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Abstract
We present NeuralBranch, an interpretable neural network framework. In this work, we use it
specifically to predict the pedestal from key engineering parameters in tokamak fusion
experiments. The main goal is to uncover intricate relationships that traditional power scalings,
with their limited expressive capacity, fail to capture. A secondary objective is to provide a
transparent alternative to current opaque, black-box machine learning models used to predict the
pedestal in integrated modeling frameworks. By using the proposed method, we obtain a novel
global overview of several intricate dependencies in the JET pedestal database. For instance,
while both input power and plasma current are positively correlated with pedestal top pressure
and temperature, NeuralBranch reveals an attenuating interaction. This means that increasing
power weakens the impact that current has on pedestal pressure and temperature, and vice versa.
Further investigation of this interaction may be important to avoid overestimating pedestal
stored energy at future machines like ITER when using established power scalings. We also
identify an amplifying interaction between plasma current and triangularity, where higher
triangularity amplifies the effect of plasma current on pedestal density, and vice versa. In
addition to these findings, NeuralBranch matches the accuracy of black-box neural networks,
with R2 values as high as 0.88. This demonstrates that interpretability, with its associated
benefits, can be achieved without sacrificing accuracy, making NeuralBranch a promising
alternative for pedestal predictions.
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1. Introduction

Themost studiedmagnetic confinement device is the tokamak,
which is also the basis for ITER, a large fusion experiment
designed to demonstrate fusion on a reactor scale. Despite that
tokamak plasma physics has been extensively explored over
the years, there are still aspects that are not fully understood.
One of these aspects is the High ConfinementMode (H-Mode)
[1], the baseline scenario planned for the operation of ITER.
H-Mode involves intricate non-linear physics that are difficult
to simulate from first principles. In this mode, turbulent energy
transport is suppressed in a narrow region at the outer edge of
the plasma when the power delivered to the plasma exceeds
a certain threshold. This suppression leads to a steep pressure
gradient near the edge, creating what is known as the pedes-
tal. The level of the plasma pressure, density, and temperature
just inside this region are referred to as the pedestal values. The
pedestal plays an important role for the global energy confine-
ment of the plasma, and it is therefore essential to understand
the key parameters determining its properties.

An important factor for guiding the theoretical investigation
of H-mode physics are the pedestal characteristics observed
in experiments. Historically, studies have involved parameter
scans, where specific tokamak or plasma parameters are varied
while others remain constant [2–15]. This approach has been
valuable for understanding how the pedestal depends on dif-
ferent parameters. However, such scans typically involve only
a limited number of tokamak pulses, which may produce res-
ults that are only applicable to specific scenarios.

Another traditional approach for studying pedestal char-
acteristics, as well as other confinement-related properties,
is to use curve-fitting techniques like multivariate power
scalings [4, 16–18]. In contrast to parameter scans, power scal-
ings allow for the simultaneous analysis of how the pedestal
depends onmultiple tokamak parameters across large datasets.
This helps mitigate the limitation of relying on data from only
a few pulses, and indeed, power scalings have proven useful
for identifying general trends. However, because power scal-
ings are intentionally made simple for easier interpretation,
they are rather restrictive and cannot capture more intricate
relationships, such as certain interaction effects between the
inputs of the model.

Recently, machine learning models, such as neural net-
works, have been employed to predict the pedestal from key
tokamak parameters [19, 20]. This has resulted in more accur-
ate predictions compared to simpler models, indicating that
more intricate relationships exist between the pedestal and
the tokamak parameters. However, these machine learning
models have not been interpretable. In this context, lack of
interpretability in machine learning models refers to the diffi-
culty of extracting the learned relationships between the input
and output parameters in a human-comprehensible form. This
is problematic because it not only limits our ability to gain
insights from the data but also undermines trust in the predic-
tions, as the reasoning behind the model predictions remains
unclear. This drawback of feedforward dense neural networks
(referred to as regular neural networks in this paper) is com-
monly known as the black-box problem.

Fortunately, recent advancements in models that provide
interpretability, often termed glass-box models, have demon-
strated success across various applications. For instance, sym-
bolic regression [21, 22] refers to a framework that automatic-
ally finds mathematical expressions that best describe the rela-
tionship between the inputs and the output. Another example is
the Neural Additive Model (NAM) [23], which employs sep-
arate neural networks for the different input parameters, the
model output being the sum of the outputs of the individual
networks. In this framework, interpretability is achieved by
graphically visualizing the output of each individual network
versus its inputs. As glass-box models provide the overarch-
ing patterns learned across the full dataset they are trained on,
they are said to exhibit global interpretability.

While glass-box models have been applied in certain areas
of fusion energy and plasma physics, such as symbolic regres-
sion for confinement time scaling [24], their potential have not
been widely explored in the sub-field of pedestal research.

1.1. Scope of work

The main goal of this work is to use an interpretable machine
learning method to uncover intricate relationships between the
pedestal and key tokamak parameters, beyond what power
scalings can capture. Here, we analyze a large dataset, the
Joint European Torus (JET) pedestal database [4], to provide
a comprehensive overview of the relationships such that the
results are not limited to a few pulses. To achieve our goal,
we introduce a neural network based framework that we call
NeuralBranch, which utilizes visualizations to facilitate global
interpretability. While we acknowledge that NeuralBranch is
inspired by NAMs, it overcomes two limitations that NAMs
exhibit: (1) the enforced summation of network outputs, and
(2) the restriction to pairwise interactions due to the par-
allel arrangement of individual networks in NAMs. Hence,
another goal of this paper is to introduce, to our know-
ledge, a novel glass-box framework, which is applicable to
different fields beyond that of pedestal physics and fusion
energy.

In addressing the two objectives mentioned above, we
will consequently also address an additional aim, which is to
develop interpretable models capable of predicting the pedes-
tal within integrated modeling simulations of tokamak plas-
mas. Specifically, we seek to offer a transparent alternative to
existing black-box pedestal models used in integrated mod-
eling frameworks, such as the European Transport Simulator
(ETS) [25, 26].

The outline of the paper is as follows: we initially
present the NeuralBranch methodology using a constructed
toy example. Then, we apply the framework to the ped-
estal data, where results are presented, first for the pedes-
tal pressure, and then for the density and temperature. The
appendix includes additional details about the proposed frame-
work, along with a comparison to the local interpretability
method SHapley Additive exPlanation (SHAP) [27] applied to
a Random Forest, which demonstrates why global interpretab-
ility methods like NeuralBranch are preferable to local inter-
pretability methods for this application.
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2. Methodology demonstration

2.1. Visualizing neural network mappings

As a first step in demonstrating the method proposed in this
paper, we here show how interpretability can be facilitated by
visualizing neural network mappings.

Consider a toy dataset generated with the equation

y= Asin(10x) (1)

where y is an output parameter of interest, and where A and x
are two independent input parameters randomly sampled from
a uniform distribution between 0 and 1. A neural network can
be trained to predict y from A and x, as illustrated in figure 1.
Here, ŷ represents the prediction of the output, in contrast to
the actual output y.

Assume that post training, the neural network is able to
make accurate predictions. Also pretend that the true under-
lying equation (1) is unknown, and that our goal is to investig-
ate the relationship between the parameter of interest y and the
inputs x and A. Usually, interpreting the overarching mapping
of a neural network is a non-trivial task due to the many con-
necting nodes in a neural network (the black-box problem).
Fortunately, in this case, having only two input parameters
enables another method for interpretation: visualization. Post
training, we can parse the data through the model and plot the
predicted output ŷ as a function of the inputs for the full data-
set. For instance, ŷ can be plotted versus x with A dictating
the color, as in figure 2. Here we can see that the neural net-
work has learned a sine-relationship between ŷ and x, where
A affects the amplitude. This is in full agreement with the ori-
ginal equation (1). Note that the trainable parameters of the
network do not need to be analyzed to interpret the model,
as all we need for the visualization are the predicted output
ŷ, along with the inputs x and A. In essence, the visualiza-
tion technique facilitates a qualitative approach to investigat-
ing parameter dependencies.

Of course, with only two input parameters, it is not even
necessary to use a neural network to investigate the relation-
ship between y and the two inputs. We could simply plot the
true output y versus x and A directly. However, the principle
of visualizing neural networks serves as the cornerstone for
the method we propose in the next section, which is why its
introduction and emphasis are warranted here.

2.2. Interpretable branch-based architecture

Here, we demonstrate the main idea behind our interpretable
framework NeuralBranch by considering a new toy data set
generated with the equation

y= Asin(10x)+B. (2)

Similarly to the previous example, A, x and B are inputs that
are randomly and independently sampled from a uniform dis-
tribution between 0 and 1. Assume again that our goal is to
find the relationship between y and the three input paramet-
ers. A neural network could be trained to predict y from A, x,

Figure 1. An illustration of a neural network designed to predict the
parameter y from x and A. f represents the functional mapping of the
network.

Figure 2. A visualization of the functional mapping learned by the
neural network that predicts y from x and A, trained on a data set
generated with equation (1).

and B. However, with three inputs, visualizing the dependen-
cies becomes more challenging, as it would require a 3D plot
along with a color indicator. With additional parameters, inter-
preting the visualization of a regular neural network becomes
even more challenging, if not infeasible.

To address this issue, our proposed NeuralBranch approach
splits the neural network architecture into individual networks
that we call neural branches, each handling only two input
parameters and one output parameter. An example of such
architecture is illustrated in figure 3. By only allowing two
parameters to be parsed through each branch, visualization
is enabled, and thus global interpretability is achieved for
the full model. Additionally, since each neural branch essen-
tially is a dense neural network, high expressive capacity is
maintained.

By training a NeuralBranch model with the same archi-
tecture as illustrated in figure 3, on a data set generated with
equation (2), a model that makes accurate predictions of y is
achieved. For the interpretation, data is parsed through the
model, and the predictions of neural branch 1 and neural
branch 2 are visualized in figures 4(a) and (b) respectively. In
summary, these plots show that neural branch 1 has learned to
calculate the first term in equation (2), and that neural branch
2 effectively performs the addition operation in equation (2).
Note that for this example, it is necessary to analyze the inter-
mediate parameter z to grasp the relationship between the pre-
dicted output ŷ and the inputs x and A. We also emphasize

3
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Figure 3. An example of a NeuralBranch model. Each neural
branch (boxes) contains dense neural network layers. In this case,
neural branch 1 calculates an intermediate value z from the input
parameters A and x. This intermediate value is then forwarded to
neural branch 2, which calculates the predicted output ŷ from z
and B.

that even though the neural branches in this model essentially
are individual neural networks, they are trained together as
one model. This means that prior knowledge of the interme-
diate parameter z is not required. In summary, by using the
NeuralBranchmodel, we have achieved a fully transparent pic-
ture of the relationships between the output y and the three
inputs A, x, and B.

Allowing neural branches to be connected not only in
parallel but also serially enables interactions between more
than two parameters, addressing one of the limitations of
NAMs mentioned in the introduction. Additionally, because
a neural branch is always present at the end of the model in
NeuralBranch, the other limitation of NAMs, enforced sum-
mation of network outputs, is also relaxed.

2.3. Determining which inputs to assign to each neural
branch

We have not yet explained an essential step in the
NeuralBranch framework: how to determine, without prior
knowledge of the data, which inputs to assign to each neural
branch. In the current version of the framework, our approach
is to test all possible ways to split the inputs into the dif-
ferent branches, and to select the configuration that leads to
the highest prediction accuracy, as it best reflects the data.
For instance, in the example based on equation (2), the split
[[A,x], [B]], which is illustrated in figure 3, results in the
most accurate model. This is expected, as perfectly reflect-
ing equation (2) would be impossible if B, together with A or
x, were first reduced to z in neural branch 1.

An important detail about our approach is that we test all
possible input split configurations 3 times, and we use only the
highest scoring iteration for the evaluation of each split. This
strategy ensures that no configuration is overlooked due to rare
instances where the trainable weights of the models converge
to a local optimum, resulting in a lower score.

More details regarding the assignment of inputs to the dif-
ferent neural branches are presented in the appendix. This
includes a description of how the process is performed in steps
for cases with more than three input parameters. The appendix
also includes a description of the hyperparameters used in the
training of the models in this work, as well as a description
of how we handle cases where no split configurations yield

Figure 4. Visualizations of the two neural branches in figure 3.

an accuracy that is considered close enough to the benchmark
accuracy obtained with a regular neural network. For instance,
this can occur when one or several input parameters are not
easily separable.

For the pedestal related results presented later in this paper,
we only show the final NeuralBranch architecture for each
prediction case, along with the visualization of the neural
branches.

2.4. Concluding remarks about NeuralBranch

We conclude this introduction to the NeuralBranch framework
by highlighting two aspects that have not yet been mentioned:

• Since a NeuralBranch model is transparent, it is easier to
detect irregular or overly complicated patterns that indicate
overfitting, compared to black-box models.

• We expect NeuralBranch to be useful for cases with rel-
atively few (≈< 10) input parameter. This is because
more inputs necessitate the incorporation of more neural
branches, whichmakes the interpretation processmore com-
prehensive as the branches depend on one another.

4



Nucl. Fusion 65 (2025) 056033 A. Gillgren et al

Figure 5. Sketches of electron pressure, density, and temperature profiles in the plasma edge region. Here, the radial coordinate R is
normalized, with R= 1 representing the last closed flux surface (LCFS). The pedestal structure is illustrated in the profiles, with the pedestal
top values pe,ped, ne,ped and Te,ped indicated at the top of the steep regions. These are the three values we predict in this work.

3. Pedestal data set

In this work we are focusing on predicting the pedestal top val-
ues in the JET pedestal database to perform our investigation.
Specifically, we predict the pre-ELM pedestal top electron
pressure pe,ped, density ne,ped and temperature Te,ped, which are
illustrated in figure 5. Here, pre-ELM refers to the pedestal top
values just before the ELM (Edge Localized Mode) crash.

The JET pedestal database was created in prior work [4] by
acquiring experimental High Resolution Thomson Scattering
(HRTS) profiles [28] of electron temperature and density.
These profiles were specifically acquired during quasi-steady
states lasting at least 0.5 seconds, ensuring that only minor
fluctuations due to ELMs were present. During these inter-
vals, key tokamak and plasma parameters, such as βN and
the line-integrated density, were verified to remain constant.
Additionally, to reflect conditions near the ELM stability limit,
only the measured profiles in the phase representing 70-99%
of the time interval before each ELM crash were included.
Moreover, since pressure is a product of temperature and dens-
ity, pressure profiles could also be acquired. More details
about how curve-fitting techniques were used to obtain pedes-
tal values from discrete measurements, as well as other aspects
of the database, are thoroughly explained in [4]. In the follow-
ing segment, we focus on the aspects that are specific to our
work.

For our investigation, we only consider JET pulses per-
formed with the ITER-like wall (ILW). Additionally, pulses
involving kicks, impurity seeding, RMPs, and pellets have
been excluded as these are techniques that can affect the ped-
estal. Furthermore, we focus exclusively on deuterium pulses,
as the dataset is dominated by this ion species. The dataset
is distributed across different divertor strike point configura-
tions as follows: V/V (11%), V/C (9%), V/H (48%), C/V (2%),
and C/C (30%). In these acronyms, ‘V’ refers to a vertical tar-
get, ‘C’ to a corner target, and ‘H’ to a horizontal target. For
instance, ‘V/C’ indicates a configuration where the inner strike
point is on the vertical target and the outer strike point is on
the corner target. Another feature of the database is that it is
dominated by type-I ELMs.

Table 1. The full set of parameters that are considered in this work.
Here, ‘Ped.’ is short for pedestal. The triangularity parameter
represents the average of the upper and lower plasma triangularity.
The power parameter represents the sum of the NBI power, ICRH
power, and ohmic heating, minus the shine through power.

Parameter Min Max Unit

Outputs
Ped. pressure pe,ped 0.80 13.43 kPa
Ped. density ne,ped 1.85 10.57 1019m−3

Ped. temperature Te,ped 0.15 1.48 keV

Considered inputs
Separatrix density ne,sep 0.60 6.61 1019m−3

Plasma current IP 0.97 3.96 MA
Toroidal field B 0.97 3.68 T
Minor radius a 0.87 0.96 m
Elongation κ 1.60 1.82 —
Triangularity δ 0.18 0.46 —
Total power Ptot 3.40 35.09 MW
Plasma volume Vtot 70.01 79.76 m3

Safety factor q95 2.66 4.35 —
Fuel rate of main ion Γ 0.07 7.28 1022 e s−1

Effective ion charge Zeff 1.00 3.50 −

In total, the data set in this work, which is a subset of the
full JET pedestal dataset based on the selections described in
this section, consists of 1043 entries from 852 different pulses
ranging between JET pulse 81 768 to 98 004.

3.1. Input parameters

We consider the main engineering parameters listed in table 1
as potential input parameters for predicting pe,ped, ne,ped, and
Te,ped respectively. Note that the three outputs are included in
the table to show the range of these parameters, but they are
not considered as potential input parameters in predicting one
another. Note also that the separatrix density ne,sep, which can
be considered a plasma parameter rather than an engineering
parameter, is included as a potential input. This is because, as
shown in previous work [4], the separatrix density serves as
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Figure 6. Pearson correlation matrix for the 11 input parameters considered in this work.

a more appropriate proxy for neutral pressure than the fuel-
ing parameter, whose effect can vary significantly depend-
ing on factors such as the divertor strike point configuration,
and also the poloidal location of the fueling [29]. However,
as also discussed in [30], there may be scenarios where rely-
ing on prior knowledge of ne,sep for pedestal predictions is
not preferable. Therefore, in this paper, we examine cases
where ne,sep is both included and excluded as a potential input
parameter.

The inputs in table 1 are not fully independent, as illustrated
in the Pearson correlation matrix in figure 6. The most obvious
correlations are, for instance, the positive correlation between
themagnetic fieldB and the plasma current IP, the positive cor-
relation between the minor radius a and the plasma volume V,
and the negative correlation between a and the elongation κ.
Some of these parameters are naturally correlated due to how
they are defined, but also due to how the experiments need
to be run to ensure stable plasmas. The correlations are how-
ever important to consider when analyzing the results presen-
ted in later sections. For instance, results attributed to IP might
potentially also implicitly be attributed to B due to the strong
correlation.

4. Evaluation metric

As the main idea of this paper is to train different pedestal
models to shed light on parameter relationships, we need a
metric to evaluate how well the models fit the data, essentially
to get an idea of how valid the results are. For this purpose,
we employ the R2 metric to quantify prediction accuracy. It is

defined as

R2 = 1−
∑

i (yi − ŷi)
2∑

i (yi − y)2
(3)

where yi represents the true outputs, ŷi represents the
predictions, and y represents the mean value of the true out-
puts. In the best case, the predicted values exactly match the
true values, resulting in R2 = 1. Conversely, lower R2 values
indicate worse model performance. For instance, a poorly per-
forming model that always simply predicts the mean value y
corresponds to R2 = 0.

The main reason for using the R2 metric is its easily inter-
pretable accuracy range of 0 to 1, as well as its use in previous
studies related to fits of experimental pedestal data. However,
since the dataset used in this work may not be identical from
those in previous studies, a comparison of the exact R2 values
presented here and those presented in other work is not advis-
able. Instead, we encourage comparisons of the trends and the
relative differences in R2 that we present here.

4.1. Validation set evaluation

As high capacity models exhibit the risk of overfitting, we
evaluate all neural network based models using a 5-fold cross
validation method. This applies to regular neural networks
trained for benchmarking, as well as the NeuralBranch mod-
els. The cross-validation approach allows us to assess the
accuracy on the full dataset while ensuring that no individual
model is evaluated on the same data it is trained on. That said,
after the evaluation, we train the final NeuralBranch models

6
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from scratch on the full dataset to ensure that no interesting
data points are accidentally missed in the investigation of para-
meter relationships.

5. Selecting input parameters

Before using the NeuralBranch framework, we investigate
which parameters in table 1 that actually are important for
achieving high prediction accuracy when predicting the ped-
estal top values, such that we may only include those inputs.
This is important for several reasons. First, a machine learn-
ing model has no incentive to learn meaningful relationships
between the output and inputs that do not help minimize the
loss function, in our case, inputs that do not improve prediction
accuracy. Second, we reduce the risk of including parameters
that are too strongly correlated such that they do not provide
any unique relevant information. While this may not be a sig-
nificant problem when the main goal is to achieve accurate
predictions, it can complicate the analysis of parameter rela-
tionships, which is a key objective of this paper. Lastly, the
NeuralBranch framework is easier to implement and analyze
with fewer input parameters.

The method we use to identify the most important inputs
for each output is the Sequential Forward Selection (SFS)
approach [31]. This approach can be summarized as follows:
we start with an empty input set, and then we iteratively
add the best performing input until accuracy stops improv-
ing. Here, we use regular neural networks for the modeling to
ensure that the results are not influenced by limited express-
ive capacity. Note however that new inputs are not added dur-
ing the actual training process. Instead, a new neural network
is trained each time a new input is added. Moreover, we use
Sequential Backward Selection (SBS) to check if the results
are the same as when using SFS. In SBS, which essentially is
the opposite to SFS, one starts with all inputs and iteratively
removes the input that leads to the lowest reduction in accur-
acy when removed. For all cases presented in this paper, the
results from SFS are consistent with the result from SBS. We
motivate the use of greedy approaches like SFS and SBS due
to their efficiency compared to testing all possible input com-
binations. This reduces the number of evaluations from 2047
to just 65. Additionally, just as in the NeuralBranch method-
ology, we train each input parameter setup 3 times where the
best scoring model is used for evaluation. As mentioned, we
want to ensure that no input setups are overlooked due to rare
cases where the trainable weights of the models converge to a
local optimum, resulting in a lower score.

5.1. Input parameters for predicting pe,ped

In this work, we predict the three outputs separately, and we
begin our analysis with the pedestal pressure pe,ped. To avoid
potential confusion, all results related to pe,ped, including input
parameter selection and NeuralBranch results, are presented
before we address results for ne,ped and Te,ped.

Figure 7. The result of the Sequential Forward Selection (SFS)
approach when selecting inputs for predicting pe,ped. The input
parameters in each bar indicate which parameters are used in each
model. The lines are used as references for when all 11 input
parameters in table 1 are included (all 10 when ne,sep is excluded).

Figure 7 presents the results of the SFS method used to
identify the key input parameters for predicting pe,ped. At each
step, only the parameter that yields the highest prediction
accuracy is shown. For example, when limited to one input,
IP provides the highest accuracy. As additional parameters
are introduced incrementally, δ, followed by Ptot and ne,sep
provide the highest accuracy. Notably, using these four inputs
together yields approximately the same accuracy as the full set
of inputs listed in table 1 (R2 = 0.84). When ne,sep is excluded
as a potential input, we observe that the three other paramet-
ers, IP, δ and Ptot, yield the same accuracy as when all other
inputs are included (R2 = 0.81).

Based on these findings, we consider two input parameter
sets for the remainder of the analysis related to pe,ped, one
excluding ne,sep {IP, δ, Ptot}, and one including ne,sep {IP, δ,
Ptot, ne,sep}. These inputs are largely consistent with the ones
in the Cordey scaling [18] and other recent power-law fits pre-
dicting pedestal stored energy [4], which is directly propor-
tional to pedestal pressure. The minor differences include the
choice of shaping parameters and the inclusion of ion mass
and tokamakmajor radius dependencies in the Cordey scaling,
which are irrelevant in this work as we only include deuterium
data from the JET tokamak.

The results presented in this section do not necessarily
imply that other parameters are always unimportant for pre-
dicting pe,ped, as the result may be influenced by correlations
between the input parameters and other characteristics of the
specific data set used in this work.

5.2. Unimportance of fueling Γ on pe,ped

One example of a parameter that likely has impact on pe,ped
even though it does not appear in the SFS selection results is
the fueling Γ. Specifically, previous parameter scans indicate
that pedestal pressure is influenced by fueling [3, 7]. However,
the unimportance of Γ that we observe is similarly reflected in
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the power scaling for pedestal stored energy in [4], where it
is partly explained by Γ being an imperfect proxy for neut-
ral pressure compared to ne,sep. For instance, it is possible that
the relationship between Γ and pe,ped varies across the dataset,
depending on factors beyond the other input parameters con-
sidered in this work. This would make Γ appear unimportant
on a large scale data set while a variation of the pedestal would
be identifiable in a Γ-scan when considering just a few pulses.

6. Pedestal pressure pe,ped: results

6.1. Power scaling for pe,ped

In addition to theNeuralBranchmethod, we first fit power scal-
ings to predict pe,ped. Although this method and the key results
presented here are not novel in the field of pedestal physics, as
demonstrated in [4, 18], we include it to establish a baseline
for comparison with the NeuralBranch method.

All coefficients in the power scalings in this paper are
determined by performing linear regression on the data trans-
formed into logarithmic space. However, after finding the
optimal coefficients that minimize the sum of squared resid-
uals, the R2-value for each fit is evaluated on the original,
untransformed data.

When considering the case where ne,sep is not included as
an input parameter, we obtain the following result

pe,ped = 1.25I1.05P δ0.46P0.41
tot (4)

which yields R2 = 0.78 both when fitted and evaluated on the
entire data set and when assessed using cross-validation. The
fit shows a positive relationship between pe,ped and all three
input parameters, which is coherent with previous scalings for
the pedestal stored energy [4, 18] and scans for the pedestal
pressure [3, 7].

When considering the case where ne,sep is included as an
input parameter, we obtain the following result

pe,ped = 1.78I1.34P δ0.57P0.33
tot n

−0.21
e,sep (5)

which yields R2 = 0.79 both when fitted and evaluated on
the entire data set and when assessed using cross-validation.
Overall, we observe similar trends compared to the former
power scaling, with the addition that ne,sep is negatively cor-
related with pe,ped. This is also coherent with other scalings
for the pedestal stored energy [4].

While both these power scalings demonstrate reasonable
accuracy, there is a subtle yet noticeable difference when com-
pared to the corresponding neural networks (R2 = 0.81 for the
neural network without ne,sep and R2 = 0.84 for the neural net-
work with ne,sep) that were used in the input parameter selec-
tion test. This indicates that the neural networks have incorpor-
ated a more nuanced pattern in the data, which the power scal-
ings are unable to fully capture due to their restrictive form,
thus motivating the use of the NeuralBranch framework.

6.2. NeuralBranch for pe,ped

Here, we apply the NeuralBranch framework to predict pe,ped.
We use the method as described in section 2 and present the
final architecture for the two cases, one where ne,sep is included
as an input, and one where ne,sep is not included.

Figure 8 shows the NeuralBranch model and associated
visualizations when ne,sep is not included as an input para-
meter. This model yields R2 = 0.81 when evaluated using
cross-validation, matching the accuracy of the corresponding
neural network and thus showing a slight improvement over
the power scaling (R2 = 0.78). The visualizations show, much
like the corresponding power scaling, that all three inputs Ptot,
IP, and δ generally are positively correlated with pe,ped. The
NeuralBranchmodel has however also learned amore nuanced
pattern, which can be summarized as:

• In figure 8(b), we see that the positive contribution from
Ptot on pe,ped diminishes as IP increases (z is proportional
to pe,ped). In more detail, when IP is high, we see that higher
Ptot is required to increase pe,ped further. This is an example
of an attenuating interaction between IP and Ptot in relation
to pe,ped. This particular phenomenon, where two inputs are
individually positively correlatedwith the output, but exhibit
an attenuating interaction, cannot be captured with a power
scaling.

We now turn to the other case, where ne,sep is included as an
input parameter when predicting pe,ped. Figure 9 shows the
final NeuralBranch architecture and the associated visualiz-
ations for this case. This model yields R2 = 0.84 when eval-
uated using cross-validation, which like the previous case,
matches the neural network and exceeds the accuracy of the
corresponding power scaling (R2 = 0.79). By analyzing the
visualizations, we see that this model effectively has learned
the same patterns as the previous NeuralBranch model for
pe,ped, with the addition that it here includes the negative con-
tribution from ne,sep.

6.3. Discussion of NeuralBranch results for pe,ped

The attenuating interaction between IP and Ptot in relation
to pe,ped has been hinted at in previous work. For instance,
in [4], it is observed that the relationship between Ptot and
pe,ped is weaker at higher IP. The proposed potential explan-
ation in [4] is that higher IP experiments typically involve
increased fueling rates, which can lead to a reduction in ped-
estal pressure. However, when ne,sep is included, which incor-
porates the impact of fueling, we still observe the interaction
between IP and Ptot. This implies that the attenuating inter-
action between IP and Ptot is not necessarily a consequence
of higher IP being accompanied with higher fueling (higher
ne,sep), since the inclusion of ne,sep should be able to correct for
such embedded biases, at least to some extent. Therefore, we
recommend conducting further targeted investigations, poten-
tially informed by the findings presented here, to examine the
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Figure 8. The final architecture (a) and visualizations (b), (c) of the NeuralBranch model that predicts pe,ped (ne,sep not included as a
potential input). The scatter points in (b), (c) are obtained by parsing the full data set thought the model. Here, the output prediction of each
branch is plotted on the y-axis versus one of its inputs on the x-axis, with the other input dictating the brightness of the points. The black
lines in (b), (c) represent model predictions where we scan over the input on the x-axis, with the other input, the one dictating the brightness,
being constant. The white dots on the colorbars show at which constant values the predictive scans are performed. The visualizations (b), (c)
enable interpretability regarding how the model predicts pe,ped from the three inputs. For instance, (a) shows how Ptot and IP influence the
intermediate parameter z, and (b) shows how z and δ in turn influence the predictions of pe,ped.

interaction between IP and Ptot. This is especially relevant in
the context of the Cordey scaling and existing power scalings
that predict pedestal stored energy, which currently suggest an
amplifying interaction between IP and Ptot, which according to
the NeuralBranch model, is not correct.

A detailed theoretical examination of the relationships
learned by the models is beyond the scope of this work.
Nonetheless, it is worth noting that one proposed mechan-
ism by which increased Ptot might enhance pedestal stabil-
ity involves its influence on the Shafranov shift [32], which
subsequently affects the magnetic shear and contributes to
the stabilization of ballooning modes [33]. This mechanism
exhibits a similarity to the stabilization of ballooning modes
by increased plasma current, which also modifies the mag-
netic shear [34]. A plausible hypothesis that would explain
the attenuating interaction seen in figure 8(b) is that when
either IP or Ptot already stabilizes specific ballooning modes,
the influence of the other parameter diminishes, necessit-
ating a more substantial increase in the second parameter
to achieve further stabilization of the pedestal. However,
this remains speculative and requires further investigation to
validate.

7. Pedestal density ne,ped: results

In this section, we present results related to the pedestal density
ne,ped, including selection of input parameters, power scaling
fits, and the NeuralBranch method.

7.1. Input parameters for ne,ped

Figure 10 presents the results of the SFS algorithm used to
identify the key input parameters for predicting ne,ped, both
when ne,sep is included and excluded as an input parameter.
We observe that when ne,sep is included, it is the first para-
meter in the sequence. By adding IP and δ as inputs, a similar
level of accuracy is achieved (R2 = 0.88) as when all potential
input parameters in table 1 are used (R2 = 0.89). Therefore,
for the case where ne,sep is included, we focus on {ne,sep, IP,
δ} as inputs. The significance of ne,sep in predicting ne,ped has
also been highlighted in recent studies. For example, a recent
model combining neutral penetration with pedestal transport
to predict pedestal density supports this finding [30].

In the case where ne,sep is excluded, we observe that
IP, followed by δ, Γ, and Ptot achieve approximately the
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Figure 9. The final architecture (a) and visualizations (b), (c), (d) of the NeuralBranch model that predicts pe,ped (ne,sep included as input).
See the caption of figure 8, or the demonstration example in section 2, for instructions regarding how to interpret the visualizations.

Figure 10. The result of the SFS input parameter selection test when predicting ne,ped, both when ne,sep is included (a) and excluded (b) as a
potential input parameter. The lines are used as references for when all 11 input parameters in table 1 are included (all 10 when ne,sep is
excluded).
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Figure 11. The final architecture (a) and visualizations (b), (c) of the NeuralBranch model that predicts ne,ped. This is for the case where
ne,sep is included as an input. See the caption of figure 8, or the demonstration example in section 2, for instructions regarding how to
interpret the visualizations.

same accuracy (R2 = 0.84) as when all input parameters from
table 1, except ne,sep, are used. In other words, when ne,sep is
not considered, Γ and Ptot play a more significant role in pro-
ducing high accuracy. Therefore, the second input set we con-
sider for predicting ne,ped is: {IP, δ, Γ, Ptot}. This is the same
set of input parameters that is used in a recent power scaling
predicting the pedestal density [4], with the exception that the
ion mass is excluded in our model since we only consider deu-
terium data.

7.2. Power scaling for ne,ped

When ne,sep is included as an input parameter, we obtain the
following power scaling

ne,ped = 3.71n0.46e,sepI
0.58
P δ0.42 (6)

which achieves R2 = 0.85, both when evaluated on the entire
data set and when evaluated using cross-validation. The fit
shows a positive correlation between all three input paramet-
ers and the pedestal density, which is coherent with previous
findings [4].

When considering the other case, where ne,sep is excluded
as an input parameter, we obtain

ne,ped = 10.59I1.15P δ0.68P−0.26
tot Γ0.11 (7)

which achieves R2 = 0.77 both when evaluated on the entire
data set and when evaluated using cross-validation. Like the
previous power scaling, the positive and negative exponents
are coherent with findings in previous work [4].

Similar to the pedestal pressure case, the power scalings
for ne,ped demonstrate reasonable accuracy. However, there is
again a subtle yet noticeable difference compared to the cor-
responding neural networks used in the input parameter selec-
tion test (R2 = 0.88 for the neural network with ne,sep and
R2 = 0.85 for the neural network without ne,sep). Therefore,
we use the NeuralBranch method in the next section to invest-
igate what is causing this difference.

7.3. NeuralBranch for ne,ped

Figure 11 shows the final NeuralBranch architecture and asso-
ciated visualizations when predicting ne,ped (here, ne,sep is
included as an input parameter). This model yields R2 = 0.88
when evaluated using cross-validation, matching the accuracy
of the corresponding neural network and thus showing a slight
improvement over the power scaling (R2 = 0.85). Much like
the power scaling, the NeuralBranch model suggests a positive
relationship between ne,ped and the three inputs IP, ne,sep, and
δ. Additionally, the NeuralBranch model indicates two more
nuances patterns:
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Figure 12. The final architecture (a) and visualizations (b)–(d) of the NeuralBranch model that predicts ne,ped (ne,sep excluded as input). See
the caption of figure 8, or the demonstration example in section 2, for instructions regarding how to interpret the visualizations.

• In figure 11(b), we observe an amplifying interaction
between IP and δ. This means that higher δ amplifies the
positive relationship between IP and ne,ped, and vice versa,
that higher IP amplifies the positive relationship between δ
and ne,ped. Note that we arrive at this conclusion as the inter-
mediate parameter z is approximately proportional to ne,ped
in this case.

• In figure 11(c), we see that the linear slope between ne,sep
and ne,ped is overall unaffected by z, which represents the
contribution from IP and δ. This may explain why the
NeuralBranch model achieves slightly higher accuracy than
the power scaling, as the latter assumes an amplifying inter-
action between ne,sep and the other two inputs, which accord-
ing to the NeuralBranch model, is incorrect.

We now turn to the other case, where ne,sep is excluded as
an input parameter when predicting ne,ped. Figure 12 shows
the final NeuralBranch architecture and the associated visu-
alizations for this case. This model yields R2 = 0.84 when
evaluated using cross-validation, which like the previous case,

matches the neural network and exceeds the accuracy of the
corresponding power scaling (R2 = 0.77). The NeuralBranch
model generally agrees with the positive and negative coeffi-
cients in the corresponding power scaling, but there are also
nuances found by the NeuralBranch model worth mentioning:

• In figure 12(b), we observe the same amplifying interac-
tion between IP and δ that we also observed in the previous
NeuralBranch model for ne,ped.

• In figure 12(c), we observe that the negative contribution
from Ptot on ne,ped saturates at high Ptot. We also see that
the relationship between Γ and ne,ped is stronger at lower Γ.
We arrive at these conclusions as the intermediate parameter
z2 is proportional to ne,ped.

• The NeuralBranch model suggests that there is no interac-
tion between the IP/δ-branch and the Ptot/Γ-branch. This
might contribute to the power scaling being less accurate,
since the power scaling function essentially consists of one
interaction term that involves all inputs.
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7.4. Discussion of NeuralBranch results for ne,ped

As previously mentioned, this study does not aim to
provide a comprehensive theoretical explanation of the res-
ults. However, we note that the interaction between IP and δ
may arise from how these parameters interdependently affect
magnetic shear and other key properties that influence pedes-
tal stability, as further detailed in [35]. Furthermore, this type
of amplifying interaction, where the two parameters also are
individually positively correlated with the output, is one of
the few interaction patterns that a power scaling can capture.
This explains why the power scaling for ne,ped provides a high
accuracy for the case when ne,sep is included, seemingly by a
fortunate coincidence regarding the interaction type.

8. Pedestal temperature Te,ped: results

8.1. Input parameters for Te,ped

Figure 13 presents the results of the SFS algorithm used to
identify the key input parameters for predicting Te,ped, both
when ne,sep is included and excluded as an input parameter. We
observe that when ne,sep is included, the three inputs Ptot, ne,sep
and IP are sufficient to achieve the same accuracy as when all
input parameters in table 1 are used (R2 = 0.82).

For the case where ne,sep is not considered as an input,
we observe that Ptot, Γ, IP and δ are necessary to achieve
the same level of accuracy as when all other input paramet-
ers are used. We do however notice a significant drop in R2

when ne,sep is excluded, going from 0.82 to 0.68. Specifically,
although δ and Γ somewhat compensates for the absence of
ne,sep, they are not sufficient to describe the loss of relevant
information embedded in ne,sep. Nevertheless, based on these
results, we consider two input parameter sets when predict-
ing Te,ped, namely the first set: {Ptot, ne,sep, IP}, and the second
set: {Ptot,Γ, IP, δ}. These are overall the same input parameters
that have been used in previous power scalings for the pedestal
temperature [4].

8.2. Power scalings for Te,ped

Fitting a power scaling for the pedestal temperature Te,ped with
ne,sep included as an input yields

Te,ped = 0.18n−0.60
e,sep P

0.48
tot I

0.54
P (8)

which achieves R2 = 0.74. The result indicates that IP and Ptot

are positively correlatedwith Te,ped, and that ne,sep is negatively
correlated with Te,ped, which is consistent with previous power
scalings [4]. The accuracy is however notably lower compared
to the corresponding neural network (R2 = 0.82), which again
motivates the use of the NeuralBranch method.

When ne,sep is excluded as an input parameter, we obtain

Te,ped = 0.07P0.68
tot Γ−0.18I0.03P δ−0.22 (9)

which yields R2 = 0.56, a notably lower accuracy compared to
the corresponding neural network from the input selection test
(R2 = 0.68). Nevertheless, we observe that the two new para-
meters, Γ and δ, contribute negatively to Te,ped, which is also
consistent with previous studies [4]. We additionally observe
that the dependence on IP effectively has disappeared com-
pared to the previous power scaling. A possible explanation
mentioned in previous work is that there is not a sufficient
spread in the IP data [4]. However, our results contradict this,
as all our high-capacity models need to include IP to achieve
the highest possible accuracy, meaning that its distribution is
wide enough to be informative to the models. A more likely
explanation for this particular case is that IP contributes to
Te,ped in a more complicated way than what can be captured
with the power scaling.

8.3. NeuralBranch for Te,ped

Figure 14 shows the NeuralBranch architecture and associated
visualizations when predicting Te,ped (here ne,sep is included as
an input parameter). This model yields R2 = 0.82 when evalu-
ated using cross-validation, matching the accuracy of the cor-
responding neural network and thus showing an improvement
over the power scaling (R2 = 0.74). The NeuralBranch model
generally agrees with the coefficients of the power scaling, but
it has also learned a significant interaction pattern:

• In figure 14(c), we observe that the impact that IP has on
Te,ped is greatly impacted by Ptot and ne,sep. Specifically,
when Ptot is high and ne,sep is low (resulting in high z),
the impact of IP on Te,ped diminishes. Similarly, the impact
that Ptot and ne,sep has on Te,ped weakens at high IP. This is
effectively the same attenuating interaction that we observed
when predicting pe,ped, the main difference being that ne,sep
is included in the interaction here, potentially as ne,sep is
more important when predicting Te,ped.

We now continue to figure 15, which shows the NeuralBranch
model that predicts Te,ped when ne,sep is excluded as an input.
This model yields R2 = 0.66 when evaluated using cross-
validation, which almost matches the corresponding neural
network (R2 = 0.68) and exceeds the accuracy of the corres-
ponding power scaling (R2 = 0.56). Overall, theNeuralBranch
model agrees with the coefficients in the power scaling (except
for the general non-dependence of IP in the power scaling).
Moreover, this NeuralBranch model has learned the same
attenuating interaction pattern that was seen in the previous
NeuralBranch model for Te,ped. The main difference is that Γ
effectively replaces ne,sep in this case.

8.4. Discussion of NeuralBranch results for Te,ped

To avoid repetition, we refer to the pedestal pressure section
for the discussion related to the attenuating interaction pattern
involving IP and Ptot. However, we note that previous findings
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Figure 13. The result of the SFS input parameter selection test when predicting Te,ped, both when ne,sep is included (a) and excluded (b) as a
potential input parameter. The lines are used as references for when all 11 input parameters in table 1 are included (all 10 when ne,sep is
excluded).

Figure 14. The architecture (a) and visualizations (b), (c) of the NeuralBranch model that predicts Te,ped from ne,sep, IP, and Ptot. See the
caption of figure 8, or the demonstration example in section 2, for instructions regarding how to interpret the visualizations.

specific to Te,ped suggest that the maximum Te,ped is independ-
ent with respect to IP, and that the relationship between Te,ped
and Ptot is weaker at higher IP [4]. This is coherent with the
attenuating interaction in our NeuralBranch models.

We also note that the main interaction in the NeuralBranch
models for Te,ped involves three parameters, first ne,sep, IP and

Ptot, and then Γ replaces ne,sep. It is therefore not certain that
the interaction would have been as easily identified with other
interpretable models that are best suited for pairwise interac-
tions, such as NAMs.

Additionally, the NeuralBranch models support the hypo-
thesis that power scalings are too simple to capture how IP
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Figure 15. The final architecture (a) and visualizations (b)–(d) of the NeuralBranch model that predicts Te,ped (ne,sep excluded as input). See
the caption of figure 8, or the demonstration example in section 2, for instructions regarding how to interpret the visualizations.

contributes to Te,ped, simply because the NeuralBranch mod-
els reveal a pattern that power scalings indeed cannot capture.

9. Summary of prediction accuracy of models

Table 2 presents a summary, mainly focusing on the accuracy
of the various models trained in this study. As noted previ-
ously, the power scalings demonstrate relatively high accur-
acy, and higher-capacity models, such as the NeuralBranch
models and neural networks, yield an improvement. However,
the relatively high accuracy of the power scalings does not
necessarily imply that power scalings are adequate for captur-
ing all pedestal-related dependencies, as R2 values are strongly
influenced by the distribution of the data. As an example,
the NeuralBranch models have indicated interaction patterns
mostly related to IP, and while its distribution is wide enough
to be informative to the models, it is noteworthy that ≈ 70%

of the data is in the range 1.9-2.5 MA. Hence, it is plausible
that the difference in R2 between the power scalings and the
high-capacity models would have been larger if the data and
exploration space was even more spread out across different
IP values.

Nevertheless, the other clear trend in table 2 is that the
NeuralBranch models match the accuracy of black-box neural
networks, suggesting that interpretability can be achieved
without compromising prediction accuracy for these cases.

In addition to the R2 values, figure 16 shows the pre-
dicted values versus the database values for the different
NeuralBranch models, which provides a more comprehens-
ive picture of the accuracy. It is noteworthy that although
the models demonstrate reasonable accuracy, there are still
instances of significant error. This indicates that, as expec-
ted, the models capture general trends within the database
rather than providing a complete representation of pedestal
physics.
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Table 2. Summary of models in this work. Here, NN is short for neural network, and the R2-values in the parentheses represent those where
ne,sep is not included as an input.

Model R2 (pe,ped) R2(ne,ped) R2(Te,ped) Key patterns learned Notes

Power scaling 0.79 (0.78) 0.85 (0.77) 0.74 (0.56) simple positive and negative relationships limited expressive capacity
Black-box NN 0.84 (0.81) 0.88 (0.84) 0.82 (0.68) unclear due to opaqueness no interpretability
NeuralBranch 0.84 (0.81) 0.88 (0.84) 0.82 (0.66) Ptot/IP-attenuation, IP/δ-amplification interpretable, matches NN accuracy

Figure 16. Predicted versus database values for the six NeuralBranch models in this work. The top row (a)–(c) shows the result for the
models that include ne,sep as an input, which is also indicated by the ∗, and the bottom row (d)–(f ) shows the result for the cases where ne,sep
is excluded as an input. The black solid lines represent perfect prediction lines, and the red dashed lines represent ± 20% error margins.

10. Conclusions

In this work, we have used an interpretable machine learning
method to investigate relationships between the pedestal and
key tokamak parameters in the JET pedestal database. The
main goal was to uncover general yet intricate relationships
that prior power scalings [4, 18] have not been able to capture.
A secondary goal was to develop a transparent alternative that
maintains high predictive accuracy for future integrated mod-
eling applications, addressing the opacity of previous black-
box, machine learning-based models [19, 20]. For these pur-
poses, we introduced a new interpretable framework, called
NeuralBranch. Consequently, the third goal of this work was
to outline the methodology associated with the framework.

In terms of the primary and secondary goal, we obtained
NeuralBranch models that outperformed power scalings and
matched the predictive accuracy of black-box neural net-
works while also being interpretable. Due to the interpretabil-
ity, several intricate relationships related to the pedestal were
uncovered. Specifically, while both the plasma current IP and

input power Ptot are individually positively correlated with
the pedestal pressure pe,ped and temperature Te,ped, the res-
ults suggest that IP and Ptot exhibit an attenuating interac-
tion. Investigating this interaction more thoroughly might be
important to prevent overestimating pedestal stored energy in
future high-power, high-current machines like ITER. Current
power scalings, such as the Cordey Scaling [18], assume an
amplifying interaction between IP and Ptot, which could res-
ult in prediction errors without a deeper understanding of this
effect. Additionally, we observed an amplifying interaction
between the plasma current IP and the triangularity δwhen pre-
dicting the pedestal density ne,ped. While some of these inter-
action patterns have been hinted at in previous work [4], the
NeuralBranch models in this work offer a novel global over-
view across the extensive JET pedestal database.

As we have presented results related to specific tokamak
parameters, we emphasize that these findings may be influ-
enced by correlations between the input parameters considered
within the JET pedestal database. For example, the strong pos-
itive correlation between the toroidal magnetic field B and the
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plasma current IP raises the possibility that results attributed
to IP could, in part, be related to B, even though B was not an
explicit input parameter in any model used.

Furthermore, we emphasize that the results are based on the
analysis of learned model patterns, which, while more accur-
ate than previous power scalings, are not without imperfec-
tions. Thus, our results should be interpreted as general trends,
which we differentiate from a complete description of pedestal
dependencies.

Future work may include theoretical investigations and tar-
geted empirical investigations related to the interaction pat-
terns that are indicated in this work. Specifically, since most
of the patterns identified here involve interactions between
IP and other parameters, further analysis could explore how
pedestal dependencies on various parameters evolve as IP
changes. Additionally, if large-scale pedestal data sets from
other tokamaks become available, similar pedestal related ana-
lyses using NeuralBranch, or other interpretable models, could
be conducted.

Finally, we recommend the use of interpretable pedestal
models, such as those introduced in this study, instead of
black-box machine learning models for integrated modeling
applications. As demonstrated, prediction transparency, with
its associated benefits, can be achieved without compromising
prediction accuracy.
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Appendix A. Details on NeuralBranch methodology

A.1. Assigning inputs to neural branches

As mentioned in section 2, we assign inputs to the different
neural branches in a NeuralBranch model by testing which
input splits that lead to the highest accuracy. For cases with
more than two input parameters, this search process occurs in
subsequent steps, as illustrated in figure 17.

A.2. When inputs are not separable

It is not always the case that one can easily split the inputs
such that they belong to only one neural branch. For instance,
consider a new toy data set generated with the equation

y= (a+ b)sin(c+ b) . (10)

In this case, b affects both the amplitude and the argu-
ment of the sine-wave, and is therefore not easily separ-
able. To achieve accurate predictions with NeuralBranch,
b must be parsed through two branches, as illustrated in
figure 18.

In this paper, we have seen that the inputs were separable
for all scenarios. However, if in another application no split
yield an accuracy sufficiently close to the benchmark (within
a tolerance given by the user), one may first attempt allow-
ing each input to be parsed to both branches, but only one at
a time. If yet none of these setups yield a sufficient accur-
acy, it is possible to allow up to two input parameters to be
parsed through both branches, and so on. Data sets with highly
inseparable inputs are more difficult to interpret, andmay limit
the applicability of a NeuralBranch framework for such scen-
arios. This is however not only a challenge when considering
NeuralBranch, but when considering fitting models for inter-
pretation purposes in general.

Appendix B. Hyperparameters

The following hyperparameters were used for the regular
neural networks and the NeuralBranch models in this work:

• Activation function in the hidden nodes: ReLU
• Activation function in the output node: Linear
• Activation function in the output node of each individual
branch: Linear

• Number of hidden layers in the neural networks: 3
• Number of hidden layers in each neural branch in the
NeuralBranch models: 3

• Number of nodes in each hidden layer in the neural net-
works: 40

• Number of nodes in each hidden layer in the NeuralBranch
models: 40

• Optimizer: Adam, with a learning rate of 0.001
• Loss function: mean squared error (mse)
• Batch size: 64
• Epochs: 200, although this is not always reached as we
implement early stopping using a temporary validation set
with a patience of 30 epochs.

• Data normalization method: standard scaling, applied to
both the inputs and the outputs.

Note that since each neural branch has the same number of
nodes and hidden layers as the regular neural networks, the
NeuralBranch models, which consist of multiple branches,
have more nodes in total. While this might seem unfair, we
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Figure 17. For cases with more than 3 input parameters, the search for the appropriate input assignment to the neural branches occurs in
steps. In this example, there are five input parameters: x1, x2, x3, x4 and x5. As a first step, a regular neural network is used to obtain a
benchmark value for the accuracy. In step two, the input parameters are split into two branches. For this example, we find that the split
{x2,x3} {x1,x4,x5} leads to the highest accuracy after testing all possible splits. In step 3, another branch is added to the bottom branch from
the previous step, such that only two parameters are parsed through each branch in the final model. Note that in step 3, x2 and x3 are locked
as inputs to the upper branch since we know from step 2 that this is appropriate. In other words, step 3 focuses solely on exploring all
possible ways to parse x1, x4 and x5 through the two lower branches, and finding which setup leads to the highest accuracy.

Figure 18. NeuralBranch model when predicting y from a, b, and c,
trained on a data set generated with equation (10). Since b is not
separable from the other input parameters, it needs to be parsed
through two branches to accurately reflect the data.

have observed that the accuracy does not increase when giv-
ing the regular neural networks more nodes and layers. The
reason for not using fewer nodes and layers in the neural
branches is that we do not know a priori which of them
need to represent more intricate functions. In normal cir-
cumstances, the increased number of nodes would lead to
a greater concern regarding overfitting. However, as we can
interpret the models, we can check if the models have learned
irregular, overfitting-like, patterns. Indeed, when we ana-
lyze the neural branches used for the pedestal in this work,
we do not observe signs of overfitting. That said, it would
likely be possible to reduce the number of nodes and lay-
ers in some NeuralBranch models presented in this work,
especially those that suggest simple learned patterns in the
data.

Appendix C. Comparison to SHAP applied to
random forest

We here highlight how global interpretability methods like
NeuralBranch can be beneficial compared to local interpretab-
ility methods like SHAP [27]. For this demonstration, we use
a Random Forest (including 100 trees) together with SHAP
when predicting the pedestal temperature Te,ped from the three
inputs Ptot, ne,sep, and IP. We use the same dataset that was
used in the other methods presented in this work.

Initially, we find that a tree depth of at least 6 is required
to achieve the same accuracy as the corresponding neural net-
work and NeuralBranch model (R2 = 0.82), see table 2. This
leads to every tree consisting of an average of 59 nodes (115
if leaf-nodes are included when counting). Hence, any indi-
vidual tree is not easily interpretable on its own, which is why
we need to resort to methods like SHAP.

In SHAPs, the goal is to assign an importance value (SHAP
value) to each input for a specific prediction, helping us under-
stand how themodel makes decisions. This is achieved by ana-
lyzing how each input contributes to shifting the prediction
from the baseline (expectation value of the output prediction).

While SHAP is primarily an effective tool for analyzing
input importance in individual predictions, it can also be used
to get a sense of global patterns by aggregating SHAP val-
ues across the given dataset. A common method is to analyze
SHAP dependence plots, where the SHAP value of an input
is plotted versus the actual value of the input. Here, pairwise
interactions can be investigated by coloring the scatter points
according to the value of another input.
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Figure 19. SHAP dependence plots for the Random Forest used to predict Te,ped. Here we show the dependence with respect to IP, where
(a) indicates the interaction between IP and ne,sep, and (b) indicates the interaction between IP and Ptot.

By applying SHAP to the Random Forest, we obtain two
SHAP dependence plots for IP that are shown in figure 19.
Here, the color indicates the values of ne,sep and Ptot respect-
ively. Note that there are no black lines in these plots where
we scan over the x-axis parameter. This is because the scan-
ning method used in NeuralBranch cannot be applied in the
sameway here. Specifically, in NeuralBranch, even if there are
more than two inputs in total, each neural branch only handles
two inputs. This allows for a predictive scan performed for
an individual neural branch, where one scans over one of its
two inputs while keeping the other input constant. However,
with our three-input Random Forest model, there is no obvi-
ous approach for handling the third parameter while scan-
ning the first parameter with the second held constant. As an
alternative approach, we attempted making contours of con-
stant SHAP value in, for instance, IP and ne,sep space. However,
the variation in the SHAP value imposed by Ptot led to irregu-
lar, discontinuous contours that offered no meaningful insight.
Instead, they only made the plots more crowded and more
difficult to interpret. For this reason, we chose to present the
dependence plot without these contours.

Nevertheless, to compare the findings in the SHAP depend-
ence plots with those found using NeuralBranch, we first recall
that the corresponding NeuralBranch model (figure 14) sug-
gests that there is a strong interaction effect between all three
inputs. We can see hints of these patterns in the SHAP depend-
ence plots, but they are not as clear as in NeuralBranch. For
instance, NeuralBranch indicates that Te,ped is independent on
IP when there is a combination of high Ptot and low ne,sep. In
the SHAP dependence plots, we can only observe that the pos-
itive relationship between Te,ped and IP is weaker at low ne,sep,
and, though less obvious, also slightly weaker at the highest
Ptot.

In this case, where the main interaction involves three
inputs, it is expected that SHAP dependence plots do not
provide a fully detailed global picture, as they are limited to
indicating only pairwise interactions. For instance, Ptot con-
tributes to a vertical spread, even in the dependence plot

where only ne,sep indicates the color. Hence, Ptot creates what
appears as noise, which makes it difficult to isolate and under-
stand the relationship in detail. This limitation of SHAP
becomes increasingly problematic as the number of interacting
inputs increases, which is something that global interpretabil-
ity frameworks like NeuralBranch can handle.
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