proof of J € V is similar and therefore omitted. In conclusion
we have shown that the fixed point map H is well-defined.

It remains to prove the contraction property (46). For o € R the same arguments
as in the proof of [5, Theorem 2.9] imply that for all A € [0, 1)

t
lim (suptlﬂ/ e U1 — 57 ds> =0.
0

otoo teTy

Combining this with (54) implies the existence of o > 0 and n € (0, 1) such that

t
IO, < b? <C§ sup/O e U= gh=1 gy

teTy

t
+c12_ﬂ suptl—f’/ e_"(t_s)sﬁ_l(t—s)ﬁ_lds>|||T|||g
0

teTy

=l

We have therefore shown that 7 is a contraction with respect to the ||| - |||, -norm
for sufficiently large o > 0. The Banach fixed point theorem guarantees the exis-
tence and uniqueness of a fixed point L to the mapping 7. This is the unique mild
solution to (19). To prove that L(T) C X (H) we consider V' = Cs(T, X(H)) N
C(To, L(HP~', H'=F)) c V, which is a Banach subspace of V since X (H) is a
closed subspace of L(H), along with the restriction H': V' — V' of the fixed point
map H:V — Vto V. It is a contraction with the same ||| - ||,-norm as H. One
easily checks that H'(Y’)(¢) is self-adjoint for self-adjoint Y € V' and thus H’ is
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well-defined. Therefore, a second application of the Banach fixed point theorem yields
aunique L’ € V' such that H'(L") = L’. Since V' C V and L € V is unique, L = L’
and thus L(T) C X(H). Moreover, Theorem 3.6 in the end of this section shows
that L(T) C ¥ (H) and we stress that none of the proofs of Theorem 3.2, Proposi-
tions 3.3-3.4, Lemma 3.5 leading to Theorem 3.6 relies on the positivity of L. The
bounds (47), (51) and (55) imply (i). The bounds (57), (58) imply the Holder regularity
stated in (ii).

A.2. Proof of Theorem 3.2

We write F = R*R + B*L B and let L be a mild solution, i.e., L satisfies (19). Since
forallt € T,¢ € H,

t
L) = S)G*GS(t)p + / S(t — $)F(s)S(t — s)¢ ds,
0

we obtainforr +h < T and¢p € H

t+h
L(t +h)¢ = S(H)S()G*GS(t)S(h)p + / St +h—r)F(r)S(t+h—r)pdr
0

t+h
= S(W)L(s)S(h)¢ + / S(t+h—r)F(r)SEt+h—r)pdr.
t

Therefore, for ¢, W € H?

(Lt + )¢, v) = (L()S(W), S(h)Y)

t+h
+/ (S¢+h—r)F(r)¢, St +h —r)y)dr
t

and subtracting (L (t)¢, ) on both sides and dividing by & > 0 gives

S(th) —id
%Qﬁ S(h)l/f>

S(h) —id
—|—<L(t)¢, %v&

Lit+h)—L@)
(e

¢, 1/f> = <L(t)

1 t+h
+E/ (S¢+h—r)F(r)p, St +h —r)y)dr.
t

The semigroup S is strongly differentiable, hence weakly differentiable with derivative
%(S(t)q&, v) = —(AS()p, ¥) for ¢, ¥ € H?Z. In the limit as h — 0, we obtain,
by the Lebesgue differentiation theorem, the weak form (2). This completes the first
direction of the proof.
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_ Assume next that the operator-valued function L € V satisfies for t € Ty, ¢, ¥ €
H? the variational equation (2). Using (6) we bound

%<L(r>¢, w>( < la(L®O), Y| + la(L OV, $)|
+ (R, RY)| + [{L(1)Bo, BY) o]
< IIL(I)llc(H)(||A¢||||W|| + ||¢||||Aw||)
+ (P + DA LOAT [ 4 I8l

with t € To, ¢, ¥ € H2. Since ||¢]| < |Ag| = ¢l 72 we conclude that

d _ _
L@ | S A+ PG g0Vl g S P NGl 11 o
By the Riesz representation theorem, there exists L:Ty— L(H? H?) satisfying

(Lo, ¥) = (L), V)

fort € Tg and ¢, ¥ € HZ2. Using now the specific test functions S(t — s)¢ and
S(t — s)v in the variational formulation (2) yields

((L(s) + AL(s) + L(s)A)S(t — $)¢p, S(t — )} = (F(L()S(t = 5)$, St — )¥).

By the product rule,

d .

a(S(t —S)L(s)S(t — )¢, ) = ((L(s) + AL(s) + L(s)A)S(t — $)¢p, S(t — $)¢)
= (F(L(s)S(t — )¢, St —5)¥)

and therefore, integration from O to ¢ yields

t
(L), ¥) = (S(OLO)SD)¢. ) +/O (St —$)F(L(s)S(t — 5)p, ) ds

t
= (S(t)L(O)S(l)¢ + /O S(t — $)F(L(s))S(t — $) ds, w).

Since this identity holds for all i € H?2, the mild form of the Lyapunov equation (19)
is satisfied for all ¢ € H?. Due to the dens1ty of H> C H, we can approximate any
¢ € H by a sequence in H? and obtain convergence of the above identity, i.e., it can
be extended to elements in H.

It remains to prove that (2) is valid for ¢, ¢ € HE¢, & > 0. For this we rely on the
spatial regularity Theorem 3.1(i). Let ¢ > O and ¢, i € HZ2. Since L satisfies (2),
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%@(rw, )| = 1a(LO@, V)] +1a(L©OV, )| + (R, RY)
+(L(1)B$, BY) 9]
<A 2LO e (IAZGIIV I+ 1611 AZ ]
+ (2 AT LOAT | )NV

The regularity estimate Theorem 3.1(i) allows us to bound further

d c
| S Lo )| S Ul eI

for all ¢, ¥ € HE. Therefore (2) can be extended to all ¢, ¥ € H¢ , which concludes
the proof.

Appendix B: Rational Approximation of Semigroups

For completeness we include here a result on the error resulting from a rational approx-
imation of a semigroup. This is (17) in the main part of the paper. To the best of our
knowledge, it is not available in the literature, but the proof is similar to those of [36,
Theorems 7.1—7.2].

PropositionB.1 Let A : D(A) C H — H be a densely defined, linear, self-adjoint
and positive definite operator with a compact inverse on a separable Hilbert space
H, let S = (S(t),t = 0) be the analytic semigroup generated by — A, let the function
R : Rt — R be given by RA) = (1 + 1) and let t > 0. With t, = tn and
St = R(t A), there exists for all r € [0, 1] a constant C, > 0, not depending on A,
such that for all p € [0, 2]

+r

r _P
IA2(S(tn) — SMlcy < Crtn > T2

Proof First we introduce the notation F,(1) = R(A)" — e ™ so that S(t,,) — S =
F,,(t A). The bound of the theorem can then be written as

r _ptr 2 p+r r
IAS By (e )iy < Crty 2 TP =Con™ 2 772

and since (tA)"/2F,(t A) diagonalizes with respect to the eigenbasis of A, the claim
of the theorem is equivalent to the existence of a constant C, > 0 such that

AIF, ()] < Con= 2"

forall A € 0(tA) C [0, 00), where o (T A) denotes the spectrum of TA.
We next consider the case A € [0, 1]. Due to the definition of R, there exist constants
ci > 0and 0 < ¢» < 1 such that, for A € [0,1], |R(A) — e *| < ¢1A? and
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|[R(M)| < e~“2*. Using these bounds we get for A < 1

n—1
A2F, (0] =122 (RG) —e™) Y R e
=0
n—1
e 3 eme=DHa-Di < c1e€2) 3 2 pemc2hn
j=0

—_1-r r _ —_1-r
=c1e2n 172 )22 e M < Cn 2,

IA

In the last step, we have used the fact that the mapping x > x”/2+t2¢=2% is bounded
on [0, 00).
Next, we assume that A € (1, co) and note that then

REEm < (15 RW) + (1) < (1ERM)" + (127’

By inspecting the derivatives of the mappings A — A’/2R(A) and A > A//?2e™ we
see that as long as r € [0, 1], they map into (0, 1/2) and (0, 1/e) respectively on
(1, 00). Pick ¢3 > O such that 1/2 < ¢~“. Then

p n o\ 5
(m R(A)) + (me— ) <27 < Con”
for A € (1, 0o) and the proof is finished. O
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