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 A B S T R A C T

Surrogate deep learning models provide an efficient solution for reducing the computational demands of 
homogenizing complex meso-scale woven composites to study their elasto-plastic mechanical behaviors. This 
research introduces a comprehensive framework using transfer learning that combines data from a mean-
field homogenization approach with high-fidelity full-field simulations. In a design space characterized by 
diverse loading conditions and micro-scale constitutive material properties, the goal is to address the challenges 
of generating sufficient datasets for training a data-hungry gated recurrent neural network (GRU). Multiple 
datasets of varying precision are generated and used, containing multi-axial stress–strain responses under two 
load types: random walking and proportional cyclic loading. Moreover, this study emphasizes the importance 
of temporal correlations in the dataset, which align with the physically path-dependent behavior of most non-
linear materials, and demonstrates that temporal correlations are crucial for training time-series models. These 
correlations also provide the foundation for data augmentation using a linear interpolation technique within 
time-series stress analyses, enabling accurate predictions of homogenized meso-scale stresses based on strain 
trajectories and microstructural properties. Results demonstrate that integrating transfer learning with neural 
networks successfully incorporates a limited number of high-fidelity data with more accessible but low-fidelity 
data. With this framework, surrogate models for predicting the complex behavior of woven composites will 
be accurate and efficient, marking an important advancement in material modeling.
1. Introduction

Woven composites [1] incorporate yarns oriented in two or three [2] 
directions, typically resulting in a dense weave along the primary load-
bearing direction. A woven reinforcement textile composite can con-
form to complex curvatures while maintaining desirable and balanced 
mechanical properties. Textile composites come in various weaving 
patterns, which use over-and-under interlacing to improve drapeabil-
ity and resin wettability [3]. The cost of manufacturing necessitates 
the creation of comprehensive modeling strategies. However, woven 
composites present computational challenges for predicting mechanical 
response because of their complex geometry and interlacing. Due to 
their complicated behavior under mechanical loads, developing accu-
rate and computationally efficient modeling approaches is an important 
field to study.

Prediction methods for non-linear mechanical properties of woven 
composites can be broadly classified into analytical, semi-analytical, 
and numerical approaches. Analytical techniques, such as the rule 
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of mixtures, asymptotic homogenization [4], and mean-field homog-
enization (MFH) [5,6], offer efficient solutions for predicting elastic 
and non-linear behaviors but are often limited in capturing complex 
nonlinear mechanisms. Semi-analytical methods, including the method 
of cells [7], transformation field analysis [8], and clustering analysis
[9,10], derive macroscopic constitutive relationships from local-scale 
behaviors, offering a balance between accuracy and computational cost.

Numerical methods, particularly computational homogenization ap-
proaches such as finite element (FE) analysis [11–13] and mesh-free 
methods [14], are more powerful for simulating path-dependent behav-
iors, including damage and plasticity in textile composite architectures. 
Although computationally demanding, these methods provide greater 
accuracy, especially when modeling complex failure modes. At the 
meso-scale, models such as [15–18] focus on damage and deforma-
tion within the woven architecture, capturing detailed interactions at 
the yarn and fiber level. Furthermore, stochastic analysis techniques
https://doi.org/10.1016/j.compscitech.2025.111163
Received 13 September 2024; Received in revised form 7 February 2025; Accepted
vailable online 5 April 2025 
266-3538/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
 22 March 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/compscitech
https://www.elsevier.com/locate/compscitech
https://orcid.org/0000-0002-4930-000X
https://orcid.org/0000-0001-7450-9086
https://orcid.org/0000-0002-3735-5791
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
https://github.com/EsanGhaneh/Multi-fidelity-Data-Fusion-for-In-elastic-Woven-Composites.git
mailto:ehsan.ghane@physics.gu.se
https://doi.org/10.1016/j.compscitech.2025.111163
https://doi.org/10.1016/j.compscitech.2025.111163
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compscitech.2025.111163&domain=pdf
http://creativecommons.org/licenses/by/4.0/


E. Ghane et al. Composites Science and Technology 267 (2025) 111163 
[19–22] offer insights into the reliability and performance of wo-
ven composites under uncertainty, addressing variations in material 
properties and microstructures [23].

Recently, neural network surrogate modeling has been developed 
for rapid and comprehensive solutions. Neural networks are advanced 
algorithms that build relationships between inputs and outputs, not 
exclusively with a physical explanation. While this lack of explanation 
can be a disadvantage, neural networks use universal functions to map 
input parameters to output parameters by establishing relationships. 
Using neural networks, one can generate a fast, accurate surrogate 
model based on experimental data, simulated responses, or a com-
bination of both [24]. Research on artificial neural network (ANN) 
models for composites involves using geometric parameters, material 
properties, and loading conditions as inputs to predict axial and shear 
stiffness [25,26], fatigue [27], and stress [6,28,29] as outputs. In a 
supervised learning approach, given ample training data, a well-trained 
neural network can make predictions as accurate as high-fidelity com-
putational homogenization techniques [29–31]. Kim et al. [32] used 
an ANN to predict the stress–strain behavior of woven composites by 
incorporating time segmentation as an input feature.

To have an overview of recent developments, challenges, and po-
tential solutions in the data-driven modeling of composite materials, an 
interested reader is referred to [33]. It should be noted that the highest 
level of accuracy that an ANN can achieve is at the level of its training 
data. Thus, the closer the data are to the physics of the problem, the 
more accurate the ANN will be. However, providing enough data to 
train a neural network is not always straightforward.

In response to address the data-hungry issue of neural networks, po-
tential solutions have been presented. Several attempts have been made 
to create synthetic data resembling the characteristics of the training 
set, employing techniques such as variational autoencoders and gen-
erative adversarial networks [34]. The intention is to use generative 
networks to produce representative synthetic samples for training sur-
rogate models. Yet, high-quality training data is still necessary to train 
these networks. Synthetic samples from generative networks that lack 
physical constraints cannot help the surrogate network learn with less 
data. Instead, they can mislead the learning process, which contradicts 
information theory’s data processing inequality [35].

An alternative approach to creating surrogate models based on neu-
ral networks is to incorporate physics directly into the network struc-
ture. Physics-informed neural networks (PiNNs) incorporate knowledge 
of physical laws such as conservation principles, boundary conditions, 
and kinematic relations by adding new terms related to these con-
straints in the neural network’s loss function. PiNNs have been used for 
the elasticity of porous materials [36,37] and to predict internal state 
variables for woven composites. It enables extrapolation beyond the 
training dataset [38]. However, their effectiveness is highly sensitive 
to the relative weighting of loss terms [39].

The physically recurrent neural network [40] is another physics-
based framework that integrates constitutive material models directly 
into feed-forward neural networks by embedding microscale constitu-
tive relations as modified hidden layers in a multi-layer perceptron. 
These physically informed recurrent blocks capture path dependen-
cies like elasto-plasticity through internal variables. Physically recur-
rent neural networks have shown promise in reducing training data 
needs, enabling extrapolation to non-monotonic behaviors. However, 
its application to complex hierarchical structures remains an open 
challenge.

Transfer learning is a powerful strategy for addressing data ac-
quisition challenges. In this approach, a neural network trained on 
a well-resourced source task is adapted for a related target task by 
additional training using high-fidelity data. The goal is to utilize the 
model’s pre-learned features and patterns to enhance learning on the 
target task. This method leverages optimized initial weights and biases 
from the source task, improving convergence speed and efficiency on 
the target task. It has been successfully applied to integrate data in the 
2 
elastic regime and to study the elasto-plastic behavior of short-fiber 
composites [41]. Transfer learning, however, requires a thorough study 
of the available datasets and their relative dependencies.

Another popular approach involves using data augmentation tech-
niques tailored to the training data and expanding the dataset size for 
training without extra simulations. In [42], RVE rotation is an effective 
method for enriching data in short-fiber composite homogenization. 
Yet, the rotation technique as a way of augmentation is material-
specific and requires additional feature inputs, such as fiber rotation 
during the network’s training.

Strain and stress multivariate responses can be considered time 
series because they are recorded or observed sequentially over running 
time during physical or simulation experiments. Each measurement 
depends on its previous states due to the material’s mechanical prop-
erties and load history, leading to time-correlated data points. The 
temporal dependency and the continuous recording of stress variables 
make stress responses potential candidates for time-series analysis as 
they evolve under varying strain-loading conditions. The present study 
combined transfer learning with a universally applicable augmentation 
technique utilizing linear interpolation of time-series data to enrich the 
information extracted from each data sample. Additionally, analyzing 
strain–stress data as a time series yields valuable statistics. Before 
training, these statistics enable us to determine if initiating from a 
specific source domain will benefit a target domain.

This study addresses the challenge of the data-intensive require-
ments for training a gated recurrent neural network (GRU) model 
tailored for the elasto-plastic behavior of woven composites. Unlike 
our previous work [25], which focused solely on low-fidelity data, the 
current study addresses incorporating high-fidelity data as efficiently 
as possible. The term transfer here encompasses both loading scenar-
ios transfer learning and multi-fidelity data fusion approaches. The 
introduced model leverages multiple data sources. The input datasets 
include random walk and cyclic loading simulations across various con-
stitutive material properties. The output datasets are generated through 
the Mori-Tanak MFH approach [6], chosen for its accessibility. MFH 
dataset is complemented by an efficient full-field fast Fourier transform
(FFT) strategy [43,44]. The FFT homogenization method is crucial for 
incorporating the geometry and mesoscale structural details into the 
data generation process [26]. Additionally, a transfer learning approach 
is employed to fine-tune [45] the models across different scenarios, 
highlighting successful and unsuccessful fine-tuning strategies.

The structure of this paper is as follows: Section 2 reviews prior re-
search on the MFH model, detailing the data generation process and the 
training of the low-fidelity path-dependent neural network model. This 
section covers aspects such as the sub-scale MFH modeling approach, 
the materials involved, and the design of computational experiments. 
In Section 3, we show the originality of the present study compared 
to earlier work and data augmentation strategies that utilize time-
series statistics. The results obtained, along with comparisons between 
initial mean field and re-trained full-field GRU models, are discussed in 
Section 5. This section also includes a broader discussion and compara-
tive analysis of the developed GRU models. Finally, Section 6 provides 
concluding remarks.

2. An overview of the low-fidelity RNN model

In a previous study [6], we introduced a machine-learning ap-
proach using recurrent neural networks to model the elasto-plastic 
behavior of woven composites. Data samples with elastic fibers and 
elasto-plastic matrix consisted of input features that included eight con-
stitutive material properties and the fiber volume fraction (as described 
in Section 2.1), along with six independent components of the strain 
tensor. The output comprised a 6D pseudo-time history of homogenized 
stress components. The history-dependent RNN model was developed 
as a surrogate and utilized training data generated through a two-step 
mean-field homogenization approach implemented in Digimat-MF.
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The homogenization approach was initially developed for modeling 
elasto-plastic composites by Doghri and Tinel [46] and implemented 
numerically in Digimat-MF. The Digimat-MF adopts a two-step pro-
cedure. In the first step, the RVE is divided into two pseudo-grains 
(PGs), where each PG represents a two-phase system consisting of the 
matrix and fibers with the same shape, aspect ratio, orientation, rate-
independent constitutive model, and material parameters in either the 
warp or weft direction. The Hill-type incremental formulation is used 
for the homogenization of each pseudo-grain. The tangent stiffness 
matrix evolves based on the elasto-plastic deformation of the matrix, 
allowing for history-dependent stress–strain behavior. The overall RVE 
response is obtained by orientation averaging over both PGs in the 
second step. This approach contrasts with the one-step (direct) Mori–
Tanaka method, which applies homogenization at the global level and 
may introduce asymmetries in stiffness when multiple orientations are 
present. Using the pseudo-grain approach and weighted averaging of 
the orientation distribution function [46,47], Digimat-MF provides a 
computationally efficient method of modeling woven composites [6].

The MFH simulations provided an extensive dataset critical for 
training neural networks to predict random and cyclic loads [6]. While 
a recent work [48] demonstrates that the Mori–Tanaka method can 
account for waviness and mesoscale geometry in woven fabrics, our 
current approach does not explicitly consider these features when 
homogenizing woven composite behavior. Accordingly, neither the 
specific weave pattern nor crimp (or undulations) is considered when 
using the MFH method to homogenize woven composite behavior. On 
the other hand, the MFH method efficiently averages stress in response 
to imposed strain across sub-scale constituents, reducing computational 
costs while still effectively approximating the composite behavior.

Building on the surrogate modeling foundation in [6], the cur-
rent study aims to decrease the amount of high-fidelity full-field data 
needed, where the geometry of the meso-scale weave pattern is explic-
itly considered in the homogenization process. Thus, critical aspects of 
the previous framework are reiterated with modifications suited to the 
current objectives.

2.1. Constitutive material model

The matrix is modeled with an elasto-plastic behavior (𝐽2-plasticity 
with linear-exponential hardening [49]), while the reinforcement is 
considered elastic. As a simplification, the fiber properties are con-
sidered isotropic in this study. While this assumption is valid for 
many types of fibers, including glass fibers, it does not capture the 
transversely isotropic behavior of, e.g., carbon fibers. However, we 
emphasize that the current study is on method development whereby 
we argue that the simplifying assumption of fiber isotropy is reasonable 
and that the effect of transversely isotropy can be addressed in future 
studies.

The matrix yield function is given by 

𝛷(𝜎, 𝜅) = 𝜎vM − (𝜎y +𝐻𝜀p +𝐻∞

(

1 − 𝑒−𝑚𝜀𝑝
)

) ≤ 0, (1)

where 𝜎y is the yield stress, and 𝜎vM is the von Mises stress. 𝐻∞ is 
referred to as the hardening modulus, 𝐻 is the linear hardening mod-
ulus, 𝑚 > 0 is the hardening exponent, and �̄�p ≥ 0 is the accumulated 
plastic strain. A detailed formulation of the material models can be 
found in [6]. The study utilizes Sobol sequence sampling to generate 
a diverse and uniform distribution of micro-structural constitutive ma-
terial properties. This quasi-random sampling technique [50] facilitates 
the creation of a comprehensive design space for training the ANN 
models. The range of properties considered for the static features is 
similar to the previous study and is repeated in Table  1. Each data 
sample contains a set of microscale constitutive material properties and 
specific six-dimensional random walk or cyclic strain loading paths, as 
described below.
3 
Table 1
Ranges of material parameters used to generate the simulation dataset and specific 
constitutive material properties for a sample carbon fiber/epoxy resin, used for 
comparing FFT homogenization with FE and MFH methods.
 Parameter Range Specific sample 
 
Fiber

Young’s modulus 𝐸F 69–700 GPa 385.5 GPa  
 Poisson’s ratio 𝜈F 0.25–0.49 0.37  
 Fiber volume fraction 𝑉𝑓 0.10–0.48 0.29  
 

Matrix

Young’s modulus 𝐸𝑚 2–10 GPa 6 GPa  
 Poisson’s ratio 𝑉𝑚 0.2–0.49 0.34  
 Yield stress 𝜎y 31–66 MPa 48.5 MPa  
 Linear hardening modulus 𝐻 1–200 MPa 100.5 MPa  
 Hardening modulus 𝐻∞ 10–30 MPa 20 MPa  
 Hardening exponent 𝑚 1–500 250.5  

2.2. Load generator algorithm

A random walk algorithm is used to generate six-dimensional arbi-
trary input strain loading paths [51]. The algorithm adds the previous 
step with two white noises1 generated from Gaussian noise with dif-
ferent scales. The first white noise serves as the main component on 
a larger scale (drifts); the other serves as the distractor on a tiny 
scale (noises). The algorithm enables the simulation of multi-axial 
stress–strain histories under random-walk loading conditions for both 
mean- and full-field simulations. To fine-tune the trained networks to 
cases with high sparsity in input space,2 such as proportional pure 
shear cyclic loading, a second strategy for data generation is adopted. 
This strategy focused solely on cyclic loads in shear load cases where 
plasticity is significant in woven composites. Key factors in the cyclic 
loads include the peak strain value, the load ratio (fraction of the 
maximum positive strain to the minimum negative strain value), and 
the number of cycles.

Previously in [6], The initial dataset comprised random strain paths 
and was used for initial training and evaluation. Subsequently, transfer 
learning was employed to fine-tune the trained network on a second 
dataset featuring cyclic loading paths.

2.3. RNN model training

Among various neural network models available for time-series.3 
prediction, such as foundation models [53–55] and convolutional neu-
ral networks [56], GRUs and LSTMs are particularly prominent in 
material modeling [28,29,33,42]. Both GRUs [57] and LSTMs [58], 
which are specialized forms of RNNs, excel in handling sequential 
data, specifically time series. This makes them well-suited as surrogate 
models for predicting the path-dependent responses of materials.

Six strain tensor components (dynamic data) are combined in the 
current study with the eight intrinsic material properties and the fiber 
volume fraction (as listed in Table  1), repeating these static inputs 
across all time steps before feeding them to the network. This approach 
results in a total of 15 features being processed by the GRU layers at 
each time step. In prior research [6], various configurations of these 
networks were explored to optimize network architecture and hyper-
parameters. The present study focuses exclusively on GRU networks, 
given their faster training times compared to LSTMs and the previous 
findings that the accuracy differences between them are negligible. 

1 A process 𝑋𝑡 is said to be white noise [52] if the following conditions hold: 
(1) Each 𝑋𝑡 has zero mean and finite variance. (2) 𝑋𝑡1  and 𝑋𝑡2  are uncorrelated 
if 𝑡1 ≠ 𝑡2.

2 The input space includes six independent components of strain tensors and 
eight constitutive material properties and fiber volume fraction. By sparsity, we 
mean some components of input strain tensor are zero, like the pure in-plane 
shear case where there is only one component of strain, 𝜖12.

3 Time-series refers to a collection of observations made sequentially, 
indexed in (abstract) time [52].
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Refer to Section S.1 of supplementary materials for a comprehensive 
explanation of GRU units.

The output signals are stress tensor components. In the regression 
layer, the mean squared error loss function is calculated as follows 

𝐿 = 1
𝑁batch

𝑁batch
∑

𝑖=1
𝐿𝑖, with 𝐿𝑖 =

1
2𝑁𝑇

𝑁𝑇
∑

𝑡=1

6
∑

𝑐=1
(�̂�(𝑡)𝑐 − 𝜎(𝑡)𝑐 )2, (2)

where �̂�(𝑡)𝑐  and 𝜎(𝑡)𝑐  are the predicted and desired normalized stress 
component4 at time step 𝑡 in a training sample, respectively. 𝐹  is the 
number of output features, 𝑁𝑇  is the data sequence length, and 𝑁𝑏𝑎𝑡𝑐ℎ
is the batch size.

Overfitting and convergence of neural networks are checked with 
the loss function during training. However, since the loss function is 
applied to normalized data, it is not the best metric for evaluating 
trained neural networks. This makes comparisons across different sam-
ples under varying load conditions quite difficult and non-intuitive. To 
provide a more intuitive measure of the quality of the network, error 
metrics based on the von Mises stress have been employed.

3. Enhanced high-fidelity model with transfer learning

The aim is to develop a GRU model as a surrogate for high-fidelity 
full-field simulations of woven composites. The composite is assumed 
to have a balanced weave with fixed geometrical features, and fail-
ure mechanisms are excluded from consideration. While the geometry 
of the meso-scale structure remains unchanged, the micro-structural 
constituent’s properties change in each simulation. To harness the 
advantages of previously available datasets and the new high-fidelity 
datasets generated in this study, we initially trained our model on a 
dataset from MFH simulations of the previous study, then employed 
transfer learning to fine-tune the model with data from FFT simulations 
before ultimately validating the model against FFT simulations. The fol-
lowing sections describe the computational framework for high-fidelity 
FFT data generation, data preparation, augmentation, and transfer 
learning.

3.1. Computational homogenization of woven composite

Building on the methodology from Section 2, this research utilizes 
the FFT technique to model meso-scale woven composites. FFT is a 
highly efficient algorithm for computing the discrete Fourier transform 
and its inverse. FFT homogenization [43] is particularly advantageous 
for analyzing woven structures since it can efficiently handle their 
periodicity and complex geometric properties. By converting the spatial 
topology of a structure into the frequency domain, FFT facilitates the 
effective computation of stress distributions under various strain load 
conditions. Moreover, FFT methods can achieve results comparable to 
those obtained from FE analysis but usually require significantly less 
computational time and avoid the difficulties associated with FE mesh 
generation. A more detailed description of FFT homogenization for a 
boundary value problem is provided in Section S.3 of supplementary 
materials or can be found in [59,60].

In the data generation process, the RVE model utilized in the FE 
and FFT homogenization processes includes a balanced weave with 
15 yarns per centimeter in the warp and weft directions, featuring a 
yarn spacing ratio of 0.1 and a 0.5 crimp factor. A fixed ellipsoidal 
yarn cross-section with a width of 0.05 mm and height of 0.5 mm 
is considered. The FFT simulations are conducted using 64 by 64 
by 64 voxel (A voxel represents a discrete computational element 
in each dimension of the simulation grid, with each voxel having 
dimensions of 21 × 21 × 1.7 μm). Higher grid resolutions have been 

4 The symmetric stress tensor in Voigt notation is represented as a six-
component column vector as follows: �̃� = (𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎13, 𝜎23)𝑇 ≡
(𝜎 , 𝜎 , 𝜎 , 𝜎 , 𝜎 , 𝜎 )𝑇 .
1 2 3 4 5 6
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tested, but the improvement in accuracy is marginal compared to the 
increased computational cost, confirming the appropriateness of the 
chosen resolution. The FE simulations are conducted using 64 by 64 by 
32 three-dimensional fully integrated with 8 nodes voxel elements after 
a convergence study that showed further refinement yielded negligible 
changes in the stress–strain response (see Fig.  1).

To illustrate a comparative analysis, Fig.  2 showcases the shear 
stress–strain responses of the RVE with a specific set of constitutive 
material properties (specific values in Table  1) subjected to a random 
and a three-cycle in-plain shear loading. Additionally, MFH results of 
the same material system are shown. The volume of reinforcing fibers 
in a composite RVE relative to the total volume of the RVE, the fiber 
volume fraction (𝑉 𝑅𝑉 𝐸

𝑓 ), is restricted to be constant and equal in MFH 
and FFT simulations by controlling the filament count and yarn density.

FFT homogenization closely aligns with voxel-based mesh FE ho-
mogenization outcomes. However, in terms of computational effi-
ciency, during cyclic loading, as an example, the FE simulation required 
7040 s, and FFT homogenization took 440 s, approximately. In com-
parison, MFH was completed in merely 30 s. The simulations are 
conducted on Digimat-FE software package [61] on a 16-core Processor 
computer with a NVIDIA® GeForce RTX™ 4090 [62] system. MFH 
serves primarily as an approximation technique and fails to describe 
woven composite behavior accurately. This discrepancy is severe under 
random loading conditions. In Fig.  2, it is also evident that under 
cyclic loading, MFH deviations from FE and FFT results become more 
pronounced after the first cycle. Although FFT simulations require more 
time than MFH simulations, limiting the quantity of data generated, 
they provide a level of accuracy closer to computationally demanding 
FE simulations. Consequently, FFT simulations have been selected for 
the development of a high-fidelity dataset.

3.2. Data preparation

Thorough examination and cleaning of the dataset are essential in 
the data preparation phase for modeling strain and stress dynamics. 
Fig.  3 contains four plots of two stress components 𝜎11 and 𝜎12 from 
random and cyclic datasets, and illustrates the distribution of output 
labels. Notably, an outlier in the random loading dataset is detected 
since a stress component maximum value (here 𝜎11) exceeds the other 
values by more than 50%. As part of the data cleaning process, the 
decision is made to remove the sample containing this outlier.

Eliminating the outlier dramatically affects the statistical properties 
of the dataset. The removed simulation from the training dataset sig-
nificantly shifts the mean distribution of the 𝜎11 components, according 
to Fig.  3(b), resulting in a more balanced distribution centered around 
zero through time. This adjustment in the data distribution is crucial 
as it enhances the robustness of the training process by reducing the 
potential bias that outliers can introduce. The impact of this adjustment 
is discussed extensively in Section 5.2, where it is shown to facilitate 
more accurate and reliable learning outcomes.

In a woven composite, fibers are primarily aligned in specific direc-
tions, typically referred to as the warp and weft directions. It means the 
applied load is carried directly by the strong fibers, causing significantly 
higher stress values in normal directions, like 𝜎11 compared to shear 
directions, like 𝜎12 in Fig.  3. To further enhance data quality and 
model performance, the robust scaler [63] method is employed for 
data normalization. This scaling technique is particularly known more 
effective in datasets with outliers, as it removes the median and scales 
the data according to the Interquartile Range (IQR), which is the range 
between the 1st quartile (25th percentile) and the 3rd quartile (75th 
percentile). Centering and scaling are performed independently on each 
feature by only computing the median and IQR from the training set 
samples.
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Fig. 1. (a) Mesoscale woven RVE generated in Digimat-FE and used in FE and FFT simulations, (b) detailed voxel-based FE mesh of the matrix, (c) the warp yarn, and (d) 
zoomed-in view of the yarn mesh.
Fig. 2. FFT homogenization (black dashed lines) comparison with FE homogenization (solid red lines) and mean-field homogenization [6,46] (dashed green lines) for a sample 
(a) cyclic in-plain shear and (b) random walk load path.
3.3. Transfer learning

Transfer learning emerges as a highly effective strategy for ad-
dressing the challenges of limited data availability in the field of 
material behavior prediction [6,41,64–66]. The source task here is 
a GRU network trained on a large dataset generated from mean-
field simulations [6] characterized by random walk behavior. Having 
learned the underlying patterns and dynamics of MFH simulations, 
this network contains a wealth of knowledge about woven composite 
behavior under random walk loading and different microscale consti-
tutive material properties. Transfer learning enables us to utilize the 
pre-trained GRU network effectively when shifting focus to a target 
task with limited data generated through high-fidelity full-field FFT 
simulations. By transferring the learned weights and features from the 
low-fidelity MFH model to the FFT model, it is hypothesized that the 
network will require less data to adjust and optimize its parameters for 
the new task.

Two common strategies in transfer learning are freezing and fine-
tuning [67]. Freezing involves keeping the weights of specific layers 
of a pre-trained model fixed, while only updating the weights of the 
remaining layers during training on a new task. First layers of a network 
learn general features that are not specific to the source task, and 
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following layers learn specific target tasks. The other approach, fine-
tuning involves adjusting the weights of all the layers of a pre-trained 
model during the training process on the new task. This allows the 
model to adapt more thoroughly to the new data, often leading to 
better performance as it tweaks high-level and low-level features to 
suit the new task. In a similar case, [68], after experimenting with both 
freezing and fine-tuning strategies, it is found that fine-tuning the entire 
network’s parameters is most suitable. Fig.  4 illustrates the transfer 
learning steps employed in this study.

The initial training set comprises an extensive collection of 28,000 
samples from random non-proportional loading scenarios. Then, the 
network is trained on 1,000 high-fidelity samples from full-field FFT 
simulations under random loading conditions. The final training phase 
fine-tunes the model further by focusing on specific and challeng-
ing load cases, including pure in-plane and out-of-plane shear cyclic 
loading, each containing 300 high-fidelity FFT samples. This crucial 
step exposes the model to extreme conditions which often results in 
significant plastic deformation, significantly enhancing its predictive 
accuracy. Ultimately, the trained GRU model is evaluated against FFT 
random and cyclic simulations, which serve as the benchmark for this 
study.

Sparse datasets are characterized by numerous missing, zero, non-
informative values. When a model encounters sparse inputs during 
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Fig. 3. Output results of training data high-fidelity FFT simulations: tensile 𝜎11 and pure in-plain shear 𝜎12 stress components. (a) Random walk data for 𝜎11; (b) Random walk 
data for 𝜎11 after outlier removal; (c) Random walk data for 𝜎12; (d) Cyclic pure in-plane shear data for 𝜎12. The cyclic dataset in (d) was generated with a fixed strain amplitude, 
number of cycles, and load ratio to explore cyclic deformation responses. The mean stress for each dataset is indicated by the thick black line.
Fig. 4. An illustration of the step-wise transfer learning process utilized for data fusion in woven composite behavior modeling, with data fidelity represented through color 
contours. Step (1) involves training the GRU model on a random-walk MFH dataset. In Step (2), the model, initialized from the previous training, is further trained using FFT 
simulation data. Step (3) focuses on fine-tuning the model using a pure shear FFT cyclic dataset. Finally, Step (4) evaluates the model’s performance against FFT and FE simulations.
testing, it experiences a distribution shift [69], as the input patterns 
differ from those seen during training. During the training phase, the 
model is typically exposed to dense input patterns, where most or 
all features are active, allowing it to learn from a rich and complete 
dataset. However, in the testing phase, the model may encounter sparse 
inputs with only a few active features. This results in a mismatch in 
the input distribution, potentially degrading the model’s generalization 
ability, as it has not been trained to handle such sparse patterns effec-
tively [70]. Consequently, the model may struggle to make accurate 
predictions, leading to increased error and reduced reliability in real-
world applications. This problem arises in uniaxial stress loadings like 
pure-shear loading scenarios, where only one component is non-zero, 
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resulting in sparse data. This sparsity complicates the learning process, 
hindering the network’s ability to find meaningful patterns.

3.4. Data augmentation

Data augmentation aims to create synthetic datasets processed ac-
cording to desired invariances that cover unexplored input space while 
the output targets are the same as those in the original datasets [56]. Al-
though many methods exist for data augmentation in computer vision, 
more attention is needed for comprehensive and systematic data aug-
mentation of time-series data in common tasks, including time-series 
forecasting, anomaly detection, and classification. Data augmentation 
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Fig. 5. Frequency of happening (distribution) variable-length time-series data resulted from FFT simulations, (a) for random loading dataset, (b) in-plain shear loading dataset, 
and (c) out-of-plain shear loading dataset.
becomes increasingly complex in the context of multivariate time se-
ries, which require careful consideration of the intricate dynamics 
among variables over time.

The woven composite homogenization results in stress multivari-
ate responses. Each predicted stress value depends on its previous 
states due to the material’s mechanical properties and load history, 
leading to time-correlated data points. Window cropping or slicing, 
window wrapping, flipping, and noise injection are among the usual 
data augmentation in time series [71]. However, the characteristics of 
multivariate stresses limit the application of conventional data augmen-
tation methods. Composite materials’ behaviors differ under tension 
and compression in the presence of plasticity. Loading begins from 
a zero strain value, and the subsequent behavior of the material is 
strongly linked to the accumulation of internal variables from the onset 
of loading. Thus, window-based methods for the augmentation of data 
are complicated by such dependencies.

In this study, the term length is used when referring to the sequential 
nature of time-series data, consistent with common terminology in 
time-series modeling [52]. Meanwhile, number of time increments refers 
to the computational steps required to converge the simulation models 
during the data generation. This distinction helps clarify the relation-
ship between the representation of sequential data and the underlying 
computational process.

Data obtained from FFT simulations vary in length scales due to 
the variations in the number of required time increments. Fig.  5 dis-
plays the number of simulations verses the time increments taken for 
convergence. Notably, only a few samples have fewer than 101 time 
increments (see Fig.  5(a)) for the random case dataset; these can be 
omitted from the training process. Samples with more than 101 time 
increments are included in the training process after shortening. The 
result is a uniform, consistent dataset for training the GRU network. Fig. 
5(b) shows that pure in-plane shear cyclic simulations usually converge 
after 12 or more time increments. Pure out-of-plane shear cycles with 
a wide range of time-series lengths are even more challenging data 
as FFT simulations converge at different number of time increments. 
Training a GRU network to predict path-dependent behavior is partic-
ularly challenging for short series as each data sample contains limited 
information.
7 
Linear interpolation offers a practical solution for data augmenta-
tion and uniformity. The suggestion is to equalize the length for each 
sample by linear interpolation to increase the number of time incre-
ments to a consistent value across all datasets. It is important to analyze 
the impact of interpolation on the underlying data dynamics before 
applying the model. The following statistical analysis investigates how 
the structure of the time-series data samples can affect the learning 
process. Statistical analysis of data can be used to evaluate whether 
or not two time-series datasets from different domains will help before 
applying transfer learning or if they will result in negative transfers 
(discussed in Section 5.1). This potentially reduces the computational 
effort for re-training a network for a particular target task.

4. Data analysis

An autocorrelation function (ACF) is a standard tool for assess-
ing the relationships between variables in time-series data. ACF can 
evaluate the impact of linear interpolation on time-series stress data 
predictions. Detailed statistical analyses and theoretical discussions on 
this topic are available in Section S.2 of supplementary materials, which 
focuses on time-series analysis.

The ACF for stress data is briefly reformulated here. The sample 
autocovariance for stress data based on two different time increments 
𝑡1 and 𝑡2 is defined as 

�̂�𝜎(𝑡1)𝜎(𝑡2) =
1
𝑚

𝑚
∑

𝑖=1
(𝜎(𝑡1)(𝑖) − �̄�(𝑡1))(𝜎(𝑡2)(𝑖) − �̄�(𝑡2)), (3)

where 𝑚 is the number of simulations in the training data and �̄� is the 
sample mean of a stress component for each time increment among all 
the training data. The autocorrelation for stress data is defined as 

𝑟𝜎(𝑡1)𝜎(𝑡2) =
�̂�𝜎(𝑡1)𝜎(𝑡2)

(𝑚 − 1)𝑠𝜎(𝑡1)𝑠𝜎(𝑡2)
, (4)

where ̂𝛾𝜎(𝑡1)𝜎(𝑡2)  is the stress autocovariance according to Eq.  (3), and 𝑠𝜎(𝑡)
is the standard deviation of the stress samples. Data is collected from 
FFT simulations with equidistant stress values up to the convergence 
time as the maximum applied strain is reached. Consequently, we can 
define the lag parameter 𝑘 as the unit temporal distance between 
stress (or strain) values at time 𝑡 and 𝑡 − 𝑘, denoted as 𝜎(𝑡) and 𝜎(𝑡−𝑘)
respectively.  Section 4.1 analyzes the temporal stress responses and 
explores the impact of data augmentation.
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Fig. 6. Auto-correlation functions for different stress components and interpolation methods. The shaded areas are the standard deviation of ACF among all the samples in the 
training datasets.
4.1. Analyzing temporal correlations in stress time-series

To systematically analyze correlation, graphical representations of 
the ACF versus lags display varying behaviors in different datasets of 
loading conditions. As an example, for 𝜎11 under random loading in 
Fig.  6(a) and 𝜎12 in Fig.  6(b), the ACF graphs show distinct correlations 
between time increments, highlighting substantial temporal dependen-
cies. Since 𝜎𝑡 and 𝜎𝑡+1 values are happening after each other on the 
time axis, we see a noticeable strong positive 𝑟𝜎𝑡𝜎𝑡+1 . This strong positive 
autocorrelation is dampened as lags increase. For example, there is a 
very slight autocorrelation between 𝜎𝑡 and 𝜎𝑡+20. This indicates that 
when the network attempts to capture evolving stress in a sample at 
each time interval, the stress value at the next step strongly correlates 
with the current state. This is similar to plasticity theory, where the 
current state is calculated based on the proceeding state and the 
material history. However, the correlation analysis at different sample 
lags suggests that the stress data by itself has additional information 
from more distant time increments, extending up to ten increments 
from the current state. This demonstrates that the network must have 
the capability to integrate longer-term dependencies within the data.

The AFC plot according to FFT samples subjected to pure in-plain 
shear loading (Fig.  3(d)) is plotted in Fig.  6(c). Also, ACF tends to 
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be near zero at lag 𝑘 ≠ 0. By applying linear interpolation as a way 
of augmentation by increasing the number of time increments from 
12 to 101 (equal to the number of time increments in the random 
dataset), a significant change is observed in the ACF plots; what was 
previously a non-correlated time series in shear loading conditions now 
displays correlations between interpolated time steps at Fig.  6(d). This 
emergence of meaningful correlations through interpolation suggests 
that the augmentation method does more than just align data lengths 
— it can alter the inherent statistical properties of the time series, as it 
can be seen in Fig.  6(e). The effect of interpolation on GRU training as 
a mechanism for augmentation will be discussed in Section 5.

The sample mean stress for each component is defined as the mean 
stress among all samples at each increment. The thicker black lines 
in Fig.  3 for two example components show the sample means which 
are almost constant and close to zero, and stress datasets do not 
follow a particular trend. Nevertheless, the stress responses cannot be 
considered stationary and analyzed by conventional stationary time-
series methods, like ARMA [52]. Because the autocorrelation does not 
essentially depend on the distance 𝑡2 − 𝑡1, it can be infer from the large 
standard deviation of ACF for different lags in Fig.  6.
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Fig. 7. Fine-tuned high-fidelity model predictions on three randomly selected full-field random walk path samples from the unseen dataset. The solid lines are the target stress 
results from the FFT simulations, while the dashed lines are the network predictions.
5. Results and discussion

The GRU network is implemented using Python and the deep learn-
ing library PyTorch. NVIDIA® GeForce RTX™ 4090 [62] GPU is utilized 
to train various networks. Generated datasets are divided randomly into 
80% training, 10% validation, and 10% testing sets. During training, 
the GRU network processes the training set through multiple epochs, 
with data shuffled in each epoch. The validation set is crucial for adjust-
ing hyperparameters like batch size, learning rate, and regularization 
parameters to enhance model performance. The test set, comprising 
unseen data, is used to evaluate the network’s final performance.

Section 5.1 discusses the process of training a network from scratch 
using random high-fidelity data and optimizing hyperparameters. Sec-
tion 5.2 evaluates the application of transfer learning from previously 
developed networks using mean-field low-fidelity data to initialize and 
train a network with high-fidelity FFT random loading data.

5.1. Training of the surrogate GRU model

The training process uses ADAM optimizer [72]. Among the hy-
perparameters, the learning rate is tuned for each network training 
step automatically using Spotpython [73]. For simplicity, a fixed 50% 
dropout after the first GRU layer and the minibatch size 32 is used. A 
piece-wise learning rate decay strategy is employed, reducing the learn-
ing rate by 10% every ten epochs. Following our previous study [6], the 
GRU network architecture has three layers, each with 512 GRU units 
and one fully connected layer.

In order to prevent over-fitting, early stopping is used instead of a 
fixed number of epochs. Training stops when the models’ performance 
on the validation set plateaus (a patient equal to 10 is used) while the 
loss on the training set continues to decrease. The plateau region on 
the validation set indicates convergence in the training. Plots of the 
loss functions are presented in Figure S.2 of supplementary materials.

5.2. Prediction on random walk and cyclic paths

Targeting the random walk FFT test set, the most promising fine-
tuning strategy is obtained according to following. First, train the 
model on the MFH random-walk load path. Second, fine-tuning it 
with FFT random walk. With the transferred network, stress values 
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can be predicted from sparse feature samples throughout the loading 
increments.

The results on the test sets show effective learning occurred using 
the transfer learning technique and utilizing the knowledge gained 
from MFH. Note that the performance after training exclusively on 
MFH data provides a reasonable baseline. However, this approach 
results in an error on the FFT random test set that is approximately 
two times larger than that of a model trained from scratch on FFT 
samples. Therefore, fine-tuning with high-fidelity data is necessary to 
further improve accuracy. Additionally, different optimizer settings are 
tested, but the results reported in the paper reflect the best outcomes 
to keep the study concise. Fig.  7 shows successful predictions of the 
GRU network for all six stress components on three randomly selected 
samples from the test set.

The transition to conventional cyclic paths presents a significant 
challenge, particularly when applying the trained network to cyclic 
load tasks. The input features for cyclic loading cases are notably 
sparse, involving only one (in pure shear conditions) active sequential 
feature alongside static features representing the microstructure and 
plasticity is more pronounced compared to random loads. Therefore, 
ANN models often struggle to predict stresses from these sparse inputs 
accurately, or predict nonzero fictitious values for the inactive compo-
nents. Although one can train a network specifically for the target stress 
component, the network will lack generality. To address this challenge, 
four scenarios are examined: (1) training a GRU network from scratch 
using the original cyclic FFT samples (presented in Fig.  3(d)), with the 
corresponding ACF shown in Fig.  6(c); (2) training a GRU network from 
scratch on the augmented cyclic FFT dataset (with the ACF depicted in 
Fig.  6(e)); (3) employing transfer learning to acquire prior knowledge 
from a dataset comprising random MFH and FFT data, followed by fine-
tuning with the original cyclic FFT; and (4) utilizing transfer learning 
with the augmented cyclic FFT dataset.

Firstly, the impact of augmentation is examined through the first 
two scenarios. As demonstrated in Fig.  8, the FFT cyclic homoge-
nization is accurately predicted when using the linear interpolation 
augmentation framework. However, this accuracy diminishes when 
training is conducted with data of the original length.

Secondly, the GRU network, initially trained on the random MFH 
dataset and fine-tuned on random FFT data, is further fine-tuned using 
the cyclic FFT samples. The bars on the right side in Fig.  9(a) illustrate 
that utilizing augmented cyclic FFT significantly reduced the RMSE 



E. Ghane et al. Composites Science and Technology 267 (2025) 111163 
Fig. 8. GRU model prediction on three 𝜎12 unseen full-field sample. (a) The original data length was used for training from scratch, and (b) an augmented dataset was used for 
training.
Fig. 9. GRU model prediction on 𝜎12 unseen cyclic full-field dataset. Augmentation 
reduces the RMSE, but a negative transfer effect is observed. TL stands for transfer 
learning.

error [6] on the test set of cyclic loads. However, the error increased 
in original and augmented cases compared to training from scratch. 
Despite initializing the model from scratch with different random seeds, 
the transfer learning model consistently performed worse on unseen 
cyclic samples compared to the model trained from scratch. In such 
cases where the negative transfer [74] is pronounced, a conventional 
network, trained on the limited labeled data specific to the target ap-
plication, often outperforms a model that incorporates both the limited 
labeled target data and the source data. This situation tends to manifest 
when the source domain (six components of stress result from random 
paths) has little resemblance to the target domain (two components of 
shear stress result from cyclic paths).

The network performance is evaluated against random FFT samples 
despite the negative transfer occurrence when testing against cyclic 
FFT samples. The error bar chart depicted in Fig.  10(a) illustrates the 
progressive improvement of the developed GRU model when tested 
against 100 FFT random walk samples. As mentioned in Section 3.2, 
the initial modification of the training set, which involved removing a 
single outlier, resulted in significant reductions in error measures: 30% 
in mean and 32% in standard deviation. Additionally, employing the 
MFH dataset for pre-training the GRU network, instead of initializing 
training from scratch, led to a decrease of 21% in the mean error and 
40% in the standard deviation. Introducing the network to high-fidelity 
specific cyclic loads towards the end of the training process did not 
lead to negative transfer; instead, it enhanced performance by 14% 
on random walk paths. The MBE measure [6] is also progressively re-
duced through transfer learning, ensuring a more reliable and unbiased 
model.

The poor transfer observed in Fig.  9 can be attributed to differences 
in the datasets, which arise from variations in loading scenarios. These 
differences pose challenges in achieving an optimal solution during 
fine-tuning. Specifically, when the network is initially trained on cyclic 
loads with a single active loading feature and tested on the same data 
10 
Fig. 10. Network performance against unseen high-fidelity random walk FFT samples 
with and without transfer learning. (a) RMSE and MBE are based on von Mises stress, 
(b) RMSE is based on individual stress components, and the von Mises stress.

type, it effectively learns the relationship between the active feature 
and the output. However, when trained on random loads, the network 
must capture dependencies across all six loading features. Testing this 
model on cyclic loads introduces a rare scenario characterized by 
extreme plasticity and sparsity, resulting in a distribution shift in the 
input space. Consequently, transfer learning on cyclic loads leads to 
negative transfer, where the model performs worse than one trained 
on cyclic loads from scratch. In contrast, when the network is first 
trained on random loads and subsequently fine-tuned on cyclic loads, 
it demonstrates improved performance on random loads (Fig.  10). This 
suggests that prior exposure to random loads enables the model to 
develop a more robust understanding of plasticity mechanics, which 
enhances its adaptability.
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Fig. 11. Mean RMSE for von Mises stress (𝜎𝑣𝑀 ) across different training set sizes. The 
plot compares the performance of ‘‘from scratch’’ and ‘‘transfer’’ models, with shadows 
indicating standard deviation. The transfer learning model was pre-trained on random 
loads of MFH data and fine-tuned with random FFT data. Details on each component 
can be found in Figure S.3.

For a more detailed evaluation, the performance of the GRU model 
trained on modified FFT samples is compared with that of the fine-
tuned network, as shown in Fig.  10(b). This comparison highlights a 
general reduction in prediction errors across various stress components, 
demonstrating improvements beyond just the von Mises stress. How-
ever, an exception is noted in the case of the 𝜎33 component, where 
the model experienced a small negative transfer, resulting in decreased 
accuracy for this specific stress component. It underscores how transfer 
learning has complex dynamics, in which improvements in some areas 
might mislead others.

Fig.  11 highlights the performance of the models in predicting the 
von Mises stress across different training set sizes when evaluated 
against the random load high-fidelity test set. The transfer learning 
model, which is pre-trained on the random loads MFH dataset and fine-
tuned with the FFT dataset, demonstrates superior accuracy compared 
to the models trained from scratch. For larger training sets (e.g., 600 
or 700 samples), the difference between the two learning methods is 
minimal in both mean RMSE and standard deviation. Conversely, with 
smaller training sets (300 and below in Fig.  11), which are common 
in practice, both the mean error and the standard deviation across 
test samples are significantly reduced, indicating robustness against 
individual sample variations.

6. Conclusions

To tackle the intricacies of time-consuming woven composite ho-
mogenization analysis, GRU surrogate models are proposed. However, 
these models are extremely data-intensive, necessitating large datasets 
for effective training. This study explores the application of transfer 
learning in the supervised learning of nonlinear behaviors in woven 
composites, particularly under conditions where matrix plasticity ex-
ists. We have utilized the predictive capabilities of GRUs trained on 
FFT homogenization data to serve as an accurate surrogate model for 
mesoscale homogenization. To overcome data limitations, we initial-
ized the GRU network using an existing dataset from MFH, which 
contains three times the data points compared to full-field datasets.

We considered four datasets. The first used a random walk loading 
path with fast MFH simulation for diverse strain and stress trajectories. 
The second also used a random walk but with FFT homogenization. The 
third and fourth involved conventional cyclic strain paths, presenting 
challenges with fewer data samples. After training on random loads and 
fine-tuning with cyclic loads, the network can accurately predict stress 
under standard cyclic conditions.
11 
This research also highlights the importance of temporal correla-
tions in datasets, which represent the path-dependent physical charac-
teristics of materials. These correlations are essential for training time-
series models such as GRUs, enabling them to learn path-dependent 
responses accurately. Autocorrelation analysis is also a method for 
investigating the impact of linear interpolation on data augmenta-
tion. It examines whether the augmentation influences the dataset’s 
correlations, thereby affecting how it is learned during the training 
process.

In conclusion, this study demonstrates that transfer learning can 
effectively integrate readily available, albeit less accurate, data with 
high-fidelity but sparse and scarce data in modeling history-dependent 
material behavior. However, it also highlights the risk of negative trans-
fer when the source and target data domains lack sufficient relatedness. 
This finding motivates future research to explore alternative methods 
to transfer learning for such applications. This proposed approach 
facilitates the use of limited high-fidelity data to train representative 
surrogate models.

Further work is needed to enhance model reliability, particularly 
in handling outliers and extreme cases where prediction errors are 
highest. Future research will focus on identifying composite config-
urations where the model performs poorly and investigating their 
underlying causes. Additionally, to improve the practical applicability 
of this approach, we propose implementing uncertainty quantification 
techniques, such as Monte Carlo dropout and Bayesian deep learning, 
to provide confidence intervals for predictions. These enhancements 
will equip engineers with clear reliability metrics, allowing them to 
determine whether the model’s outputs are trustworthy for specific 
applications.
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