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 A B S T R A C T

With the rapid advancement of intelligent transportation systems, a unique opportunity has emerged for 
optimizing energy management for hybrid electric vehicle. This paper presents a collaborative optimization 
method that integrates velocity planning and energy management for fuel cell hybrid buses (FCHBs) at 
multiple intersections and bus stations. First, an energy-saving velocity planning strategy (EVPS) is developed 
based on minimizing equivalent hydrogen consumption. EVPS exhibits significant advantages with respect 
to time savings, stopping duration, time savings rate, and overall pass efficiency at signalized intersections 
compared to real-based driving scenarios and modified intelligent driver model-based velocity planning 
strategies. Furthermore, a Q-learning-based energy management strategy (EMS) is proposed to enhance the 
energy efficiency and longevity of power sources in FCHBs. The EVPS is seamlessly integrated with the Q-
learning-based EMS to facilitate eco-driving for the FCHBs. Finally, the effectiveness of this collaborative 
approach combining EVPS and EMS is experimentally validated through three real demonstration drive cycles 
involving FCHBs. The results indicate that the proposed EVPS-based EMS can achieve an impressive reduction 
in equivalent hydrogen consumption by over 21.35%.
1. Introduction

Fuel cell vehicles (FCVs) are recognized as one of the primary means 
to promote high-quality development within the green energy sector 
while addressing global climate change challenges. However, obstacles 
such as high hydrogen costs and complex urban traffic conditions 
present significant challenges to effective energy management strate-
gies (EMSs) for FCVs [1,2]. The continually changing dynamics within 
urban road networks, such as variations in road slope, alterations in in-
tersection signaling, and fluctuations in traffic flow, have a substantial 
impact on fuel consumption and driving times for FCVs [3,4].

With the advancement of vehicle-to-vehicle and vehicle-to-
infrastructure technologies, ecological driving technologies have
emerged, emphasizing the optimization of driving behavior to minimize 
fuel consumption and emissions. In complex urban transportation envi-
ronments, the coordinated control of velocity planning strategies (VPS) 
and EMS has been recognized as an effective method for optimizing 
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energy consumption, reducing vehicle idle time, and extending the 
lifespan of power systems [5–7]. However, many current studies over-
look road infrastructure elements such as intersections, traffic signals, 
and bus stations encountered during actual driving scenarios. This 
oversight may lead to frequent starting and stopping of buses, resulting 
in excessive energy consumption. Therefore, investigating the impact of 
traffic information on vehicle driving status and developing appropriate 
EMSs represent a novel approach to further enhancing the fuel economy 
of FCVs.

An increasing number of researchers are focusing on velocity plan-
ning combined with optimal EMS to reduce energy consumption in 
complex traffic environments. The relationship between traffic sig-
nal information and electric vehicles (EVs) energy consumption has 
been explored to decrease overall energy usage while optimizing ef-
ficiency at signalized intersections [8]. To address uncertain traffic 
light timing, a data-driven chance-constrained eco-driving approach for 
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internal combustion engine (ICE) vehicles was formulated in [9]. By 
considering cruise control tasks alongside acceleration characteristics 
parameters, an eco-driving control strategy for EVs was developed 
to achieve an optimized velocity profile that minimized energy con-
sumption [10]. A two-layer model predictive control (MPC) algorithm 
was employed to tackle both velocity planning and power alloca-
tion challenges for hybrid electric vehicles (HEVs), thereby alleviating 
computational burdens [11]. Additionally, a deep deterministic pol-
icy gradient (DDPG)-based EMS for plug-in HEVs was designed by 
integrating signal phase timing with passenger onboard information 
from traffic simulations to predict optimal velocities effectively [12]. 
A learning-based hierarchical cooperative eco-driving with real-time 
traffic flow prediction was introduced for HEVs [13]. A real time 
multi-objective optimization Guided-MPC strategy was proposed for 
power-split hybrid electric buses based on velocity prediction [14].

Previous studies have investigated VPSs and EMSs for ICE vehi-
cles, EVs, HEVs, and plug-in HEVs under various conditions. Notably, 
the primary power source of a FCV is the fuel cell system (FCS), 
whose output characteristics differ significantly from those of ICEs and 
batteries [15]. Therefore, a customized control strategy for FCVs is 
essential. A co-optimization method combining dynamic programming 
(DP)-based velocity planning with an alternating direction method 
of multipliers algorithm for energy management in FCVs navigating 
multiple continuous signal intersections was proposed [16]. The results 
indicated that this approach could achieve fuel efficiency comparable 
to offline DP within a real-time framework. Additionally, a long short-
term memory algorithm alongside a decentralized MPC framework 
was introduced to optimize energy management for FCVs addressing 
complex and variable road conditions [17]. Another decentralized MPC 
based on the consensus-based alternating direction method of multi-
pliers was proposed that explicitly considered the coordination of the 
dynamic reactions of the powertrain components and future driving 
profiles to improve the performance of FCVs [18]. Based on the health 
status of the FCS, an eco-driving framework utilizing DDPG algorithm 
under adaptive cruise control for FCVs was discussed [19]. The equiv-
alent hydrogen consumption of this method is 94.16% of that of the 
DP strategy, while 19.95% reduction in health degradation. Similarly, 
considering future passenger number and vehicle speed [20], future 
terrain information [21], or environmental and look-ahead road infor-
mation [22], the EMS based on DDPG for fuel cell hybrid bus (FCHB) 
was proposed. Research indicates that determining an appropriate start 
time through deep reinforcement learning algorithms can minimize 
idle time and energy consumption in fuel cell buses due to frequent 
start/stop cycles at constant velocities [23,24]. The Pontryagin mini-
mum principle (PMP) was employed to establish both velocity profiles 
and power split trajectories that minimized total energy consumption 
along designated routes in [25]. A co-optimization method grounded 
in PMP was suggested for speed planning and energy management 
of FCVs [26]. Additionally, a bi-level convex optimization framework 
for eco-driving FCVs was developed to navigate multiple signalized 
intersections [27]. The co-optimization of energy management and eco-
driving was proposed for FCVs via improved hierarchical MPC [28]. 
Furthermore, a multi-performance enhanced eco-driving strategy utiliz-
ing the stein soft actor-3-critic algorithm was introduced for connected 
FCHBs [29]. A hierarchical EMS was proposed for FCHBs considering 
traffic information near the bus stops [30]. A hierarchical intelligent 
energy-saving control strategy tailored to predict traffic flow dynamics 
was proposed for FCHBs [31].

In summary, numerous methods have been developed for eco-
driving strategies at intersections, achieving remarkable improvements 
in mobility fuel economy and real-time applicability. Many of the 
strategies have been implemented on EVs, HEVs, and FCVs. However, 
urban public transport systems utilizing FCHBs inevitably encounter 
challenges due to frequent station stops, extended idling periods, and 
traffic light constraints. Consequently, the development of an energy-
saving velocity planning strategy (EVPS) and EMS approaches has 
2 
proven to be effective in reducing idle time, start/stop durations, and 
overall energy consumption.

This paper adopts a practical approach to investigate the energy-
saving potential of a demonstration FCHB operating within a real urban 
road environment. A cooperative eco-driving control method is pro-
posed that integrates EVPS with Q-learning-based EMS. This methodol-
ogy addresses the practical challenges associated with velocity planning 
and energy management by segmenting them into two distinct sub-
problems. The proposed approach not only facilitates multi-objective 
optimization but also alleviates pressure on the controller. The EVPS 
component concentrates on velocity planning at multi-signalized inter-
sections and bus stations, while the Q-learning-based EMS component 
focuses on power distribution. This comprehensive strategy aims to 
tackle real-world issues such as excessive idle time, high energy con-
sumption costs, and limited operational lifespan of the FCS for FCHBs. 
This paper presents two significant contributions toward addressing the 
challenges faced by eco-driving in FCHB.

First, an online EVPS tailored specifically for FCHBs is introduced, 
utilizing data from three demonstration routes and an eco-driving 
velocity from DP-based EMS. The proposed EVPS incorporates signal 
phase and time (SPAT) information along with precise location of bus 
stations, an essential factor often overlooked in traditional eco-driving 
strategies. Compared to real-based driving and MIDM-based VPS, EVPS 
exhibits significant advantages with respect to time savings, stopping 
duration, time savings rate, and overall pass efficiency.

Second, a collaborative optimization method named EVPS-based 
EMS is proposed, which integrates the EVPS with a Q-learning-based 
EMS to enhance eco-driving for FCHBs. The results indicate that the 
proposed EVPS-based EMS achieves a remarkable reduction in equiva-
lent hydrogen consumption per 100 km by over 21.35%.

The remainder of this paper is structured as follows. Section 2 
introduces the FCHB’s architecture and driving route. The EVPS and 
the Q-learning-based EMS are proposed in Section 2 and Section 3, 
respectively. The validity of cooperative velocity planning and EMS for 
FCHB is verified in Section 4. Finally, the main conclusions of the study 
are discussed in Section 5.

2. The FCHB structure and driving route

2.1. Parameter and structure of FCHB

The powertrain structure and the main parameters of the demon-
stration FCHB are shown in Fig.  1 and Table  1. The FCHB propulsion 
system consists of several key components, including an electric motor, 
an FCS, a battery pack, a DC/DC converter, and a high voltage distri-
bution unit (PDU). The vehicle control unit coordinates various control 
units, such as motor control unit (MCU), fuel cell control unit (FCCU), 
and battery management system (BMS). The power balance of the FCHB 
can be expressed as follows, 

𝑃dem = 𝑃f𝜂dc + 𝑃b (1)

where 

𝑃dem =
𝑣a(𝑚𝑔𝑓 + 𝐶D𝐴𝑣2a

21.15 + 𝛿𝑚 d𝑣a
d𝑡 )

𝜂t𝜂m
+ 𝑃aux (2)

𝑃f  and 𝑃b are the output power of the FCS and the battery pack, 
respectively. 𝜂dc is the efficiency of the DC/DC converter. 𝑚 represents 
the vehicle mass, 𝑔 is the gravity acceleration. 𝑓 and 𝐶D are the rolling 
resistance and drag coefficients, respectively. 𝐴 is the frontal area of the 
FCHB, and 𝛿 is the conversion coefficient of the rotating mass. 𝜂t and 
𝜂m are the mechanical transmission efficiency and the motor efficiency, 
respectively.
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Fig. 1. The structure of the FCHB powertrain system.
Table 1
Main parameters.
 Items Parameters Value  
 FCHB Mass (kg) 14 350 
 Frontal area (m2) 7.13  
 Mechanical transmission efficiency 0.95  
 DC/DC efficiency 0.99  
 Motor Max power (kW) 200  
 Fuel cell Rate power (kW) 47  
 Number of cells 140  
 Battery Rate capacity (Ah) 173  
 Cell rated voltage (V) 3.22  
 Number of cells 162  

2.2. FCHB actual driving route analysis

The demonstration data for three routes of the FCHB are collected 
to optimize the driving velocity. The operational routes of the FCHB 
demonstration, namely Route 𝑖 (where 𝑖 = 1 to 3), are situated in 
Chengdu, China, as illustrated in Fig.  2. Route 1 comprises 8 traffic 
lights (L1𝑗 , where 𝑗 = 1 to 8) and 10 bus stations (S1𝑘, where 𝑘 = 1 
to 10). Route 2 features 18 traffic lights (L2𝑗 , where 𝑗 = 1 to 18) and 
17 bus stations (S2𝑘, where 𝑘 = 1 to 17). Route 3 includes 10 traffic 
lights (L3𝑗 , where 𝑗 = 1 to 10) and 5 bus stations (S3𝑘, where 𝑘 = 1 to 
5). Herein L1𝑗 and S1𝑘 denote the locations of the 𝑗th traffic light and 
the 𝑘th bus station for Route 1, respectively. Similarly, L2𝑗 and S2𝑘 are 
defined for Route 2, L3𝑗 and S3𝑘 are defined for Route 3. For all three 
routes, Table  2 presents the distances from each bus station S𝑖𝑘 to the 
first bus station S𝑖1. The total lengths of Routes 1, 2, and 3 are 11.574 
km, 11.039 km, and 9.840 km, respectively. Notably, both the density 
of traffic lights and distribution of bus stations on Route 2 exceed those 
observed on Route 1 at over a comparable distance.

Furthermore, these three routes can be classified into distinct cate-
gories based on geographic location and roadway characteristics: Sub-
urban (Route 1), Urban + Suburban (Route 2), and Urban (Route 3). 
The signal phases along with timing details for each route’s traffic lights 
are summarized in Table  3, which includes accumulated distance (𝐷) 
from each respective traffic light to the first bus station, and periods (𝑇 ) 
associated with each traffic light cycle. Periods (𝑇 ) comprises red light 
duration (𝑇R) and green light duration (𝑇G), such that 𝑇 = 𝑇R+𝑇G. It is 
important to note that yellow light durations have not been overlooked. 
Instead, they have been incorporated into red light time in an effort to 
enhance driving safety during operations [32].

Three representative demonstration operation trajectories are illus-
trated in Fig.  3. In actual operations, the overall velocity of Route 1 
surpasses that of Route 2 and Route 3, with a maximum velocity 𝑣max
reaching 53 km/h. The average velocity ranges from 20 km/h to 26 
km/h, while the average driving velocity (excluding instances when 
3 
the vehicle is stationary) falls between 31 km/h and 33 km/h. In Fig. 
3-(a), the total travel time for Route 1 is recorded at 1714 s, and during 
which the FCHB made six stops at traffic lights, excluding L11 and 
L12. Between L13 and L18, idle times at intersections are measured as 
follows: 44 s, 88 s, 16 s, 15 s, 42 s, and 8 s, respectively. The cumulative 
idle time across these stops totals to a duration of 213 s. Consequently, 
the passage rate at signalized intersections stands at a mere 25.00%. In 
Fig.  3-(b), it is noted that the total travel time for Route 2 amounts to 
1900 s, with 8 stops encountered due to traffic lights. The cumulative 
idle time during these stops reaches 493 s, distributed as follows: 24 s, 
40 s, 94 s, 30 s, 73 s, 40 s, 75 s, 117 s. Thus yielding the passage rate 
is 55.56% at signalized intersections. Fig.  3-(c) presents data indicating 
that on Route 3, the FCHB experienced a travel duration of 1575 s, 
encountering red lights 6 times at locations L31, L34, L35, L36, L39, 
and L310. Stopping durations observed at these signalized intersections 
are 7 s, 18 s, 42 s, 41 s, 76 s, and 125 s, respectively. This results in a 
cumulative stopping time totaling 309 s, alongside a passing efficiency 
of 40.00%. Specific Real-based driving data can be found in Table  4.

It is noteworthy that Real-based driving experiences involve numer-
ous frequent stops coupled with prolonged idle periods. These factors 
contribute significantly to diminished comfort levels, increased hydro-
gen consumption rates, reduced FCS lifespan, and elevated operational 
costs.

3. EVPS

This subsection proposes an EVPS grounded in the actual signal 
information and real vehicle status aimed at reducing accumulated 
idle time, enhancing passage rates at signalized intersections, and 
promoting eco-driving practices. For simplicity, this study focuses ex-
clusively on a single FCHB operating within a designated bus lane while 
excluding considerations related to road queuing phenomena, external 
factors, and other vehicles.

3.1. Parameters setting for EVPS

To formulate the EVPS, several parameters are established in ad-
vance, including maximum acceleration 𝑎max, minimum deceleration 
𝑎min, maximum velocity 𝑣max, minimum velocity 𝑣min, and eco-driving 
velocity 𝑣eco. Based on analysis of 316,141 pieces of real driving data 
from FCHB collected over a period of 10 days, the values for 𝑎max and 
𝑎min are set to ±1.5 m∕s2. For computational convenience, this study 
also establishes a minimum velocity limit 𝑣lim of 1.5 km/h. The distance 
for velocity planning 𝑑y is determined based on the range of dedicated 
short range communication (DSRC), which is set as 200 m [33].

A DP-based EMS is employed to calculate the equivalent hydrogen 
consumption per 100 km under constant velocity conditions to facilitate 
the identification of the optimal 𝑣 . Fig.  4 illustrates the relationship 
eco
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Fig. 2. The Route 1, Route 2 and Route 3 of the demonstration driving routes of FCHB in Chengdu, China. L𝑖𝑗 represents the 𝑗th traffic light on the 𝑖th route, while S𝑖𝑘 represents 
the 𝑘th bus station on the 𝑖th route, where 𝑖 = 1, 2, 3, 𝑗 = 1, . . . , 18, and 𝑘 = 1, . . . ,17. For example, L11 is the first traffic light on the Route 1, and S21 corresponds to the first 
bus station on the Route 2.
Table 2
The distance from the bus station S𝑖𝑘 to the first bus station S𝑖1.
 Route 1 S𝑖𝑘 S11 S12 S13 S14 S15 S16 S17 S18 S19 S110  
 distance/m 0 945 1827 6544 7465 8272 9294 9777 10753 11574 
 Route 2 S𝑖𝑘 S21 S22 S23 S24 S25 S26 S27 S28 S29 S210  
 distance/m 0 311 724 1370 2056 2976 3772 4667 5274 5786  
 S𝑖𝑘 S210 S211 S212 S213 S214 S215 S216 S217  
 distance/m 5786 6255 7156 7788 8705 9570 10106 11039  
 Route 3 S𝑖𝑘 S31 S32 S33 S34 S35  
 distance/m 0 3283 6909 9054 9840  
Table 3
The signal phase and time of traffic lights for three routes. 
 Route L𝑖𝑗 𝐷 /m 𝑇  /s 𝑇R /s 𝑇G /s L𝑖𝑗 𝐷 /m 𝑇  /s 𝑇R /s 𝑇G /s 
 L11 180 135 31 104 L15 8391 112 34 78  
 1 L12 1165 160 60 100 L16 9231 98 36 62  
 L13 1862 120 50 70 L17 10498 110 65 45  
 L14 4146 132 98 34 L18 11185 74 34 40  
 L21 294 116 63 53 L210 3575 72 39 33  
 L22 574 118 35 83 L211 3842 182 121 61  
 L23 1033 114 31 83 L212 4528 84 42 42  
 L24 1405 113 29 84 L213 4937 125 88 37  
 2 L25 1613 139 26 113 L214 7000 260 140 120  
 L26 1934 119 55 64 L215 7593 140 38 102  
 L27 2271 113 63 50 L216 8047 136 30 106  
 L28 2720 182 137 45 L217 8926 215 128 87  
 L29 3374 102 49 53 L218 9892 168 81 87  
 L31 87 87 42 45 L36 5096 90 50 40  
 L32 392 98 53 45 L37 5486 76 36 40  
 3 L33 3808 140 90 50 L38 5704 105 45 60  
 L34 4181 130 45 85 L39 6717 166 82 84  
 L35 4637 140 60 80 L310 9724 205 184 21  
Note: 𝐷 is accumulated distance from L𝑖𝑗 to S𝑖1.
𝑇  is the period of the traffic light.
𝑇R and 𝑇G are the duration of red light and green light, respectively.
L𝑖𝑗 is the 𝑗th traffic light on the 𝑖th route.

between the static equivalent hydrogen consumption per 100 km cor-
responding to constant velocities ranging from 1 km/h to 53 km/h. 
It should be noted that equivalent hydrogen consumption per 100 km 
remains relatively low for velocities ranging from 20 km/h to 35 km/h, 
with minimal consumption observed at approximately 28 km/h.
4 
Taking into account Real-based travel data, the energy-saving driv-
ing velocity 𝑣eco has been established at approximately 32.58 km/h. 
Consequently, essential parameters assumed for FCHB are summarized 
in Table  5.

3.2. EVPS frame

In accordance with characteristics outlined in Section 2.2 regarding 
FCHB routes, areas designated for velocity planning are categorized 
into bus stations and signalized intersections. For the bus station, when 
the FCHB detects a stop located 200 m ahead, it will initiate gradual 
deceleration to ensure smooth arrival at said stop while maintaining 
a driving distance within planned speed parameters equivalent to 𝑑y. 
Consequently, the VPS specifically tailored for the bus station can be 
expressed as 

𝑣 =
√

2𝑑y𝑎de + 𝑣20 (3)

For signalized intersections, prior consideration must be given to 
SPAT information along with any remaining durations of both red 
and green lights. Furthermore, to promptly revert back to an energy-
saving velocity 𝑣eco without prolonging transit times unnecessarily 
during recovery phases of acceleration or deceleration maneuvers, no 
adjustment distances shall apply within these sections. Thus, the traffic 
signals can be predominantly categorized into two phases: green light 
phase and red light phase.

3.2.1. Green light phase
Three distinct scenarios are identified predicated upon expected 

residual durations of green light time 𝑡g, including long time left, short 
time left, and very short time left. A detailed schematic representation 
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Table 4
Data of the three routes traveling at intersections.
 Route Traveling time (s) Number of stop Stop time (s) Total stop time (s) 
 1 1714 6 44/88/16/15/42/8 213  
 2 1900 8 24/40/94/30/73/40/75/117 493  
 3 1575 6 7/18/42/41/76/125 309  
Number of stop: the total number of stop when the vehicle encounters a red light.
Stop time: the stop time when the vehicle encounters a red light.
Total stop time: the sum of stop times.
Fig. 3. Demonstration velocity and trajectory of FCHB in Chengdu, China.
illustrating vehicle trajectories across these three pre-green-light-phase 
conditions is depicted in Fig.  5-(a).

Scene 1: Long time left. The long time left scene’s determining 
equation can be expressed as follows, 

𝑡g ≥
𝑑y
𝑣0

(4)

In Scene 1’s EVPS, if 𝑣0 < 𝑣eco, the FCHB will accelerate the speed 
with 𝑎  in 𝑡 s to 𝑣  and pass the signalized intersection with constant 
max eco

5 
velocity (𝑣eco). For alternative instances, the FCHB will through the 
signal intersection with the initial velocity 𝑣0. The FCHB seamlessly 
navigates past such intersections adopting what we term ‘constant-
velocity passage’ methodology which may further be encapsulated 
mathematically below, 

𝑣 =
{

𝑣0 + 𝑎max𝑡 to 𝑣eco, 𝑣0 < 𝑣eco
𝑣0, others

(5)
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Fig. 4. Relationship between equivalent hydrogen consumption per 100 km and 
velocity.

Table 5
Assumptions of basic FCHB.
 Basic parameters Description  
 Maximum velocity 𝑣max = 53 km/h  
 Minimum velocity 𝑣min = 0 km/h  
 Minimum velocity limit 𝑣lim = 1.5 km/h  
 Maximum acceleration 𝑎max = 1.5 m∕s2  
 Minimum deceleration 𝑎min = −1.5 m∕s2  
 Velocity planning distance 𝑑y = 200 m  
 Remain of green light time 𝑡g  
 Remain of red light time 𝑡r  
 Eco-driving velocity 𝑣eco = 32.58 km/h 

Scene 2: Short time left. The short time left scene’s determining 
equation can be expressed as follows, 

𝑑y −
𝑣2max−𝑣

2
0

2𝑎max

𝑣max
+

𝑣max − 𝑣0
𝑎max

< 𝑡g <
𝑑y
𝑣0

(6)

In scene 2, the EVPS is formulated as follows. When 𝑣0 < 𝑣eco, 
and the time (where the FCHB accelerates with maximum accelera-
tion 𝑎max to 𝑣eco and then travels at a constant velocity to reach the 
signalized intersection) is less than 𝑡g, the FCHB can accelerate to 𝑣eco
and then travel at a constant velocity (𝑣eco). Othercases, the FCHB is 
controlled to accelerate with 𝑎max until it reaches 𝑣max and pass the 
signal intersection. In this scene, FCHBs are able to pass the signal 
after accelerating. Thus, an acceleration strategy is employed. The 
mathematical expression for the velocity trajectory under this strategy 
is provided as follows, 

𝑣 =

⎧

⎪

⎨

⎪

⎩

𝑣0 + 𝑎max𝑡 to 𝑣eco, 𝑣0 < 𝑣eco and 𝑡g >
𝑑y−

𝑣eco2−𝑣20
2𝑎max

𝑣eco
+ 𝑣eco−𝑣0

𝑎max
𝑣0 + 𝑎max𝑡 to 𝑣max, others

(7)

Scene 3: Very short time left. The very short time left scene’s 
determining equation can be expressed as follows 

0 < 𝑡g <
𝑑y −

𝑣2max−𝑣
2
0

2𝑎max

𝑣max
+

𝑣max − 𝑣0
𝑎max

(8)

In this scene, the FCHB accelerates to the maximum velocity 𝑣max
starting from 𝑣0, yet still cannot pass through, it must resort to a 
deceleration and stop strategy. The mathematical expression of the 
velocity trajectory is outlined as follows, 

𝑣 = 𝑣0 +
−𝑣20
2𝑑

𝑡 to 0 (9)

y

6 
3.2.2. Red light phase
Similarly, three distinct scenes, including very long time left, long 

time left, and very short time left, are identified based on the antici-
pated remaining time of the red light 𝑡r . A specific simulated schematic 
diagram illustrating driving trajectories for these three scenes preceding 
the red light phase is illustrated in Fig.  5-(b).

Scene 4: Very long time left. The very long time left scene’s deter-
mining equation can be expressed as follows, 

𝑡r >
𝑑y −

𝑣2lim−𝑣20
2𝑎min

𝑣lim
+

𝑣lim − 𝑣0
𝑎min

(10)

The mathematical expression for vehicle velocity under this strategy 
is as follows, 

𝑣 = 𝑣0 +
−𝑣20
2𝑑y

𝑡 (11)

Scene 5: Long time left. The long time left scene’s determining 
equation can be expressed as follows 

𝑑y
𝑣0

< 𝑡r <
𝑑y −

𝑣2lim−𝑣20
2𝑎min

𝑣lim
+

𝑣lim − 𝑣0
𝑎min

(12)

In Scene 5, the EVPS is formulated as follows. If 𝑣eco < 𝑣0 < 𝑣max, one 
must assess whether sufficient time exists to travel to the intersection 
at a constant velocity after decelerating to 𝑣eco at 𝑣0. And the required 
time exceeds 𝑡r , the FCHB should first decelerate and then pass through 
the intersection at a constant velocity at 𝑣eco. Under other conditions, 
the FCHB will decelerate until reaching the intersection with 𝑣0 trav-
eling 𝑡r time. In Scene 5, the vehicles successfully navigate past the 
signalized intersection following deceleration. Hence, a deceleration 
passing strategy is adopted. The mathematical expression for vehicle 
velocity under this strategy is as follows, 

𝑣 =

⎧

⎪

⎨

⎪

⎩

𝑣0 + 𝑎min𝑡 to 𝑣eco, 𝑣eco < 𝑣0 < 𝑣max and 𝑡𝑟 <
𝑑y−

𝑣2𝑒𝑐𝑜−𝑣
2
0

2𝑎min
𝑣𝑒𝑐𝑜

+ 𝑣𝑒𝑐𝑜−𝑣0
𝑎min

𝑣0 −
2(𝑑y−𝑣0𝑡r )

𝑡r 2
𝑡, others

(13)

Scene 6: Very short time left. The very short time left scene’s 
determining equation can be expressed as follows 

0 < 𝑡r ≤
𝑑y
𝑣0

(14)

In Scene 6, the EVPS is formulated as follows. If 𝑣0 ≤ 𝑣eco, the 
FCHB is controlled to maintain a constant velocity of 𝑣0 to reach 
the signalized intersection. In other cases, the FCHB is instructed to 
decelerate to 𝑣eco and proceed through the intersection. In scene 6, the 
FCHB can traverse the signalized intersection at a constant velocity. 
Thus, a constant velocity strategy is employed. The mathematical rep-
resentation of the vehicle’s velocity trajectory under this strategy is as 
follows, 

𝑣 =
{

𝑣0, 𝑣0 ≤ 𝑣eco
𝑣0 + 𝑎min𝑡 to 𝑣eco, others

(15)

In summary, there are six distinct passing scenes at signalized inter-
sections, each corresponding to one of six passing decision strategies: 
(1) Green light constant velocity strategy. (2) Green light acceleration 
strategy. (3) Green light slow down and stop strategy. (4) Red light 
slow down and stop strategy. (5) Red light decelerate strategy. (6) Red 
light constant velocity strategy.

Considering both the states of the FCHB and its interaction with 
vehicles and road infrastructure, an overview of EVPS flow at signalized 
intersections is illustrated in Fig.  6.
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Fig. 5. The trajectory of traffic light.
Fig. 6. EVPS at signalized intersection.
4. Q-learning-based EMS

To facilitate effective velocity planning for the FCHB, an EMS based 
on a model-free Q-learning algorithm is implemented. The Q-learning 
algorithm represents a robust framework within artificial intelligence 
and control theory that comprises five fundamental components: agent, 
state, action, environment, and reward function [34]. Herein, EMS 
serves as the agent while states are defined by discrete SOC levels along 
with demand power (𝑃dem) for the FCHB. The variable 𝑃f  represents 
discrete actions variable. 𝑟as is the reward the agent receives with action.

The primary objective of this algorithm is to maximize cumulative 
state–action Q-values, which necessitates establishing a Q-table for 
storing the Q-value alongside defining an appropriate reward function. 
It constantly updates the Q-table by repeating every iteration number 𝑁
(𝑁 = 1, 2, 3...) and state 𝑗 (𝑗 = 1, 2, 3...), allowing adaptive and optimal 
7 
strategy selection. The ultimate goal is to develop an optimal EMS 
that minimizes energy consumption and prolongs the FCS’s lifetime. 
The Q-learning-based EMS seeks to maximize the cumulative return of 
state–action pairs, represented by the optimization objective function 
𝑄∗(𝑠, 𝑎), which can be expressed as follows, 
𝑄∗(𝑠, 𝑎) = 𝑟𝑎𝑠 + 𝛾

∑

𝑠′
𝑃𝑠,𝑠′ max

𝑎′
𝑄∗(𝑠′, 𝑎′) (16)

where 𝑠′ and 𝑎′ are the state and action variables at the next moment, 
respectively. 𝑠 and 𝑎 are the state and action variables at the current 
moment, respectively. 𝛾 denotes the discount rate. 𝑃𝑠,𝑠′  represents the 
state transfer probability of 𝑃dem.

The reward function 𝑟𝑎𝑠 is the immediate reward obtained after tak-
ing action 𝑎 in the current state 𝑠. It consists of four main components: 
the sum of the hydrogen consumption of the FCS and the equivalent 
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hydrogen consumption of the battery, the maintenance of the battery 
SOC, and changes in power and decay of the FCS [15]. 𝑟𝑎𝑠 is expressed 
as follows, 

𝑟𝑎𝑠 = −(𝜔1𝑟(𝑔h2 ) + 𝜔2𝑟(|𝑠𝑜𝑐 − 𝑠𝑜𝑐ref|
2) + 𝜔3𝑟(|𝑃f ,t − 𝑃f ,t−1|) + 𝜔4𝑟(𝐹𝐶𝑑𝑟))

(17)

where the values of the weight parameters 𝜔1, 𝜔2, 𝜔3, and 𝜔4 are 
determined after numerous experiments. The hydrogen economy func-
tion 𝑟(𝑔h2 ) is the sum of the FCS’s instantaneous hydrogen consumption 
and the battery’s equivalent hydrogen consumption. It is expressed as 
follows [35], 

𝑟(𝑔h2 ) =
1000𝑃f

𝐿𝐻𝑉h2𝜂fc
+

⎧

⎪

⎨

⎪

⎩

𝑃b
𝜂di𝜂ch

𝐶fav
𝑃dcav

, 𝑃b ≥ 0

𝑃b𝜂ch𝜂di
𝐶fav
𝑃dcav

, others
(18)

where 𝐿𝐻𝑉h2  represents the low calorific value of hydrogen, equal to 
1.2 × 108 J/kg. 𝜂fc is the efficiency of the FCS. 𝜂ch and 𝜂di represent 
the battery’s charge and discharge efficiency, respectively. 𝜂ch and 
𝜂di represent the battery’s average charge and discharge efficiency, 
respectively. 𝐶fav is the average instantaneous hydrogen consumption 
of the FCS. 𝑃dcav denotes the average power of the DC/DC converter.

The battery SOC maintenance function is expressed as
𝑟(|𝑠𝑜𝑐 − 𝑠𝑜𝑐ref|

2). 𝑠𝑜𝑐 and 𝑠𝑜𝑐ref  represent the actual and reference values 
of the battery SOC, respectively. The FCS power fluctuation function is 
expressed as 𝑟(|𝑃𝑓,𝑡 − 𝑃𝑓,𝑡−1|). 𝑃𝑓,𝑡 and 𝑃𝑓,𝑡−1 are the FCS power at the 
current moment and the previous moment, respectively.

The FCS decay function 𝑟(𝐹𝐶dr ) is expressed as 

𝑟(𝐹𝐶dr ) =
1

1 + 𝑒−𝐹𝐶dr
(19)

where the corresponding aging degradation 𝐹𝐶𝑑𝑟 is presented as fol-
lows [35]: 
𝐹𝐶𝑑𝑟 = 𝐾𝑝

((

𝑘1𝑡1 + 𝑘2𝑛1 + 𝑘3𝑛2 + 𝑘4𝑡2
)

+ 𝜑
)

(20)

where 𝐹𝐶𝑑𝑟 represents the degradation of FCS. 𝐾𝑝 is a correction 
coefficient used to account for differences between the experimental 
and real environments. 𝑘1, 𝑘2, 𝑘3, and 𝑘4 denote the degradation 
factors for idle, start-stop, variable load, and heavy load conditions, 
respectively. 𝑡1, 𝑡2, 𝑛1, and 𝑛2 represent the duration and frequency 
of the four operating cycles (idle, start-stop, variable load, and heavy 
load) for FCS, respectively. 𝜑 denotes the natural degradation rate of 
the FCS over time. The specific values for these parameters can be 
found in Ref. [35].

The flow of the Q-learning algorithm implemented in FCHB EMS is 
shown in Fig.  7, where 𝑆 and 𝐴 represent collections of the state and 
action variables, respectively.

5. Simulation and validation

The core concept of the EVPS-based EMS is illustrated in Fig.  8, 
which encompasses a collaborative control framework. Initially, focus-
ing on essential parking scenes such as signalized intersections and 
bus stations present on actual roadways, the EVPS is employed to 
plan velocity for the FCHB. Subsequently, utilizing the velocity com-
mand generated by the EVPS, the Q-learning-based EMS is activated to 
manage power distribution across the battery pack and the FCS.

5.1. The effectiveness of EVPS

In this subsection, simulation experiments are conducted along 
three routes to achieve an improved velocity profile and validate 
the adaptability of the EVPS. A modified intelligent driver model 
(MIDM) [9] serves as a benchmark for comparisons purposes. To more 
clearly assess the passing ability of the proposed strategy at signal-
ized intersections, we ensure that parking times at bus stations under 
Real-based driving, MIDM-based VPS, and EVPS are consistent.
8 
Table 6
Route1: Results for three VPSs.
 VPS Travel Saving Idling Total idle Saving idle Passing  
 time/s time/s time/s time/s time rate efficiency 
 Real 1714 – 44/88/16/15/42/8 213 – 25.00%  
 MIDM 1667 47 6/12 18 91.55% 75.00%  
 EVPS 1672 42 9 9 95.77% 87.50%  
Saving idle time rate: The saving rate of the total idle time compared to Real-based 
driving methods.
Passing efficiency: The ratio of the number of FCHB passes to the number of 
intersections.

5.1.1. Route 1
Trajectories from both VPS approaches on Route 1 are illustrated in 

Fig.  9. The results indicate that performance using EVPS outperforms 
MIDM in terms of reducing both stop frequency and access delays. The 
velocity trajectory corresponding to MIDM is depicted in Fig.  9-(a). 
When approaching S13 with L13 ahead displaying a red light signal, 
smooth passage becomes impossible. Consequently, two instances re-
quiring deceleration occur, first at L13 followed by another at L14. 
Conversely, Fig.  9-(b) presents data from the EVPS approach where 
only one stop occurs at intersections with a total stopping duration of 
just 9 s for FCHB operations. The FCHB passes most sections adhering to 
eco-driving speed (𝑣eco), and maintains efficient movement. However, 
due to the proximity between L13 and S13, locations requiring gradual 
acceleration after a brief stop occur following a halt at S13. The signal 
L13 ahead is in the red phase, with an extended remaining time. Con-
sequently, the FCHB adopts the strategy of deceleration and stopping 
while waiting the commencement of the next green phase.

The space–time results of the three strategies are summarized in 
Fig.  9-(c), where the green line segment represents the duration of the 
green light. Due to varying controllability among these strategies, the 
time windows during which the FCHB passes traverses signalized inter-
sections differ significantly. As illustrated by the black dotted line and 
purple dot line, Real-based driving and MIDM-based VPS demonstrate 
high acceleration prior to reaching the 4th light, resulting in a stop at 
that intersection. In contrast, EVPS is more adept at planning velocity 
with fewer instances of starting/stopping and reduces idling time.

Table  6 presents detailed outcomes for all three proposed VPSs. 
The idling times under both MIDM-based and EVPS-based methods are 
markedly lower compared to those observed with Real-based driving 
method, 18 s and 9 s, respectively. Although overall driving time is 
reduced by 5 s using MIDM-based VPS, it is noteworthy that EVPS 
substantially decreases idling time at signalized intersections. The idle 
time saving rate associated with EVPS improved by 4.22%, while 
passing efficiency increased by 12.50% relative to the MIDM-based 
VPS. When compared to Real-based driving methods, EVPS achieved 
an impressive time saving rate of 95.77% alongside an enhancement 
in passing efficiency of 87.50%. It is important to emphasize that this 
proposed EVPS demonstrates superior traffic efficiency at signalized 
intersections and highlights its effectiveness in promoting eco-driving 
practices.

5.1.2. Route 2
The trajectories of the two VPSs on Route 2 are illustrates as Fig. 

10. On this route, all three strategies enable the FCHB to reach its 
destination within the expected time frame. The simulation results of 
vehicle speed planning under the MIDM-based approach are presented 
in Fig.  10-(a). The vehicle comes to a stop three times at locations L28, 
L211 and L217. A red signal is observed from a distance of 100 m before 
reaching these points. Consequently, the vehicle decelerates and halts. 
When arriving at each signalized intersection still facing a red lihgt 
phase, it must wait for the subsequent green phase to commence.

The simulation outcomes based on the EVPS method are depicted 
in Fig.  10-(b). At location L2 , when encountering a red light, this 
17
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Fig. 7. Flow chart of Q-learning algorithm.
strategy employs a red light deceleration stopping strategy resulting in 
an idle period of 48 s.

Space–time trajectory diagrams corresponding to all three strategies 
are presented in Fig.  10-(c). It is evident that while both MIDM-based 
VPS and EVPS exhibit similar driving trajectories, the proposed EVPS 
significantly reduces instances of stops due to red lights. For example, 
when the FCHB passed the 8th light and 11th light, it hit the red 
light and waited for 94 s and 73 s with the Real-based strategy. It 
waited for 67 s with the MIDM-based VPS. While the EVPS is capable 
of successfully passing through the light.

Detailed performance metrics for all three VPSs are summarized 
in Table  7. Under Real-based driving conditions, total stopping time 
amounts to an extensive duration of 493 s across 8 stops. It character-
izes by prolonged halts including one instance lasting as long as 117 
s. Additionally, the total stopping time at the traffic signal is signifi-
cantly decreased by 151 s and 48 s, resulting in idling time savings 
9 
of 69.37% and 90.26%, respectively. In terms of intersection passing 
efficiency, the passing rate for Real-based driving stands at 55.56%, 
while that for the MIDM-based and EVPS-based methods are 83.33% 
and 94.44%, representing increases of 27.77% and 38.88% over Real-
based driving, respectively. When compared to the MIDM-based VPS, 
the EVPS-based method demonstrates a idle time saving improvement 
of 20.89% along with an enhancement in passing efficiency by 11.11%. 
Notably, the EVPS demonstrates higher passing efficiency compared to 
the MIDM-based VPS.

5.1.3. Route 3
The vehicle velocity trajectories on Route 3, based on MIDM and 

EVPS methodologies, are illustrated in Fig.  11. The driving time for 
vehicles utilizing the MIDM-based approach is recorded at 1382 s, 
while the total driving time under the EVPS framework is noted as 1379 
s. This results in a difference of merely 3 s between the two strategies. 
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Fig. 8. Framework of the EVPS and Q-learning-based EMS.

Fig. 9. Route 1: Trajectory of the FCHB.

Energy 326 (2025) 135912 

10 



X. Wu et al. Energy 326 (2025) 135912 
Fig. 10. Route 2: Trajectory of the FCHB.
Table 7
Route2: Results for three VPSs.
 VPS Travel Saving Idling Total idle Saving idle Passing  
 time/s time/s time/s time/s time rate efficiency 
 Real 1900 – 24/40/94/30/73/40/75/117 493 – 55.56%  
 MIDM 1842 58 3/67/81 151 69.37% 83.33%  
 EVPS 1872 28 48 48 90.26% 94.44%  
In comparison to the Real-based driving scenario, both MIDM and EVPS 
demonstrate a significantly reduced total driving time.

Regarding the frequency of stops at the signalized intersection, the 
velocity trajectory corresponding to the MIDM-based VPS is depicted 
in Fig.  11-(a). Here, it can be observed that there are six instances in 
which vehicles stop due to red lights at locations L31, L33, L34, L36, L37, 
and L310. The velocity trajectory associated with EVPS is presented in 
Fig.  11-(b). This method results in two stops at locations L31 and L33. 
The driving trajectories across three different VPSs along Route 3 are 
displayed in Fig.  11-(c). The trajectories generated by both MIDM-based 
and the EVPS exhibit similarities yet diverge from those derived from 
Real-based driving data. A significant interval exists between locations 
L3  and L3  during which driver maintains high speeds without access 
1 2

11 
to forthcoming traffic information. After about 400 s, there are seven 
consecutive signals with uniform location distribution, and the velocity 
trajectories based on MIDM and EVPS are highly correlated to the Real-
based driving in the case that the information of the signals ahead can 
be obtained.

The simulation results of the three VPS approaches at signalized 
intersections under Route 3 are presented in Table  8. Both MIDM-based 
and EVPS-based VPS exhibit significant reductions in travel time as 
well as total stopping time when contrasted with Real-based driving 
conditions. Specifically, under EVPS, there is a saving of approximately 
196 s in driving time alongside 2 stops made during this period. This 
translates to a remarkable overall reduction of idle time by about 
94.17%.
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Fig. 11. Route 3: Trajectory of the FCHB.
Table 8
Route3: Results for three VPSs.
 VPS Travel Saving Idling Total idle Saving idle Passing  
 time/s time/s time/s time/s time rate efficiency 
 Real 1575 – 7/18/42/41/76/125 309 – 40.00%  
 MIDM 1382 193 10/31/11/10/1/10 73 76.38% 40.00%  
 EVPS 1379 196 10/8 18 94.17% 80.00%  

In summary, these findings underscore the advantages offered by 
EVPS. The EVPS can reduce idling times at signalized intersections by 
more than 80.00% compared to Real-based driving practices. Further-
more, travel times across three routes are diminished by 42 s, 28 s, and 
196 s, respectively, demonstrating robust adaptability.

5.1.4. Analysis of passing efficiency
We also analyze the characteristics associated with vehicle passage 

through signalized intersections utilizing identical velocity planning 
method across three distinct driving routes to gain deeper insights into 
how VPSs methods perform on varied roadways effectively. Traffic 
characteristics observed at intersections employing both MIDM-based 
12 
Table 9
Passage characterization based on the MIDM and EVPS.
 Methods Route Travel time Traffic light 

number
Idling times Passing 

efficiency
 

 1 1667 s 8 2 75.00%  
 MIDM 2 1842 s 18 3 83.33%  
 3 1382 s 10 6 40.00%  
 1 1672 s 8 1 87.50%  
 EVPS 2 1872 s 18 1 94.44%  
 3 1379 s 10 2 80.00%  

VPS and EVPS-based method across these three routes are detailed in 
Table  9.

The passing efficiency based on the MIDM is lowest in urban areas, 
followed by suburban and urban+suburban areas, respectively. The 
passing efficiency in urban areas is less than half of that observed 
in urban+suburban area, indicating that velocity control at signalized 
intersections could be enhanced. In contrast, the passing efficiency of 
the proposed EVPS across all three routes exceeds 80.00%, with a 
maximum recorded value of 94.44%. Notably, under this system, green 
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Fig. 12. Power output and SOC variation curves under Route 2.
lights facilitated smooth passage through 17 intersections. In summary, 
when compared to the Real-based driving and MIDM-based VPS, the 
proposed EVPS exhibits significant advantages regarding time savings, 
stopping duration, time savings rate, and overall passing efficiency.

5.2. The effectiveness of Q-learning-based EMS

5.2.1. FCHV’s fuel economy
The velocity trajectories generated under the three VPSs serve as in-

puts for evaluating the effectiveness of a Q-learning-based EMS within 
varying operational conditions. Additionally, prior work related to EMS 
has been validated in Ref. [35] and will not be discussed further here.

For illustrative purposes, we consider an initial SOC set at 70%. 
Route 2, characterized by both suburban and urban road conditions, is 
selected for analysis. Corresponding SOC curves and power allocation 
modes derived from the Q-learning-based EMS across these three VPSs 
on Route 2 are presented in Fig.  12. It is observed that in Real-based 
driving scenarios, the final SOC is lower than those achieved with either 
MIDM-based VPS or EVPS approaches. Under EVPS operation, wherein 
fuel cells consistently function within their high-efficiency range, the 
power fluctuations in FCS and battery are minimized compared to those 
experienced under MIDM-based VPS conditions. Residual energy allows 
for battery charging via fuel cells which results in a higher SOC relative 
to both alternative methods.

Furthermore, DP-based EMS serves as a benchmark against which 
the performance of the proposed Q-learning-based EMS can be as-
sessed concerning optimal FCHB power distribution strategies. Based 
on various combinations of VPS and EMS methods employed during 
simulations, six mdistinct approaches have been delineated, includ-
ing EVPS+Q-learning, Real+Q-learning, MIDM+Q-learning, EVPS+DP, 
Real+DP, and MIDM+DP. Among these, the EVPS+Q-learning EMS rep-
resents the proposed cooperative approach. The variation of equivalent 
hydrogen consumption per 100 km under Route 2 is illustrated in 
Fig.  13. The highest equivalent hydrogen consumption per 100 km is 
observed with the Real+Q-learning method, followed by the Real+DP 
based method, MIDM+Q-learning, MIDM+DP, EVPS+Q-learning, and 
finally the lowest hydrogen consumption recorded under the EVPS+DP 
method.

The fuel economy across three routes is specifically detailed in Table 
10. Overall, the equivalent hydrogen consumption per 100 km based on 
Real+Q-learning is found to be the highest among all three routes. In 
13 
Table 10
Results of the VPSs-based EMSs for three routes.
 Route Method EMS End value Average efficiency 𝑚100 Difference 
 of SOC/% of FCS/% /kg  
 Real Q-learning 69.33 54.58 5.34 –  
 MIDM Q-learning 71.55 54.74 4.31 −19.29%  
 1 EVPS Q-learning 71.92 54.63 4.20 −21.35%  
 Real DP 70.00 54.30 5.11 −4.31%  
 MIDM DP 70.00 56.39 4.13 −22.66%  
 EVPS DP 70.00 56.46 4.01 −24.91%  
 Real Q-learning 70.23 54.72 5.83 –  
 MIDM Q-learning 71.90 54.82 4.82 −17.32%  
 2 EVPS Q-learning 73.61 54.79 4.09 −29.85%  
 Real DP 70.00 55.10 5.55 −4.80%  
 MIDM DP 70.00 56.47 4.51 −22.64%  
 EVPS DP 70.00 56.37 3.97 −31.90%  
 Real Q-learning 70.89 54.51 5.13 –  
 MIDM Q-learning 71.23 54.66 4.28 −16.57%  
 3 EVPS Q-learning 71.67 54.83 3.93 −23.39%  
 Real DP 70.00 56.48 4.98 −2.92%  
 MIDM DP 70.00 56.31 4.07 −20.67%  
 EVPS DP 70.00 56.54 3.75 −26.90%  
𝑚100 is the equivalent hydrogen consumption per 100 km.

contrast, methods based on MIDM+Q-learning and EVPS+Q-learning 
demonstrate improvements exceeding 16.57% and 21.35%, respec-
tively. Taking Route 2 as an example, when compared to both Real+Q-
learning and MIDM+Q-learning methods, the proposed
EVPS+Q-learning method achieves an equivalent hydrogen consump-
tion of 4.09 kg per 100 km, resulting in savings of 29.85% and 15.15%, 
respectively. The equivalent hydrogen consumption of 100 km based 
on EVPS+Q-learning method is 0.12 kg more than that achieved by 
EVPS+DP method. Similarly, for the other two routes analyzed, are 
0.19 kg and 0.18 kg more than that achieved by DP-based EMS. 
This indicates the Q-learning-based EMS effectively manages power 
distribution, yielding optimization outcomes that are 4.74%, 3.02%, 
and 4.80% lower than those achieved by DP-based EMS across all three 
routes, respectively.

5.2.2. FCS lifespan
During FCHB driving conditions, significant variability in fuel cell 

power can lead to reduced FCS lifespan. This variability under Q-
learning-based EMS utilizing Real-based driving strategies alongside 
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Fig. 13. Equivalent hydrogen consumption per 100 km for different strategies under Route 2.
Fig. 14. Change rate of fuel cell power under three routes.
MIDM-based, and EVPS methods is depicted in Fig.  14. Notably fre-
quent and substantial power fluctuations are observed with Real +
Q-learning, where maximum fluctuation peaks at approximately 18 
kW/s. The maximum rates of change reach up to about 6 kW/s under 
MIDM + Q-Learning. Changes associated with the proposed EVPS +
Q-Learning exhibit considerably gentler variations.

The decay rates of the FCS for the three routes are presented in 
Table  11. In comparison to the decay rates observed under the Real+Q-
learning and MIDM+Q-learning methods, the EVPS+Q-learning method 
demonstrates superior capabilities in power fluctuation smoothing and 
mitigation of severe operating condition. The results indicate that 
the proposed EVPS+Q-learning method achieves a relative reduction 
in decay rate by 39.55%, 46.15%, and 45.40% across three routes 
when compared to Real+Q-learning, highlighting its significant life 
enhancement effect.

5.3. Limitations

The EVPS proposed in this paper demonstrates the capability to 
reduce overall travel time, enhance the passing rate at intersections, 
and significantly decrease vehicle dwell time caused by signals when 
compared to real-world driving conditions. Furthermore, EVPS-based 
EMS can operate the fuel cell within its high-efficiency zone, offer-
ing substantial advantages in terms of fuel cell economy while also 
mitigating lifetime degradation.

However, it is important to note that this study does not account for 
vehicle jerk during travel when planning vehicle speed. This oversight 
14 
Table 11
FCS decay under three routes with Q-learning-based EMS.
 Route Method decay rate Difference 
 Real 0.177‰ –  
 1 MIDM 0.106‰ −40.11%  
 EVPS 0.107‰ −39.55%  
 Real 0.208‰ –  
 2 MIDM 0.114‰ −45.19%  
 EVPS 0.112‰ 46.15%  
 Real 0.163‰ –  
 3 MIDM 0.090‰ −44.79%  
 EVPS 0.089‰ −45.40%  

results in elevated levels of jerk during certain travel phases, which 
adversely affects ride comfort. The variations in jerk associated with 
different speed strategies across three routes are illustrated in Fig.  15. It 
is evident that the jerks experienced under EVPS and MIDM across these 
three distinct routes exhibit a similar maximum fluctuation, which con-
siderably compromises passenger comfort. Consequently, addressing 
this issue will be the main focus of future research efforts aimed at 
optimizing the VPS presented here.

6. Conclusion

This article presents an EVPS+Q-learning EMS designed to tackle 
challenges related to idling time, energy consumption, and FCS life-
time for demonstration FCHBs within urban transportation systems. 
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Fig. 15. Change rate of jerk under three routes.
Simulation results validate the effectiveness of this proposed approach 
in optimizing ecologically velocity profiles while minimizing adverse 
impacts associated with driving at signalized intersections, reducing 
energy consumption, and extending FCS lifespan. The methodology 
comprises three key components:

(1) An EVPS technique is introduced to compute optimal velocity 
profiles. This method effectively reduces waiting times at signalized 
intersections, achieving substantial improvements over strategies based 
on Real-based driving and MIDM-based VPS, respectively. Furthermore, 
its robustness has been confirmed.

(2) A Q-learning-based EMS is proposed to enhance FCS longevity 
while optimizing power distribution for a demonstration FCHB. Results 
reveal that the Q-learning-based EMS effectively manages power dis-
tribution, yielding optimization outcomes that are 4.74%, 3.02%, and 
4.80% lower than those achieved by DP-based EMS across all three 
routes with EVPS, respectively.

(3) The proposed EVPS+Q-learning EMS presents a promising solu-
tion for enhancing fuel efficiency in FCHBs while simultaneously pro-
longing FCS lifetime in real time scenarios. It contributes significantly 
towards more sustainable and eco-friendly driving practices.

The authors anticipate exploring further avenues for future research: 
performance analysis across diverse SPAT information and road seg-
ments, consideration of dynamic traffic flow, and rigorous examination 
through hardware-in-the-loop simulation or field experimentation.
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