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We demonstrate an approach to the reconstruction of scanning probe X-ray

diffraction tomography data with anisotropic polycrystalline samples. The

method involves reconstructing a voxel map containing an orientation distri-

bution function in each voxel of a bulk 3D sample. By choosing a particular kind

of basis functions, we can effectively utilize non-negativity in orientation space

for samples with sparse texture. This enables us to achieve stable solutions at

high angular resolutions where the problem would otherwise be under-

determined. This method differs from established approaches by not relying on

a peak-finding step. It is therefore applicable to sample systems consisting of

small and highly mosaic crystalline domains that are not handled well by these

methods. We demonstrate the new approach using data from a shot-peened

martensite sample where we are able to map the twinning microstructure in the

interior of a bulk sample without resolving the individual lattice domains. We

also demonstrate the approach on a piece of gastropod shell with a mosaic

microstructure. The results suggest that, by utilizing the sparsity of the texture,

the experiment can be carried out using only a single rotation axis, unlike

previous demonstrations of texture and tensor tomography.

1. Introduction

Understanding the texture of crystalline materials is central to

a wide range of phenomena in materials science. Electron

backscatter diffraction (EBSD) has become the main tool for

texture characterization over the past 20 years, but EBSD is a

surface imaging technique. It cannot see the local environment

hidden in the third dimension and its analysis is susceptible to

bias by 2D effects (Juul Jensen & Zhang, 2020; Knipschildt et

al., 2023). While full 3D maps can be obtained by serial

sectioning, such imaging is inherently destructive and

precludes in situ characterization. Therefore, X-ray diffraction

techniques play an irreplaceable role in the characterization of

microstructure whenever bulk properties are of interest.

While traditional X-ray diffraction techniques probe the

volume-averaged structure of bulk samples, a range of tomo-

graphic techniques have been developed that yield spatially

resolved information.

In this paper, we present a new approach for analyzing the

data from X-ray diffraction computed tomography (XRD-CT)

experiments (Harding et al., 1987; Stock et al., 2008; Bleuet et

al., 2008). The experiment works by scanning a sample

through a point-focused X-ray beam, usually at a synchrotron

facility, and rotating the sample to record an X-ray diffraction

pattern at each point of a sinogram. The geometry of the
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experiment is sketched in Fig. 1(a). While traditional XRD-CT

assumes an isotropically scattering sample, the technique

proposed in this paper explicitly reconstructs the anisotropy of

the sample, resulting in a spatially resolved 3D map of the

crystallographic texture of a polycrystalline sample.

The proposed method builds on the principles of tensor

tomography (Malecki et al., 2014; Liebi et al., 2015; Schaff et

al., 2015) and is formally identical to the method developed by

Frewein et al. (2024) called texture tomography, except with a

different choice of basis functions. This choice of basis func-

tions enables our method to effectively enforce the prior

knowledge of sparsity on the solution which is necessary to

ensure unique solutions at higher angular resolution (around

10� to 5� in this paper). As texture tomography and the

method proposed in this paper reconstruct the orientation

distribution function (ODF) in each voxel while the estab-

lished tensor tomography techniques reconstruct pole figures,

we introduce the abbreviations ODF-TT and PF-TT to

distinguish between them.

Generally, the proposed method falls within a large family

of X-ray techniques which are collectively referred to as 3D

X-ray diffraction (3D-XRD) (Poulsen, 2004), comprising

scanning 3D-XRD (s3D-XRD) (Hayashi et al., 2015), which

uses an identical experimental set-up, as well as a number of

full-field techniques (Poulsen et al., 2001; Suter et al., 2006;

Schmidt et al., 2008; Ludwig et al., 2008; Vigano et al., 2016;

Oddershede et al., 2019) all aimed at reconstructing the 3D

microstructure of polycrystalline materials from X-ray dif-

fraction measurements. 3D-XRD techniques rely on spatially

resolving the smallest coherent lattice domains of a sample

(such as grains, sub-grains or twin domains) in order to index

distinct diffraction spots that can be assigned to individual

grains. Instead, the tensor and texture tomography methods

work with smeared-out Debye–Scherrer rings with a contin-

uous intensity variation along the detector azimuth [as shown

in Figs. 1(b) and 1(c)] and reconstruct the spatially averaged

texture over multiple crystalline domains. Therefore, they are

well suited for small-grained and highly deformed materials

such as bone-apatite (Grünewald et al., 2020; Grünewald et al.,

2023) and cold-worked metals (Carlsen et al., 2024).

ODF-TT overcomes some of the weaknesses of other X-ray

scattering tomography techniques and broadens the range of

samples that can be studied. By reconstructing the full ODF

using a grid-based expansion of the ODF, non-negativity in

orientation space can be enforced, overcoming certain ambi-

guities of the inversion problem. Notably, because ODF-TT is

spatially resolved, only the texture on the length scale of a

reconstructed voxel needs to be sparse to make use of the non-

negativity constraint and not the texture of the full sample.

Furthermore, by enforcing the lattice symmetries we over-

come the ‘missing-wedge’ problem of PF-TT (Schaff et al.,

2015; Nielsen et al., 2024), allowing experiments to be carried

out in a simpler geometry without a second rotation stage

which is commonly used in PF-TT. We present the mathe-

matical approach to the reconstruction and apply the method

to a 2D XRD-CT dataset from a piece of shot-peened

martensite and to a full 3D tensor tomography dataset of a

piece of gastropod shell.

2. Method

In this section we introduce some concepts from texture

inversion and show how they can be combined with the

methodology of tensor tomography. Finally we discuss how

the output of the texture tomography reconstruction is

analyzed to extract some meaningful quantities used for

visualization.
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Figure 1
(a) Sketch of the experimental geometry and (b, c) examples of X-ray diffraction patterns from each of the two investigated samples. (d, e) show the
reconstructed samples as inverse pole figure maps of the main orientation and (f, g) show the full ODFs of a single voxel plotted as a 3D density in
Rodriguez vector space in the asymmetric zone of the ( f ) cubic and (g) orthorhombic crystal system of ferrite and aragonite, respectively.



2.1. Texture inversion

While tensor tomography was originally applied for small-

angle X-ray scattering (Liebi et al., 2015; Schaff et al., 2015)

(SAS-TT), its extension to wide-angle Bragg scattering is

straightforward (Grünewald et al., 2020; Carlsen et al., 2024).

In SAS-TT, the reconstructed quantity is typically called the

reciprocal-space map. For crystalline systems that only display

scattering in discrete shells corresponding to the length of

reciprocal-lattice vectors, the reciprocal-space map is more

easily represented by maps of the intensity on these spheres

only. Such a map, when appropriately normalized, is called a

pole figure. These pole figures follow symmetries corre-

sponding to the rotational symmetries of the crystal lattice.

However, the symmetries are not fully realized in the indivi-

dual pole figures but result in correlations between different

pole figures. This motivates reconstruction of the ODF which

describes the anisotropy of all Bragg peaks simultaneously

and allows the rotational symmetries to be enforced more

easily on the reconstruction.

The implementation of texture tomography by Frewein et

al. (2024) relies on expanding the ODF in a series of

symmetrized generalized spherical harmonics (Roe, 1965;

Bunge, 1969). We instead use a technique that expands the

ODF into a series of localized functions placed on a grid of

orientations mapping out the asymmetric zone of orientation

space under the point-group symmetries of the crystal lattice.

Such local functions have been used extensively in texture

inversion and are typically (i) the indicator functions of some

partition of the asymmetric zone, resulting in a piecewise-

constant approximation of the ODF (Ruer & Baro, 1977;

Schaeben, 1994), (ii) finite elements, which give a piecewise-

linear approximation (Barton & Dawson, 2002) or (iii)

spherically symmetric standard functions (Schaeben, 1996),

such as the spherical Gaussian function used in this work.

This change of basis functions has been shown to help

overcome the ambiguities of the texture inversion problem by

enforcing certain kinds of prior knowledge, allowing one to

compute regularized solutions (Schaeben, 1988). Particularly

relevant for this study, it allows non-negativity to be imposed

in orientation space as a simple non-negativity constraint on

the model coefficients. For sparse textures, where the ODF is

close to or equal to zero in extended regions of orientation

space, the non-negativity constraint has been observed to

resolve the inherent ambiguity of the texture inversion

problem (Matthies, 1972; Dahms & Bunge, 1988).

2.2. The tomographic inversion problem

To write the full forward model, we expand the ODF of the

voxel at position x, y, z as a series expansion of ODF basis

functions:

OxyzðgÞ ¼
X

�

cxyz�O�ðgÞ; ð1Þ

where cxyz� are the unknown expansion coefficients, g is a

proper rotation and O�ðgÞ are the basis functions. The basis

functions used here are sets of Gaussian radial functions

obeying the lattice symmetry rotated to a set of grid points g�
chosen to uniformly fill the asymmetric zone of the respective

lattice groups. The ODF defined by this expression is not

properly normalized, and the reconstructed quantity is

thought of as the density of the crystalline phase times the

ODF.

For each ODF basis function, we can pre-compute the

corresponding pole figure values at the points probed by the

geometry of the experiment. These values are stored in a set of

matrices with elements

B
�
hcðRiÞ ¼ PhfO�gðR

>
i qhcÞ; ð2Þ

where Phf�g is the pole figure projection operator in ODF

space, Ri denotes the setting of the rotation stage, and qhc is

the scattering vector measured by the detector segment at the

azimuthal channels labeled by c and the Bragg peak labeled by

h. These matrix coefficients can be computed with standard

approaches from texture inversion and open-source software

packages (Hielscher & Schaeben, 2008).

The full tomographic problem can now be written as

IchjkðRiÞ ¼
X

xyz

P
xyz
jk ðRiÞ

X

�

B
�
hcðRiÞcxyz�; ð3Þ

where IchjkðRiÞ is the five-dimensional dataset containing the

integrated intensities and P
xyz
jk ðRiÞ are the matrix elements of

the discrete X-ray transform that transforms the voxel grid

(x, y, z) to the coordinates of the raster-scan grid (j, k). In a 2D

geometry, the indices y and k can be omitted and P is the

Radon transform. To write the problem in this form, we have

assumed that the scaling factors which describe the relative

intensity of different Bragg peaks are known beforehand and

have been normalized out of the measured intensities.

We rewrite the model with linear algebra syntax as

I ¼ Ac; ð4Þ

by flattening the dataset into a single vector I, the expansion

coefficients into a vector c, and the products of P
xyz
jk ðRiÞ and

B
�
hcðRiÞ into a single matrix A. This forms a large system of

linear equations that will typically be underdetermined when

the ODF expansion is performed to high angular resolution.

Here, we will focus on textured materials where the ODF is

close to zero in large regions of orientation space, which adds

the prior knowledge needed to overcome the inherent ambi-

guities of the inversion problem. To find the solution, we

minimize the square residual with L1 regularization:

cOpt ¼ argmin
c

jjI � Acjj22 þ �jjcjj1
� �

s:t: cxyz� � 0 8x; y; z; �; ð5Þ

where � is a regularization parameter and jj � jjn denotes the

Euclidean- and 1-norm for n = 2 and 1, respectively. To solve

this optimization problem, we use projected gradient descent

with Nesterov momentum. For both samples investigated in

this paper, ODF-TT achieves good reconstructions without

regularization, but L1-norm regularization is used to reduce

streaking artifacts appearing in the gastropod shell sample

(see Appendix A).
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2.3. Experiment

2.3.1. Shot-peened martensite

The first sample is a piece of martensitic steel with a cross

section of about 0.8 mm by 1 mm. The sample was shot-

peened from three sides in order to introduce high residual

stresses and varying crystallite sizes from the edges to the

center.

The experiment was carried out at the P21.2 beamline

(Hegedüs et al., 2019) of PETRA III (Hamburg, Germany). A

photon energy of 68 keV was selected by a double Laue

monochromator. Compound refractive lenses shaped a pencil

beam of 8 mm width by 3 mm height with a photon flux of

about 1010 photons s� 1. A VAREX XRD4343CT detector

with a pixel size of 150 mm was positioned about 0.8 m

downstream of the sample and provided diffraction angles of

up to 2�max = 14�.

The single rotation axis was oriented in the vertical direc-

tion. The sample was scanned with stepwise translations

orthogonal to the rotation axis and continuous rotation. In

total, 200 projections were collected over 360� and the sample

was translated 200 times in 8 mm steps, which resulted in a field

of view of 1.6 mm. The exposure time was 0.4 s and a total of

40000 frames were acquired, which took approximately 5 h.

The integrated intensity was determined for each of the

seven diffraction rings that were fully captured by the detector

and azimuthally regrouped into 72 equally spaced azimuthal

bins. The resulting sinograms were corrected by the absorp-

tion signal provided by a beamstop diode.

The reconstruction was performed without regularization

by running the algorithm for 1000 iterations, which took 8 h to

complete. The 2D slice was reconstructed on a 150 � 150 pixel

grid with an ODF expansion using 10000 orientations in the

asymmetric zone. For each orientation a spherically symmetric

Gaussian with � = 0.05 rad was used. This gives 15 million data

points and 240 million degrees of freedom of which 0.6 million

were non-zero in the converged solution. The final recon-

struction has an R2 value of 0.8, defined as R2 ¼ 1 �

jjI � AcOptjj
2
2=jjIjj

2
2.

2.3.2. Gastropod shell

The second sample consists of a piece of the shell of Helix

pomatia (Roman snail) which was found in the forest at

Beznau, Aargau, Switzerland. A small piece measuring 3 mm

by 3 mm by 2 mm of the columella was taken about 5 mm

below the apex [marked with a purple outline in Fig. 4(b)].

The snail shell consists mainly of aragonite and no other

crystalline components could be identified in the diffraction

patterns.

The sample was measured at the cSAXS beamline at the

Swiss Light Source (SLS). The experiments were performed

with a photon energy of 18 keV and a sample-to-detector

distance of 0.2 m using a Pilatus 2M detector. The beam was

focused to a spot of approximately 50 � 50 mm and the sample

was raster-scanned in two dimensions through the focused

beam with continuous translations in one direction and a step

size of 50 mm and step scanning with two orthogonal rotation

stages. The intensity of the direct beam was measured by the

image detector behind a semi-transparent beamstop

constructed of several small discs of single-crystal silicon glued

together.

For this sample, a full tensor tomography dataset was

obtained, containing measurements made at tilt angles

extending to 45�. This allows the texture to be reconstructed

with the more established PF-TT approach and the two

approaches to be compared; it also allows a comparison

between using the full dataset and using a zero-tilt geometry

only.

The diffraction patterns contain 16 rings that are fully

covered by the detector, but due to partial overlaps of some

peaks, only eight rings were used for the reconstructions.

These rings were azimuthally regrouped into 96 equally

spaced bins.

For the reconstructions, we used a grid of 8000 orientations

and Gaussian functions with width � = 0.1 rad for the basis set.

The gastropod shell consists of aragonite of the orthorhombic

crystal class, which means the rotation group contains only

four symmetries in contrast to 24 in the cubic crystal class of

ferrite. Therefore, even though the numbers of grid orienta-

tions are similar, the angular resolution of the gastropod shell

reconstruction is about a factor of two worse than that of the

martensite reconstruction. The full 3D problem has 600

million data points with 150 million in the zero-tilt part, and

the model uses 1.8 billion degrees of freedom.

2.4. Analysis of reconstructions

Each voxel of the reconstruction contains up to about 10000

independent grid orientations and coefficients. While most

coefficients are zero, which simplifies the analysis, both

visualization and analysis of the reconstruction remain chal-

lenging.

The main tool for visualization used in this paper is to select

a main orientation for each voxel, which is defined as the

orientation corresponding to the basis function with the

largest coefficient. With this main orientation field, we can

compute inverse pole figure maps and orientations of crys-

tallographic axes similar to what is done in EBSD analysis.

The fraction of intensity attributable to this main orientation is

computed by first selecting all orientations that fall within a

20� distance of the main orientation. The fraction is then

defined as the sum of all selected coefficients divided by the

sum of all orientations.

Furthermore, we use an approximate texture index defined

as Jxyz = hc2
xyz�i�=hcxyz�i

2
�. A texture index of one corresponds

to a uniform texture and a higher texture index generally

corresponds to a sample with stronger texture, increasing

towards infinity.

For the martensite sample, the reconstructed texture in

most voxels consists of clusters of nearby orientations that

have non-zero coefficients corresponding to a texture

component with some width larger than the grid resolution.

We use a simple approach to find these clusters, where the

main orientation is taken to be the orientation with the largest

research papers

J. Appl. Cryst. (2025). 58, 484–494 Mads Carlsen et al. � Texture tomography utilizing sparsity 487



coefficient. Afterwards, orientations within a 20� radius are

excluded and a secondary orientation is chosen as the highest

coefficient among those remaining. The cutoff distance is

needed to avoid classifying two coefficients from the same

texture component as separate texture components. A cutoff

of 20� is chosen for this sample to avoid finding small misor-

ientations inside the same Bain group, as these are thought to

be too close to the grid resolution to allow one to resolve the

misorientation axis well by this approach. Better algorithms

for clustering of texture components are expected to yield

improved results, but the implementation of standard clus-

tering algorithms is not straightforward due to the compli-

cated boundary conditions of orientation space under point-

group symmetries.

From these clusters, we compute the misorientation. Calling

the main and the secondary orientations g1 and g2, respec-

tively, the misorientation is defined as the orientation

g0 ¼ minðg1gsg
� 1
2 Þ for gs in the symmetry group. The misor-

ientation is then conjugated using gm ¼ gsg
0g� 1

s such that the

axis of rotation falls within the fundamental region of the

inverse pole figure.

For the gastropod shell sample, the maps computed using

the main orientation appear noisy. To address this, we

compute a mean orientation that also takes into account the

weights of neighboring grid orientations. This is done by first

selecting all orientations that fall within a 20� radius of the

main orientation. From these selected orientations, a mean is

computed by first rotating all orientations into a frame

centered on the main orientation by a right-handed applica-

tion of the inverse of the main orientation, making sure to pick

the smallest symmetry-equivalent orientation for each. The

transformed orientations are afterwards cast to Rodriguez

vector space and a weighted arithmetic mean is computed of

the vector components using the coefficients as weights.

Finally, this mean orientation difference is transformed back

into the original frame to give the mean orientation used for

the plots.

3. Results

To test the feasibility of ODF-based tensor tomography, we

show results using two separate experimental datasets. One is

a piece of martensitic steel which is a sample system of high

scientific interest with a well known twinned microstructure. It

has not so far been possible to map this microstructure with

3D-XRD approaches. The other is a biomineral sample where

a full 3D tensor tomography dataset is available, which allows

us to compare the performance of ODF-TT with PF-TT. Figs.

1(b) and 1(c) show examples of raw detector frames from each

of these two datasets. Both datasets display strongly aniso-

tropic Debye–Scherrer rings but lack easily identifiable

separate diffraction spots.

Fig. 2 shows a number of quantities computed from the

reconstruction of the martensite dataset. In Figs. 2(a) and 2(b)

we see that the outline of the sample is sharp and that the

reconstructed density is fairly homogeneous, as expected for

the sample which consists almost entirely of ferrite. In Fig. 2(c)

we display the texture index of the individual voxels. We

observe that the shot-peened surfaces (that is, all surfaces

except the straight edge at the top of the figure) display a

markedly lower texture index than the rest of the sample. This

observation is illustrated in Fig. 2(d) by highlighting voxels

with low texture index.

We can determine a main orientation in each voxel. This

main orientation is plotted as an inverse pole figure map in

Fig. 2( f). The microstructure of martensite consists of narrow

laths of ferrite with sub-micrometre thickness which is smaller

than the resolution of the experiment. The lattice orientations

in the individual laths are related to those of their neighbors

due to transformation twinning, which causes specific orien-

tation relationships with neighboring laths and similar orien-

tations to be repeated in nearby crystalline regions. The

domains observed in the reconstruction are thus not the
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Figure 2
Reconstructed tomogram of the steel sample. (a) Crystal density; (b)
histogram of the reconstructed density values. The dashed line marks the
threshold used to generate the mask distinguishing the sample from the
air. (c) Approximate texture index computed from the standard deviation
of the reconstructed coefficients of each pixel. (d) A binarized map
showing regions with texture index lower than 20 in yellow. (e) Fraction of
the ODF density that falls within a sphere of radius 20� of the main
orientation. ( f ) Inverse pole figure map of the main orientation deter-
mined as the grid orientation corresponding to the largest coefficient in
each voxel.



individual crystalline domains but rather the outlines of the

parent austenite grains that existed before transformation into

martensite and high-order subdivisions known as packets. This

is demonstrated in Fig. 2(e) which shows that only about half

of the total intensity can be attributed to a main orientation.

Fig. 2( f) shows the main orientation plotted as an inverse pole

figure map. Some large domains up to 50 mm in size are

present, but regions with domains of size approaching the

resolution of the experiment are also observed.

In Fig. 3 we zoom in and provide a view of the local texture.

The texture of fully transformed martensite contains many

distinct texture components that fall into three Bain groups,

separated by large misorientations (>45�). The smaller

misorientations within each Bain group are around 10�, only

about two times larger than the grid resolution of the ODF

model used for the reconstruction. For select regions of the

sample, we see that the pole figures show features typical of

the Young–Kurdjumov–Sachs (Young & Smith, 1926; Kurd-

jumow & Sachs, 1930; Guo et al., 2004) orientation relation-

ship [Fig. 3(c)], while at other points, especially close to the

shot-peened edge of the sample, the texture appears less well

ordered [Fig. 3(d)].

To quantify the twinning in the whole sample, we compute a

histogram of the intra-voxel misorientations. The determina-

tion of intra-pixel misorientations precludes observation of

misorientations smaller than 20�. This means that misorien-

tations corresponding to martensite variants from within the

same Bain group are not observed. When determining the

misorientations we are only considering the two strongest

texture components in each pixel. This potentially suppresses

the observation of weaker texture components that might be

present in the sample. Fig. 3(e) shows the distribution of the

direction of the misorientation axis in the lattice coordinates.

We see that the misorientation is mainly around h110i direc-

tions and directions close to, but not quite aligned with, h111i.

Fig. 3( f) shows the magnitude of the misorientation. The

cutoff precludes the observation of misorientations with

magnitude smaller than 20�, but beyond this almost no

misorientations between 20� and 45� are detected. The found

directions and magnitudes of the misorientations are consis-

tent with the expected orientation relationships.
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Figure 3
Zoomed-in view of the region of the martensite sample marked in Fig.
2( f ). Inverse pole figure maps of the (a) primary and (b) secondary
orientations. (c, d) show the {110} pole figures of two 4 � 4 pixel regions,
marked in (a) and (b). Overlaid on these pole figures are the poles
corresponding to the main orientations colored by the corresponding
inverse pole figure color. Histograms of (e) the direction of the misor-
ientation axis between the primary and secondary orientations in lattice
coordinates and ( f ) the magnitude of the misorientation.

Figure 4
3D renders of the reconstructed snail-shell sample using ODF-TT. (a)
shows the full reconstructed volume rendered as flat cylinders with the
face aligned with the c axis of the main orientation and where the size of
the cylinders is proportional to the reconstructed density. The cylinders
are colored according to the direction of the c axis. (b) Radiograph of a
Roman snail shell showing the approximate location from where the
sample was extracted. (c, d, e) Single slice of the reconstructed volume at
the location marked with a black rectangle in (a) colored according to the
direction of the a, b and c axis, respectively. For two select voxels on each
side of the columellar wall, labeled 1 and 2, the direction of each of the
three primary axes is plotted, showing an abrupt change of about 31� in
the direction of the a and b axes.



The other sample investigated is a piece of gastropod shell

and consists predominantly of aragonite. The local micro-

structure is dominated by a single orientation with a mosaic

spread of around 20� FWHM [see Fig. 1(g)]. Fig. 4(a) shows

the direction of the orthorhombic c axis in the mean orien-

tation. The c axis is aligned with the surface normal of the

columellar wall, which is typical for aragonite shells in

mollusks (Bøggild, 1930). Figs. 4(c), 4(d) and 4(e) show a

single slice of the reconstruction displaying the direction of the

three orthorhombic axes. From these figures we can see that

where the columellar wall folds back on itself after wrapping

around the umbilical it consists of two distinct layers with

different crystallographic orientations which are related by a

rotation about the common c axis. These two layers are part of

two distinct whorls of the shell and were grown at different

points in the snail’s lifetime.

The gastropod shell dataset can also be reconstructed using

established techniques from PF-TT. To give a fair comparison,

we use a set of basis functions similar to the ones used in the

ODF-TT reconstructions consisting of symmetric Gaussian

functions placed on a grid of directions covering the half-

sphere (Nielsen et al., 2024) which can also benefit from the

non-negativity constraint and sparse texture. To facilitate

comparison between the two reconstruction methods, we

chose to reconstruct the 200 Bragg peak as it is the only peak

in the dataset that is parallel to one of the main crystal-

lographic axes and has multiplicity 2, which makes it possible

to define a main direction of the scattering. The reconstruc-

tions were performed using the software package mumott

(Nielsen et al., 2023).

Fig. 5 shows a comparison between the ODF-TT recon-

structions and the PF-TT reconstructions. ODF-TT recon-

structs a smoothly varying direction both with the full and

zero-tilt datasets except where the columellar wall touches

itself after folding around the umbilical. The direction found

from the PF-TT reconstructions on the other hand has sudden

variations along the columellar wall and appears more erratic.

With the full dataset, the PF-TT direction is close to the ODF-

TT directions at many points in the sample, especially near the

center where the sample is thicker, but differs significantly at

the narrower features. This is consistent with the type of

‘missing-wedge’ artifacts common in PF-TT, where flat

features are difficult to reconstruct when the projections

orthogonal to the normal of the plane have not been

measured. With only the zero-tilt data, there are no longer any

clear correlations between the direction of the PF-TT recon-

struction and that of the ODF-TT reconstructions. Fig. 7 in

Appendix A shows a comparison of individual pole figures,

and we see that, while the main peak is also reconstructed by

PF-TT, there are additional peaks of similar amplitude that

obscure the main orientation.

4. Discussion

We have shown that texture tomography can yield well

constrained optimization problems, even at high angular

resolution where the number of degrees of freedom of the

model far exceeds the number of data points, as demonstrated

by its application to two distinct samples. The solutions we

obtain display the expected textural features of our samples,

namely, the Young–Kurdjumov–Sachs orientation relationship

in the martensite sample and the orientation of the c axis with

the surface normal of the snail shell. While these results

strongly validate the method, further work is required to fully

establish its accuracy and limitations for reconstructing sample

texture and shape.

For both samples investigated in this study, the recon-

struction problem is underdetermined, with around 240

million and 1.8 billion degrees of freedom for the martensite

and snail-shell samples, respectively, in contrast to just 15

million and 0.6 billion data points. Due to the sparsity of the
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Figure 5
Comparison of reconstructions using ODF-TT and PF-TT of the
gastropod shell sample. (a, c, e, g) show a single slice, orthogonal to the
shell axis, of the reconstructed crystal density while (b, d, f, h) show the
main orientation of the (100) crystallographic direction using a color
coding. (a, b) are from ODF-TTreconstructions using the full dataset with
tilts up to 45� and (c, d) are from ODF-TT using only the zero-tilt part.
(e, f ) are from a PF-TT reconstruction using the full dataset. (g, h) are
from a PF-TT reconstruction made using only the zero-tilt part of the
dataset.



texture however, a large majority of the expansion coefficients

are zero in the converged solutions with only 0.6 million and 6

million non-zero coefficients, respectively.

We believe that the sparsity of the voxel-averaged texture is

key to providing a well constrained inversion problem. But

determining the extent of sparsity needed to provide a well

constrained problem is likely to depend on the resolution (in

real space and orientation space) of the reconstruction, the

point group and the number of measured Bragg peaks, and we

do not attempt to answer this question in general. In practice,

we have used the fact that the unregularized reconstructions

converge to a solution with fewer non-zero coefficients than

data points as an indicator that the problem is well

constrained.

Further evaluation of the methods to establish the achieved

resolution, accuracy and the range of applicability is therefore

needed and will require both simulation studies and compar-

ison with other characterization techniques.

The reconstruction problem in pole-figure-based tensor

tomography suffers from ambiguities that are due to the

experimental difficulty of properly sampling the full range of

projection directions. While standard computed tomography

problems can be inverted using projections measured around

a single rotation axis, PF-TT requires sampling of the full half

unit sphere of possible projection directions to be solvable.

This necessitates the inclusion of a second rotation stage in the

experimental set-up, resulting in longer measurement times.

Even with such a sample stage, a range of projection angles are

usually obscured by the sample holder, which leads to the

missing-wedge problem in PF-TT whereby certain Fourier

components of certain scattering directions cannot be probed

(Schaff et al., 2015; Nielsen et al., 2024).

While it can be shown that full angular sampling is neces-

sary when different scattering directions are reconstructed

independently (Schaff et al., 2015), it is not clear if this is

necessary when using a model that enforces correlations

between different scattering directions. This has led several

authors to assert that PF-TT is possible with such methods

(Mürer et al., 2021; Zhao et al., 2024) despite systematic studies

generally showing this to have a negative impact on the quality

of the reconstructions (Liebi et al., 2018; Carlsen et al., 2024).

As shown here, ODF-TT appears to be able to overcome the

missing-wedge problem of PF-TT and achieve solutions

without a tilt rotation by utilizing the extra information given

by the lattice symmetry and the sparse texture.

A wide range of volumetric grain-mapping techniques using

synchrotron X-rays exist. However, they are mostly limited to

either materials with low intragranular misorientation and

strain or samples with a small number of grains. Recent

advances have targeted larger strains by utilizing a focused

beam (Hayashi et al., 2015), conical slits (Hayashi et al., 2023)

or improved computational approaches (Henningsson et al.,

2024). Still, these approaches have so far only been demon-

strated on fairly simple grain structures. It has not thus far

been possible to reconstruct martensite and other highly

strained phases, which Hayashi et al. refer to as ‘invisible

phases’ (Hayashi & Kimura, 2023), with 3D-XRD techniques.

Texture tomography differs from these techniques in two

key aspects: (i) the measured diffraction patterns are reduced

by azimuthal integration rather than by peak finding and (ii)

the sample orientation is modeled by an ODF instead of an

orientation field.

Because s3D-XRD aims to reconstruct the orientation field,

it is necessary for the individual crystalline domains in the

sample to be resolved by the resolution of the experiment. In

ODF-TT a single voxel can contain multiple texture compo-

nents which means samples with small crystalline domains can

be mapped at a coarse resolution, as long as the assumption of

locally sparse texture is maintained. While this can be seen as

an advantage, as fine-grained samples can be mapped roughly,

allowing faster data collection times, the resulting picture of

the sample’s microstructure is less complete, as information

such as grain sizes, grain shapes and grain boundary orienta-

tions is lost.

If ODF-TT were to be used in a setting where the individual

grains are well resolved, the fact that multiple texture

components, corresponding to the orientations of neighboring

grains, are allowed to be present in the same voxel could lead

to lower resolution when compared with s3D-XRD, where

each voxel is forced to have only one orientation. Further-

more, because the number of basis functions needed to expand

an ODF scales with the cube of the desired resolution, it

becomes increasingly slow and computationally expensive to

perform ODF-TT at higher resolution. Thus, for materials with

well defined grains and sharp peaks in the diffraction patterns,

which is the normal setting for 3D-XRD, ODF reconstruction

as presented here may not be feasible. However, we still

predict that ODF-TT can find applications for coarse-grained

metal samples with high plastic deformation, where existing

methods struggle due to large overlap of the smeared-out

diffraction peaks arising from such deformed grains.

Another advantage of the ODF approach is that the

forward model becomes linear, which simplifies the recon-

struction and analysis of the problem significantly. This has

already been shown and discussed in the 3D-XRD setting by

Vigano et al. (2014, 2016). However, this approach was not

applied to the scanning beam geometry.

The output of an ODF-TT reconstruction is an ODF for

each voxel in the reconstructed volume, and both analysis and

visualization of the reconstruction are challenging. For a

sample such as the gastropod shell, where a main orientation

can be defined, the information contained in ODFs can be

reduced to a small number of derived quantities, such as the

orientation field, density and mosaic spread. This is a reduc-

tion of the information content of the full reconstruction, as

information such as the shape of the texture component and

potential existence of secondary texture components is lost.

For samples with more complicated local textures, such as

the martensite sample shown here, more detailed analysis is

required to interpret the reconstructions. The analysis

presented in this paper is a first step and we foresee that more

advanced analysis can be developed to extract more infor-

mation from the reconstructions. This could include processes

such as martensite packet and parent grain determination.
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While methods exist for these tasks, they are typically

designed to be used in different settings – with either EBSD

images, where the orientation field is well resolved spatially

and the task involves grouping neighboring pixels according to

their relative misorientations, or traditional X-ray texture

mapping which uses a single high-quality texture map of the

entire sample. In summary, existing algorithms need to be

adapted for in-depth analysis and validation of ODF-TT

reconstructions.

5. Conclusion

We have demonstrated a novel approach for tomographic 3D

mapping of crystallographic texture in bulk samples using a

method similar to pole-figure-based tensor tomography. By

utilizing grid-based basis functions and leveraging sparsity, we

can overcome the inherent ambiguities of the inversion

problem. Our proof-of-principle experiments show that a

reconstruction can be achieved even for highly under-

constrained problems by applying a non-negativity constraint

in samples with locally sparse textures.

Unlike for PF-TT, our method achieves good reconstruc-

tions with measurements using only a single rotation axis. This

means that both experiments and reconstructions can be

carried out in a slice-by-slice manner which enables single-

slice experiments to be performed faster. This simplifies the

experimental procedure by not requiring a second rotation

stage, facilitating in situ experiments using various existing

sample environments at a range of synchrotron endstations.

Our findings suggest that ODF-TT with grid-type basis

functions will be able to extend the range of samples that can

be characterized with existing 3D-XRD and PF-TT techni-

ques. This includes twinned and deformed metal micro-

structures and broadly mosaic biominerals.

APPENDIX A

A1. Importance of the non-negativity constraint

To illustrate the importance of the non-negativity

constraint, we performed a reconstruction of the martensite

data without using the non-negativity constraint. Fig. 6 shows

the results of this reconstruction. It is apparent that the

reconstruction without the non-negativity constraint suffers

from a high-frequency reconstruction artifact that grows

exponentially in amplitude after about 1000 iterations. The

fixed-step-size algorithm used here is not stable for this

problem, but a reasonable reconstruction can be achieved by

stopping the optimization procedure early.

A2. Comparison of pole figures

To give more insight into the comparison of ODF-TT and

PF-TT, we plot the {200} pole figure of a single voxel of the

reconstructions of the gastropod shell data in Fig. 7. It appears

that the PF-TT reconstruction does reconstruct significant

scattering in the direction where ODF-TT shows the majority

of the intensity. However, the PF-TT reconstruction also has

significant intensity in two other directions with similar

amplitude.

A3. L1 regularization

For the samples investigated in this paper, good recon-

structions can be achieved without use of L1 regularization.

However, there are advantages to using the regularization. As
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Figure 7
Pole figures of a single voxel of the snail sample with four different
reconstructions.

Figure 6
Tomograms of the martensite reconstruction without utilizing the non-
negativity constraint. (a) shows a convergence curve and the recon-
structed density at three different points during the optimization and (b)
displays a histogram of the density values of the 800th iterate. (c) shows
the corresponding calculated texture index and (d) shows an inverse pole
figure map of the main orientation.



seen in Fig. 8, using a regularized reconstruction can reduce

streaking artifacts in the reconstruction and significantly

decrease the number of non-zero coefficients. The latter is

useful as it makes the reconstructed volumes easier to store

and process for further analysis.

A4. Residuals

To get some insight into the quality of the fit and potential

source of errors, we show the fit and residuals in Fig. 9. The

magnitude of the residual is lower than 2 throughout most of

both sinograms, but peaks at a large value of around �10 near

the most intense features in each sinogram. We believe that

these large errors are due to the limited angular resolution of

the reconstruction. The two sinograms displayed here were

chosen arbitrarily. The full dataset contains 504 such sino-

grams.
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