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A B S T R A C T

Background: Higher meat intake has been associated with adverse health outcomes, including cardiovascular 
disease (CVD). This study investigated plasma metabolites associated with meat intake and their relation with 
cardiometabolic biomarkers, subclinical CVD markers, and incident CVD.
Methods: Associations between self-reported meat intake and 1272 plasma metabolites were investigated in the 
SCAPIS cohort (n = 8,819; ages 50–64). Meat-associated metabolites were further examined for relation with 
subclinical CVD markers in the POEM cohort (n = 502; age 50) and incident CVD in the EpiHealth cohort (n =
2,278; ages 45–75; 107 incident cases over 9.6 years follow-up). Meat intake was categorized into white, un
processed red, and processed red meat. Linear regression analyzed associations between meat intake, metabolites 
and cardiometabolic biomarkers, and subclinical CVD markers, while Cox models evaluated association between 
meat-associated metabolites and incident CVD.
Results: After correction for multiple testing, 458, 368, and 403 metabolites were associated with white, un
processed red, and processed red meat, respectively. Processed red meat-associated metabolites were associated 
with higher levels of fasting insulin, hemoglobin A1c, and lipoprotein(a), and were inversely associated with 
maximal oxygen consumption. Two metabolites, 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) (hazard ratios (HR: 
1.32; 95 % CI: 1.08, 1.62)) and glutamine degradant (HR: 1.35; 95 % CI: 1.07, 1.72), that were inversely 
associated with intake of all meat types, were also associated with a higher risk of incident CVD.
Conclusions: This study provides comprehensive analysis of self-reported meat intake and plasma metabolites. 
The findings may enhance our understanding of the relationship between meat intake and CVD, and provide 
insights into underlying mechanisms.
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E-mail address: shafqat.ahmad@sh.se (S. Ahmad). 

Contents lists available at ScienceDirect

Metabolism

journal homepage: www.journals.elsevier.com/metabolism

https://doi.org/10.1016/j.metabol.2025.156188
Received 2 December 2024; Accepted 9 March 2025  

Metabolism 168 (2025) 156188 

Available online 11 March 2025 
0026-0495/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:shafqat.ahmad@sh.se
www.sciencedirect.com/science/journal/00260495
https://www.journals.elsevier.com/metabolism
https://doi.org/10.1016/j.metabol.2025.156188
https://doi.org/10.1016/j.metabol.2025.156188
http://crossmark.crossref.org/dialog/?doi=10.1016/j.metabol.2025.156188&domain=pdf
http://creativecommons.org/licenses/by/4.0/


1. Introduction

Meat is an important dietary component as it provides essential 
nutrients including protein and micronutrients such as iron, zinc and 
vitamin B12 [1]. Nevertheless, epidemiological studies have shown that 
high meat intake is associated with an increased risk of cardiovascular 
disease (CVD) incident and its risk factors, including blood lipids, in
sulin, glucose, hemoglobin A1c (HbA1c), C-reactive protein and insulin 
sensitivity [2–4]. However, significant variations in these associations 
have been observed across studies [5,6]. The mechanisms by which 
meat intake may influence CVD risk are complex. Heme iron content in 
red meat, along with saturated fats, processing methods involving so
dium and nitrates which are precursors of nitrosamines, and high tem
perature heating, contribute to advanced glycation and other Maillard 
products, which may contribute to the development of CVD [7–9]. 
White meat, such as chicken and turkey, is a lower-fat and lower-iron 
alternative to red meat and may protect against CVD, although evi
dence supporting the protective nature of white meat is conflicting [10]. 
Thus, understanding the mechanisms through which meat intake may 
increase the risk of CVD remains challenging and requires further 
exploration.

Recent advances in high-throughput metabolomic profiling offer a 
powerful approach for identifying plasma metabolites associated with 
habitual meat intake and their clinical relevance [11,12]. Metabolomic 
profiles enable a more objective assessment of metabolic responses, 
addressing the systematic and random measurement errors inherent in 
self-reported dietary methods, such as food frequency questionnaires 
(FFQs) [13]. Furthermore, sample heterogeneity, which arises from 
factors such as variations in meat consumption across populations, dif
ferences in study designs, geographical and dietary influences, and inter- 
individual molecular variation, play a significant role in the evaluation 
of the meat-metabolite associations [14].

Previous studies have indicated an association between meat intake 
and plasma metabolites. For instance, a recent study based on a type 2 
diabetes case-control study (n = 403) and replication in a population- 
based sample of 4,457 individuals identified associations of processed 
meat with acylcarnitines and a piperine metabolite [15]. Similarly, the 
PREDIMED study (n = 1,833) found that red meat intake was linked to 
higher levels of 38:4 PC plasmalogen, cotinine and isoleucine, while 
processed red meat consumption was associated with increased levels of 
leucine, uric acid, and 36:5 PC plasmalogen [16]. Furthermore, in the 
Bavarian Food Consumption Survey (n = 294), red meat intake was 
associated with higher plasma levels of carnosine and pi- 
methylhistidine, whereas poultry intake was associated with pi- 
methylhistidine levels [17]. In a dietary intervention study (n = 10), 
chicken intake was associated with anserine, while red and processed 
meats were associated with carnosine and acylcarnitines such as ace
tylcarnitine, propionylcarnitine, and 2-methylbutyrylcarnitine [18]. 
However, a larger epidemiological study that accounts for other dietary 
components and examines the links to cardiometabolic biomarkers, 
subclinical CVD markers, and incident CVD could provide more robust 
evidence of associations between specific meat intake, related metabo
lites, and CVD risk.

Therefore, our primary aim was to investigate the association be
tween self-reported white meat, unprocessed red meat, and processed 
red meat intake with plasma metabolites using the Swedish CArdio
Pulmonary bioImage Study (SCAPIS) cohort. As a secondary aim, we 
investigated the identified meat-associated metabolites in relation to 
cardiometabolic biomarkers in the SCAPIS cohort, their relationship 
with subclinical CVD markers in the POEM cohort, and incident CVD in 
the EpiHealth cohort.

2. Methods

2.1. Study population

The current study included data and samples from three population- 
based cohorts: SCAPIS, POEM, and EpiHealth. The studies were con
ducted in compliance with the principles of the Declaration of Helsinki 
and were approved by the responsible ethics committees (DNR 
2023–07352-01, DNR 2009–057, DNR 2018–315), and written 
informed consent was obtained from all participants.

The SCAPIS is a nationwide, population-based study conducted in 
Sweden between 2013 and 2018. It involved 30,154 men and women 
aged 50–64 years, who were randomly selected from the Swedish pop
ulation register and recruited from six sites. For the current analyses, we 
included 11,287 participants from two sites of SCAPIS, namely SCAPIS- 
Uppsala (n = 5,036) and SCAPIS-Malmö (n = 6,251) [19]. A total of 
8,966 particiapnts were included for metabolomic analysis from the 
SCAPIS-Uppsala (n = 4,990) and SCAPIS-Malmö (n = 3,976). Further 
removed in quality control (n = 9) and excluding participants with 
missing covariates (n = 138) in the full model resulted in a final sample 
of 8,819 participants, comprising from SCAPIS-Uppsala (n = 4,906) and 
from SCAPIS-Malmö (n = 3,913). The flowchart of the study design is 
shown in Fig. S1. Further information of participants from the POEM 
and EpiHealth cohorts are provided in the Supplemental Method.

2.2. Dietary assessment

Dietary intake was assessed using a web-based FFQ (MiniMeal-Q), 
which had been previously validated for the SCAPIS cohort [20,21]. 
Briefly, the FFQ was self-administered, semi-quantitative, and included 
questions about dietary intake and portion sizes. The questions offer an 
optional nine-point frequency scale, ranging from “five times per day” to 
“one to three times per month”. To account for this variation, the 
questionnaire includes between 75 and 126 food items. These food items 
include the consumption of (1) foods, cooked dishes, and beverages; (2) 
energy and nutrient intake, including alcohol; (3) dietary supplements; 
(4) meal patterns; and (5) eating habits, such as dining out, fast food 
consumption, use of low-calorie products and probiotics, and the con
sumption of cooking fats and salt. Participants chosed from a list of 
predetermined food items and frequency options, including only those 
they consumed at least once a month [20]. During their initial visit, 
participants were asked to indicate how often, on average, they had 
consumed various foods for a month, ranging from five times a day to 
one to three times a month. In this study, meat intake was categorized 
into white meat, unprocessed red meat, and processed red meat, based 
on classifications made in previous Swedish studies [22,23]. White meat 
included chicken/other poultry; unprocessed red meat included pork, 
beef, lamb, game, hamburger, kebab, and minced meat dishes; and 
processed red meat included ham/salami for sandwiches and sausages. 
Meat intake (g/d) was calculated using frequency of meat intake and 
portion size information for all three meat types.

2.3. Plasma metabolome profiling

In the three study cohorts, plasma samples were analyzed using the 
same untargeted metabolomics platform from Metabolon Inc. (Durham, 
NC, USA) [24] to ensure consistency in the identification of metabolites. 
Fasting plasma samples were collected after overnight fasting and stored 
at − 80 ◦C in the respective biobanks until they were sent to Metabolon 
for non-targeted metabolome analysis. Quality control standards for 
metabolome analysis have been previously described in studies [25–27]. 
Ultra-High-Performance Liquid Chromatography-Tandem Mass Spec
trometry (UPLC-MS/MS) was used, employing a heated electrospray 
ionization (HESI-II) source and an Orbitrap mass analyzer. Four ap
proaches were applied to maximize metabolite coverage and identifi
cation: two separate reverse-phase UPLC-MS/MS analyses in positive 
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ionization mode (electrospray ionization, +ESI), a reverse-phase UPLC- 
MS/MS analysis in negative ionization mode (-ESI), and a hydrophilic 
interaction UPLC-MS/MS analysis in negative ionization mode (-ESI).

Metabolites were classified using two different levels by Metabolon. 
The first level, metabolite class called the “super-pathway,” includes 
broad categories such as amino acids, lipids, uncharacterized molecules, 
xenobiotics, cofactors and vitamins, nucleotides, carbohydrates, pep
tides, energy-related metabolites, and non-significant metabolites. The 
second level, metabolite subclass, called, “sub-pathway,” refers to more 
specific pathway categories, with 116 distinct sub-pathway types. 
Further information on the untargeted metabolomics analysis workflow 
for metabolite identification is provided in the Supplemental Method.

2.4. Cardiometabolic biomarker measures

Total cholesterol, high-density lipoprotein cholesterol (HDL-C), and 
triglycerides (TG) were measured using standard laboratory methods. 
Low-density lipoprotein cholesterol (LDL-C) was calculated using the 
Friedewald formula [28]. Fasting plasma samples were analyzed on the 
Alinity C system for apolipoprotein A1 (ApoA1), apolipoprotein B 
(ApoB), and lipoprotein(a) (Lp(a)), while insulin was assessed using the 
Alinity I kit. Plasma glucose was determined by the hexokinase method. 
Hemoglobin A1c (HbA1c) was measured in SCAPIS-Uppsala using 

capillary electrophoresis and in SCAPIS-Malmö via turbidimetry. C- 
reactive protein (CRP) was measured using the immunoturbidimetric 
method. Blood pressure was measured using an Omron M10-IT device.

2.5. Covariates

Self-reported covariates included demographic and lifestyle factors. 
A detailed description of the covariates is provided in the Supplemental 
Method.

2.6. Statistical analysis

Individual-level data from the SCAPIS-Uppsala and SCAPIS-Malmö 
cohorts were combined for analysis. The data was checked for missing 
values, outliers, and statistical distributions. Missing values were 
addressed using complete case analysis. The characteristics of study 
participants were presented based on their tertiles of meat intake, using 
means and standard deviations (SD) for continuous variables and 
number (%) for categorical variables (Table 1). For the descriptive table, 
the measures of white meat, unprocessed red meat, and processed red 
meat intake were combined into one variable as total meat intake, which 
was divided into tertiles. Pearson correlation coefficients were calcu
lated to examine the relationships between the intake of the three meat 

Table 1 
Characteristics of study participants based on the first and third tertiles of total meat intake in the SCAPIS-Uppsala (T1, n = 1,546; T3, n = 1,684) and SCAPIS-Malmö 
(T1, n = 1,402; T3, n = 1,274) cohorts.

SCAPIS-Uppsala SCAPIS-Malmö

T1 T3 Total T1 T3 Total

(n = 1,546) (n = 1,684) (n = 4,906) (n = 1,402) (n = 1,274) (n = 3,913)

Age, years 58.2 (4.3) 57.0 (4.4) 57.7 (4.4) 57.9 (4.3) 56.9 (4.2) 57.5 (4.3)
Sex: male 470 (30.4) 1155 (68.6) 2385 (48.6) 419 (29.9) 859 (67.4) 1866 (47.7)
BMI, kg/m2 26.2 (4.2) 28.0 (4.5) 27.0 (4.4) 26.3 (4.3) 28.4 (4.8) 27.2 (4.5)
Energy total, kcal/d 1518.5 (578.5) 1988.2 (730.5) 1731.6 (677.5) 1501.8 (638.5) 2034.3 (823.3) 1730.2 (749.1)
Fibre intake, g/d 21.1 (11.2) 20.7 (10.6) 20.4 (10.7) 20.4 (11.9) 20.7 (11.4) 20.0 (11.3)
Carbohydrate, g/d 165.8 (70.3) 207.0 (92.4) 184.6 (83.47) 165.3 (83.7) 212.7 (106.7) 186.0 (95.6)
Fat, g/d 60.2 (27.9) 81.4 (33.5) 69.7 (31.0) 59.7 (28.7) 83.2 (36.4) 69.6 (33.3)
Protein, g/d 58.6 (21.3) 83.0 (27.6) 69.7 (26.0) 56.7 (22.3) 83.7 (28.8) 68.1 (27.1)
Fish intake, g/d 28.9 (22.1) 42.4 (27.4) 35.5 (24.9) 26.3 (22.7) 39.5 (27.26) 32.4 (24.9)
Egg intake, g/d 20.7 (33.2) 25.1 (38.6) 22.2 (33.9) 21.3 (37.2) 23.5 (31.9) 21.7 (32.4)
Whole grain intake, g/d 44.8 (44.3) 45.4 (43.5) 44.3 (44.0) 41.2 (48.3) 39.4 (40.8) 39.5 (43.4)
Fruit,vegetable intake, g/d 361.4 (241.0) 287.4 (202.0) 318.1 (218.6) 368.1 (253.6) 310.2 (228.2) 331.6 (237.1)
Alcohol intake, g/d 5.5 (5.5) 8.2 (6.8) 6.9 (6.2) 5.3 (5.7) 8.6 (7.9) 7.0 (6.8)

Physical activity, n (%)
Never 368 (25.4) 461 (29.7) 1233 (26.9) 415 (30.0) 420 (33.7) 1205 (31.3)
Not regular 310 (21.4) 313 (20.2) 980 (21.3) 314 (22.7) 287 (23.1) 879 (22.9)
1–2 times/week 307 (21.2) 325 (21.0) 981 (21.4) 246 (17.8) 207 (16.6) 703 (18.3)
2–3 times/week 263 (18.2) 287 (18.5) 842 (18.3) 235 (17.0) 177 (14.2) 587 (15.3)
>3 times/week 198 (13.7) 165 (10.6) 555 (12.1) 172 (12.4) 154 (12.4) 470 (12.2)
Regular smokers, n (%) 83 (13.0) 73 (12.3) 223 (11.8) 125 (16.5) 123 (17.4) 389 (18.2)
White meat, g/d 11.8 (9.8) 33.8 (20.7) 22.7 (17.5) 11.8 (9.7) 35.7 (24.8) 22.9 (19.7)
Unprocessed red meat, g/d 20.2 (12.9) 83.5 (32.9) 50.7 (34.1) 18.9 (12.2) 82.3 (38.1) 47.6 (35.9)
Processed red meat, g/d 8.2 (8.1) 36.3 (23.6) 21.8 (19.9) 9.3 (9.2) 37.9 (27.6) 22.1 (21.7)
HDL-C, mmol/L 1.6 (0.4) 1.4 (0.4) 1.5 (0.4) 1.8 (0.6) 1.5 (0.5) 1.7 (0.5)
LDL-C, mmol/L 3.5 (0.9) 3.5 (0.9) 3.5 (0.9) 3.6 (1.0) 3.6 (1.0) 3.6 (1.0)
Total cholesterol, mmol/L 5.7 (1.0) 5.6 (1.1) 5.7 (1.1) 5.5 (1.0) 5.4 (1.0) 5.4 (1.0)
Triglycerides, mmol/L 1.2 (0.6) 1.4 (1.0) 1.3 (0.8) 1.2 (0.7) 1.4 (0.9) 1.3 (0.8)
Insulin, mIE/L 7.0 (13.9) 8.9 (18.2) 7.9 (16.1) 6.8 (5.3) 9.7 (45.6) 8.0 (26.8)
Glucose, mmol/L 5.8 (1.0) 6.0 (1.2) 5.9 (1.1) 5.8 (1.2) 6.0 (1.4) 5.9 (1.3)
HbA1c, mmol/mol 35.9 (5.6) 36.7 (7.1) 36.2 (6.1) 37.1 (6.5) 37.7 (7.9) 37.2 (7.1)
SBP, mmHg 124.1 (16.6) 126.4 (15.0) 125.1 (15.9) 121.6 (17.5) 123.8 (15.5) 122.5 (16.4)
DBP, mmHg 76.6 (10.1) 77.5 (9.6) 77.0 (9.8) 74.2 (9.9) 75.4 (9.3) 74.8 (9.6)
CRP, μmol/L 2.1 (3.8) 2.4 (4.5) 2.2 (4.0) 2.1 (3.4) 2.5 (4.4) 2.3 (4.1)
Hypertension medicationb 273 (18.8) 320 (20.4) 889 (19.2) 270 (19.7) 275 (22.2) 805 (21.0)
Cholesterol medicationb 111 (7.6) 133 (8.5) 358 (7.7) 106 (7.7) 119 (9.6) 331 (8.6)
Diabetes medicationb 47 (3.2) 80 (5.1) 168 (3.6) 65 (4.7) 62 (5.0) 173 (4.5)

Values are mean (SD) for continuous variables or number (%) for categorical variables. T, tertiles, T1 = low consumers of all meat types, T3 = higher consumers of all 
meat types, BMI, body mass index, HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HbA1c, hemoglobin A1c; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; CRP, C-reactive protein. bSelf-reported medication use of the last 2 weeks.
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types. Plasma metabolites were log-transformed and standardized to a 
mean of 0 and SD of 1. The biomarkers TG, CRP, Lp(a) and insulin had 
skewed distributions, and thus were log-transformed prior to analysis. 
We analyzed association of meat types with metabolites using linear 
regression analysis. All estimates from the linear regression analyses 
were reported per 20-g-per-day increase in meat intake, which corre
sponds to approximately a 1 SD increase for white and processed red 
meat, and a 0.5 SD increase for unprocessed red meat. Two sets of 
regression analyses were performed. First, the basic model was adjusted 
for age, sex, metabolomic delivery batch, total energy intake, intake of 
fibre, whole grain, fruits and vegetables, as well as alcohol consumption, 
physical activity, education, smoking status, history of hypertension, 
and medication use for hypertension, cholesterol, and diabetes. Second, 
the full model included the same covariates as the basic model, with 
additional adjustment for body mass index (BMI). In both models, the q- 
values were derived using the Benjamini-Hochberg procedure to control 
for the false discovery rate (FDR) across all statistical tests performed 
[29]. The multiple testing correction was applied, and FDR-adjusted p- 
values (q-values) were estimated, with a threshold set <0.05.

Ordinal (proportional odds) regression was used as a sensitivity 
analysis for significant findings in the associations between meat intake 
and metabolites from the full model. Further sensitivity analyses were 
performed with additional adjustments for other animal-source foods, 
such as fish and eggs; mutual adjustment for different meat types; and an 
adjustment for fibre intake, accounting for potential confounding factors 
while excluding major food sources of fibre. An additional sensitivity 
analysis was conducted by excluding participants with prevalent CVD 
and diabetes mellitus (DM). Linear regression models were used to 
analyze the association of the top 20 meat-associated metabolites with 
cardiometabolic biomarkers adjusted for age, sex, metabolomic delivery 
batch, total energy intake, alcohol intake, smoking, physical activity, 
and education. Similarly, the top 20 meat-associated metabolites in 
relation to subclinical CVD markers in POEM were examined using 
linear regression analysis, adjusted for sex, BMI, waist-hip ratio, smok
ing status, systolic blood pressure (SBP) and diastolic blood preesure 
(DBP), fasting blood glucose, creatinine level, total cholesterol, HDL-C, 
insulin, history of diabetes, cholesterol-lowering drugs, medication for 
diabetes and other lipid lowering agents. Furthermore, summary results 
regarding metabolite-incident CVD were extracted from previously 
published finding for the EpiHealth study, with details on statistical 
analysis and confounding variables reported previously [26].

Metabolic enrichment pathways analyses were performed based on 
the ranked association q-values of the significant metabolites from fully 
adjusted model results for each meat type and its associated metabolites, 
using the fast gene set enrichment analysis (fgsea) package [30] v1.19.2 
package in R version 4.3.2 for both positively and negatively associated 
metabolites. Statistical analyses were performed using Stata version 
18.0 and visualizations were created using ComplexHeatmap package in 
R version 4.3.2 [31].

3. Results

3.1. Participant characteristics

Characteristics of the study participants are presented as the extreme 
tertiles (tertile 1 (T1) vs tertile 3 (T3)) of total meat intake (Table 1). We 
observed higher mean (SD) of BMI, total energy intake, and alcohol 
intake among participants with higher total meat intake at both study 
sites. Tables S1, S2, and S3 provide the characteristics of the study 
participants based on the extreme tertiles of white meat, unprocessed 
red meat, and processed red meat intake, respectively. Pearson corre
lation coefficients were calculated to examine the relationships between 
the intake of the three meat types: white meat intake was positively 
correlated with unprocessed red meat intake (r = 0.35, p-value 
<0.0001) and processed red meat intake (r = 0.12, p-value <0.0001), 
and unprocessed red meat intake was also positively correlated with 

processed red meat intake (r = 0.38, p-value <0.0001).

3.2. Metabolites associated with meat intake

We analyzed the association of white meat, unprocessed red meat, 
and processed red meat intake with plasma metabolites. In the basic 
model, 477 metabolites were associated with white meat (Table S4), 
489 with unprocessed red meat (Table S5), and 386 with processed red 
meat intake (Tables S6), respectively (q-value<0.05).

In the fully adjusted model, white meat intake was associated with 
458 metabolites, including 130 positive and 328 negative associations 
(Table S7). Fig. 1 shows the results for the top 20 metabolites associated 
with each meat type in the full model, selected based on the lowest q- 
values. Among the top findings, white meat intake showed a strong 
positive association with 1-methyl-5-imidazolelactate (β = 0.08; SE =
0.004 per 20 g of white meat intake; q-value = 5.16 × 10− 78), while the 
strongest negative association was observed with glutamine degradant 
(β = − 0.03; SE = 0.003 per 20 g of white meat intake; q-value = 4.05 ×
10− 42) (Fig. 1, Table S7).

In the fully adjusted model, unprocessed red meat intake was asso
ciated with 403 metabolites, comprising 165 positive and 238 negative 
associations (Table S8). Among the top findings, we observed that un
processed red meat intake had a strong positive association with 1-(1- 
enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) (β = 0.02; SE = 0.001 
per 20 g of unprocessed red meat intake; q-value = 1.64 × 10− 44), while 
a strong negative association was observed for glutamine degradant 
metabolite (β = − 0.02; SE = 0.002 per 20 g of unprocessed red meat 
intake; q-value = 1.13 × 10− 33) (Fig. 1, Table S8). Similarly, processed 
red meat intake was associated with 368 metabolites, consisting of 168 
positive and 200 negative associations (Table S9). Strongest positive 
and negative associations were observed for the metabolites 1-(1-enyl- 
stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) (β = 0.02; SE = 0.002 per 
20 g of processed red meat intake; q-value = 1.54 × 10− 33) and 2,6-dihy
droxybenzoic acid (β = − 0.04; SE = 0.004 per 20 g of processed red 
meat intake; q-value = 1.02 × 10− 25), respectively (Fig. 1, Table S9).

Fig. 2 shows the plasma metabolites associated with the intake of 
white meat, unprocessed red meat, and processed red meat, categorized 
by metabolite classes. Metabolites positively associated with white meat 
intake primarily belonged to the metabolite classes amino acids and 
lipids. However, for unprocessed red meat, the positively associated 
metabolites primarily belonged to lipids and xenobiotics, while for 
processed red meat they belonged to lipids, xenobiotics, and uncharac
terized molecules. The specific and overlapping metabolites identified in 
association with meat exposures are found in Fig. S2. There were 142 
metabolites unique to white meat, 63 unique to unprocessed red meat, 
and 109 unique to processed red meat, while 145 metabolites over
lapped among the three types.

The associations from the fully adjusted model were tested in an 
ordinal (proportional odds) regression as a sensitivity analysis for our 
significant findings and overall supports the conclusion from the main 
analysis in linear regression. The Spearman correlation between p- 
values from the main analysis and sensitivity analysis was 0.92 for white 
meat, 0.89 for unprocessed red meat and 0.91 for processed red meat 
(Fig. S3, Table S10).

We also conducted additional sensitivity analyses, adjusting for fibre 
intake while excluding major food sources (Tables S11–S13), as well as 
fish and egg intake (Tables S14–S16). Further analyses included 
mutual adjustments for other meat types (Tables S17–S19) and exclu
sion of participants with prevalent CVD and DM (Tables S20–S22). We 
observed that mutual adjustment reduced the number of meat- 
associated metabolites compared to the associations with each meat 
type, with a further attenuation observed after adjusting for fish and egg 
intake. In contrast, the number of associated metabolites increased with 
fibre intake and after excluding participants with prevalent CVD and 
DM. After mutual adjustments, we identified 362, 201, and 361 me
tabolites were associated with white meat, unprocessed red meat, and 
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processed red meat, respectively. Further adjustments for fish and egg 
intake revealed associations with 399, 365, and 348 metabolites for 
white meat, unprocessed red meat, and processed red meat, respec
tively. When additionally adjusting for fibre intake, the number of 
associated metabolites increased to 476, 393, and 375 for white meat, 
unprocessed red meat, and processed red meat, respectively. Moreover, 
after excluding participants with prevalent CVD and DM, we observed 
416, 380, and 354 metabolites associated with white meat, unprocessed 
red meat, and processed red meat, respectively.

We also compared our findings with a recently published review 
article on metabolites associated with meat intake, which identified nine 
robust metabolites associated with different types of meat and reported 
them in both intervention and observational studies [32] (Fig. S4, 
Table 2). Similar to the previous findings, in the present study, we 
observed white meat intake to be associated with 3-methylhistidine and 
carnitine, the latter of which was reported as O-acetyl-L-carnitine in the 

previous study. We also detected associations of both processed and 
unprocessed red meat with carnitine and carnosine. Furthermore, our 
analysis found that unprocessed red meat, but not processed red meat, 
was positively associated with trimethylamine N-oxide (TMAO).

3.3. Pathway Enrichment Analysis of Metabolites Associated with Meat 
Intake

Fig. 3 and Tables S23-S31 depict the associations between meat- 
associated metabolites and their specific metabolic pathways. We 
observed positive enrichment of plasmalogen metabolic pathway for 
metabolites associated with the three meat types (Tables S25, 
Table S28, Table S31). Moreover, white meat-associated metabolites 
were positively enriched for leucine, isoleucine, and valine metabolism 
(Fig. 3, Table S25), while unprocessed red meat was enriched for his
tidine metabolism (Table S28). Metabolites associated with processed 

Fig. 1. Heatmap illustrating the associations of meat intake of white, unprocessed red meat and processed red meat with top 20 plasma metabolites. Linear 
regression coefficients (β) were adjusted for age, sex, batch effect, total energy intake, fibre intake, whole grain intake, fruit and vegetable intake, alcohol intake, 
physical activity, education, smoking history, hypertension medication, cholesterol medication, and diabetes medication. Asterisk (*) indicates statistical signifi
cance, as determined by false discovery rate–adjusted p-values (q-values) < 0.05. Metabolites with different numbers at the end of the name (e.g., glucuronide of 
piperine metabolite C17H21NO3 (5) and C17H21NO3 (3)) represent distinct isomers or metabolites within the same metabolic pathway. The use of a slash (/) 
distinguishes between for example P-18:0 (sn1) and 20:4 (sn2) for example, with the metabolite identified based on accurate mass spectrometry data. sn1: The fatty 
acid attached to the first position of the glycerol molecule; sn2: The fatty acid attached to the second position of the glycerol molecule. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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red meat showed positive enrichment in benzoate metabolism and fatty 
acid metabolism (acyl carnitine, medium chain) pathways (Table S31).

3.4. Associations of meat-associated metabolites with cardiometabolic 
biomarkers, sublinical CVD markers and incident CVD

Next, we selected the top 20 metabolites associated with each meat 
type (based on q-values) and analyzed their association with car
diometabolic biomarkers (Table S32-S34), sublinical CVD markers 
(Table S35-S37), and incident CVD (Table S38-S40).

We observed that metabolites positively associated with all three 
meat types were also positively associated with ApoA1 and CRP (Fig. 4, 
Fig. S5, Table S32-S34). Three metabolites, 1-(1-enyl-stearoyl)-2- 
arachidonoyl-GPE (P-18:0/20:4), 1-(1-enyl-palmitoyl)-2-arachidonoyl- 
GPE (P-16:0/20:4), and 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P 
16:0/20:4), were positively associated with intima-media thickness 
(IMT) of the carotid artery. We also observed that the metabolite 1-(1- 
enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) was inversely asso
ciated with intima-media grayscale median (IMGSM), endothelium 
dependent vasodilation (EIDV), and endothelium dependent 

Fig. 2. Volcano plot showing the association of meat intake of white, unprocessed red meat and processed red meat plasma metabolites relative to their metabolite 
classes. Points above the red horizontal dashed line indicate statistical significance based on q-values < 0.05. X-axis shows the meat-metabolites association beta 
coefficients and y-axis shows the -log10 p-values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Table 2 
Meat intake in association with most frequently identified meat-associated metabolites in participants from the SCAPIS-Uppsala and SCAPIS-Malmö cohorts.

White meat Unprocessed red meat Processed red meat

Metabolites Previous findings n Beta SE q-value Beta SE q-value Beta SE q-value

3-methylhistidine Chicken/Poultry (+) 8193 0.12 0.01 1.9e-70* 0.02 0.004 1.00E-04* 0.01 0.01 4.1E-01
Acetyl-carnitine (C2) Poultry (+), Processed meat(+), red meat 

(+)
8193 − 0.002 0.001 3.5E-01 0.003 0.001 6.0E-05* 0.01 0.001 8.8E-05*

Carnitine Red meat (+) 8193 0.003 0.003 3.0E-03* 0.005 0.001 5.3E-10* 0.004 0.001 4.4E-03*
Carnosine Chicken/Poultry (+), red meat (+) 7771 0.01 0.01 9.4E-02 0.02 0.003 2.6E-07* 0.02 0.005 1.7E-04*
Creatine Total meat (+) 8193 0.02 0.02 1.E-36* 0.02 0.001 1.5E-30* 0.02 0.002 2.9E-21*
Creatinine Total meat (+) 8193 − 0.0004 0.00 6.7E-01 0.000 0.000 3.4E-01 0.001 0.001 5.7E-01
Glutamine Total meat (+) 7800 0.01 0.01 3.5E-01 0.01 0.007 3.9E-01 0.01 0.01 7.1E-01
Trimethylamine N- 

oxide
Red meat (+) 8193 − 0.001 0.003 9.1E-01 0.011 0.002 1.5E-07* 0.004 0.003 4.0E-01

Hydroxyproline Total meat (+) 8193 0.002 0.002 2.7E-02 0.01 0.001 5.8E-30* 0.02 0.002 9.8E-16*

aPrevious findings were based on a recent review of metabolites associated with meat intake (https://pmc.ncbi.nlm.nih.gov/articles/PMC8634495/).
The ‘+’ denotes metabolites positively linked to different meat types.

* Asterisk () indicates statistical significance (False Discovery Rate < 0.05).
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vasodilation (EDV) subclinical markers (Fig. 4, Table S35-S37).
Moreover, we found that metabolites negatively associated with all 

three meat types were positively associated with higher fasting insulin 
levels (Fig. 4, Fig. S5, Table S32-S34). Two metabolites including 1-pal
mitoyl-2-linoleoyl-GPE (16:0/18:2) (hazard ratios (HR: 1.32; 95 % CI: 
1.08, 1.62)) and glutamine degradant (HR: 1.35; 95 % CI: 1.07, 1.72) 
were associated with an increased risk of incident CVD (Fig. 4, Table 
S38-S40).

We found that the metabolite ectoine, which was positively associ
ated with white meat, but negatively associated with unprocessed and 
processed red meat, was associated with higher pulse wave velocity 
(PWV) (Fig. 4, Table S35). Moreover, metabolites positively associated 
with processed red meat intake were also associated with higher levels 
of insulin, HbA1c and Lp(a) (Fig. 4, Table S34), and inversely associated 
with maximal oxygen consumption (VO2 max) (Fig. 4, Table S37).

We observed that TMAO metabolite that was positively associated 
with unprocessed red meat intake (Fig. 1), was associated with higher 
levels of fasting insulin, HDL-C, LDL-C and glucose (Fig. 4, Table S33), 
but was not associated with subclinical CVD markers or incident CVD.

4. Discussion

In this large population-based study, we investigated the association 
between white, unprocessed red, and processed red meat intake and 
plasma metabolites. After adjusting for potential confounding factors, 
we identified 458 metabolites that were associated with white meat, 403 
with unprocessed red meat, and 368 with processed red meat. Of these, 
142 metabolites were unique to white meat, 63 to unprocessed red meat, 
and 109 to processed red meat, while 145 metabolites were overlapping 
among the three meat types. Metabolites associated with higher meat 
intake were associated with elevated levels of ApoA1 and CRP, while 
those specific to processed red meat were associated with increased 
insulin, HbA1c, and Lp(a) levels. In an independent sample of PEOM and 
EpiHealth, several meat-associated metabolites were also associated 
with subclinical markers of CVD and incident CVD, respectively. For 
example, the metabolite ectoin, which is associated with higher white 
meat intake, was associated with elevated PWV, while metabolites 
positively associated with processed red meat were associated with VO2 
max. Our findings on meat-associated metabolites align with those from 
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previously reported in a review article [32]. We observed similar asso
ciations between white meat and th 3-methylhistidine and carnitine. 
Red meat intake, including both unprocessed and processed types, was 
associated with carnitine and carnosine. However, we were not able to 
replicate the association between white meat and acetyl-carnitine (C2). 
In our study, acetyl-carnitine was inversely associated with white meat 
intake, whereas it was positively associated in the previous study [32]. 
Our study also revealed that several plasma metabolites were associated 
with white, unprocessed red, and processed red meat, which can be used 
for further validation and to expand upon previous studies in this area 
[15,17–18,33–36].

Among the top 20 meat-associated metabolites, white meat intake 
was positively associated with 1-methyl-5-imidazolelactate, a product of 
histidine metabolism formed specifically through the methylation and 
subsequent decarboxylation of histidine derivatives [37]. This obser
vation is likely due to the high protein content of white meat, which 
contains derivatives related to histidine metabolism [38,39]. Previous 
studies reported chicken/poultry intake to be associated with 3-methyl
histidine, which is also derived from histidine metabolism [40,41]. The 
biological significance of 1-methyl-5-imidazoleacetate is less well 
characterized, and more research is needed to fully elucidate its role. 

Further, we found that the metabolite 1-(1-enyl-stearoyl)-2-arach
idonoyl-GPE (P-18:0/20:4) was positively associated with both unpro
cessed and processed red meat. Our finding is consistent with the prior 
meat-metabolomic study in the EPIC-Norfolk cohort, which reported 
that red meat intake was positively associated with 1-(1-enyl-stearoyl)- 
2-arachidonoyl-GPE (P-18:0/20:4) [42]. However, red meat was not 
further subdivided into unprocessed and processed in that study.

Our study suggests that white meat and unprocessed red meat intake 
were negatively associated with glutamine degradant indicating a po
tential role of meat intake in maintaining glutamine reserves. This 
finding indirectly suggests that vegeterians may have lower levels of 
specific amino acids, including glutamine precursors, even though they 
can synthesize glutamine from amino acids present in plant-based foods 
[43]. Additionally, our study shows that processed red meat was asso
ciated with lower plasma levels of 2,6-dihydroxybenzoic acid, though 
further research is needed to determine the role of this metabolite in 
human biology.

In our study, we found that white meat-associated metabolites 
mainly consist of amino acids and lipids. It is plausible that white meat 
contains generally higher levels of amino acids, such as glutamine 
compared to red meat [44]. The xenobiotics, such as the sulfate and 
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glucuronide metabolites of piperine, were associated with both unpro
cessed and processed red meat. This association could be due to residual 
confounding or factors specific to meat processing, such as the type of 
additives and preservatives used in processed red meat. Wedekind et al. 
reported that pepper alkaloids were associated with the intake of pro
cessed meat in one of the European EPIC cohorts [45].

In the present study, the plasmalogen metabolic pathway was posi
tively enriched for metabolites associated with all three meat types, 
indicating that these meat types were associated with an increase in 
metabolites involved in plasmalogen metabolism. Plasmalogens are 
vital for lipid raft and cholesterol-rich membrane stability, crucial for 
cellular signaling where meat, such as beef, pork, and chicken, is a 
primary dietary source [46].

Moreover, our enrichment analysis revealed that the observed 
enrichment of white meat-associated metabolites and branched-chain 
amino acid metabolic pathways, such as histidine metabolism and 
leucine, isoleucine, and valine metabolism, is likely due to the direct 
intake of these metabolites from meat, rather than resulting from 
metabolic upregulation of these endogenous pathways. This limitation 
should be considered when interpreting the results, as distinguishing 
between exogenous and endogenous sources of these metabolites can be 
challenging and requires further investigation. Our findings suggest that 
processed red meat metabolites were positively enriched for benzoate 
and medium chain acyl carnitine metabolism pathways [34]. This sug
gest that processed red meat may contain foreign chemical compounds 
that increase the risk of inflammation and metabolic abnormalities 
[7,34].

We found that unprocessed red meat intake, but not processed red 
meat, was associated with TMAO, a metabolite formed by gut microbes. 
Similar to our findings, unprocessed red meat, but not processed red 
meat, was correlated with TMAO levels in a previous study [3]. How
ever, the literature on meat intake and TMAO is inconsistent. Previous 
studies have shown a positive association between red meat consump
tion and TMAO levels [3,47]. Moreover, TMAO, has often been associ
ated with fish consumption [39,48]. These inconsistencies may arise 
from the overall influence of dietary patterns on the relationship be
tween meat intake and TMAO levels, along with significant variations in 
meat consumption across different populations, study designs, and di
etary habits. Furthermore, the finding that the association of plasma 
TMAO with higher levels of HDL-C, LDL-C, and glucose may indicate the 
implications of unprocessed red meat associated TMAO for metabolic 
health and disease, though causality cannot be inferred in our study. 
However, the lack of association between plasma TMAO levels and 
subclinical CVD markers and incident CVD, despite the positive associ
ation between elevated plasma levels of TMAO and CVD in previous 
findings, is noteworthy [3,49]. We speculate that the inconsistent find
ings may be attributed to the small sample size used in the POEM and 
EpiHealth cohorts.

Our study revealed specific patterns of meat-associated metabolites 
and their associations with cardiometabolic biomarkers, subclinical 
CVD markers, and incident CVD. We found that metabolites positively 
associated with all three meat types, such as 1-(1-enyl-stearoyl)-2- 
arachidonoyl-GPE (P-18:0/20:4), were associated with higher levels of 
ApoA1, CRP, and IMT, indicating a potential risk of CVD. Similarly, 
metabolites negatively associated with all three meat types, such as 1- 
palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) were associated with higher 
insulin levels. This association might result from complex metabolic or 
lifestyle factors, such as changes in lipid metabolism, affecting insulin 
sensitivity independently of dietary carbohydrate intake [50],which was 
relatively lower in the low meat intake group in our study. Moreover, 
metabolites from processed red meat, including sulfate and piperine, 
were associated with higher levels of insulin, HbA1c, Lp(a), and lower 
values of VO2 max, indicating impaired insulin sensitivity and reduced 
cardiovascular function with higher intake.

In the present study, the finding that 1-palmitoyl-2-linoleoyl-GPE 
(16:0/18:2) and a glutamine degradant, which were inversely 

associated with all three meat types were associated with an increased 
risk of incident CVD. Lind et al reported that palmitoyl-oleoyl-GPE 
(16:0/18:1), another fatty acids metabolite integral to lipid meta
bolism, was associated with incident CVD in the EpiHealth cohort [51]. 
Our findings indicate that 3-methylhistidine, which was associated with 
white meat but not with processed red meat, shows an inverse associa
tion with CVD. Conversely, dimethylphenol sulfate, which was associ
ated with processed red meat but not white meat, was associated with 
increased CVD risk. Additionally, ectoine, a metabolite associated with 
white meat but not processed red meat, was associated with subclinical 
CVD markers such as a higher value of PWV; however, it was not asso
ciated with CVD risk. Although the results for meat associated metab
olites and CVD risk may not be significant due to the limited number of 
cases in EpiHealth, these metabolites might serve as mediators of the 
effect of meat intake on CVD, warranting further investigation.

This study identified plasma metabolites associated with meat intake 
and provided insights into the biological mechanisms linking meat 
consumption to CVD risk. For example, processed red meat-associated 
metabolites, associated with higher levels of fasting insulin, HbA1c, 
and Lp(a), as well as their negative correlation with VO2 max, may 
contribute to increased cardiovascular risk and reduced fitness. How
ever, the relationship between meat consumption and human meta
bolism is intricate [52]. Although we adjusted for potential confounders, 
it is not possible to fully rule out all potential measured and unmeasured 
confounding effects. Furthermore, the complexity of human meta
bolism, including individual metabolic variations, dietary habits, and 
environmental influences, complicates the understanding of the associ
ations between meat intake and plasma metabolites [52,53].

Our study has several strengths. First, a large-scale epidemiological 
sample enhances the robustness of the data and provides a compre
hensive understanding of the associations between meat intake and 
metabolites. Second, participants were recruited using personal identi
fication numbers, enabling randomized recruitment from the Swedish 
population register. Third, study participants were well-characterized 
with detailed phenotypic information, allowing for the control of po
tential confounders and sensitivity analyses.

However, several limitations need to be acknowledged. First, this is a 
cross-sectional study, and establishing a causal link between meat intake 
and plasma metabolites in SCAPIS would benefit from longitudinal 
study in the future. Second, participants are mainly from Sweden, aged 
50–64, which affects generalizability and leaving the need to replicate 
our findings in different populations across other age groups. Third, the 
subjective nature of FFQ is imprecise and can be affected by systematic 
and random errors, such as underreporting of meat intake. Fourth, the 
relationships between meat intake and plasma metabolites may still be 
influenced by unmeasured confounders, such as overall dietary patterns, 
including vegan or plant-based diets, and environmental or psycholog
ical factors. Fifth, even though a large number of metabolites were 
analyzed in our study, there may be metabolites that are associated with 
meat intake that were not included in the assay. Sixth, missing value 
replacement for metabolites may introduce bias, as with any imputation 
technique. Seventh, the small sample size in the POEM cohort and 
limited number of CVD cases in EpiHealth cohort (n = 107) may limit 
our power to detect associations between meat-associated metabolites 
and subclinical CVD markers, as well as between metabolites and inci
dent CVD.

5. Conclusion

Our large-scale population-based study identified hundreds of 
plasma metabolites associated with self-reported white meat, unpro
cessed red meat, and processed red meat intake. Across all meat types, 
positively meat-associated metabolites were also associated with car
diometabolic biomarkers such as higher plasma levels of ApoA1, CRP, 
and markers of subclinical CVD such as IMT. Processed red meat- 
associated metabolites were further associated with worse glycemic 
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measures and reduced cardiovascular function. Two metabolites, 1-pal
mitoyl-2-linoleoyl-GPE (16:0/18:2) and a glutamine degradant, 
inversely associated with all three meat types were also associated with 
a higher risk of incident CVD. Our findings highlight specific plasma 
metabolites that may play a role in the association between meat intake 
and CVD measures, offering potential insights into the underlying 
mechanisms. However, further studies are needed to establish causality.
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