
Process Debt: Definition, Risks, and Management

Downloaded from: https://research.chalmers.se, 2025-06-01 16:41 UTC

Citation for the original published paper (version of record):
Martini, A., Stray, V., Besker, T. et al (2025). Process Debt: Definition, Risks, and Management.
Journal of Software: Evolution and Process, 37(4). http://dx.doi.org/10.1002/smr.70017

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

1 of 23Journal of Software: Evolution and Process, 2025; 37:e70017
https://doi.org/10.1002/smr.70017

Journal of Software: Evolution and Process

RESEARCH ARTICLE - EMPIRICAL

Process Debt: Definition, Risks, and Management
Antonio Martini1 | Viktoria Stray1,2 | Terese Besker3 | Nils Brede Moe2 | Jan Bosch4

1University of Oslo, Oslo, Norway | 2SINTEF, Trondheim, Norway | 3RISE Research Institutes of Sweden, Gothenburg, Sweden | 4Chalmers University of
Technology, Gothenburg, Sweden

Correspondence: Antonio Martini (antonima@ifi.uio.no)

Received: 31 January 2024 | Revised: 28 January 2025 | Accepted: 15 March 2025

Funding: This work was supported by the Research Council of Norway (321477 and 340991) and Software Center (industrial consortium in Sweden).

Keywords: process debt | qualitative study | software development | software process improvement

ABSTRACT
Process debt, like technical debt, can be a source of short- term benefits but often leads to harmful consequences in the long term
for a software organization. Despite its impact, the phenomenon of process debt has not been thoroughly explored in current
literature, leaving a gap in understanding how it affects and is managed within organizations. This paper addresses this gap by
defining process debt, describing its occurrence, the risks of its mismanagement, and showing examples of mitigation strategies.
Our study began with an exploratory phase involving semi- structured interviews with sixteen practitioners across four interna-
tional organizations, allowing us to gather diverse insights into the occurrence and management of process debt. Then, to deepen
our understanding and validate our findings, we conducted a cross- company focus group with ten additional practitioners and
analyzed fifty- eight observations and thirty- five interviews from a longitudinal case study. The analysis of the research findings
led to a definition of process debt and a novel framework. We also report on the causes, consequences, and occurrence patterns of
process debt over time. We present mitigation strategies and discuss which ones need further attention for future research. Our
results suggest that the debt metaphor may help companies understand how to manage and improve their processes and make
process- related decisions that are beneficial both in the short and long term.

1 | Introduction

Software process improvement (SPI) is a widely studied area
in software engineering. Finding systematic and efficient ways
to produce software that effectively delivers business value to
customers is one of the most important goals for software or-
ganizations. Clear examples have been the efforts in designing
and adopting new processes, from the Waterfall model to the V
model to the most recent agile trend [1]. Many new processes
and activities are continuously proposed as the field evolves
and new domains and products emerge. Software organizations
need to design and tailor new and efficient processes continu-
ously to guide their teams [2]. Consequently, several strategies
and maturity models to assess software processes have been
proposed (e.g., Six Sigma [3], CMMI [4]). Choosing a suboptimal

process can lead to disastrous consequences. For example, con-
flicting or not well- synchronized processes might put a large
organization at a standstill, resulting in wasted time or even
the lack of key documents for critical software such as certi-
fications, jeopardizing the safety of the users. Several factors
contribute to designing optimal processes or assessing improve-
ment needs [5].

Nevertheless, what happens if the processes are not followed
or are not well designed? In other words, how do organiza-
tions manage suboptimal processes? Research and industry
often provide new ideas on how to implement new processes,
while knowledge of change management can assist in imple-
menting them [6]. However, important questions need to be ad-
dressed, such as how to best prioritize the improvements of the

© 2025 John Wiley & Sons Ltd.

https://doi.org/10.1002/smr.70017
mailto:
https://orcid.org/0000-0002-0669-8687
https://orcid.org/0000-0002-6032-2074
https://orcid.org/0000-0002-9811-000X
mailto:antonima@ifi.uio.no
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.70017&domain=pdf&date_stamp=2025-04-09

2 of 23 Journal of Software: Evolution and Process, 2025

processes that are already in place and how one may combine
such improvement work with other pressing activities, such as
delivering features to the customers and fixing bugs. Is process
improvement perhaps down- prioritized in favor of such key ac-
tivities? In other words, are companies accumulating Process
Debt (PD), and if so, how do they manage such debt?

Recent research has brought quite a lot of new knowledge on the
Technical Debt (TD) phenomenon to light, which characterizes
suboptimal technical implementations that give a short- term
benefit but create a context where a long- term interest is paid.
For example, we know that TD is very harmful and can account,
on average, for a hidden 30% waste of development time in com-
panies [7]. In addition, it negatively affects developers' morale
and software quality [8]. However, we do not have much infor-
mation about PD. Is PD also similarly harmful, and how and
why does PD occur? PD is a fundamentally different phenom-
enon from TD. Although in some preliminary papers, PD was
included as TD, the definition of TD achieved during Dagstuhl
has remarked that PD is not part of TD (although some issues
might be connected to each other).

Today, only a few studies (briefly) mention PD, e.g., the study by
Li et al. [9]. In our recent study [10], when analyzing the topics
discussed in software development teams' agile retrospectives,
it appeared clear that, besides TD, developers discussed several
other non- technical issues that were deemed important for their
performance. About one- third of the reported items were related
to suboptimal processes that needed to be fixed. In other words,
they reported instances of PD that had a direct negative conse-
quence on the developers and their work. Such a study provides
a preliminary definition, but without a full empirical investiga-
tion to support it. In summary, PD, similarly to TD, is poten-
tially a harmful phenomenon affecting software practitioners'
performance and the quality of software. Despite this, there is a
knowledge gap about PD.

In this paper, we aim to address this gap by exploring PD
through an empirical study by gathering experiences from prac-
titioners in four international software companies. In particular,
we investigated the following research questions:

• RQ1: What is PD?
○ RQ1.1: How can PD be defined?
○ RQ1.2: What types of PD exist?

• RQ2: How does PD occur?
○ RQ2.1: How is PD accumulated?
○ RQ2.2: What are the causes of PD?
○ RQ2.3: What causes are the most common?
○ RQ2.4: What are the negative consequences of PD?
○ RQ2.5: What consequences are the most harmful?

• RQ3: How can PD be managed?
○ RQ3.1: What mitigation strategies do companies use to

manage PD?
○ RQ3.2: What mitigation strategies are still missing to

manage PD?

• RQ4: How did PD change over time, and how was it
managed?

The main contributions are:

• A comprehensive framework to practically and theoreti-
cally reason about PD, including:

○ causes, consequences, and types of PD
○ occurrence patterns and evolution of PD over time

• A survey of the state of practice for PD management in five
companies

○ evidence of concrete instances covering each type of PD
○ mitigation strategies to manage PD

• Extensive validation of results by triangulating methods
and sources across contexts

The remainder of this paper is organized as follows. First, we
outline existing key concepts, for example, related to SPI. Then
we present our methodology, and we report the results in the
same order as the RQs. Then we discuss the results, limitations,
and related work, and we conclude with our final remarks.

2 | Related Work

2.1 | PD and TD

TD research has increased steadily in the last 10 years, showing
great interest both from academia and the industry [9]. However,
the TD metaphor is mainly restricted to enclose only technical
issues, such as those related to code, tests, architecture, and
documentation [11]. Other issues, such as social debt [12], were
excluded from the set of TD issues and considered as different
kinds of debt. In addition, issues concerning builds, infrastruc-
tures, etc., which were previously considered TD (as in the sys-
tematic mapping [9]), were also removed from the TD scope.
The main reasons were not related to the applicability of the debt
metaphor but rather to the substantial difference in managing
issues related to technical artifacts with respect to non- technical
aspects. For example, tools, methods, and strategies to manage
social debt, where the relationships among humans are involved,
can differ significantly from static code analyzers used to assess
code. In summary, while TD has become well defined and has
a community to study it (e.g., the International Conference on
Technical Debt), several issues, also deserving the “debt” status,
seem to have been left behind. At the same time, new kinds of
debts emerge continuously in practice as important issues to be
addressed [13], as testimony that the debt metaphor can help to
reason about other aspects than the strict technical ones.

Our study used the only existing definition, given in Martini et al.
[10]: PD is “a suboptimal activity or process that might have short-
term benefits but generates a negative impact in the medium- long
term.” However, such a definition is based on TD's definition.
Therefore, we also aim to develop a more nuanced and comprehen-
sive definition based on empirical evidence in this study. As with
TD [14], we assume that the PD metaphor is composed of similar
components, namely, the debt, the interest, and the principal. A
debt item consists of the divergence, in practice, from an optimal
process; the interest constitutes several negative effects generated
by the occurrence of such debt; the principal corresponds to the
cost of changing the process to avoid or repay the debt.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

3 of 23

Although a process is, most of the time, the result of a tradeoff
across several stakeholders' needs, some tradeoffs might be bet-
ter or worse than others. In this case, we do not recognize the
debt as a specific suboptimality (which can still be acceptable in
the best possible tradeoff), but by assuming that a better tradeoff
(and therefore a better process) could be achieved to solve the
same problem. However, a suboptimal process is not considered
PD if it does not have a clear interest to be paid, as it has been
postulated for the TD metaphor.

2.2 | Process and Workflow

A process is a structured set of activities and decisions to do a
certain job.

A software development process, also known as a
software development lifecycle, is a structure imposed
on the development of a software product. A software
process is represented as a set of work phases that is
applied to design and build a software product. There
is no ideal software process that suits all different
types of software developing companies, and many
organizations have developed or tailored their own
approach to software development.

[15]

In practice, there might be several subprocesses that are inter-
connected. The process can emerge or be designed. There can
be one or more process designers (those who are in charge of
designing and managing the process) and one or more process
executors (those who perform one or more steps in the process).
In some cases, these roles might coincide. In agile software de-
velopment, software process initiatives are often built into ret-
rospectives [16].

The difference between workflow and process is that a work-
flow is a series of repeatable activities that one needs to carry
out to finish a task. A process, on the other hand, is a set of
repeatable activities that need to be carried out to accomplish
some organizational goals [17]. In practice, the workflow rep-
resents the everyday sequence of activities from an individ-
ual point of view. In contrast, a process represents an overall
sequence of activities carried out by specific roles to reach
an overall goal. Different processes (software related or not)
might affect different aspects of software development: for ex-
ample, a process can be defined to implement a testing strat-
egy or to produce documents for certification of the software
with respect to safety, security, other requirements, etc. Other
processes, for example, in mechatronic products, might be
used to manage other parts of the product but can still affect
software development.

2.3 | SPI and PD

In software development, there is a long tradition of regularly
improving the processes [18]. SPI is about making the software
processes better and is mainly a human activity [19]. SPI has
been found to be positively associated with business success in

small to medium- sized companies [20]. However, process prob-
lems are frequently identified but rarely solved [21], and then,
therefore, only the potential for improvement exists.

One important driving force for SPI initiatives is that the team
members learn how to improve their activities. SPI can be
seen as an organizational change mechanism, which requires
group learning [22] because collaboration is essential in the
software development process. Agile software development
supports group learning through frequent feedback sessions
like stand- up meetings, demos, and retrospectives involving
the whole team.

In their learning theory, Argyris and Schon [23] distinguish be-
tween two types of learning in organizations: “single- loop learn-
ing” and “double- loop learning.” Single- loop learning refers to
changing processes in response to a problem to prevent its re-
currence. Examples include managers monitoring development
costs, sales, or customer satisfaction to ensure organizational
activities remain within predetermined limits. In this approach,
actions are slightly modified to achieve desired results when
expectations are not met. A feedback loop connects observed
effects with refinements to influence outcomes. Double- loop
learning, on the other hand, examines the underlying factors
that influence these effects and is called the governing values
[23]. It involves using the problems being experienced to under-
stand their root causes and then taking actions to address these
causes. For instance, correcting a software error is single- loop
learning, but addressing the cause of the error is double- loop
learning. The changes based on this type of understanding will
be more thorough. To sum up, single- loop learning is about ask-
ing, “Are we doing things right?” while double- loop learning is
about asking, “Are we doing the right things?”

If organizations focus only on single- loop learning, the underlying
cause of PD will not be solved, and the suboptimal process will
continue to exist. Therefore, we argue that to reduce PD, compa-
nies need to conduct double- loop learning. That is, the team or the
organization needs to “learn how to learn,” also known as deuter-
olearning [23]. Teams need both to conduct single- loop learning
(questioning if they are doing the process right) and double- loop
learning (questioning if they are doing the right process). In addi-
tion, they need to make the right decisions when replacing a sub-
optimal process with an optimal one in order to reduce PD.

Although there exists a large body of knowledge related to SPI
and change management, our goal for this study is to understand
what PD is and how it is accumulated and managed, which has
not been studied before. The results will provide companies
with new knowledge on how to conduct double- loop learning
and better understand their PD. To do so, and to maintain an
exploratory approach, we decided to conduct our investigation
without using previous knowledge related to SPI to formulate
our questions, but rather to let the lens of PD direct our inter-
views in a fully exploratory fashion.

2.4 | Extension to Our Previous Work

This study was partly and originally published at the APSEC
2020 [24]. The delta of this manuscript over the prior published

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 23 Journal of Software: Evolution and Process, 2025

study is shown in Table 1 below. Some data from the longitu-
dinal study (19 interviews, 39 observations) has earlier been
used to study other phenomena such as digital transformation
[25] and teamwork and coordination [26]. Some details and
quotes have been removed for the sake of length and can be
found in the previous paper [24].

3 | Methodology

As visualized in Figure 1, this study's research design was di-
vided into three main steps, including six different phases. The
first three phases address an exploratory case study, which was
conducted in Step 1 (Phases 1–3) and primarily refer to this pub-
lication's original study [24]. The following two steps were con-
ducted as an extension to that study and included a longitudinal
case study (Step 2, Phase 4) and also a final cross- company focus
study (Step 3, Phases 5 and 6). Figure 1 also describes what ac-
tivities were performed in each of the phases, together with the
research methods used in each phase.

3.1 | Step 1—Exploratory Case Study

The first step of this study's exploratory nature aims to answer
RQ1, RQ2.1, RQ2.3, RQ2.4, and RQ3 and is described in the fol-
lowing subsections.

3.1.1 | Phase 1—Contextual Analysis and Design

Case studies have been long established in the software en-
gineering field to explore how different processes and tasks
are carried out in practice in the industry. Due to the explor-
atory nature of the study, we employed a multiple qualitative
case study approach [30]. First, the study was presented and
discussed during a workshop with one or more participants
from each of the five involved companies. Such participants
were always employees with management responsibilities

related to the processes, methods, and tools (PMT) employed
in the organizations. This phase acted both as an introduction
session where each company briefly described their overall
software development process together with an assessment of
concerned stakeholders of the process.

The goal of these workshops was to introduce the participating
companies to the study, to align and equip them with relevant
knowledge about the concept of PD (we showed the definition,
we explained the metaphor, and we reported a few anecdotal ex-
amples), and to gather background and contextual information
on each participating company in preparation for the following
interviews. Further, the aim of this stage was also to communi-
cate and describe what the “process” term refers to within this
study's context and also to identify potential interviewees for the
next stages of the study. Each workshop lasted from 30 to 60 min
and was digitally recorded.

3.1.2 | Phase 2—Qualitative Data Collection

The data collection method was a combination of interviews
together with the analysis of internal company documents.
This study employed a combination of unstructured and semi-
structured interviews, where the questions were both formu-
lated as general concerns and interests from the researcher
about PD.

The interviews aimed to explore the concept of PD within each
of the companies and what aspects impact and drive such debt
(see Table 2). We started by asking the interviewees to describe
their overall software development process, both from a his-
torical and a systematic perspective. We asked four follow- up
questions to learn about the aspects of the process, focusing
on the characteristics described in Section 3.1.1 (according to
our RQs).

Further, to get more insight into the existing PD, the interview-
ees were also invited to share their internal documents describing
their process and to share their experience with a specific PD task
that was identified before the interview took place. However, due
to confidentiality reasons, these documents are not publishable.

All interviewees were asked for recording permission before
starting, and all interviews agreed to be recorded and to be anon-
ymously quoted for this paper. Each interview lasted between
60 and 120 min and was transcribed verbatim. To improve the
reliability of the collected data, at least two of the authors partic-
ipated in each interview session.

Taken together, this study includes seven focus interviews
with 16 practitioners from four companies, where each in-
terview included between 1 and 6 participants (according to
the participants' preferences). Given the exploratory purpose,
the interaction among participants was important to under-
stand the possible dynamics of how PD was accumulated. For
confidentiality, interviewees and their companies are kept
anonymous.

3.1.2.1 | Cases Description. To provide more context
for our study, this section describes the involved participants

TABLE 1 | Comparison of previous published work and this
manuscript.

Previous paper [24]
Added in

this paper

RQs RQ1, RQ1.1, RQ1.2,
RQ2.1, RQ2.2, RQ2.4

RQ2.3, RQ2.5, RQ3,
RQ3.1, RQ3.2, RQ4

Data Workshop 4
companies 16 semi-

structured interviews

Cross- company
study with 4
companies

Validation survey
with 10 participants
Longitudinal case
study, 6 years long
19 interviews, 39

observations

Companies Companies A–D Companies A–E

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

5 of 23

in more detail. All case companies have an extensive range
of software development activities, specializing in different
business and application domains. Company A develops soft-
ware applications used within the car manufacturing industry.
Company B develops software for water processing applica-
tions. Company C develops software used in applications such
as, e.g., cars and IoT types of equipment. Company D develops
software applications used in the energy and power produc-
tion section.

3.1.2.2 | Participants. As illustrated in Table 3, the inter-
viewees work at companies operating in several different busi-
ness domains, and they have several roles.

3.1.3 | Phase 3—Analysis and Synthesis

Based on recommendations from Yin [27], the analysis was car-
ried out using a code and pattern identification technique called

FIGURE 1 | Visualization of the research model and method used in each phase.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 23 Journal of Software: Evolution and Process, 2025

explanation building to match the analysis from both the in-
terviews and the documents into one because this technique is
specifically suitable for exploratory studies. This selected anal-
ysis technique assisted us in explaining the PD phenomenon by
stipulating a set of relational links related to PD, addressing as-
pects such as “how” and “why” PD occurs [27]. The technique
of gradually and iteratively building, comparing, grouping, and
revising findings among the different cases resulted in a final
exploration of PD.

3.2 | Longitudinal Case Study

3.2.1 | Phase 4—Qualitative Data Collection

Company E has in- house software development units in
Sweden and Norway. We have closely followed the case from
2014 until 2020. The main reason for choosing this case was
that the company was part of two research projects on process
improvement. They had implemented a build- measure- learn
methodology on their processes, which made it possible for
us to observe suboptimal processes over time and to under-
stand improvement initiatives and their effects. We followed
two separate programs: one program with three teams called
the Web program and one with six teams called the Agile
program. The data was collected between June 2014 and
September 2020. An analysis of the interviews conducted in
the Web Program regarding the company's agile digital trans-
formation is reported in Mikalsen et al. [25]. An analysis of the
interviews conducted in the Agile program regarding team-
work and coordination in distributed development is reported
in Stray et al. [26].

3.2.1.1 | Web Program. As we entered the case at the begin-
ning of 2014, the software development unit in Company E was
organized in a hierarchical and modular structure. Within this
structure, units were based upon the modules constituting their
digital portfolios, for example, banking and insurance, and dig-
ital and mobile. In this period, Company E was deploying a new
program that was transforming the way the software devel-
opment unit delivered digital offerings in the bank. Instead
of having technical modules as the central organizing concept,
they moved towards a delivery model consisting of five delivery
streams (e.g., insurance, banking, pension). The goal of the pro-
gram was to implement a new delivery model for digital solu-
tions. Effects the program sought included giving development
clearer frames regarding resources (i.e., hours), a more unified
prioritization of tasks, rapid delivery, stable team participation,
a unified development method, and a predictable frequency
for prioritized deliverables.

We conducted nine semi- structured interviews with partici-
pants in the Web program, as detailed in Table 4. Additionally,
we collected various documents, including plans, strategy re-
ports, progress reports, evaluations, sketches, and system de-
signs. We observed a total of 24 meetings. We wanted to observe
different kinds of meetings and chose to observe:

• 12 daily standup meetings

• 2 weekly meetings

• 1 planning meeting

• 7 general meetings

• 2 retrospective meetings

During most meetings, we made notes during the meeting; how-
ever, for the standup meetings, notes were taken immediately af-
terward. The two retrospective meetings involved more engaged
research, meaning that we also assisted the participants in solv-
ing their difficulties with practical and theoretically grounded
solutions. In these meetings, we had one observer taking notes.

TABLE 2 | Questions asked in the first step of the study.

Question Relation to RQ

Describe some critical suboptimal
processes

RQ1

What led the process to become
suboptimal?

RQ2.1, RQ2.2

What are the consequences of such
suboptimality?

RQ2.4

How do you prioritize improving the
process with respect to other software
development activities?

RQ3

How useful would it be to reason about
these issues using the PD metaphor?

RQ1

TABLE 3 | Participants in the first step of the study.

Company Participant roles

A Manager (testing), manager (process,
methods, and tools), software architect

B Two managers (process, methods, and tools),
senior software developer (requirements)

C One manager (process, methods, and
tools), process expert, software process

manager, software architect, senior
software developer (continuous integration),
software architect manager (methodology)

D Senior software improvement
manager, technical manager, team
leader, senior software developer

TABLE 4 | Participants for the second step of the study.

Company Program Participant roles

E Web Project manager, manager,
business developer, digital

responsible, digital designer,
team lead, tech lead, test

lead, IT developer

Agile Product owner, four developers,
test leader, two business

developers, enterprise
architect, UX designer

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

7 of 23

3.2.1.2 | Agile Program. In 2017, Company E initiated
an agile program that consisted of four cross- functional,
autonomous teams. These teams were organized accord-
ing to agile principles and tasked with developing soft-
ware for business- to- business insurance products. The teams
included personnel from both the software development
and business development departments and were focused on
delivering software solutions to the business side of the organi-
zation, such as sales and settlements. They also worked closely
with the organizational departments responsible for innova-
tion and technology development.

We conducted ten interviews with participants in the Agile
program. These interviews lasted from 37 min to an hour,
with an average of 48 min. All interviews were recorded with
consent and transcribed verbatim within a week of the final
interview, which took place in January 2019. Additionally,
we facilitated three workshops and observed 15 meetings,
including 11 daily stand- up meetings and four weekly prog-
ress meetings. We also collected various documents, such as
team presentations, progress plans, and analysis results from
internal surveys. The documentation was useful for gaining a
better understanding of the context, and it also helped verify
specific details.

3.2.1.3 | Data Collection and Analysis—Company
E. The interviews aimed to explore suboptimal processes
for working agile, for meetings, information flow, and coordi-
nation. We investigated what could work better in the project
and how they solved the problems. We also asked how they per-
ceived the code quality and how this could be improved. We did
not specifically use the metaphor of PD but instead asked about
suboptimal processes and their consequences.

Our data analysis was guided by an interpretive approach that
places practitioners' understanding of reality at the core of our
study [28]. We subscribe to the concepts proposed by Klein and
Myers [29], of which the hermeneutic circle is a central principle.
The hermeneutic circle helps to account for the interconnected
meaning of the parts (e.g., the understanding of the participants)
and the whole that they form (e.g., the meanings emerging
from the interactions between the parts). In our data analysis
and sensemaking technique, we adhere to this idea using an
inductive–deductive approach. Our findings highlight the in-
terdependencies and PDs that exist in Company E, such as syn-
chronization debts, PDs resulting from interdependencies, and
varied and inappropriate procedures.

3.2.2 | Step 3—Cross- Company Focus Study

In order to validate our results and to gain additional insights
from the combined discussion across multiple companies, we
conducted a group interview where we reported our results and
followed up with validatory questions as well as additional ex-
ploratory questions.

The participants in the group interviews were a mix of previ-
ous interviewees and additional process improvement experts
from the companies involved in Phase 1. One of the purposes

was to validate the elaborate models and findings from Phases
1 and 2.

In total, we involved 10 interviewees from four companies,
while three researchers presented the results and asked addi-
tional questions. The total interview time was 3 h.

The group interview was structured as follows. First, we had an
introduction of the participants and collected demographic infor-
mation. Then, we reported and explained the overall framework
to define PD. During our explanation, we gave the participants
room to ask questions, clarify issues with the model, and suggest
changes. During this part, we also presented the types of PD re-
vealed by our analysis. The purpose was to validate our initial
framework related to RQ1.

Then, we alternated the presentation of results and collection
of feedback on them, combining open discussions driven by the
participants with the anonymous and individual collection of
closed answers using the instant survey instrument Mentimeter.
We then showed the results live during the workshop and col-
lected additional feedback. In particular, this part was divided
into the following three subparts:

1. Causes of PD: We showed our categorization of the
causes, and after discussion, we asked the question, “pick
the three causes that generate the most PD in your organi-
zation.” This way, we also managed to provide a ranking of
which causes seem to be the most common and if there are
differences across contexts (RQ2.3).

2. Mitigation strategies: We showed our categorization of
the mitigation strategies for PD, and we asked the question,
“pick the three mitigation strategies that you are currently
using the most in your organization.” Then we also asked,
“pick the three mitigation strategies that you would like to
apply at your organization.”

These two questions were asked to investigate the differ-
ence between the current state of practice and the wanted
position by the companies (also useful to understand which
mitigation strategies should be prioritized by research)
(RQ3.2).

3. Consequences of PD: We showed our categorization of
the causes for PD, and we asked the question, “pick the
three consequences that have the most impact on your
organization.” This question was asked to rank the most
harmful PDs (RQ2.5).

4 | Results

Here, we present the results of our investigation. First, we out-
line the overall framework and definition to answer RQ1; then
we answer RQ2 and RQ3 by reporting the initial results from
the interview in Step 1, followed by the additional validation
results from Step 2 (the longitudinal case) and Step 3 (the cross-
company interview). We also add, for RQ2.3, RQ2.5, and RQ3,
the results from the questionnaire organized during the data
collection of Step 3. Finally, we report the results from RQ4 re-
lated to the longitudinal case study.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 23 Journal of Software: Evolution and Process, 2025

4.1 | PD Definition (RQ1.1)

We propose an overall PD conceptual framework (Figure 2)
refined from the one in Martini et al. [24], where all the key
elements and their relationships are visible (RQ1). This is a
high- level model, and additional details about the entities and
connections are explained in our findings according to the var-
ious RQs.

An optimal process is either designed or has emerged in the orga-
nization, usually depending on their culture and practices (some
companies have a top- down, usually more formal, approach to
defining processes, while others have a more bottom- up ap-
proach, where processes emerge from the needs of the stake-
holders). Optimal processes are usually defined in terms of an
optimal tradeoff among stakeholders.

We define an optimal process and tradeoff here as the one that
gives the most value to the involved stakeholders. However, it
is likely that, in practice, the optimal process recognized by an
organization would still not be theoretically optimal but rather
the best option recognizable by the organization. When we refer
to an optimal process in the rest of this paper, we refer to this
latter one and not a theoretical one. For example, a company
working with a perfectly functioning waterfall approach (in the-
ory) might have debt if they could identify that Agile would be
superior in their context.

An optimal process can be subject to PD and its accumulation
according to three high- level accumulation patterns; in other
words, there are three main distinguishable ways in which PD
usually occurs. The presence of PD generates consequences
(often in terms of negative effects) that affect the stakeholders,
balancing the tradeoff and making the process suboptimal.
Consequences can be short- term or long- term: in the first case,
PD generates an initial waste, which can be reduced and miti-
gated but can also develop into long- term consequences.

Several causes trigger the PD accumulation patterns to happen
(will be discussed in Section 4.6). The starting point responsible

for the accumulation of PD is either a process designer (who has
created the process with a suboptimal design) or a process exec-
utor (who has diverged from the decided process). In addition,
the main source of PD can be a suboptimal infrastructure. When
a process emerges, the process designer and executor can often
be the same, and in such cases, PD often occurs because of an
involuntary suboptimal design.

PD can be identified by a type: this can be a suboptimal aspect
of the process (role, documentation, synchronization with other
processes, etc.) or by a specific suboptimal activity (this can de-
pend on the specific activities that the process is composed of,
for example, is it a code review step and prioritization). A com-
bination of aspects and activities can also be used, for example,
“lack of prioritization roles.”

The negative effects of PD can be reduced by applying mitiga-
tion strategies. These can be applied by developers and man-
agers, but such mitigation strategies are costly and need to be
prioritized based on some key factors.

To prioritize mitigation strategies for PD, one needs to assess
and estimate the interest (the cost of negative consequences), the
principal (the cost of changing the process), and the value for the
stakeholders. When promoting a change to mitigate a specific
PD, organizations need to take into consideration these three
variables and weigh them, taking into consideration the costs
and benefits of applying such a mitigation strategy with respect
to implementing other strategies instead or just continuing to
develop features.

For example, it is possible that changing a prioritization process
would be costly but would also mitigate several negative con-
sequences, while changing a code review process for a specific
team would not cost much and would give limited benefits.
Often managers and developers need to prioritize either of the
two (for example, because of project resource constraints). Let us
assume that the prioritization process could give a much higher
value to the stakeholders than the review process; the former
one should be prioritized.

FIGURE 2 | The overall framework of PD (orange) and mitigation strategies (green).

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

9 of 23

It is important to notice that the prioritization of mitigation
strategies also depends on other factors that are not PD- specific
but can be constraints of a specific project, such as resources and
time span. Such factors are already well- known from the liter-
ature on SPI and are often context- specific, so we do not report
them in our framework for the sake of simplicity, but they would
need to be taken into consideration when PD is assessed.

4.1.1 | Validation of the definition and framework

During the analysis of the longitudinal case study, we did not
find additional insights to change the framework; the findings
were supported by the gathered data.

The discussion with the practitioners during the cross- company
interview in Step 3 showed that the practitioners appreciated
having a framework to discuss such a complex problem, so the
framework was validated. The input from the participants in the
workshop, combined with the input from the longitudinal study
and the addition of the mitigation strategies, led to the final
framework in Figure 2, which has been expanded, refined, and
simplified with respect to our previous publication.

Then, given that the PD definition proposed in Martini et al. [10]
was based on the definition given for TD and we found several
distinct differences between PD and TD, we propose the follow-
ing revised definition for PD (RQ1):

Process debt is the occurrence of a sub- optimal
process design, divergence from an optimal process
or deficiencies in the infrastructure that might be
beneficial in the short term but might generate a long-
term negative impact for process stakeholders.

4.2 | Types of PD (RQ1.2)

Besides categorizing PD based on where it originates, it is critical
to understand what parts of the process are affected by the debt.
Processes are made of several components, namely, roles, activ-
ities, and documentation. We provide a categorization based on
such components in a similar way as what is commonly used to
categorize TD (e.g., code debt, architecture debt, and require-
ment debt), with concrete examples from our cases. Based on the

results from our analysis, six types were identified, as shown in
Figure 3. We give examples found in the longitudinal study in
Table 5.

4.2.1 | Activity- Specific Debt

Processes are created for different goals and may involve differ-
ent activities. It is possible that one specific activity is subopti-
mal and not the whole process as a whole.

We found several kinds of activities that can be flawed: for ex-
ample, a suboptimal prioritization process could be called prior-
itization debt, a suboptimal certification process could be called
certification debt, and so on. There may be many activities that
could generate debts. In addition, many activities are context-
dependent, meaning that they appear in some companies and
not in others, or they appear with different names. These all fall
in the PD category.

This sort of debt is not mutually exclusive with respect to the
other presented categories. The purpose of this category is to
give the opportunity to better define a specific PD. For exam-
ple, the unsuitable process identified in Company E during the
longitudinal case study was about business decision- making. In
this case, we would call this instance of PD an unsuitable (busi-
ness) decision- making process.

In those cases where it is not only one activity being suboptimal,
for example, the overall waterfall- like process for Company A,
one would just refer to the whole process, such as the “Unsuitable
Mechatronic Development Process.”

4.2.2 | Mismatching Roles and Responsibilities (Roles
Debt)

Activities are carried out by executors, who usually have dif-
ferent roles according to the responsibilities mapped in the
process. Roles are not physical people but are “hats” that are
dressed by anyone in the organization to carry out a specific ac-
tivity. Further, often roles within the process are also associated
directly with a role that is represented in the overall company
organization. This can create a mismatch between the respon-
sibilities described in the process and the responsibilities in the
organizational structure, which might prevent employees from

FIGURE 3 | Types and subtypes of PD.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 23 Journal of Software: Evolution and Process, 2025

accepting and carrying out some tasks for which they are re-
sponsible in the process.

4.2.3 | (Process) Documentation Debt

The process is usually described by documentation. Although,
in some cases, for example, when only a few stakeholders are
involved, the process can be kept informal; meanwhile, in large
projects where more teams and stakeholders are involved, the
process needs to be well documented. The lack of process doc-
umentation (or its inaccessibility) was recognized as one of the
major sources of PD both by process designers and by process
executors from across all studied cases, including the longitudi-
nal case study.

Providing a suitable level of granularity for the process design
is challenging. For example, the documentation might lack in-
formation about steps or stakeholders, which leads to unclar-
ity and confusion, or, on the contrary, it might be too detailed.
The latter case might seem somewhat counterintuitive: the

TABLE 5 | Examples of process debt and their types from the
longitudinal case study (Company E).

Example Type of process debt

A role was created called
product owner (PO), and
people were assigned to that
role without saying what
the role entailed. Many
of the people assigned to
that role were confused as
some were familiar with the
product owner role in Scrum.
However, the responsibilities
of the product owner in
Company E were more related
to being a team leader.

Roles debt

Developers were not changing
the status of their tasks
themselves and did not assign
them to the next designated
role, so the PO had to do it for
them, causing extra effort for
the PO. The cause mentioned
here was that the process was
not well communicated in
advance to the actors.

Roles debt

The offsite teams followed
Scrum, while the onsite
teams used Kanban. The
different methods chosen
affected how pull- requests
were handled between the
teams. Scrum teams sent a
large number of pull requests
to the onsite teams after the
sprint, overwhelming them.
Reviewing extensive pull
requests became demotivating
and time- consuming.

Synchronization debt

The business development
unit followed a decision-
making process that was
not suitable for software
development. The process
involved complex decision-
making with continuous
synchronizations and updates,
causing tasks planned in the
sprint to be unsuitable and
unpredictable.

Process unsuitability

(Continues)

Example Type of process debt

People were forced to sit at
specific desks two times a
week as they belonged to
two teams. This frustrated
employees who wanted to
sit in the same spot all week
due to preferences for their
team proximity or reliance on
external monitors.

Infrastructure debt

Processes regarding using
Jira caused infrastructure
debt in Company E. Offshore
teams were measured by the
number of solved Jira issues,
encouraging developers to
attach multiple Jira issues to
one pull request. Norwegian
developers had to review very
large pull requests, which was
frustrating and inefficient
compared with smaller, more
frequent reviews.

Infrastructure debt

The company decided that
the Norwegian teams would
use Kanban while the
outsourcing teams followed
Scrum. Although the teams
used processes they were
familiar with, this caused
synchronization issues,
misunderstandings, and
overhead. Coordination
meetings became inefficient
and caused a waste of time.

Suboptimal process design

TABLE 5 | (Continued)

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

11 of 23

interviewees mentioned that having too many details could
actually create as much overhead as having too few. For ex-
ample, too many details might give wrong instructions on
special cases that should be handled by the process executors
(especially in the presence of frequent special cases). Another
negative effect of such over- detailed documentation is that
executors might skip part of it because they find irrelevant
information for their specific needs. If the information is not
well structured, an experienced practitioner might already be
familiar with most of the steps and might find it difficult to
locate the only important piece of information that is needed
(e.g., an update to the process).

Besides the presence of information or the lack of it, it is also
important that the documentation provides clear information. If
the language and the graphical representation are not the ones
that are used by the consumer of the documentation, this can
have an impact on how the process is executed.

4.2.4 | Synchronization Debt

The stakeholders involved in a process are also likely to partic-
ipate in multiple processes that are intertwined. For example,
there might be a process such as Scrum to support agility, a
separate process that prescribes code reviews to ensure soft-
ware quality, and a third process to certify the delivered soft-
ware according to some standard. The complexity can vary
and might depend on the scale and domain of the organiza-
tion. Such processes need to be synchronized via synchroni-
zation points. Suboptimal design of synchronization points
may lead to steps being skipped, confusion, overhead, and
disrupted workflow.

In general, stakeholders, besides being executors for a number
of processes, also have a workflow. An example is a software
developer who needs to perform a bug fix (a task that needs dif-
ferent steps) while at the same time, the code needs to be re-
viewed, certified, tested, etc. Different activities in the workflow
of a development task might belong to different and parallel pro-
cesses. One key finding from our interviews with the executors
of the processes is that developers need to accommodate differ-
ent external processes into their workflow. The interconnection
of such processes might create a suboptimal workflow for the
developers, where some activities conflict with each other. In
conclusion, the main findings related to synchronization debt
are that the lack of synchronization between processes has an
impact on developers' productivity and that the lack of synchro-
nization between processes and individual stakeholders' (espe-
cially developers') workflow can disrupt their workflow.

4.2.5 | Process Unsuitability

Some processes might not be suitable to support the business
needs of an organization. The difference with synchronization
debt is that, in the former case, the processes might be optimal
but not well synchronized, whereas, for this category, there is
one process that is not suitable for the needs of (a part of) the
stakeholders. In summary, PD consists of the existence of a

process, from which software development is dependent on,
which creates overhead, confusion, and delays.

4.2.6 | Infrastructure Debt (ID)

IDs were considered to be PDs by the interviewees. For example,
tools in the toolchain may work seamlessly with each other, or
they may not. When tools that are part of the same process or are
part of different processes but are interacting within the same
workflow for the stakeholders and are not well integrated, they
might create overhead, errors, or excessive task switching for
their users, which qualifies as PD. Additionally, tools might be
outdated and might become unfit to support modern processes.

In addition, there might not exist tools that fit well with the pro-
cesses, or the right tools might require high costs. This might
lead to tools that are not used for the purpose required by the
process and might, therefore, be suboptimal. In the last case re-
lated to Company E, it is clear that not only is it the virtual envi-
ronment and tools used to develop software that constitutes PD,
but ID can also include the physical environment surrounding
the practitioners.

4.3 | PD Occurrence and Its Accumulation
Patterns (RQ2.1)

Three overall PD accumulation patterns were identified: subop-
timal process design, process divergence, and tool deficiencies,
as outlined below. PD is primarily initiated by two main actors,
process designers and process executors, but we found that the
infrastructure may also trigger the accumulation of PD. We call
these three PD initiators.

4.3.1 | Suboptimal Process Design

This category includes those processes where a decision was
made that caused the process to be suboptimal in some aspects
and with respect to a number of stakeholders.

Although we call it “process design,” our analysis distinguishes
two cases: those where the process has formally been designed
and those where the process has emerged over time without a
clear upfront design. Although the strategies to manage these
two cases might differ, from a conceptual point of view, there is
no difference if the process was designed upfront or the design
just emerged. In both cases, the process design would be flawed.
In the interviews, several instances of this kind of PD were iden-
tified, two reported below.

4.3.2 | Process Divergence

This category refers to those processes that are initially effec-
tively well- designed by the process designers but are not fol-
lowed by process executors. Again, by well- designed here, we do
not mean processes that do not have any suboptimality but for
which a better tradeoff is not identified.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 23 Journal of Software: Evolution and Process, 2025

4.3.3 | Infrastructure Deficiencies

This category of PD contains those issues that are related to inef-
ficiencies in the infrastructure supporting the processes. There
are two subcategories: tools that are used to carry out processes
(e.g., project management, bug tracking tools) and tools that
are used to design the processes (e.g., to create guiding docu-
ments). PD exists if a (better) alternative infrastructure solution
is known but is not in place.

As identified in Section 4.2.6, ID is part of PD. The infrastructure
is there to support the process and does not have another indepen-
dent function. This is why, usually, in organizations we find PMT
units that need to coordinate processes and tools together. Given
how intertwined the two categories are, it would not make much
sense to separate ID from PD. In practice, any ID will also create a
problem for the process. We refer to infrastructure deficiencies as
ID (as part of PD) to denote that the tools are a source of the debt.

4.4 | Causes of PD (RQ2.2)

Our results show how a large number of causes can be responsi-
ble for the introduction and the presence of PD. The causes are
listed in Table 6 and illustrated in Figure 4.

4.5 | Which PD Causes Are the Most Common?
(RQ2.3)

Figure 5 shows how the participants from the cross- company
interview chose the causes that most commonly lead to PD
(RQ2.3). Three voters for Company A, two for Company B, three
for Company C, and two for Company D.

The most voted cause, and the one that was voted on by all par-
ticipating companies, is the presence of poor technology and
tools. The second most voted cause, especially by Company A,
was the neglect of process value. Special contexts and solutions,
as well as a lack of improvement prioritization, were voted on by
three organizations.

However, it is interesting to see how different roles and partic-
ipants from different companies voted differently, suggesting
that in different subcontexts, different causes might generate
more PD. Overall, one could consider most of the causes as con-
tributing to generating PD.

4.6 | Consequences of PD (RQ2.4)

When analyzing the consequences (Figure 6), it was evident that
PD has two kinds of negative effects: besides the generation of
a long- term interest (as for TD), process suboptimality can actu-
ally often lead to initial waste (of time, effort, budget, etc.) for the
stakeholders. The initial waste can, in some cases, be reduced
by refining the process. However, in many cases, such negative
effects can also easily become a long- term interest. This means
that the two groups are not mutually exclusive, but the conse-
quences listed as initial waste might also belong to the long- term
category, although they might show up early.

4.6.1 | Long- Term Consequences

1. Late customer deliveries: Although skipping some steps
and activities in the process might promote quicker deliv-
eries of customer value in the short term, the interviewees
reported that this way of working could cost more in the
long run and cause longer delivery times in the long term.
In some cases, customers were unaware of the PD and its
accumulation and consequences, which led to their dis-
satisfaction when unexpected long- term delays occurred.

2. Low software product quality and TD: One of the purposes
of processes is to ensure that products delivered to cus-
tomers meet several qualities critical for them. Many PD
instances mentioned by the interviewees generate quality
issues in the long term. For example, inadequate unit test
coverage can create additional defects over time and un-
dermine the organization's confidence in delivering addi-
tional features that are not appropriately tested (Company
C). Additionally, some companies mentioned that PD
often generates TD. For instance, suboptimal code reviews
might not catch TD, while the lack of a process to manage
iterative and continuous feedback loops between architects
and development teams can lead to architecture debt.

3. Hindering other processes: Processes are often intercon-
nected, and the presence of PD in some processes may
cause disruption in others, generating new PD (e.g., in
the case of synchronization debt). This interconnection
can make PD contagious and may lead to vicious cycles.
An example from our interviewees relates to an existing
ID issue with an outdated tool whose technical limitations
prevented the implementation of continuous integration.

4. Issues with certification: Companies A and D reported that
skipping process steps related to certifications can cause
difficulties in obtaining certifications or necessitate revali-
dation and reperforming process steps, wasting significant
time, resources, and budget in the long term.

5. Increased turnover: In Company E, some individuals
were frustrated by PD issues, particularly incompatibility
between on- site and off- site teams, resulting in higher at-
trition rates. The lack of competence among off- site team
members added to the frustration.

4.6.2 | Initial Waste

When process designers create a process, it can be the case that
the process is suboptimal right from the beginning. This can be
due to many challenges, for example, the difficulties of satisfy-
ing all the stakeholders involved. Although these effects can be
multiple, we focus here on the effects that the initial waste has
on the software developers.

1. Developers overhead: Besides tedious work and errors, sev-
eral of the PD mentioned in the interviews directly caused
an overhead for the software developers. Suboptimal docu-
mentation granularity, ID, the presence of unsuitable pro-
cesses, and other activity- specific debt were the source of
unnecessary effort spent by the developers in activities that
were suboptimally designed.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

13 of 23

TABLE 6 | Detailed issues leading to process debt (PD).

Issue Description

Competences An issue leading to PD is the lack of competences to design, manage, and execute
processes. Processes can emerge and not be designed upfront, but regardless,
it is important that processes are assessed, supported by infrastructure, and

maintained. Another factor is the experience that practitioners already have with
a given process, as well as with the domain and the product: if they are familiar
with it, they might even optimize it without following all the instructions, while
for employees that are not used to work according to a given process description,

it might be confusing and may potentially trigger the introduction of PD.

Value neglection An important issue about processes is that it is not often clear to all the stakeholders
what value it brings to them or to the organization. The lack of a clear explanation and

education of the stakeholders on what value the process brings to the organization
often causes the process executors to neglect the process, leading to PD. On the other

hand, a process needs to be designed with a clear purpose and value in mind and
not just as a mandatory management equipment introduced by the organization.

Lack of follow- up assessment Once the process has been designed and implemented, it should be assessed and
improved according to the needs of the stakeholders. However, the lack of such
follow- up does not allow us to identify and track possible PD. In addition, the
lack of follow- up and improvement does not ensure that any divergence from

the process is captured and handled, which may lead to the growth of PD.

Special contexts and situations Different companies, units, teams, special domains, special events, etc., all contribute
to making existing processes suboptimal, which generates PD and costly consequences

if such special contexts and situations are not accounted for in the process.

Cultural causes There are several cultural issues that have been mentioned by the practitioners. This
category has been further elaborated in the following subcategories: A major issue is

the lack of software culture in other organizations, for example, related to mechanical
and electrical engineering. In addition, different teams and different individuals have
different experiences, maturity, motivation, and leadership styles. This leads processes

to be optimal for one team or one individual but not for another. Experienced people
might neglect the process, thinking that they do not need it, while less experienced
individuals and teams might not understand the purpose of the process, misjudging

special situations. The developers might feel powerless to change processes: Although
developers can be designers of their own processes in some cases, many times (especially

for large organizations), they are actors or executors of processes that are designed by
other stakeholders, sometimes in other organizations, for specific purposes (certification,

safety, etc.). In these cases, developers are not often asked if the process is suited for
them and their workflow, and they usually find it difficult to reach out and effectively

ask to change the process, so PD is accumulated without being tackled effectively.

Lack of prioritization Similarly to TD, PD issues are quite often not managed because they are not
prioritized as important to be fixed. This can be due to too many foci for the teams
or to strategies focused on short- term goals, etc. The interviewees mentioned that
PD issues often get attention only after several employees have raised the issue,

and one interviewee also stated that the PD issue needs time to be discussed
iteratively during several occasions before it might get attention and thereafter be
prioritized. In addition, many of the interviewees mentioned that PD issues are, at
best, reported in a non- prioritized list also by the stakeholders, which does not help
them get attention. This is an issue that we know well in connection with TD: to be
prioritized, the TD issues need to be assessed and estimated. This is not something

that is currently being done with PD issues, probably because of the lack of a
framework, practices, and responsibility for implementing or changing the process.

(Continues)

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 of 23 Journal of Software: Evolution and Process, 2025

2. Developers' mistakes: Some PD affects the developers by
making their workflow error- prone. For example, the fre-
quent copy- pasting and duplication of information from one
tool to another (because of ID) can cause mistakes that are
then propagated to the stakeholders consuming the doc-
umentation created during the process. In general, when
processes and workflow are not well synchronized (see syn-
chronization debt), the developers often have to switch tasks
continuously from one process to the other, one tool to an-
other, etc. Although this does not perhaps directly create a
measurable extra effort, developers suffer from unnecessary
task switching as an additional layer of complexity on their
job, which is not very different from having a more complex
architecture to deal with. However, such additional complex-
ity created by PD is difficult to see unless the workflow is
visualized.

3. Developers' morale (tedious work): One issue, especially re-
lated to documentation debt and ID, is the creation of doc-
umentation or additional steps in the developers' workflow
that need to be delivered but are unnecessary. This can

happen for several reasons, as mentioned earlier, because of
organizational or cultural issues or because of suboptimal
infrastructure. These issues are the source of overhead and
tedious work for software developers, which affects their
morale. According to our interviews, it is commonly the
case that developers prefer to work with processes that allow
them to feel productive. The sense of accomplishment can
be highly reduced by the feeling that much of the work has
been dedicated to producing documentation that is not really
useful for anyone. This is also related to the neglect of value
and unclear purpose. In some cases, developers might not be
aware of what the value of some of their processes is, which
has the same effect on their morale, although the additional
steps and documentation might not actually be unnecessary.

4. Uncertainty about the process: The lack of documentation
and clarity about purposes and roles often creates confu-
sion and uncertainty for the process executors. This leads
to mistakes related to the outcome of the process, which
in turn can generate several of the other consequences
listed here, including the generation of additional PD. For

Issue Description

Technology and tools The infrastructure is important to support the processes and to automate and
facilitate their steps. The lack of infrastructure or the presence of infrastructure

debt (described earlier) can cause additional PD, like in the case when an old
tool configuration management tool does not support fast deliveries.

Cost of process changes Sometimes, it is known how to eliminate or avoid some PD. However, the cost
of removing the PD can be prohibitive, especially if the value and the interest
paid by the practitioners due to PD are not clear and assessed. In addition, in

many cases the estimations for changing the process turned out afterwards to
be incorrect, which caused them to be cautious about fixing further PD.

Organizational causes As for the cultural factor, there are many organizational issues that can affect
the process. Examples of organizational issues are related to a structure where

roles and responsibilities are not clear. This is directly responsible for roles' debt,
as the roles created for the process do not have clear matches in the organization,

and the process is not carried out by the individuals who are supposed to.
Another issue is related to the interaction with external organizations with different

cultures, interests, and power: Examples are processes (not) followed by open
source organizations developing an OSS component used by the development

team (e.g., the lack of a correct library versioning) or other stakeholders that may
have interests in receiving data to compute analytics without knowing about the

burden for the developers. The issue is the distance between the stakeholders in the
software development team and external organizations. Several levels of indirection

hinder making the stakeholders aware of each other's needs and challenges.
Yet other organizational issues might be related to the sheer scale of the

organization. The feedback loop between the process designers and the many
stakeholders (e.g., many teams) is prohibitive, and efficient top- down follow- up is
not possible. Tailoring the process to all possible contexts is not feasible without

empowering the stakeholders themselves to tailor the process; however, this
might easily diverge from the original purpose, as the stakeholders might try to
optimize for their local optimum, creating PD that affects other stakeholders.

External trends In some of the interviews, several of the participants described external trends
that affect how processes are adopted in the company. Adopting processes
that are not suitable for the company according to trends can lead to PD.

Lack of trust Especially in the longitudinal study, we found that a lack of trust affected PD.

TABLE 6 | (Continued)

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

15 of 23

example, in Company E, the product owners (POs) we
interviewed described that in one of the meetings, when
they shared obstacles, they felt that managers always
overreacted and immediately tried to solve the issues.
Consequently, people stopped sharing concerns that they

had, which reduced information flow and knowledge shar-
ing. While the POs understood the meeting as a place to
share and discuss problems—not necessarily fix them—
the managers felt the pressure to solve all issues that could
hinder the teams.

FIGURE 4 | A map of the causes of PD. Dark grey boxes have subcategories. “Different culture” is related to both teams and external stakeholders
and therefore is marked with “*.”

FIGURE 5 | The causes that were voted as the ones causing the most PD in the organizations. Respondents had to pick the three most important.

FIGURE 6 | Consequences of PD.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 of 23 Journal of Software: Evolution and Process, 2025

5. Loss of trust in the processes: The presence of PD, especially
related to the other initial waste categories mentioned pre-
viously, can create the perception for the developers that
the processes are generally not trustable. Consequently,
this can create a subculture in the teams for which pro-
cesses are not worth being followed (even in those cases
where the process might be optimal and valuable).

4.7 | Which Consequences Are the Most Harmful?
(RQ2.5)

From the cross- company interview, we collected data as in
Figure 7. Three voters for Company A, two for Company B, three
for Company C, and two for Company D. The most harmful PD
consequence was considered the one generating low software
quality and TD. four or five participants (and generally voted
by more than two companies) voted for uncertainty about the
process, loss of trust in the processes, and impact on developers
(morale and overload).

4.8 | How Can PD Be Managed? (RQ3)

We first answer the first research question, RQ3.1, about what
mitigation strategies have been revealed by the practitioners
during the interviews in Steps 1 and 2 (Figure 8), and then we
report, according to our questionnaire in Step 3, which strat-
egies are the most currently in use and which ones are still
missing but organizations are moving towards implementing
(RQ3.2).

We have previously reported the causes of PD. By mitigating
such causes, organizations can also reduce the generation of PD.
On the other hand, some of the mitigation strategies can be less
proactive but more reactive.

From the interviews conducted in Step 1, we distilled three main
categories of mitigation strategies: process governance, process
design, and process education. These categories were validated
in Step 2. In two cases, process governance and process design
strategies overlap.

FIGURE 7 | The consequences of PD that were voted as the most harmful by the participants.

FIGURE 8 | Mitigation strategies proposed by the interviewees. Grey boxes have subcategories. “Automation of checks” and “coordinator differ-
ent organizations” belong to two different categories.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

17 of 23

4.8.1 | Process Governance

These are strategies that can be employed by the process own-
ers and stakeholders to reduce the chances of accumulating
PD or to increase the chances of changing the processes to
reduce PD.

4.8.1.1 | Stakeholders Feedback. One of the effective
strategies to understand where PD hides in the organization is to
ask the stakeholders and actors involved to report on hindrances
such as delays, lack of quality, time waste, etc.

Some PD might be difficult to measure in practice, and the
stakeholders are the only ones who can observe if there is an
issue related to the process. Process owners should take the ini-
tiative to reach out to stakeholders, not only to set up the process
but also to receive feedback from them during the continuous
execution.

At the same time, it is also important that stakeholders are in-
centivized to report issues with the process, especially in ex-
plaining the impact of the issue.

4.8.1.2 | Evaluation Metrics. Measurements can be
analyzed by the process owners, for example, understanding
the speed with which the process is executed, the satisfaction
of the stakeholders (for example, via surveys or direct contact),
and the quality of the software that is implemented. Practi-
tioners enumerate some solutions but also mention that current
approaches are rather inefficient and better approaches need to
be developed.

4.8.1.3 | Prioritization of PD Issues. Practitioners men-
tioned several ways in which they promote the allocation
of resources to change processes and remove or mitigate PD.

First, like for TD management, they advocate the need for a
prioritized list of PD issues: A generic and long list without
having already provided a priority (e.g., based on cost/ben-
efits analysis) by the makers of the list (process owners, de-
velopers, etc.) would not be taken into consideration by the
responsible for allocating resources (PM, POs, etc.). It is more
valuable to advocate for changing a few, well- supported PD
issues rather than just having a long list of issues for which
the RoI is uncertain and the time is not enough to discuss
in meetings. However, even when the list is present, practi-
tioners mention that the best strategy is to “sell” and “mature
the discussion” around the PD issues that are the most criti-
cal to be mitigated during meetings with those responsible for
allocating resources (PM, POs, etc.). Often, they mentioned,
it takes several meetings before the participants of the meet-
ing perceive a (PD) issue as important to be taken into con-
sideration. Prioritizing PD is therefore perceived as mostly a
social and “political” activity to lobby for the most important
PD issues to be considered in a highly competitive race for re-
sources (against features, TD, bug fixing, social issues, etc.).

4.8.1.4 | Process Enforcement. Some of the practitioners
mentioned how enforcing the process with checks and tools can
help reduce and avoid PD. Examples are obligatory forms to be

filled in during the process to comply with an external certifica-
tion process.

4.8.1.5 | Coordinator for Different Organiza-
tions. When different organizations require a process to be
in place for the software teams (e.g., for safety certification
and analytics), it is important to have an effective coordi-
nator to bridge the needs of the two sides and to foster their
communication.

This strategy overlaps with process design, as the coordinator
can be a role that is included in the role definition of the process.

4.8.1.6 | Automation and Checks. The process own-
ers and executors can decide to implement automated steps
of the process and to build automated checks that the process is
indeed followed.

However, such practice is not widespread: In many cases, au-
tomation requires an investment by a developer or a dedicated
“process and tools” team to implement such automations. One
of the issues mentioned by the interviewees is that such automa-
tions also need to be prioritized by the management to allocate
resources, and in many cases, it is difficult to advocate for the
benefits against the cost of implementation (or else, it is difficult
to show that the principal paid would cover saving the interest).

Automation and checks are both governance strategies but can
be part of the process design overall category, as their definition
can be included in the design of a process.

4.8.2 | Process Design

These strategies are the ones that can be made when a process
is either designed from scratch or when an emerging process is
improved and optimized.

4.8.2.1 | Process Visualization. One of the ways to iden-
tify PD and argue for its reduction is to visualize the process.
According to the participants, presenting the visualization
to the managers can convince them that PD is detrimental
and that it needs to be tackled. Process visualization can also
include data- driven approaches. However, this does not seem
to be currently an approach that is in use at the interviewed
organizations.

4.8.2.2 | Process Size Reduction. Large organizations
including several disciplines are characterized by the need
to have formal processes that, in some cases, are predefined
and hence the process steps are standardized: for example, a
process to ensure that unit tests reach a given coverage might
be more suitable for some teams but not others. A process, once
standardized for the many software teams, might need to be
reduced for some of the teams. In other cases, (emerging) pro-
cesses tend to grow unchecked because of the needs of different
organizations but need to be simplified.

4.8.2.3 | Optional and Better Checklists. To help exec-
utors follow the processes, there are often checklists with

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

18 of 23 Journal of Software: Evolution and Process, 2025

the main steps of the process. However, practitioners mentioned
that often such checklists are obsolete or not optimal and would
need to be continuously updated.

Interviewees mentioned that checklists could be improved
mainly in two ways: by restructuring overgrown checklists and
by reducing them. In fact, checklists are especially useful the
first time a process is in use, while after a while, experienced
practitioners might just disregard the whole checklist as they
feel like they have already learned the process, and they find
following the whole checklist tedious and time- consuming.
However, this can cause them to miss a critical step. By reducing
checklists according to the experience of the team with the given
process, we can therefore reduce the overhead of the teams and
still allow practitioners to be reminded of critical steps that
should not be overlooked.

4.8.2.4 | Process Complexity Reduction. In Company E,
they decided to backsource the development to reduce the com-
plexity caused by two incompatible development processes
at two locations. By ending the outsourcing relationship, they
could instead have a well- defined process in one place.

4.8.3 | Process Education

The last set of strategies to reduce PD is related to the educa-
tion of processes. Executors, especially in large companies, need
to be informed about not only how to follow a process but also
about why processes need to be followed (value). In many cases,
processes can be useful for one purpose and for a selection of
stakeholders, but they are carried out by others. If these latter
practitioners (e.g., developers in a team) are not informed and do
not understand the value of such a process for the organization,
they are not well motivated to follow the process.

4.8.4 | What Mitigation Strategies Do Companies Use
Today, and Which Ones Are Still Missing?

To better understand which of the mitigation strategies men-
tioned by the interviewees are the most in use and which ones

are not but should be more used, we have asked the participants
of the cross- company interview in Step 3 to choose the three
most used mitigation strategies today and the three ones that
they would like to implement in the future. Figures 9 and 10
show what the respondents have answered.

The most striking results from looking at the results are that
currently, the organizations are heavily using stakeholder feed-
back (seven answers), followed by process enforcement, priori-
tization techniques, coordination across different organizations,
process visualization, and process education (all with three an-
swers each).

On the other hand, we can see how the use of automation and
checks grows from two answers (used today) to seven answers
(wished to be applied in the future), while process visualiza-
tion is increased from 3 to 5 answers, process size reduction in-
creased from 1 to 4, and evaluation metrics from 1 to 3. These
are the strategies that are not yet fully in place, but organiza-
tions are willing to bet on for the future. These also constitute
ideal research goals for future research on this topic.

4.9 | Time Dimension (RQ4)

To illustrate how PD emerged and changed over time, we
will describe how continuous processes were introduced in
Company E.

4.9.1 | Introducing Continuous Processes Reveals PD

Disconnected and incompatible processes: Processes like
DevOps and BizDev were introduced to address disconnected
activities and become more customer- driven. An internal
document stated, “Change is needed to better serve our cus-
tomers. We need to change the way we work to ensure that
we can serve our customers with what they want in a timely
manner.”Traditionally, separated processes were replaced
with continuous ones that linked planning, testing, and devel-
opment. This shift introduced synchronization debt as these

FIGURE 9 | Mitigation strategies mostly used in current practices.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

19 of 23

processes, initially optimized independently, now required
integration.

At the start of the study in Company E, business develop-
ment and software development operated separately, with
business developers setting priorities for software developers.
Consequently, each side optimized its processes, creating syn-
chronization debt. The business side initiated projects that could
not be developed from a technical standpoint, while developers
often lacked timely feedback on necessary changes because the
business developers were hard to reach. This caused the time
from identifying a feature to delivering the feature to take much
longer than necessary.

4.9.1.1 | Organizational Changes. To mitigate the syn-
chronization debt, the company decided to create agile teams
with team members from both business and development
(BizDev teams), including testers and user experience designers,
to achieve a continuous planning and execution process.

4.9.1.2 | Process Unsuitability. However, the new work-
ing process and the different working cultures between the two
groups introduced new process unsuitability. First, it quickly
became evident that different roles had different needs in how
they performed their tasks. For example, business developers
appreciated a very open work area that allowed discussions
and quick feedback. Software developers, in contrast, wanted
to have designated seats because their desktop computers con-
tained specific hardware and multiple monitors. In addition,
they needed a quiet working zone and wanted to protect their
time to focus on technical programming tasks. Even though
the BizDev setup increased the speed of feedback and clar-
ifications, frequent interruptions fragmented the developers'
day, and the developers perceived that their personal pro-
ductivity was reduced. These differences in cultural factors,
interests, and a lack of follow- up checks caused PD. Further,
due to the large team sizes (13–20 members) and diverse roles,
some meetings, such as standups, lacked relevance for all par-
ticipants, leading to decreased motivation and perceptions
of wasted time.

4.9.2 | Sourcing, Competence, and Unsuitable,
Continuous Processes Reveal PD

4.9.2.1 | Introducing Sourcing. The lack of resources
in Norway made it challenging to scale. Therefore, to develop
new features fast enough and not lose market opportunities,
Company E decided to outsource, and the company made an
agreement with an offshore outsourcing company in India. The
Norwegian teams used Kanban, while the Indian teams fol-
lowed Scrum. The outsourcing caused several types of debts,
such as competence debt, synchronization debt, and unsuit-
able processes. For example, because of legal requirements in
the final delivery, the onshore teams were required to do code
reviews on all code from the outsourcer. Because they followed
different processes, it was discussed if the code review practice
should be continuous or timeboxed.

4.9.2.2 | Suboptimal Processes. The company decided
that an optimal process would be to make the code reviews
timeboxed. Reasons included being able to schedule enough
time for doing QA and reducing the number of interruptions
for the Norwegian developers. This process turned out to be
suboptimal. Every second week, because of weak domain
competence at the offshore team, the Norwegian developers
received large pieces of code. Because the offshore team worked
for 2–3 weeks before the PRs were sent, the code sent for review
was large and complex. Consequently, reviewing the large PRs
was time- consuming, tedious, and caused frustration.

It became evident that the quality work took a considerable
amount of time from the Norwegian developers, reducing the
productivity of the onsite developers so much that the total pro-
ductivity became lower than before adding the extra offshore de-
velopers. A developer explained: “Sometimes it takes such a long
time that I actually have to write the correct code, send it over to
them, and ask them to implement it.”

4.9.2.3 | Unsuitable Processes. Even though the prob-
lems of the pull request process were well known by the onsite

FIGURE 10 | Mitigation strategies that are wished to be applied in the future by the participants.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

20 of 23 Journal of Software: Evolution and Process, 2025

developers, for the managers, it all looked fine, and conse-
quently, no measures were taken. One reason it looked fine
was the key performance indicator (KPI) measurements.
While evaluation metrics can be a good process governance
approach to mitigate PD, they can also be misleading, creat-
ing PD of type “unsuitable process.” For example, the offshore
teams were measured by KPIs set by the company, and these
were related to numbers they received from queries in Jira
(e.g., how long a task had stayed at a certain stage in the devel-
opment process). So even though many pull requests were
rejected and the quality was not seen as satisfactory, the KPIs
on the code and productivity were met, resulting in happy
managers but frustrated onsite developers.

The offshore teams are measured by the number of
pull requests that are approved or not, but for some
reason that measurement is calculated by completed
Jira tasks and not actual PRs in the system where
we approve the code. Often, I feel that one pull
request has ten attached Jira issues, to double the
KPI. I think measuring an outsourcing partnership
based on the number of approved PRs is not a good
solution.

4.9.2.4 | Redesigning Processes. Consequently, there
was a delay in addressing and solving the well- known problem.
Eventually, to mitigate the challenges of the offshoring set- up,
the company introduced additional quality meetings where they
looked at the PRs and discussed them. Further, they introduced
Slack as a tool to make communication more informal and faster
and, therefore, more quickly, could clarify issues related to PRs.
The situation improved a bit.

4.9.3 | New Roles and Roles Debt

In the longitudinal study, all types of PDs were observed, pri-
marily identified through retrospectives in the company and
better understood in the interviews.

4.9.3.1 | Roles Debt. Synchronization and alignment
debts were apparent early in the study and persisted for years.
In Company E, the PO role was introduced with insufficient
explanation, leading to confusion. It was believed that a short
memo was enough. The PO's responsibilities were mainly
related to being a team leader. Many people assigned the PO
role misunderstood their responsibilities as they were famil-
iar with the PO role in Scrum. Further, as there were many
POs, they needed to collaborate. However, because they
had a different understanding of the role, communication
and collaboration problems emerged and lasted for months.
In a retrospective with the managers and the POs, the role
ambiguity was identified, and a detailed role description was
created, emphasizing team leadership, business prioritization,
and stakeholder coordination. However, the extensive coordi-
nation required led to the introduction of a coordinator role
to represent POs in management meetings. This change inad-
vertently slowed PO work due to their exclusion from critical
decision- making, leading to misunderstandings.

4.9.3.2 | Redesigning Processes. Again, the process
and roles needed to change. After a few months, the coor-
dinator role was removed. The POs were again included in
the weekly prioritization and sync meetings with the manage-
ment, and a new process was designed for this meeting. As POs
gained experience over a year, the process evolved to grant them
more decision- making authority.

5 | Discussion

5.1 | Contributions and Implications

PD is a phenomenon that has not been studied as much as TD.
Through a 3- step investigation, we have collected qualitative
data from five companies and quantitative data from four of
them for validation purposes.

The main contributions are:

• a comprehensive framework to practically and theoretically
reason about PD, including:

○ causes, consequences, and types of PD
○ occurrence patterns and evolution of PD over time

• a survey of the state of practice for PD management in five
companies

○ evidence of concrete instances covering each type of PD
○ mitigation strategies to manage PD

• extensive validation of results by triangulating methods and
sources across contexts

We discuss these points in the following sections.

5.1.1 | A Framework to Reason About PD

We propose an overall PD conceptual framework (Figure 2)
where the key elements and their relationships are visible.
We also give detailed taxonomies of types of PD, occurrence
patterns, causes, effects, and mitigation strategies. Our frame-
work can support reasoning about PD for practitioners who
would like to manage PD systematically and need a com-
prehensive reference point. First and foremost, TD research
has shown that the first important step to managing debt is
to build awareness around it and to start a discussion in the
organizations.

From the theoretical point of view, our framework is not com-
plete, as the taxonomies can be extended with additional evi-
dence collected from new and specific case studies. However,
our results show that, when extending our initial framework
with new, in- depth evidence from a longitudinal case study with
a different context from the initial four companies, the frame-
work was substantially validated with some little additions. This
gives confidence that the framework represents a robust first
step towards building a comprehensive theory of PD and is al-
ready usable as a key theoretical reference point.

Our findings show that the PD lens can enrich the knowledge
related to SPI with a new perspective on how to prioritize SPI

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

21 of 23

work. Much of the existing literature is dedicated to assessing
SPI or to improving specific processes; however, little is found
about how to prioritize if an SPI intervention is actually more
important than another one or even if improving a process is
more important than developing features and fixing bugs. The
debt perspective and our characterization using entities such as
principal and interest, borrowed from the financial domain, can
help to reason about the prioritization of SPI to avoid or repay
an existing PD that is particularly disruptive, while avoiding SPI
work and spending resources that would reduce PD with limited
negative effects.

5.1.2 | Defining PD

Our investigation shows that PD is an existing phenomenon that
can cause a huge amount of negative effects, including the lim-
itation of applying modern practices to support vital business
approaches such as continuous delivery. PD is also recognized
as generating TD.

Although a quantification of the (negative) effects of PD is not
provided in this study, according to the interviewees, the mag-
nitude of its impact is comparable to the TD one. Further stud-
ies and surveys should be conducted on the PD phenomenon to
assess its actual impact. Our taxonomies can help create a solid
instrument to investigate such a phenomenon.

Throughout our report, we have mentioned several concrete in-
stances shared by the practitioners supporting our taxonomies.
Besides underpinning our framework, such instances constitute
a concrete list of examples of PD that can occur in organiza-
tions. Practitioners can also use our taxonomy and even such a
concrete list of instances to identify and differentiate across PD
types in their context, to recognize their causes and effects even
before PD becomes disruptive, and to be able to reason about
prioritizing PD's avoidance and removal.

A key point revealed by observing PD in the longitudinal study
is that removing PD often introduces new PD. This is different
from TD, where repaying TD often implies that the new solution
is better (excluding a few corner cases). This means that evalu-
ating if repaying PD is worth it requires a more complex assess-
ment, and more than one “repayment” might be included in the
equation to reach a substantial improvement. More research is
needed to understand such evaluation and assessment. This is
in line with Argyris and Schon's concept of double- loop learn-
ing [23], where additional evaluation is done after a solution is
applied.

In this paper, we created a first framework to reason about PD,
and we have therefore looked into the commonalities across sev-
eral companies. However, the different contexts should be fur-
ther studied to understand what makes PD and its management
differ across companies.

5.1.3 | PD Mitigation Practices

The reported mitigation strategies used by the practitioners to
manage PD can also be applied in other contexts (if not precisely,

at least they can give inspiration for new practices). Additionally,
besides what is used today, we show what mitigation strategies
are in practitioners' plans for better managing PD in the future.
This can give key targets for companies developing tools for SPI
and researchers to investigate novel approaches along the direc-
tions mentioned by our informants.

As for today's state of practice, it seems that the interviewed com-
panies rely substantially on stakeholder feedback as the main
mitigation strategy, followed by process enforcement, exten-
sive coordination across different organizations, and education.
However, for the future of mitigating PD, companies envision an
increase in automated checks, process visualization, process re-
duction, and, to a smaller extent, evaluation metrics. Conversely,
they envision a reduction in stakeholder feedback, prioritization,
process enforcement, education, and coordination. In summary,
companies wish to move from manual, tedious, and error- prone
management of PD to a more lightweight, automated, and visual
approach, which entails the need for an infrastructure to support
such approaches. This also provides a roadmap for future re-
search: automating and visualizing PD and creating methods and
tools to support process stakeholders is the priority for impactful
research in this field. A clear starting point is to collect and visu-
alize existing methods in dashboards and iterative retrospectives
to reason about the existence, causes, and consequences of PD.

In this paper, we have provided examples and trends related to
the overall categories of mitigation strategies. However, the oc-
currence of PD and mitigation practices need to be better con-
textualized and aligned with the lifecycle of specific processes
or debt management in a company. Future work, especially in-
cluding case studies where PD is analyzed and resolved in the
context of a specific process and organization, can shed more
light on how to make the mitigation practices more applicable
and actionable. Important variables to study alongside PD oc-
currence include the composition of stakeholders involved in
the process, the company's size, software release frequency, and
budget for assessing, analyzing, and solving PD. These variables
can significantly influence PD occurrence and mitigation, and
studying different organizations may yield a different picture
of the state of practice for PD and future priorities for research.

5.2 | Process vs. TD

The analogy of debt applies to PD much like it does for TD, con-
sidering the principal amount and especially interest as pivotal
concepts. Interviewees found this metaphor helpful for better
prioritizing improvements in processes. Our findings align with
existing knowledge on TD.

However, we noticed several distinctions that justify further re-
search on this subject. We recognized that a key aspect of PD is
its value for stakeholders, a third factor that must be included in
evaluating PD. This consideration could potentially be incorpo-
rated into TD research. Furthermore, poorly designed processes
may generate initial wastage, which is not typically observed
in TD.

Although there are areas where causes and consequences of
PD and TD overlap, we discovered they largely differ. We also

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

22 of 23 Journal of Software: Evolution and Process, 2025

observed trends for accumulation and subsequent triggers for
PD: flawed processes developed by designers, deviations from
well- planned processes by executors, and the shortcomings of
supportive infrastructure might present challenges that go be-
yond areas affected by TD.

In terms of mitigation strategies, key principles include the ne-
cessity to prioritize PD in a backlog and to educate practitioners
about PD and TD. However, various distinguishing factors
emerged, such as the need for stakeholder feedback, cross-
organizational coordination, and more.

This implies that PD should be studied as a distinct phenome-
non from TD. We also identified various kinds of PD, defined
by specific activities and suboptimal process aspects, which
calls for a more detailed classification in future research.
Existing strategies for TD could also be adapted to foster PD
research.

5.3 | Validity, Reliability, and Limitations

Our study relies on interviews, observations, and quantita-
tive data collection with a limited set of organizations. This
means that our results cannot be considered general and
suffer from external validity threats [30]. For example, ad-
ditional organizations with different domains and contexts
should be interviewed and surveyed to reach a complete con-
ceptual framework. Some of our results would hold in dif-
ferent settings (e.g., the types of PD), but some of the causes
and consequences might not apply or differ in such contexts.
We, therefore, acknowledge that further research is required.
However, we argue that our exploratory effort is already valu-
able, as we included different companies with diverse contexts
and stakeholders, ranging from process designers to software
developers, team leaders, and practitioners in other organiza-
tions, such as hardware designers.

To mitigate the threats to external validity, we have also ap-
plied two additional validation steps: running a workshop,
collecting additional qualitative and quantitative data, and
comparing our results to the in- depth findings from a longitu-
dinal case study in a new and different Company E. We argue
that it would not be possible to cover the phenomenon in its
entirety with just one study, and we call for the software en-
gineering community to contribute to studying PD with addi-
tional investigations.

As for reliability, although qualitative studies often rely heavily
on the researchers' interpretation, we have used several mitiga-
tion strategies to limit the bias introduced by the authors. First,
in the majority of cases, at least two researchers were present
at the interviews, and two researchers analyzed the interviews
in parallel, discussing and agreeing on the resulting coding.
At least two researchers have discussed the findings and defi-
nitions across studies to ensure that data from the longitudinal
study would be correctly interpreted and mapped to the frame-
work obtained from the first phase.

One limitation is the lack of input for the workshop in Phase
3 from practitioners in the longitudinal case study related to

Phase 2, focusing only on the first four companies investigated
in the first phase. However, similar insights were collected and
analyzed in the longitudinal case study with a different method;
the only difference is the data collection format.

6 | Conclusion

In this paper, we extensively explored the phenomenon of PD in
five companies through three steps, including interviews, work-
shops, direct observations over a longitudinal case, and cross-
case validation comparisons.

The current state of the art and practice of PD lacks a solid
framework to reason about the concept and empirical evidence
of the state of the art and practice. Consequently, the phenom-
enon is overlooked, and software organizations do not have a
reference point to manage PD.

This paper presents a novel framework to categorize PD and its
empirically based state- of- the- art and practice concepts, provid-
ing a clear reference point for practice and future research.

The framework also defines the interrelations between various
elements of PD and emphasizes that managing PD is a cyclical,
iterative process. The framework can be used to analyze and
structure PD initiatives, suggest improvements, and provide
guidance for decision- making.

We report a state of practice including concrete instances of PD,
causes, consequences, occurrence patterns over time, and mit-
igation strategies to manage PD, which can help practitioners
systematically manage PD in practice. The interviewees also
give valuable insights on what is needed in the field to manage
PD better, supporting further research and tool development on
the topic.

We found that the debt metaphor helps reason about the prior-
itization of process improvements concerning competing activ-
ities such as feature development. PD is a whole new field with
respect to TD, with little overlap. In this paper, we provide the
foundations for the development of this phenomenon. We en-
courage and envision a larger and joint community effort to fur-
ther develop theories related to PD and to improve its state of the
art and practice.

Acknowledgments

We thank the interviewees from the Software Center companies
(Companies A–D) for the invaluable insights provided, as well as the
participants in Company E. This research was partly supported by
the Research Council of Norway through Grant Numbers 321477 and
340991.

Conflicts of Interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper. The authors declare the following financial
interests/personal relationships, which may be considered as potential
competing interests: Jan Bosch reports financial support was provided

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

23 of 23

by Software Center (industrial consortium in Sweden). Nils Brede Moe
and Viktoria Stray report financial support provided by the Research
Council of Norway.

Data Availability Statement

Research data are not shared.

References

1. T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A Decade of
Agile Methodologies: Towards Explaining Agile Software Develop-
ment,” Journal of Systems and Software 85 (2012): 1213–1221.

2. O. Pedreira, M. Piattini, M. R. Luaces, and N. R. Brisaboa, “A System-
atic Review of Software Process Tailoring,” SIGSOFT Software Engi-
neering Notes 32 (2007): 1–6, https:// doi. org/ 10. 1145/ 12415 72. 1241584.

3. R. G. Schroeder, K. Linderman, C. Liedtke, and A. S. Choo, “Six
Sigma: Definition and Underlying Theory,” Journal of Operations Man-
agement 26 (2008): 536–554.

4. Institute, S.E., “CMMI for Development, Version 1.3,” Technical
Report. Carnegie Mellon University. Pittsburgh, Pennsylvania, 2010,
https:// resou rces. sei. cmu. edu/ libra ry/ asset - view. cfm? asset id= 9661.
Technical Report CMU/SEI-2010-TR-033.

5. S. Zopf, “Success Factors for Globally Distributed Projects,” Software
Process: Improvement and Practice 14 (2009): 355–359.

6. D. Moitra, “Managing Change for Software Process Improvement
Initiatives: A Practical Experience- Based Approach,” Software Process:
Improvement and Practice 4 (1998): 199–207.

7. T. Besker, A. Martini, and J. Bosch, “Software Developer Productivity
Loss due to Technical Debt—A Replication and Extension Study Exam-
ining Developers' Development Work,” Journal of Systems and Software
156 (2019): 41–61, https:// doi. org/ 10. 1016/j. jss. 2019. 06. 004.

8. T. Besker, H. Ghanbari, A. Martini, and J. Bosch, “The Influence of
Technical Debt on Software Developer Morale,” Journal of Systems and
Software 167 (2020): 110586, https:// doi. org/ 10. 1016/j. jss. 2020. 110586.

9. Z. Li, P. Avgeriou, and P. Liang, “A Systematic Mapping Study on
Technical Debt and Its Management,” Journal of Systems and Software
101 (2015): 193–220, https:// doi. org/ 10. 1016/j. jss. 2014. 12. 027.

10. A. Martini, V. Stray, and N. B. Moe, “Technical- , Social- and Process
Debt in Large- Scale Agile: An Exploratory Case- Study,” in Agile Pro-
cesses in Software Engineering and Extreme Programming—Workshops
(Springer International Publishing, 2019): 112–119, https:// doi. org/ 10.
1007/ 978- 3- 030- 30126 - 2_ 14.

11. P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering (Dagstuhl Seminar 16162),” in
Dagstuhl Reports (Schloss Dagstuhl - Leibniz- Zentrum für Informatik,
2016): 110–138.

12. D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “What Is So-
cial Debt in Software Engineering?” in 2013 6th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE)
(IEEE, 2013): 93–96, https:// doi. org/ 10. 1109/ CHASE. 2013. 6614739.

13. K. H. Rolland, L. Mathiassen, and A. Rai, “Managing Digital Plat-
forms in User Organizations: The Interactions Between Digital Options
and Digital Debt,” Information Systems Research 29 (2018): 419–443,
https:// doi. org/ 10. 1287/ isre. 2018. 0788.

14. A. Martini and J. Bosch, “An Empirically Developed Method to Aid
Decisions on Architectural Technical Debt Refactoring: AnaConDebt,”
in Proceedings of the 2016 38th International Conference on Software
Engineering (IEEE, 2016): 31–40, https:// doi. org/ 10. 1145/ 28891 60.
2889224.

15. I. Sommerville, Software Engineering (Pearson Education, 2007).

16. S. Kupper, D. Pfahl, K. Jurisoo, P. Diebold, J. Munch, and M. Kuhr-
mann, “How Has SPI Changed in Times of Agile Development? Results
From a Multi- Method Study,” Journal of Software: Evolution and Process
31 (2019): e2182, https:// doi. org/ 10. 1002/ smr. 2182.

17. P., Veyrat, “What are the differences between workflow and pro-
cesses?,” 2018, https:// www. heflo. com/ blog/ bpm/ workf low- and- proce
sses/ . hEFLO BPM Blog.

18. M. Unterkalmsteiner, T. Gorschek, A. K. M. M. Islam, C. K. Cheng,
R. B. Permadi, and R. Feldt, “Evaluation and Measurement of Software
Process Improvement—A Systematic Literature Review,” IEEE Trans-
actions on Software Engineering 38 (2012): 398–424, https:// doi. org/ 10.
1109/ TSE. 2011. 26.

19. M. Kuhrmann, P. Diebold, and J. Munch, “Software Process Im-
provement: A Systematic Mapping Study on the State of the Art,” PeerJ
Computer Science 2 (2016): e62.

20. P. Clarke and R. V. O'Connor, “The influence of SPI on Business Suc-
cess in Software SMES: An Empirical Study,” Journal of Systems and
Software 85 (2012): 2356–2367.

21. N. B. Moe, “Key Challenges of Improving Agile Teamwork,” in Agile
Processes in Software Engineering and Extreme Programming: 14th In-
ternational Conference, XP 2013, Vienna, Austria, June 3–7, 2013. Pro-
ceedings 14 (Springer, 2013): 76–90.

22. R. van Solingen, E. Berghout, R. Kusters, and J. Trienekens, “From
Process Improvement to People Improvement: Enabling Learning
in Software Development,” Information and Software Technology 42
(2000): 965–971.

23. C. Argyris, Organizational Learning II. Theory, Method, and Prac-
tice (Addison- Wesley, 1996).

24. A. Martini, T. Besker, and J. Bosch, “Process Debt: A First Explo-
ration,” in 2020 27th Asia- Pacific Software Engineering Conference
(APSEC) (IEEE, 2020).

25. M. Mikalsen, N. B. Moe, V. Stray, and H. Nyrud, “Agile Digital
Transformation: A Case Study of Interdependencies,” in Proceedings of
the 39th International Conference on Information Systems (ICIS) (Asso-
ciation for Information Systems (AIS), 2018).

26. V. Stray, N. B. Moe, M. Mikalsen, and E. Hagen, “An Empirical In-
vestigation of Pull Requests in Partially Distributed BizDevOps Teams,”
in 2021 IEEE/ACM Joint 15th International Conference on Software and
System Processes (ICSSP) and 16th ACM/IEEE International Conference
on Global Software Engineering (ICGSE) (IEEE, 2021).

27. R. K. Yin, Case Study Research: Design and Methods, vol. 5 (Sage,
2009).

28. G. Walsham, “Interpretive Case Studies in IS Research: Nature and
Method,” European Journal of Information Systems 4 (1995): 74–81.

29. H. K. Klein and M. D. Myers, “A Set of Principles for Conducting
and Evaluating Interpretive Field Studies in Information Systems,” MIS
Quarterly 23 (1999): 67–93.

30. P. Runeson and M. Host, “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering,” Empirical Software En-
gineering 14 (2009): 131–164.

 20477481, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70017 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [14/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1145/1241572.1241584
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9661
https://doi.org/10.1016/j.jss.2019.06.004
https://doi.org/10.1016/j.jss.2020.110586
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1007/978-3-030-30126-2_14
https://doi.org/10.1007/978-3-030-30126-2_14
https://doi.org/10.1109/CHASE.2013.6614739
https://doi.org/10.1287/isre.2018.0788
https://doi.org/10.1145/2889160.2889224
https://doi.org/10.1145/2889160.2889224
https://doi.org/10.1002/smr.2182
https://www.heflo.com/blog/bpm/workflow-and-processes/
https://www.heflo.com/blog/bpm/workflow-and-processes/
https://doi.org/10.1109/TSE.2011.26
https://doi.org/10.1109/TSE.2011.26

	Process Debt: Definition, Risks, and Management
	ABSTRACT
	1   |   Introduction
	2   |   Related Work
	2.1   |   PD and TD
	2.2   |   Process and Workflow
	2.3   |   SPI and PD
	2.4   |   Extension to Our Previous Work

	3   |   Methodology
	3.1   |   Step 1—Exploratory Case Study
	3.1.1   |   Phase 1—Contextual Analysis and Design
	3.1.2   |   Phase 2—Qualitative Data Collection
	3.1.2.1   |   Cases Description.
	3.1.2.2   |   Participants.

	3.1.3   |   Phase 3—Analysis and Synthesis

	3.2   |   Longitudinal Case Study
	3.2.1   |   Phase 4—Qualitative Data Collection
	3.2.1.1   |   Web Program.
	3.2.1.2   |   Agile Program.
	3.2.1.3   |   Data Collection and Analysis—Company E.

	3.2.2   |   Step 3—Cross-Company Focus Study

	4   |   Results
	4.1   |   PD Definition (RQ1.1)
	4.1.1   |   Validation of the definition and framework

	4.2   |   Types of PD (RQ1.2)
	4.2.1   |   Activity-Specific Debt
	4.2.2   |   Mismatching Roles and Responsibilities (Roles Debt)
	4.2.3   |   (Process) Documentation Debt
	4.2.4   |   Synchronization Debt
	4.2.5   |   Process Unsuitability
	4.2.6   |   Infrastructure Debt (ID)

	4.3   |   PD Occurrence and Its Accumulation Patterns (RQ2.1)
	4.3.1   |   Suboptimal Process Design
	4.3.2   |   Process Divergence
	4.3.3   |   Infrastructure Deficiencies

	4.4   |   Causes of PD (RQ2.2)
	4.5   |   Which PD Causes Are the Most Common? (RQ2.3)
	4.6   |   Consequences of PD (RQ2.4)
	4.6.1   |   Long-Term Consequences
	4.6.2   |   Initial Waste

	4.7   |   Which Consequences Are the Most Harmful? (RQ2.5)
	4.8   |   How Can PD Be Managed? (RQ3)
	4.8.1   |   Process Governance
	4.8.1.1   |   Stakeholders Feedback.
	4.8.1.2   |   Evaluation Metrics.
	4.8.1.3   |   Prioritization of PD Issues.
	4.8.1.4   |   Process Enforcement.
	4.8.1.5   |   Coordinator for Different Organizations.
	4.8.1.6   |   Automation and Checks.

	4.8.2   |   Process Design
	4.8.2.1   |   Process Visualization.
	4.8.2.2   |   Process Size Reduction.
	4.8.2.3   |   Optional and Better Checklists.
	4.8.2.4   |   Process Complexity Reduction.

	4.8.3   |   Process Education
	4.8.4   |   What Mitigation Strategies Do Companies Use Today, and Which Ones Are Still Missing?

	4.9   |   Time Dimension (RQ4)
	4.9.1   |   Introducing Continuous Processes Reveals PD
	4.9.1.1   |   Organizational Changes.
	4.9.1.2   |   Process Unsuitability.

	4.9.2   |   Sourcing, Competence, and Unsuitable, Continuous Processes Reveal PD
	4.9.2.1   |   Introducing Sourcing.
	4.9.2.2   |   Suboptimal Processes.
	4.9.2.3   |   Unsuitable Processes.
	4.9.2.4   |   Redesigning Processes.

	4.9.3   |   New Roles and Roles Debt
	4.9.3.1   |   Roles Debt.
	4.9.3.2   |   Redesigning Processes.

	5   |   Discussion
	5.1   |   Contributions and Implications
	5.1.1   |   A Framework to Reason About PD
	5.1.2   |   Defining PD
	5.1.3   |   PD Mitigation Practices

	5.2   |   Process vs. TD
	5.3   |   Validity, Reliability, and Limitations

	6   |   Conclusion
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement
	References

