
Thesis for The Degree of Licentiate of Engineering

Graded Modal Type Theory, Formalized

Oskar Eriksson

Department of Computer Science and Engineering
University of Gothenburg

Gothenburg, Sweden, 2025



Graded Modal Type Theory, Formalized

Oskar Eriksson

© Oskar Eriksson, 2025
except where otherwise stated.
All rights reserved.

Department of Computer Science and Engineering
Division of Computing Science
University of Gothenburg
SE-412 96 Göteborg,
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Graded Modal Type Theory, Formalized
Oskar Eriksson

Department of Computer Science and Engineering
University of Gothenburg

Abstract

A graded modal type theory equips a type theory with a semiring of grades, which enables
encoding additional information of some kind. A typical application of such a system is
to encode quantitative information, specifically how many times variables are used or
referenced at runtime. Concrete examples include erasure or linear types. In this thesis,
we present such a type theory with dependent types, designed primarily with encoding
quantitative information in mind. The theory supports Π-types, Σ-types, unit, and empty
types, as well as a hierarchy of universes. It also supports natural numbers, and special
attention is given to establishing a method for counting variable uses for the recursive
eliminator of this type. We prove some key meta-theoretical results for this system, as
well as two main correctness results. Firstly, we show correctness for erasure in the sense
that it is safe to remove erased information during compilation without affecting the result
of evaluation. Secondly, we show that the system is capable of correctly tracking how
many times variables should be referenced through an abstract machine in which heap
lookups (corresponding to variable references) are tracked. The thesis is accompanied by
an Agda formalization in which the results have been mechanized.
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graded modal type theory, quantitative type theory, dependent types, erasure, linearity,
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Chapter 1

Introduction

It is well-established that static type systems allow certain classes of bugs to be eliminated
by giving the programmer guarantees about the behaviour of their programs. The class
of bugs which can be avoided in this manner depends on what kind of information the
type system allows to be encoded. Dependent types are a powerful example of this by
allowing types to depend on values. The classic example is the data type of vectors, lists
of a given length, here defined in Agda:

data Vec (A : Set) : N � Set where
[] : Vec A 0
:: : {n : N} � A � Vec A n � Vec A (suc n)

The length of the vector is encoded in the type which can be leveraged by the programmer,
for instance, by defining a safe head function:

head : Vec A (suc n) � A
head (x :: xs) = x

The type system guarantees that this function can only be applied to non-empty lists,
so its behaviour for empty vectors does not need to be defined. Another example is the
append function, where the type guarantees that the length of the resulting vector is the
sum of the lengths of the input vectors:

++ : Vec A n � Vec A m � Vec A (n + m)
[] ++ ys = ys
(x :: xs) ++ ys = x :: xs ++ ys

Guarantees like these come with a cost: unlike the usual definition of lists, vectors carry
around information about their length. In fact, since a vector of length n consists of n+1
sub-vectors it carries with it all numbers from 0 to n — a substantial memory overhead
compared to lists [Brady et al., 2003]. While these are important for type-checking, these
examples do not use them in the actual implementations, meaning that they serve no
purpose after type-checking. Consequently, it should be safe to remove them during
compilation, turning vectors into lists at runtime and avoiding the unnecessary space
overhead while keeping the guarantees given by the type.

Removing such computationally irrelevant information is known as erasure. Agda has
support for erasure via annotations on types, marking arguments as being computationally
irrelevant or “erased” [The Agda Team, 2024]. Such arguments are used during type-
checking but are removed during compilation (at least by some of the compiler backends).
For the vector type, a version with erased length information can be defined as follows,
the only differences are the @0 annotations on the length arguments.

3



4 CHAPTER 1. INTRODUCTION

data Vec (A : Set) : @0 N � Set where
[] : Vec A 0
:: : {@0 n : N} � A � Vec A n � Vec A (suc n)

head : {@0 n : N} � Vec A (suc n) � A
head (x :: xs) = x

++ : {@0 n m : N} � Vec A n � Vec A m � Vec A (n + m)
[] ++ ys = ys
(x :: xs) ++ ys = x :: xs ++ ys

Of course, one cannot mark anything as erased; the type-checker only allows such
annotations for arguments that it can determine to be used zero times at runtime. The
following definition of a length function is rejected by Agda since the length index is used
in a computationally relevant way.

length : {@0 n : N} � Vec A n � N
length {n = n} xs = n

This does not mean that the argument needs to be completely unused, that is, not appear
in the code, but it may only appear in other erased contexts such as an erased function
argument.

Going beyond erasure, one can imagine type systems tracking other numbers of uses
as well. Typical examples of this include linear types [Wadler, 1990] for which arguments
are required to be used exactly once, or affine types for which they are used at most once.
One could also go in the opposite direction of erasure and instead track computationally
relevant arguments, that is, arguments that are used at least once. One might also
consider combinations of these [Choudhury et al., 2021; Abel and Bernardy, 2020]. All of
these, including erasure, are examples of type systems tracking quantitative information.

One application of such systems is utilizing the information about runtime usage in
optimizations like the one already discussed for erasure. For linear or affine types, one
can apply the knowledge that certain data is used at most once to perform safe in-place
updates, achieving similar space optimizations [Bernardy et al., 2017; Lorenzen et al.,
2024]. Another use case is to take advantage of how the increased expressiveness of the
type system allows more static guarantees such as implementing session types for ensuring
correctness of communication protocols [Brady, 2021] or ensuring that indices are used
only once in a library for tensor algebra [Bernardy and Jansson, 2025].

Dependent type systems with the capability to correctly track such quantitative
information is the main topic of this thesis. The approach considered is graded modal type
theory in which the type system is equipped with a semiring which is used, in this case, to
encode information about how many times variables are referenced. The implementation
of erasure in Agda is based on such a system. Graded modal type theory is described in
more detail in Section 1.1.

The contents of this thesis have been formalized using Agda. This includes all
definitions and results presented in the appended papers unless stated otherwise. The
formalization is described in more detail in Section 2.3.

1.1 Graded Modal Type Theory

A graded modal type theory, or just graded type theory, is a type theory equipped with
some algebraic structure. Its elements, grades, are used to annotate certain terms and/or
types in order to encode some kind of information. Typical examples are quantitative
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information [McBride, 2016; Atkey, 2018; Choudhury et al., 2021; Moon et al., 2021]
as discussed above or confidentiality classification for ensuring that secret information
cannot be leaked [Choudhury et al., 2022; Orchard et al., 2019]. In this thesis, the focus is
primarily on the former. Usually, the algebraic structure is not fixed and the type theory
can in this regard be considered to be parametrized over the structure. It can then be
instantiated with different concrete structures depending on the kind of information that
should be encoded.

While the specifics of how graded type theories are defined differ depending on the
intended applications, some aspects are notably common. For one, the algebraic structure
is normally a partially ordered semiring. That is, it has addition and multiplication
operators with multiplication distributing over addition as well as a unit (1) and zero (0)
grade. The operators and order relation are used to define the typing rules as explained
below and the type of information one can encode thus depends on how the operators
and order are defined. A few semiring instances of note for this thesis are sketched in
Section 1.2. For some applications, the semiring is given some additional structure. As an
example, quantitative type theory (QTT) imposes that p+ q = 0 should only be allowed
if p = q = 0 [McBride, 2016] and pq = 0 only if either p or q is equal to zero [Atkey,
2018]. In information flow applications, the grades are often assumed to form a lattice,
representing security levels [Choudhury et al., 2022; Orchard et al., 2019].

In its simplest form, one might describe a graded type theory as assigning a grade to
any free variable, such as a function argument, in addition to a type. The grade signifies
some information about how the variable should be used. For quantitative settings, this
means that the grade represents how many times the variable should be, or is allowed
to be, referenced while information flow instances assign a constraint on what security
clearance is needed in order to reference the variable. Besides assigning grades to variables,
some theories allow assigning grades to constructor arguments, similarly signifying how
these should be used.

In some systems these grades can be inferred [Tejǐsčák, 2020] while others require the
syntax to be annotated with grades. In such cases, annotations might be needed only on
types as for Moon et al. [2021] or in the Agda example above. There, we annotated just
some function domains, marking the natural number arguments with grade @0, indicating
that they are referenced zero times at runtime. In other cases, further annotations are
required also on terms, for instance, functions (lambdas) and/or applications [Choudhury
et al., 2022, 2021]. In this thesis, the latter approach is used.

Regardless of where grade annotations are required, the type system is tasked with
ensuring that they are correct. There are, in principle, two main styles of defining
the typing rules for grades. The first [McBride, 2016; Choudhury et al., 2021] can be
described, more or less, as counting variable uses with the given semiring. A single variable
occurrence is assigned grade 1 and a lack of occurrences is assigned grade 0. Several
occurrences, in particular from sub-terms, are added using the addition of the semiring.
The multiplication represents the uses of one term by another with the key example being
function applications. A function using its argument p times will use a variable pq times
if that variable is used q times in the function argument. A notable special case of this
is when p = 0, representing an unused (erased) function argument. In this case, the q
variable uses of the function argument end up not being counted. This represents that
erased information is allowed to be used in other erased contexts.

Depending on the application, it might not be desirable to fully distinguish between
all grades. This is the case, for instance, for affine functions which can use their argument
either zero or one times, meaning that there might be several valid grade assignments.
In particular, both erased and linear function arguments may be considered to be affine.
This kind of compatibility between grades is expressed through the partial order with the
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grade typing allowing a form of subsumption or weakening by allowing a variable used
at grade p to also be used at a lower grade q. For instance, code accessing a variable
of a high confidentiality level will continue to work if the variable is assigned a lower
confidentiality level.

The second style of defining grade typing is in many ways similar to the first but
with the typing judgement too annotated with a grade, in this thesis referred to as the
mode (possibly with restrictions on which grades are allowed as modes) [Atkey, 2018;
Choudhury et al., 2022]. Variable counting mostly progresses as before but the grade
corresponding to a single occurrence is now given by the current mode. In an information
flow interpretation, the mode might be interpreted as the security clearance of the current
observer; a well-typed program does not reveal any secrets of a higher security level than
the current mode. This formulation also allows different rules under different modes. For
instance, Atkey [2018] allows different forms of eliminations for Σ-types (referred to as
dependent tensor product types) under erased and computationally relevant modes. This
thesis uses both approaches, with Paper A mostly using the first while Paper B uses the
second.

The description above has not been specific to dependent types and is applicable both
for simple and dependent types. In terms of grade typing, dependent types introduce one
complication that does not appear for simple types, however. Namely, since types may
depend on values they can use or reference variables which may affect how variable counting
should be performed. A simple approach to this is to consider types to be computationally
irrelevant, meaning that uses of the function argument [Atkey, 2018; Choudhury et al.,
2022, 2021] are not accounted for in the (dependent) codomain of Π-types. An alternative
option is to annotate the Π-type with two grades, one corresponding to the grade of
function argument in the function body as before and the other corresponding to the use
of the function argument in the type of the codomain [Moon et al., 2021; Abel, 2018].
This is the method used in this thesis.

1.2 Some Instances of Graded Modal Types

Some parts of this thesis put particular emphasis on specific instantiations of graded
type theories. These are erasure, affine types, and linear types, all of which have been
discussed above. Here, we will see how one can instantiate a graded modal type theory
with semirings in order to achieve these interpretations. Note that while the instantiations
shown here are consistent with the type theory presented in this thesis, other instantiations
may be more suitable for other systems.

An instance for erasure is the two element semiring {0, ω} where ω serves as the unit
grade. Addition and multiplication are defined as shown in Table 1 and ω ≤ 0. The
grade 0 corresponds to the annotation @0 from the Agda examples and denotes erased
information. Conversely, the grade ω can be seen as representing computationally relevant
information but, the partial order also allows computationally irrelevant information to
be marked with ω. A more accurate interpretation of ω is thus that it represents any
number of uses, including zero.

Table 1: Addition and multiplication for a semiring for erasure.

+ 0 ω · 0 ω
0 0 ω 0 0 0
ω ω ω ω 0 ω

For affine types, one can use the three element semiring {0, 1, ω} with addition and
multiplication as shown in Table 2 and ω ≤ 1 ≤ 0. The grades 0 and ω can be interpreted



1.2. SOME INSTANCES OF GRADED MODAL TYPES 7

similarly to the erasure instance and grade 1 represents zero or one use since 1 ≤ 0. A
linear-types instance can be retrieved by changing only the partial order to 1 ≥ ω ≤ 0
with 0 and 1 being incomparable. Here, ω still represents any number of uses since it is
smaller than all other grades but 1 no longer allows zero uses and thus represents linear
information.

Table 2: Addition and multiplication for semirings for affine or linear types.

+ 0 1 ω · 0 1 ω
0 0 1 ω 0 0 0 0
1 1 ω ω 1 0 1 ω
ω ω ω ω ω 0 ω ω
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Chapter 2

Summary of Included Work

This thesis is a collection thesis consisting of the two papers “A Graded Modal Dependent
Type Theory with a Universe and Erasure, Formalized” and “A Resource-Correct Graded
Modal Dependent Type Theory with Recursion, Formalized” which are included in Part II.
This chapter gives a summary of the contents of the articles and their results. Both articles
are formalized in Agda and an overview of their formalizations is given in Section 2.3.

2.1 A Graded Modal Dependent Type Theory

with a Universe and Erasure, Formalized

Paper A consists of three main parts. In the first part, we define a graded modal dependent
type theory and prove some of its meta-theoretical properties. Our main motivation
is erasure, but the theory is intended to be useable also for other instances, including
non-quantitative ones. The type theory we consider consists of a single (Russell) universe,
graded Π-types, two kinds of Σ-types (one with a form of pattern matching and one with
projections and η-equality), natural numbers and an empty type. We annotate both types
and terms, notably lambda abstractions and applications, as well as the eliminators for
natural numbers and Σ-types, assigning grades to the variables bound by the terms. The
eliminator for the empty type is also annotated with a grade representing the uses of the
impossible branch. Of particular note is that this allows impossible branches to be erased.

Our structure of grades, which we refer to as a modality, is a partially ordered semiring
with meets. Thus, any two grades always have an infimum in our setting. The purpose of
this is to support programs with branching behaviour that have different variable uses in
the branches—taking the infimum yields a grade that is compatible with either branch.
In our case, the most notable example of this are Σ-types with projections as the two
components of a pair can be seen as two different branches depending on which projection
is applied.

We define our judgement for grade typing, γ ▶ t separately from the usual typing.
The normal typing judgments are mostly defined without concern for grades but ensure
that grades on lambdas and applications match. The grade typing judgement is referred
to as the usage relation and we say that t is well-resourced1 whenever γ ▶ t holds for
some context γ which assigns grades to the free variables of t. For the most part, the
usage relation is defined in a standard way for a non-moded form of grade typing (that is,
as outlined in Section 1.1). A notable exception is pairs which allow projections where,

1This terminology hints at a quantitative interpretation of variables “consuming” some resource
as the term is evaluated. For a well-resourced program, there are sufficiently many resources
available to evaluate the program. This interpretation is discussed more in Paper B.

9
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as explained above, the grades of the two components are combined using meet instead
of addition. For the Σ-type with pattern matching, we generally allow matching on an
erased term as long as the two components of the pair are just used in erased positions.
In this case, we speak of an erased match. This concept would also apply to other types
with a single constructor, but we only consider Σ-types in this work.

Some attention needs to be given to the usage rule for the eliminator for natural
numbers where the recursion, and its unknown depth, makes variable “counting” less
straightforward. In order to assign grades for such programs, our definition of modalities
comes with an additional operator, which is required to satisfy some properties and is
used only for this purpose. However, as discussed in Paper B, this solution is not fully
suitable for interpretations beyond erasure.

Having defined our graded type theory, we prove some of its meta-theoretical properties.
In particular, we show a substitution lemma, subject reduction, and decidability of the
usage relation.

The second part is a case study of a particular use case of the type theory we introduced
in the first part, namely erasure. Here, we consider only instantiations of the theory
with modalities where the zero satisfies some additional properties. We say that such
modalities have a well-behaved zero. We compile programs in the graded source language
to an untyped target language such that parts of programs that are marked as erased
are replaced with a special term representing an undefined value. Since erased parts are
unused during evaluation, this should be safe in the sense that it does not affect the
outcome of running the program.

That erasure is indeed safe is proven for the case of programs of type N by a logical
relation argument. The logical relation, relating terms of the source and target languages,
is defined by recursion over (a structure representing) the type of the source language term.
It is defined in such a way as to make sure that related natural number terms reduce to
the same numeral. The fundamental lemma of the logical relation states that well-typed
and well-resourced terms are related to their compiled counterpart from which it follows
that programs of type N evaluate to the same numeral before and after compilation.

Our correctness theorem holds both for closed and for open programs under the
assumption that all free variables are used only in erased positions. In the latter case, we
require that the types of all free variables, which might represent postulates, are logically
consistent with each other and the base theory.2 We also disallow erased matches. While
we show that this is a necessary assumption for our correctness theorem to hold, we
conjecture that a weaker version, with canonicity only for the target language, holds even
if such matches are allowed.

Finally, in the third part, we extend the theory with graded Σ-types where the first
component of pairs is assigned a grade representing how it should be used. In order to
support this, the usage relation is modified to the style with a mode γ ▶

m t (in our case,

only 0 and 1 are allowed as modes). This change is most notably used to allow taking the
first projection of a pair with an erased first component in erased settings (mode 0) while
disallowing it in non-erased settings (mode 1). We show that the meta-theoretical results
still hold with this change for modalities with a well-behaved zero and we similarly show
that the results of the erasure case study still hold.

Statement of contributions The paper is written by Andreas Abel, Nils Anders
Danielsson and me. The technical content of the first two parts was devised by me and
Andreas and formalized by me while the third part was done by Nils Anders. The initial
draft relating to the first two parts was written by me and the third part by Nils Anders.
All authors revised the initial draft.

2The base theory has been shown to be consistent.
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2.2 A Resource-Correct Graded Modal Depen-

dent Type Theory with Recursion, Formal-

ized

Paper B builds on the work done in Paper A by showing that the graded type theory
presented there is correct in a wider sense than erasure and also addresses an issue with
the usage counting for the eliminator for natural numbers. The setting is almost the
same as in Paper A but now includes a hierarchy of universes as well as two kinds of unit
types, matching the two kinds of Σ-types. While these additions round off the feature
set of the type theory we study, neither of them has a major impact on results or proof
techniques in this paper. As in the erasure case study, we work only with modalities with
a well-behaved zero. Our presentation uses the moded usage relation defined at the end
of that paper, but the results also hold for the variant without modes.

The main goal of this paper is to prove correctness for modalities with quantitative
interpretations. We do this by defining a heap- and stack-based abstract machine where
the heap tracks variable lookups. When new entries are added to the heap, they are
assigned a grade representing how many lookups are expected or allowed. After a lookup
has been performed, “fewer” further lookups are expected, and the corresponding grade is
thus updated accordingly. The machine also prevents lookups that would cause entries to
be used too many times. For instance, looking up an entry with grade 0 once is prevented.
We thus require the modalities we work with to support a form of partial subtraction
where lookup is allowed only when subtraction is defined, and the grade of the entry is
updated to be the result of the subtraction.

Entries are added to the heap when evaluating, for instance, function applications
where the function argument is placed on the heap. The grade annotation on applications
represents how many times the function argument should be used or referenced, and
that grade is accordingly associated with that heap entry. The expectation is that
once evaluation finishes, the entry will have been looked up that many times, or, more
accurately, a compatible number of times. This is expressed as the grades of the final
heap being bounded from above by 0. In particular, for the linear types modality, all
linear arguments must, at the end of evaluation, be associated with grade 0, meaning that
they have been looked up exactly once. For the affine types modality, however, entries in
the final heap may also be assigned grade 1, since 1 ≤ 0, but its subtraction ensures that
any affine argument can only have been looked up at most once.

As in Paper A, our results hold both for closed programs and for open programs
where all free variables are used only in erased positions. In the latter case, we again
assume that programs are typed in a consistent context and the matching on erased pairs
or unit elements is prohibited.

As mentioned in Section 2.1, our method of usage counting for the eliminator for
natural numbers in Paper A is unsuitable for modalities with interpretations that go
beyond erasure. In particular, we show here that the addition function for natural numbers,
defined in the usual way, is not considered to be linear in that system. Furthermore, adding
a number n to itself is incorrectly3 considered to be a linear function in n. Consequently,
our correctness theorem for the abstract machine is not proven using the usage rule from
Paper A.

Instead, we define a new usage rule. The idea behind it is that while counting variable
uses for a recursive function is difficult due to the unknown recursion depth, it is possible
to do for a known recursion depth by unfolding the recursion. A valid usage count is then

3It is possible to define a linear function for doubling a natural number but defining it by
addition in this way should not be linear.
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one that is compatible with any recursion depth, that is, a lower bound of all (infinitely
many) possibilities. In particular, our usage rule takes the infimum. Our correctness
theorem is proven for this rule given some additional assumptions about infima for the
modality. The main meta-theoretical results and the results from the erasure case study
of Paper A are also shown to still hold under the same assumptions. We also sketch how
this method might be used for usage counting for other inductive data structures, but we
do not formalize this claim.

Statement of contributions The paper is written by me, Nils Anders Danielsson
and Andreas Abel. I was responsible for most of the technical content and formalization
with input and guidance from Nils Anders and Andreas. The initial draft of the paper
was written by me and was revised by all authors.

2.3 The Formalization

Both papers are accompanied by Agda formalizations in which all results have been
proven. In both cases, formalized definitions and results are highlighted in blue which
link (in the digital version) to an HTML rendering4 of the corresponding Agda code. The
formalization of Paper B [Eriksson et al., 2025] is an extension of the one of Paper A
[Abel et al., 2023] and so includes the results of both. It is developed using the --safe

flag, which turns off features known to be inconsistent, as well as the --without-K flag,
which (mainly) disables uniqueness of identity proofs [The Agda Team, 2024].

The formalization is based on an earlier formalization of dependent type theory,
originally by Abel et al. [2017] with later contributions by Gaëtan Gilbert and Wojciech
Nawrocki. This formalization was for an ungraded system with the main goal of proving
decidability of type equality. This was done through a logical relation which additionally
allowed showing several meta-theoretical results about the type theory such as subject
reduction, admissibility of substitution, normalization, and consistency which we have
made use of.5

The full formalization now consists of around 140 000 lines of code, which can be
compared to 49 000 for Paper A and 15 000 for the original development. It should be
noted, however, that this number includes parts of the formalization not covered by this
thesis. A notable example is that the formalization includes identity types (added by Nils
Anders Danielsson). While these are not covered by the included papers, (variants of)
the results presented in them also hold when identity types are considered.

4Available at: https://graded-type-theory.github.io/graded-type-theory/lic2025/
5In the latest version of our formalization, some of these results are proven without using the

logical relation.

https://graded-type-theory.github.io/graded-type-theory/lic2025/
https://graded-type-theory.github.io/graded-type-theory/lic2025/


Chapter 3

Discussion

We conclude this part by discussing some of the topics covered by this thesis as well as
possible directions of future work within the scope of the formalization project. Further
discussion can be found in the appended papers.

3.1 Canonicity for Open Terms

In both papers we show a form of canonicity for natural numbers. Such results are to
be expected for closed terms but usually do not hold for open terms. While one would
typically only run closed programs, one might want to add postulates to the theory which
would act as free variables. The reason canonicity breaks in this case is that evaluation
gets stuck upon reaching such a postulate. For instance, in a context where variable x
has type N, the program x is well-typed but will not evaluate to a numeral. Our proof
avoids such settings by requiring that free variables may only be used in erased positions;
in contrast, in the example above, x is computationally relevant.

Our argument relies on the consistency of all added axioms. Without this assumption,
it would be possible to construct a natural number term using the eliminator for the
empty type that does not evaluate to a numeral. The same is true for closed programs
but Abel et al. [2017] establish that our base type theory is consistent. Note that this still
allows using the eliminator for the empty type to rule out impossible branches. This is
essentially what happens behind the scenes in the head function from Chapter 1 in order
to rule out the nil branch. Canonicity is not broken since such branches never will be
evaluated.

We also require that erased matches are disallowed. In the source language (given the
reduction rules we are using) this is necessary since matching gets stuck if the scrutinee
does not reduce to a canonical value (for instance, a pair). However, in the target language,
such erased matches are compiled away, allowing evaluation to progress. We believe that
such matches should be safe in the target language since matching on a single constructor
data type does not incur any branching and the result of matching (for instance, the
components of the pair) is not used. In Paper B we consider only the source language and
therefore only consider the case without erased matches as they invoke the same issues as
in Paper A.

Postulates do not need to be erased in order to still obtain canonicity. Coquand et al.
[2017] have shown a similar result under the assumption that the types of all free variables
are negative (either the empty type or a function with a negative type as codomain). The
argument is similar to the one for erased axioms, namely that an element with a negative
type has no computational content. Specifically, one cannot use such axioms to produce

13
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natural numbers. Like us, this argument is done under the assumption that all postulates
are consistent for similar reasons.

3.2 Formalizations of Type Theory

There are several formalization projects covering topics related to this thesis. Already
mentioned is Abel et al. [2017] on which our formalization is built.

Wood and Atkey [2021] have formalized, in Agda, a graded system with simple types.
Notably, they establish some meta-theory regarding substitution for graded systems which
forms the basis for the substitution lemma presented in Paper A. Torczon et al. [2024]
present another simply typed graded system, formalized in Rocq, for effects and coeffects.
They show that their system correctly tracks how resources are used during evaluation.
In contrast to the heap-based call-by-name evaluation we use in Paper B, their evaluation
method is environment-based call-by-push-value. Supporting dependent types, Liu et al.
[2024, 2025] have formalized, in Rocq, a graded type theory. Their main focus is on
indistinguishability, ensuring that an observer cannot distinguish between two programs
which use information that is secret to the observer. In their system, grades affect equality
in order to enable programs with no discernable difference to the observer to be treated
as equal.

Another notable example is the MetaRocq (formerly MetaCoq) project, formalizing
Rocq in Rocq. Though not a graded system, parts of the project cover extraction which
supports a form of erasure. Extraction is supported to an untyped lambda calculus,
similar to the one we employ in Paper A and extracted programs are shown to preserve
the behaviour of the source program [Sozeau et al., 2019]. Extracted programs can be
further extracted into OCaml and this procedure has also been formally verified [Forster
et al., 2024].

3.3 Future Work

While the focus of this thesis has been primarily on quantitative modalities, the original
design was intended to be applicable in other cases as well. Paper A discusses to some
degree how our results can be interpreted for a specific information flow instance, but a
more general investigation on to what degree our system (correctly) handles such instances
is missing. This could tie in to generalizing the mode system for the usage relation. At
present, only grades 0 and 1 are supported while one might want modes corresponding to
any grade in a security instance, denoting the security clearance of the user. In addition,
the moded usage relation is only supported for modalities with a well-behaved zero in
order to show important meta-theoretical properties. While this assumption works well for
quantitative instances, this might not be the case for all instances of interest. Changing
the mode system could thus enable support for a wider class of modalities.

Other directions for future work are more direct extensions of the results presented in
the papers. For Paper A, the main open issue is to prove our conjecture that one can
obtain canonicity in the source language also in the presence of erased matches. At this
point, erased matches are not limited to Σ-types but also include identity types which
complicate matters further. In Paper B, we sketched how one could define a usage rule for
inductive data types beyond natural numbers, but our results are not formalized and some
details are not spelled out. Adding general inductive types (in some form), extending the
correctness proofs presented in this thesis, could be a way forward in this regard.



Bibliography

Andreas Abel. 2018. Resourceful Dependent Types. In Presentation at 24th International
Conference on Types for Proofs and Programs (TYPES 2018), Braga, Portugal. http:

//www.cse.chalmers.se/~abela/types18.pdf abstract.

Andreas Abel and Jean-Philippe Bernardy. 2020. A Unified View of Modalities in Type
Systems. Proc. ACM Program. Lang. 4, ICFP, Article 90 (Aug. 2020), 28 pages.
https://doi.org/10.1145/3408972

Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. 2023. An Agda Formalization
of a Graded Modal Type Theory with a Universe and Erasure. https://doi.org/10.

5281/zenodo.8119348
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Matúš Tejǐsčák. 2020. A Dependently Typed Calculus with Pattern Matching and Erasure
Inference. Proc. ACM Program. Lang. 4, ICFP, Article 91 (Aug. 2020), 29 pages.
https://doi.org/10.1145/3408973

The Agda Team. 2024. Agda User Manual, Release 2.7.0.1. https://readthedocs.org/

projects/agda/downloads/pdf/v2.7.0.1/

https://doi.org/10.1007/978-3-030-99336-8_15
https://doi.org/10.1007/978-3-030-99336-8_15
https://martinescardo.github.io/papers/negative-axioms.pdf
https://doi.org/10.5281/zenodo.15189791
https://doi.org/10.1145/3656379
https://doi.org/10.1145/3632886
https://doi.org/10.1145/3704843
https://doi.org/10.1145/3674642
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3408973
https://readthedocs.org/projects/agda/downloads/pdf/v2.7.0.1/
https://readthedocs.org/projects/agda/downloads/pdf/v2.7.0.1/


BIBLIOGRAPHY 17
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