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Abstract—Integrated sensing and communication (ISAC) is
recognized as a promising approach to address the growing
spectrum requirements for seamless sensing and communication.
This paper investigates the deployment of reconfigurable intel-
ligent surface (RIS) in ISAC systems under line-of-sight (LoS)
obstructions, addressing the limited attention given to mutual
coupling (MC) among RIS elements and its impact on localization
performance. We tackle the joint estimation of the 3D location
of a single-antenna user equipment (UE) and MC coefficients
in challenging multipath and LoS-blocked environments. To
enhance MC estimation, we extend our analysis to scenarios
where signals from multiple UE locations are available, leveraging
the stability of MC values over extended time intervals. Our
methodology encompasses several key steps: first, we estimate the
delay using the multiple signal classification (MUSIC) algorithm
to mitigate multipath effects; second, we employ an efficient
MC-unaware maximum likelihood (ML) approach for initial
2D angle-of-departure (2D-AOD) estimation; third, we propose
a novel closed-form solution for the initial estimation of MC
coefficients relying on a scattering matrix-based realistic MC
modeling; and finally, we introduce a low-complexity alternating
optimization algorithm for the joint refinement of the 2D-AODs
and MC values. Simulation results demonstrate the effectiveness
of the proposed method, outperforming classical MC-unaware
ML techniques.

Index Terms—3D localization, alternating optimization, angle
of departure estimation, array imperfection, ISAC, maximum
likelihood, mutual coupling, RIS.

I. INTRODUCTION

Realizing the 6G vision for applications such as vehicle-
to-everything, smart homes, and smart manufacturing, which
require extensive wireless device deployment for sensing and
communication, necessitates the integration of communication
and sensing within networks. This integration has motivated
the recent research focus on integrated sensing and communi-
cations (ISAC) [1]–[4]. ISAC has recently gained attention as a
powerful approach for delivering dual services and improving
spectrum utilization. ISAC is generally achieved by combining
communication and sensing in the temporal-spatial domains,
with shared frequency bands to enhance efficiency [5], [6].
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These functions complement each other in system design,
signal processing, and data analysis, while shared hardware
reduces costs. However, resource multiplexing alone cannot
fully meet the rising demand for data transmission and device
interactions [6]. Furthermore, analyzing the theoretical perfor-
mance bounds of ISAC systems reveals the interplay between
sensing and communication (e.g., competitive or cooperative)
in resource utilization, providing insights for efficient physical-
layer design [4].

Traditional approaches for improving ISAC performance,
such as adding more antennas and spectrum, increase com-
plexity and power consumption [7]. In this regard, reconfig-
urable intelligent surfaces (RISs) offer a promising solution to
overcome ISAC limitations by providing cost-effective, easily
deployable, and programmable enhancements [2], [3], [6],
[8], [9]. RISs consist of configurable elements (in single- or
multi-layer) capable of adjusting signal phases to reshape the
wireless channel, which is particularly useful for overcoming
line-of-sight (LoS) blockages in mmWave communications
[10]–[12]. Recent ISAC methods have often overlooked the
potential of position information to improve performance,
thereby limiting the spatial resolution benefits provided by
RIS arrays [9]. Consequently, achieving accurate position
information is essential for the effective deployment of RIS-
aided ISAC systems in practical wireless channels. Radio
positioning can extract information from channel estimations
without requiring additional infrastructure [13]–[16]. However,
as frequencies increase in 6G systems (e.g., mmWave and
sub-THz), signal blockage and attenuation become critical
issues [17]. In this context, RISs are expected to play a
key role in enhancing both communication and localization
performance and coverage [18], [19]. As a result, RISs are
expected to further expand the applicability and effectiveness
of radio localization in ISAC framework [3], [9], [18].

RIS-assisted localization has been extensively studied in
recent years (see, e.g., [9], [16], [18], [20], [21]). In [20],
a closed-form least squares (LS) method is proposed for 3D
localization using partially connected receiving RISs, which
leverages the root multiple signal classification (MUSIC)
method for angle estimation. In [21], maximum likelihood
(ML) based 2D localization is studied using a single base
station (BS) and a single RIS in 2D scenarios. In [16], the
absolute 3D positions of user equipments (UEs) are esti-
mated using at least two RISs and sidelink communication
between UEs. Additionally, [18] investigates 3D localization
and synchronization of a UE with multiple RISs, employing
deep learning to enhance 2D-AOD estimation. The authors in
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[9], propose a three-step channel reconstruction framework to
improve 2D localization and channel estimation using uniform
linear array (ULA) equipped RIS and BS. Common to all
these works is that hardware impairments at the RIS are
ignored, leading to overly optimistic performance predictions.
In particular, as RIS technology advances and larger arrays are
deployed in ISAC systems, mutual coupling (MC) becomes
an increasingly important factor that can greatly influence the
performance of RIS-assisted systems [22], [23]. MC arises
from the interaction between adjacent RIS elements, where
the electromagnetic (EM) fields generated by one element
affect the behavior of nearby elements. This interaction can
notably degrade the overall performance of various techniques
employed in RIS-based deployments, including applications
such as localization. Consequently, addressing the impact of
MC is vital for enhancing the efficiency and performance of
RIS-assisted ISAC systems.

A. Prior MC Work and Motivation

Hardware impairments can significantly impact system per-
formance and complicate hardware design [24]. Such impair-
ments in the antenna array include MC, array gain errors, RIS
pixel failures, and antenna displacement errors, among others
[19], [25]. Among these impairments, MC distorts the array
beampattern and affects angle estimation, which degrades
the corresponding position performance [26]. A number of
recent studies have contributed to advancements in modeling
and optimizing MC effects [23]. In [27], a physics-based
end-to-end model is proposed to describe RIS-parametrized
wireless channels with adjustable fading characteristics. To
capture MC effects in RIS, microwave network theory is of-
ten applied. Current approaches to microwave network-based
MC modeling in communications are typically classified into
impedance matrix-based models [28] and scattering matrix-
based models [23], [29], [30]. In [28], an EM-compliant,
MC-aware communication model is introduced by leveraging
mutual impedance analysis between RIS elements. In contrast,
[29] investigates, for the first time, a scattering matrix-based
model using scattering parameter network analysis. Building
on this work, [30] proposes a scattering matrix-based MC-
aware communication model. It has been shown that the
scattering parameter model is more directly related to the
radiation pattern and is easier to measure [31].

In terms of signal processing techniques that address hard-
ware impairments, [25] introduces a deep learning-based
framework for improved angle of arrival (AOA) estimation in
the presence of array imperfections for ULAs. Similarly, [32]
proposes an autoencoder for 2D localization across multiple
ULA-equipped BSs, accounting for hardware impairments
such as MC. However, these supervised learning methods
require substantial labeled data for training, making them
challenging for practical applications, especially in complex
scenarios such as 3D environments and large array systems
where labeled data collection is difficult. In [19], the RIS-aided
3D localization is investigated in presence of RIS pixel failures
in near-field scenarios. More recently, [23] experimentally
investigates the MC effects among RIS elements using an

MC-aware communication model based on scattering matrices.
The paper proposes a practical model training approach that
leverages a single 3D full-wave simulation of the RIS radiation
pattern to estimate the MC parameters. Building on this
work, [33] proposes a two-stage approach to address the
problems of channel parameter estimation and beamforming
in active RIS-assisted communication using sparse recovery
techniques. However, these two works assume small values
of MC parameters and use linear approximations to relax the
problem, which makes them sub-optimal when MC parameters
are larger in magnitude.

The RIS-ISAC localization literature [6], [9], [16], [18],
[21] generally ignores MC effects. In practice, these methods
experience performance degradation due to model mismatch
when practical factors, such as MC, cause deviations in the
received signals from the assumed mathematical models. As
mentioned previously, there have been few recent attempts to
address MC in RIS-assisted communication, such as [23] for
experimental evaluation of MC in RIS-assisted systems and
[33] for channel parameter estimation with an active RIS.
However, to the best of our knowledge, this is the first study
to address MC in passive RIS-assisted ISAC for localization.
In this work, we employ a scattering matrix-based model [23],
[30], [34] to characterize MC effects between RIS elements.
Specifically, we develop a novel low-complexity algorithm for
joint MC parameter estimation and 3D localization of the UE
in a challenging multipath environment accounting for both
low and severe MC effects.

B. Main Contributions
In this paper, we address the problem of joint localization

and RIS MC parameter estimation in RIS-aided ISAC systems.
This work represents the first study on RIS-aided joint MC
parameter estimation and 3D localization under the impact of
MC, relying on a physically realistic scattering-matrix model
of MC coefficients. The main contributions are summarized
as follows:

• Generalized RIS-aided localization problem formula-
tion: We formulate the joint 3D localization and MC
scattering parameter estimation problem for a single-
antenna UE in a multipath environment, utilizing a uni-
form planar array (UPA)-equipped RIS and a UPA BS,
with LoS blockage in the downlink. The MC values at
the RIS are affected by the RIS array structure and the
surrounding environment properties such as temperature,
and are assumed to remain constant over extended time
periods. Leveraging this practical assumption, we extend
the problem to include scenarios where the UE records
signals from multiple independent locations, improving
the accuracy of MC estimation.

• Novel low-complexity method for initial coarse estima-
tions: First, the delay between the BS and UE through
the RIS is estimated using the MUSIC approach. Then,
delay beamforming is applied to mitigate interference
and compress the signal, which is subsequently used for
joint position and MC parameter estimation. For initial
coarse 2D-AOD estimation, we propose an efficient low-
complexity MC-unaware ML approach. Additionally, we
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derive a closed-form initial estimate of the MC values
by relaxing the problem using the first two terms of the
Neumann series expansion of the MC-stricken RIS phase
profiles.

• Novel algorithm for joint MC and 3D location es-
timation refinement: Next, we introduce an efficient
alternating optimization (AO)-based algorithm for the
joint refinement of the 2D-AODs and MC values. The
estimated delay and 2D-AODs are then employed for UE
positioning. In addition, for the first time, we calculate
the Cramér-Rao bound (CRB) values for joint localization
and MC parameter estimation, providing a benchmark
for performance evaluation. Extensive simulations are
conducted to validate the superiority of the proposed MC-
aware method over traditional ML approach in a challeng-
ing multipath environment under MC effects. Further-
more, a comprehensive complexity analysis demonstrates
the efficiency of the proposed method.
Notations: Matrices are denoted by bold uppercase letters

(e.g., X) and vectors by bold lowercase letters (e.g., x).
The submatrix [X]u,v denotes the rows indexed by u and
columns indexed by v in X . Using : in place of u or v
selects all rows or columns, respectively. The superscripts
(·)T, (·)H, and (·)−1 represent the transpose, Hermitian, and
inverse of a vector or matrix, respectively. The expression
[x1, . . . ,xn] denotes the horizontal concatenation of vectors
x1, . . . ,xn, and diag(x) indicates a diagonal matrix with the
elements of x on its main diagonal. The notation diag(X)
refers to a vector of the diagonal elements of matrix X .
The n × n identity matrix is denoted by In, while In,i is
a matrix whose i-th diagonal elements are ones and zeros
elsewhere (In,0 = In). 1M represents an M × 1 all-ones
vector. The norms ∥X∥F and ∥x∥ denote the Frobenius and
l2 norms, respectively. The operations A ⊗ B, A ⊙ B, and
A ⊘B represent the Kronecker product, Hadamard product,
and element-wise division, respectively. Finally, S[X] denotes
the sum of all elements in X .

II. SYSTEM MODEL

As illustrated in Fig. 1a, the considered ISAC system
includes a multi-antenna BS, a single passive RIS, and a
single-antenna UE, which performs localization after receiving
Nu downlink pilot observations from the BS at different
positions. We assume the BS and RIS are equipped with a
UPA, comprising Mb and Mr elements, respectively. Let M1

and M2 be the number of rows and columns of the RIS,
respectively. Moreover, pb ∈ R3, pr ∈ R3, and pu ∈ R3

present the position of the centers of the BS, the RIS, and the
UE, respectively. We assume that the LoS path between the
BS and UE is blocked. Additionally, we assume that the RIS
location and orientation are known at both the BS and UE,
while the BS position and orientation are also known at the
UE. Moreover, we assume that time and frequency synchro-
nization are achieved via a round-trip time (RTT) protocol
by exploiting known preamble signals [35], allowing us to
focus on AOD estimation and UE positioning. Additionally,
scatter points (SPs) are used to model the non-line-of-sight

(NLoS) paths for the multipath effect, which will be detailed
in subsequent sections.

A. Signal Model
The BS communicates with the UE through the RIS

by transmitting orthogonal frequency division multiplexing
(OFDM) pilots over Ns subcarriers across Nt transmissions.
The subcarrier spacing, denoted by ∆f , can be determined
by ∆f = W/Ns, where W represents the bandwidth. After
stacking all NsNt received signals over all Nt transmissions
and Ns subcarriers, we obtain the matrix Y ∈ CNs×Nt at the
UE as

Y = YB + YR +N , (1)

whereN ∈ CNs×Nt denotes the additive white Gaussian noise
matrix where [N ]i,j ∼ CN (0, σ2

n) and σ2
n = WN0 with N0

denoting the noise spectral density (PSD). Moreover, YR ∈
CNs×Nt represents the received downlink signal matrix over
the RIS-reflected path, and YB ∈ CNs×Nt denotes the received
signal component resulting from uncontrolled (i.e., scatterer-
induced NLoS) paths between the BS and the UE. To represent
the multipath effect, we adopt the geometric channel model
[16], [18]. Thus, the matrices in (1) can be defined as:

YB =HBSU ⊙X (2)

=

NBSU∑

i=1

α
(i)
bsud(τ

(i)
bsu)q

(i)T

bsu ⊙X

YR = (HBRU +HBSRU +HBRSU)⊙X (3)

= αbru[d(τbru)(bbru ⊙ qbru)
T]⊙X

+

NBSRU∑

i=1

α
(i)
bsru[d(τ

(i)
bsru)(b

(i)
bsru ⊙ q

(i)
bsru)

T]⊙X

+

NBRSU∑

i=1

α
(i)
brsu[d(τ

(i)
brsu)(b

(i)
brsu ⊙ qbru)

T]⊙X.

Here, HBSU, HBRU, HBSRU, and HBRSU denote the BS-SP-
UE, BS-RIS-UE, BS-SP-RIS-UE, and BS-RIS-SP-UE channel
matrices, respectively with corresponding complex channel
gains α(i)

bsu, αbru, α(i)
bsru, and α

(i)
brsu. NBSU, NBSRU, and NBRSU are

the number of paths in the corresponding NLoS channels. The
pilot matrix X ∈ CNs×Nt is defined as X =

√
PX

′
, where

P denotes the BS transmitted power, and X
′

represents the
transmitted unit modulus complex valued symbols across Ns

subcarriers and Nt transmissions.
In the following, the components used in (2) and (3) are

mathematically detailed and explained.
1) Delay Steering Vector and Delays of Paths: Delay

steering vector d(.) ∈ CNs is defined
d(τ) = [1, e−jξ1τ , . . . , e−jξNs−1τ ]T, (4)

where ξn = 2πn∆f . Since we assume that the UE and the
BS are synchronized, the delays τ

(i)
bsu , τbru, τ (i)bsru, and τ

(i)
brsu are

defined as

τ
(i)
bsu =

∥pu − p(i)bsu∥+ ∥p(i)bsu − pb∥
c

, (5)

τbru =
∥pu − pr∥+ ∥pr − pb∥

c
,

τ
(i)
bsru =

∥pu − pr∥+ ∥pr − p(i)bsru∥+ ∥p(i)bsru − pb∥
c

,
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Fig. 1: (a) Considered RIS assisted ISAC System. This paper aims to jointly estimate UE positions and scattering parameters. (b) Scattering matrix S for
M1 = M2 = 3 and Bm = 2.

τ
(i)
brsu =

∥pu − p(i)brsu∥+ ∥p(i)brsu − pr∥+ ∥pr − pb∥
c

,

where p(i)bsu, p(i)bsru, and p(i)brsu denote the position of the i-th SP in
the BS-SP-UE, BS-SP-RIS-UE, and BS-RIS-SP-UE channels,
respectively.

2) Modeling the Impact of RIS Phase Modulation: The
vectors bbru, b(i)bsru, and b(i)brsu account for the effect of the RIS’s
phase modulation whose t-th elements can be obtained as

[bbru]t = a
T
r (ψ

d
r,u)Ω

′
tar(ψ

a
b,r), (6)

[b
(i)
bsru]t = a

T
r (ψ

d
r,u)Ω

′
tar(ψ

a(i)

sru ),

[b
(i)
brsu]t = a

T
r (ψ

d(i)

rsu )Ω
′
tar(ψ

a
b,r).

where Ω
′
t ∈ CMr×Mr represents the unknown MC affected

phase control coefficients of the RIS during the t-th transmis-
sion [30, Eq. (5)], [34, Eq. (8)] [23, Eq. (7)]:

Ω
′
t = (Ω−1

t − S)−1, (7)
where Ωt ∈ CMr×Mr denotes the RIS phase profile in the
t-th transmission, and S ∈ CMr×Mr represents the scattering
matrix for modeling MC whose details are provided in Sec-
tion II-B. It is important to emphasize that the matrices Ωt

are designer-controlled and thus known in advance. However,
since the scattering matrix S is unknown a priori, the MC
affected RIS phase profiles Ω

′
t are also unknown. In (6), the

RIS steering vector ar(.) ∈ CMr is defined as
ar(ψ) = ejkD

T
ru(ψ), (8)

where Dr ∈ R3×Mr is a matrix whose i-th column indicates
the coordinates of the i-th element of the RIS, and u(ψ)
denotes the unit direction from the RIS corresponding to either
2D-AOA or 2D-AOD ψ = [θ, ϕ]T which can be obtained as
u(ψ) = [cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)]T.

In (6), ψa
b,r = [θab,r, ϕ

a
b,r]

T denotes the 2D-AOA from the
BS to the RIS. θab,r and ϕa

b,r are the elevation (angle between
u and XY-plane) and azimuth (angle between the projection of
u on the XY-plane and the X-axis) AOAs, respectively, which

can be obtained as follows:

θab,r = arccos

(
[pb;r]3
∥pb;r∥

)
, ϕa

b,r = arctan2([pb;r]2, [pb;r]1),

(9)
where pb;r = RT

r (pb − pr), with Rr ∈ R3×3 being the
rotation matrix corresponding to the orientation of the RIS.
The 2D-AODs and 2D-AOAs ψd

r,u, ψd(i)

bsu , ψa(i)

bsu , ψd(i)

sru , ψa(i)

sru

and ψd(i)

rsu are defined similarly, where the superscripts d and
a indicate the AODs and AOAs, respectively, and subscripts
b, r, u, and s represent the BS, RIS, UE, and SP, respectively.

3) Modeling the Impact of BS Phase Modulation: The
vectors qbru and q(i)bsru in (3), and the vector q(i)bsu in (2) represent
the gain of the BS beamforming towards RIS, the i-th BS-SP-
RIS-UE path and the i-th BS-SP-UE path, respectively, which
can be written as
qbru = aT

b (ψ
d
b,r)F , q

(i)
bsru = aT

b (ψ
d(i)

sru )F , q
(i)
bsu = aT

b (ψ
d(i)

bsu )F ,
(10)

where F ∈ CMb×Nt denotes the BS beamforming matrix over
Nt transmissions, where ab(.) ∈ CMb is the BS steering vector
which is defined similar to (8).

B. Modeling Scattering Matrix for Mutual Coupling

In (7), S ∈ CMr×Mr represents the scattering matrix of the
RIS antenna network. To model MC, we adopt the realistic
model proposed in [23], [33], which has been validated
through real measurements in [23]. In the following, we
present and formulate this model for a general UPA-equipped
RIS and represent it using banded symmetric matrices.

1) Number of Unique Scattering Values: Define the param-
eter Bm to determine the number of elements each element of
the RIS can influence depending on its row or column index
difference. The number of unique scattering values, denoted
by Nm, corresponds to the number of unique distances each
RIS element can influence, based on Bm. Thus, Nm can be
uniquely determined from Bm. For instance, if Bm = 2, the
total of Nm = 3 scattering values exists. Fig. 1a and Fig. 1b
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illustrate the significance of these values which are shown with
{si}2i=0.

2) Representation of the Scattering Matrix Using Banded
Symmetric Matrices: Let Ai ∈ ZMr×Mr denote the support
matrix of the S-parameter si ∈ C. In particular, [Ai]k,l = 1
if the voltage wave si is measured at the k-th element of the
RIS when a unit voltage wave is applied at the l-th element of
the RIS. For instance for s0, A0 = IMr . The matrix Ai for
i > 0 can be obtained using symmetric banded Toeplitz block
matrices.

In the rest of the paper, it is assumed that the indices of
the RIS elements are counted horizontally, starting from the
first row and first column. Based on this assumption, define
Au,v

i ∈ CM2×M2 to denote the (u, v)-th block matrix in Ai,
which represents the effects of the u-th row1 of the RIS on
the elements of the v-th row by the scattering parameter si.
Assuming all elements of the RIS are identical and experience
the same physical conditions, such as temperature, we deduce
that for any pair (u, v) with a fixed absolute difference w =
|u−v|, the blocks Au,v

i are identical. For simplicity, we define
Aw

i = Au,v
i . Thus, Aw

i captures how rows with an absolute
index difference w influence each other through the scattering
parameter si. Once the matrices Aw

i are defined, the scattering
matrix S is uniquely determined. For instance, for Bm = 2, as
shown in Fig. 1b, the nonzero block matrices can be expressed
as:

i = 0 : A0
0 = IM2 , (11)

i = 1 : A0
1 = IM2,1 + IM2,−1, A

1
1 = IM2 ,

i = 2 : A1
2 = IM2,1 + IM2,−1.

It is important to note that in general there is no closed-form
expression to model these block matrices, as their definitions
depend on the value of Bm. However, in practical scenarios,
each RIS element has a stronger influence on its nearby
elements, leading to si > sj for i < j. Therefore, the
effects of MC between sufficiently distant RIS elements can be
neglected for simplicity [23]. Hence, we can assume that Bm

is sufficiently small and fixed. Finally, the scattering matrix S
can be modeled as [23, Eq. (15)]:

S ≈
Nm−1∑

i=0

siAi. (12)

We emphasize that while the support matrices {Ai}Nm−1
i=1

and Bm (and thus Nm) are known a priori, the matrix
S remains unknown due to the unknown MC parameters
{si}Nm−1

i=0 .

Remark 1. This study focuses on developing mathematical
and algorithmic solutions to jointly estimate the UE positions
and MC scattering values {si}Nm−1

i=0 , independent of their
specific structure or values. Thus, the proposed methodologies
remain applicable irrespective of environmental variations
such as temperature and humidity. To demonstrate this, Sec-
tion VI evaluates our approach under diverse scenarios and
varying MC conditions.

1Notably, if RIS elements are counted vertically instead of horizontally,
the matrices Au,v

i will represent the MC effects between the u-th and v-th
columns (with dimensions M1 ×M1) rather than rows; however, both cases
yield equivalent results.

C. Beamforming and RIS Phase Profile Design

In this subsection, we explain the proposed beamforming
approach for designing BS precoders and RIS phase profiles.
First, we derive the directional codebook for the considered
uncertainty region, and then we explain the proposed method.

1) Directional Codebook for BS precoders: Since the lo-
cations of the BS and RIS pb and pr are known beforehand,
the angles ψa

b,r,ψ
d
b,r are also known. Thus, we design the BS

precoders using the optimal directional beamforming vector in
all Nt transmissions to concentrate the power P towards the
RIS, which maximizes the SNR at the RIS [18], [21], [36].
Hence, the directional BS beamforming matrix F (defined in
Section II-A3) is designed as

F = a∗
b

(
ψd

b,r

)
1T
Nt

. (13)

2) Directional Codebook for RIS Phase Profiles: Let U
denote the 3D uncertainty volume in which the UE resides, and
moreover, let Uψ be the corresponding 2D uncertainty region
in 2D-AOD (θ-ϕ) plane. Define Θ = [θmin, θmax] and Φ =
[ϕmin, ϕmax] as the smallest intervals for elevation and azimuth
AODs in Uψ , respectively. The intervals are then uniformly
divided with grid steps dθ and dϕ, respectively, resulting in
a uniform Nθ × Nϕ mesh grid of 2D-AODs, which is used
to construct the directional codebook. However, since Uψ is
not necessarily rectangle, those 2D-AODs whose Euclidean
distance from Uψ are less than a threshold ϵb are removed,
resulting in Nt ≤ NθNϕ 2D-AODs UψD ∈ R2×Nt , where
the subscript D accounts for the directional codebook. Let
WD ∈ CMr×Nt represent all directional beams towards these
Nt 2D-AODs. Using (8), the t-th directional beam is defined
as:

[WD]:,t = a
∗
r([U

ψ
D]:,t)⊙ a∗

r(ψ
a
b,r), (14)

where the second term a∗
r(ψ

a
b,r) is multiplied to remove the

effect of the known 2D-AOA from the BS to the RIS. For
the t-th transmission, the MC-unaware directional RIS phase
coefficients are given by Ωt = diag([WD]:,t).

3) Adaptive Codebook for RIS Phase Profiles: Existing
channel estimation and localization methods require substan-
tial pilot overhead to probe multiple reflected channels. While
advanced extensions aim to reduce this, their dependence on
the number of reflecting elements limits their practicality in
RIS deployments [37]. In particular, although the directional
codebook in (14) is widely used in the literature [18], [21],
it has a significant drawback: as the RIS size increases, the
resulting beams become narrower and more focused [38].
Consequently, a larger RIS requires more directional beams
to adequately cover the angular uncertainty region, which in
turn leads to an increased number of beams, higher complexity,
and greater channel overhead.

To mitigate this issue, inspired by [38], we first divide Uψ
into Nt non-overlapping rectangles with widths dθ and dϕ
with the centers UψA ∈ R2×Nt covering the entire Uψ . Next,
each rectangle is uniformly divided into M1×M2 rectangular
grids with widths dθ

M1
× dϕ

M2
. Then, for the adaptive codebook

WA ∈ CMr×Nt the phase of the (m1,m2)-th element of the
RIS in the t-th transmission is steered towards the (m1,m2)-th
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grid as:
[WA]I(m1,m2),t =e−jkDT

:,I(m1,m2)u(ψ
t
I(m1,m2)) (15)

× [a∗
r(ψ

a
b,r)]I(m1,m2)

where I(m1,m2) = M2(m1−1)+m2 is the 1D index of the
element in the m1-th row and m2-th column of the RIS (the
indices are counted horizontally starting with the element on
the first row and first column), and ψt

I(m1,m2)
∈ R2 denotes

the 2D-AOD with respect to the center of the (m1,m2)-th
rectangular grid in the t-th rectangle which can be obtained
as:

[ψt
I(m1,m2)

]1 = [UψA]1,t +
(
2m1 −M1 − 1

2M1

)
dθ, (16)

[ψt
I(m1,m2)

]2 = [UψA]2,t +
(
2m2 −M2 − 1

2M2

)
dϕ.

Remark 2. The choice of grid sizes dθ and dϕ, which
determine Nt, involves a trade-off. Larger grids produce wider
beams, reducing Nt and channel overhead but lowering the
SNR, thereby increasing theoretical lower bounds. Conversely,
smaller grids yield more directive beams and higher SNR,
tightening lower bounds and improving localization accuracy
at the cost of increased Nt and higher channel overhead.

III. DELAY ESTIMATION AND SIGNAL COMPRESSION

Fig. 2 presents the block diagram of the proposed methodol-
ogy, which is executed at the UE upon receiving the downlink
signals from the BS during the return leg of the RTT protocol.
The figure illustrates the interconnections between the various
processing modules and their respective functionalities. This
section focuses on the signal compression module, while the
subsequent section elaborates on the remaining components of
the proposed framework.

First, we employ the widely adopted MUSIC approach for
delay estimation. Next, the estimated delays are utilized to re-
duce the signal dimension and compress the data, which is then
employed for joint 2D-AOD and MC parameter estimation in
subsequent sections.
A. MUSIC Method for Delay Estimation

By assuming that the transmitted symbol matrix X
′

is
known at the UE, we first remove its impact via reciprocal
filtering Ỹ = Y ⊘X ′

= ỸB+ỸR+Ñ , where ỸB = YB⊘X
′
,

ỸR = YR ⊘X ′
, and Ñ = N ⊘X ′

. Next, we compute the
frequency-domain sample covariance matrix (SCM) [39], [40]
of the matrix Ỹ defined as

Ry =
1

Nt
Ỹ Ỹ H = Ebrud(τbru)d

H(τbru) (17)

+

NBSU∑

i=1

E
(i)
bsud(τ

(i)
bsu)d

H(τ
(i)
bsu)

+

NBSRU∑

i=1

E
(i)
bsrud(τ

(i)
bsru)d

H(τ
(i)
bsru)

+

NBRSU∑

i=1

E
(i)
brsud(τ

(i)
brsu)d

H(τ
(i)
brsu) +Rn,

where Rn = ÑÑH/Nt denotes the SCM of the noise matrix.
It is important to note that in (17), the cross terms are neglected
under the assumption that the number of subcarriers Ns is

sufficiently large, ensuring that the delays of different paths do
not overlap. A similar analysis to that in [41] can be applied
for the proof. Additionally:

Ebru = P |αbru|2(bbru ⊙ qbru)
T(bbru ⊙ qbru)

∗, (18)

E
(i)
bsu = P |α(i)

bsu|2q
(i)T

bsu q
(i)∗

bsu ,

E
(i)
bsru = P |α(i)

bsru|2(b
(i)
bsru ⊙ q

(i)
bsru)

T(b
(i)
bsru ⊙ q

(i)
bsru)

∗,

E
(i)
brsu = P |α(i)

brsu|2(b
(i)
brsu ⊙ q

(i)
brsu)

T(bbru ⊙ qbru)
∗

denote the total power in the corresponding paths in each
subcarrier. Next, to reduce the coherence effect in multipath
scenario in (17), we adopt forward backward spatial smoothing
(FBSS) scheme which makes the paths more separable by
reducing the coherence between the paths [42], [43]. The
smoothed SCM by the FBSS algorithm is calculated as

Rfy =
1

2
(Ry + JR

∗
yJ), (19)

where J ∈ ZNs×Ns indicates an exchange matrix with ones on
its antidiagonal and zeros elsewhere. Next, we perform eigen
value decomposition (EVD) as

Rfy = Udiag(λ)UH =

Ns∑

n=1

λnunu
H
n, (20)

where the vector λ = [λ1, . . . , λNs ]
T contains the eigen values

ofRfy in an increasing order i.e., λ1 ≥ . . . , λNs
. In this paper,

we are only interested in using the BS-RIS-UE path signal
for joint positioning and MC estimation. In fact, the channel
measurements have shown that the power of the RIS-reflected
path component is higher than the sum of the power of NLoS
paths [36], [44]. However, to be able to accurately estimate
the number of paths in the BS-UE channel, we employ the
minimum description length (MDL) [45] algorithm. Thus, let
N̂ be the estimated number of paths by MDL. Then, we define
the noise subspace UN = [U ]:,N̂+1:Ns

. Finally, we obtain
the MUSIC spectrum sM ∈ RNτ , whose i-th element can be
obtained as follows:

[sM]i =
1

dH(τi)UNUH
Nd(τi)

, (21)

where τi ∈ [τmin, τmax] is the i-th delay on the grid. Here, τmin
and τmax are the minimum and maximum possible delays of the
BS-RIS-UE path each UE may exhibit inside the uncertainty
area U , respectively. Thus, the RIS-reflected path delay τbru is
estimated by finding the largest peak of the MUSIC spectra,
which is denoted as τ̂bru.

B. Compressed Observation Signals

To suppress the impact of NLoS paths and ensure that the
compressed observation primarily captures the contribution of
the LoS path, we perform signal compression by applying de-
lay beamforming. To this end, the vector d∗(τ̂bru) is multiplied
by Ỹ T to obtain the compressed vector ŷ ∈ CNt as follows:

ŷ = Ỹ Td∗(τ̂bru) = γbrubbru +

NBSU∑

i=1

γ
(i)
bsu1Nt

+

NBSRU∑

i=1

γ
(i)
bsrub

(i)
bsru +

NBRSU∑

i=1

γ
(i)
brsub

(i)
brsu + ñ.

(22)
Here, we used the fact that all of the BS beams are identical
(see (13)) which leads to the simplified BS phase modu-
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Reciprocal Filter Delay Estimator Delay Str. Vec.
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AOD Initializer

MC Initializer Alternative Optimization

Fig. 2: Block diagram for the overall proposed scheme and the connections between different processing modules.

lation vectors (defined in (10)): qbru = ubru1Nt
, q

(i)
bsru =

u
(i)
bsru1Nt , q

(i)
bsu = u

(i)
bsu1Nt , where

ubru = aT
b (ψ

d
b,r)a

∗
b

(
ψd

b,r

)
= Mb,

u
(i)
bsru = aT

b (ψ
d(i)

sru )a∗
b

(
ψd

b,r

)
,

u
(i)
bsu = aT

b (ψ
d(i)

bsu )a∗
b

(
ψd

b,r

)
,

denote the gains of the BS beamforming towards each path.
Moreover, ñ = ÑTd∗(τ̂bru) is the resulted noise. The total
gains γbru, γ(i)

bsu, γ(i)
bsru, and γ

(i)
brsu are obtained as follows:

γbru = αbruubrugbru, γ
(i)
bsu = α

(i)
bsuu

(i)
bsug

(i)
bsu, (23)

γ
(i)
bsru = u

(i)
bsruα

(i)
bsrug

(i)
bsru, γ

(i)
brsu = α

(i)
brsuubrug

(i)
brsu,

where gbru = d(τbru)
Td(τ̂bru)

∗ ≈ Ns, g(i)bsu = d(τ
(i)
bsu)

Td(τ̂bru)
∗,

g
(i)
bsru = d(τ

(i)
bsru)

Td(τ̂bru)
∗, g(i)brsu = d(τ

(i)
brsu)

Td(τ̂bru)
∗, denote the

gains of delay beamforming. Notably, higher bandwidth (i.e.,
an increased number of subcarriers assuming a fixed frequency
spacing) improves delay resolution, thereby enhancing multi-
path filtering for delays τ ̸= τbru.

IV. JOINT LOCALIZATION AND MC COEFFICIENT
ESTIMATION

A. Optimization Problem Formulation

It is important to note that the MC values depend on
the antenna’s own excitation, physical structure, the envi-
ronmental characteristics such as humidity and temperature,
and contributions from adjacent antenna elements. Thus, by
using the same BS beamforming and RIS phase profiles, as
explained in Section II-C, over multiple consecutive blocks
of transmissions, the MC values remain constant during these
time intervals. Motivated by this observation, we extend the
problem to improve the precision of MC coefficient estimation
by considering multiple blocks of transmissions. Specifically,
we assume Nu blocks, each consisting of Nt transmissions.
These blocks do not necessarily occur consecutively. Let pu,n
denote the position of the UE in the n-th block. For simplicity,
we assume that the state of the UE is independent across
blocks and that the channel remains quasi-static within each
block. Given the compressed observation signals {ŷn}Nu

n=1

(obtained in (22)), the generalized problem is stated as follows:

minimize
s,{γn,ψ

dn
r,u}Nu

n=1

Nu∑

n=1

∥ŷn − γnbn∥2 (24a)

s.t. [bn]t = a
T
r (ψ

dn
r,u)Ω

′
tar(ψ

a
b,r), (24b)

t ∈ Tn, n = 1, . . . , Nu,

Ω
′
t = (Ω−1

t − S)−1, (24c)

S =

Nm−1∑

i=0

siAi, (24d)

where Tn ∈ RNt denotes the index of transmissions made
when the UE is located at pu,n, and the subscript n is used
for variables or parameters associated with pu,n. Moreover,
s = [s0, s1, . . . sNm−1]

T denotes the vector of MC coeffi-
cients. Following this, the optimal values of the complex gain
coefficients {γn}Nu

n=1 are derived using the ML criterion as
follows:

γn = bHnŷn/∥bn∥2, n = 1, . . . , Nu. (25)

Substituting (25) back to the objective function (24a) we have:
Nu∑

n=1

∥ŷn − γnbn∥2 =

Nu∑

n=1

[
∥ŷn∥2 − |bHnŷn|2/∥bn∥2

]
. (26)

Since ∥ŷn∥2 does not depend on the optimization variables,
using (26) the optimization problem (24) can be simplified as:

maximize
s,{ψdn

r,u}Nu
n=1

Nu∑

n=1

|bHnŷn|2/∥bn∥2 (27a)

s.t. (24b), (24c), (24d)
The objective (27a) is non-convex, and the constraint (24c)
makes the problem more challenging. To make the problem
more tractable, inspired by the real MC measurements pre-
sented in [23], we assume that the magnitudes of the MC
values are sufficiently small in this paper. This assumption
implies that the scattering matrix S in (24c) can be considered
a perturbation of the inverse MC-unaware RIS phase profile
Ω−1

t . As will be shown in Section VI-C, if ∥s∥ < 0.5, the
spectral radius of the matrix ΩtS is less than one. Thus,
the constraint (24c) can be represented by employing the
Neumann series expansion as follows [23, Eq. (18)]:

Ω
′
t = (Ω−1

t − S)−1 =

∞∑

n=0

(ΩtS)
nΩt ≈

Nw∑

n=0

(ΩtS)
nΩt,

(28)
where all notations were initially defined in (7). The infinite
Neumann series is approximated by retaining only terms with
powers up to Nw, leveraging the fact that max|si|(Nw+1)
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becomes sufficiently small 2. To address the problem in (27),
we first substitute (28) into (24b). Then, assuming that the
initial estimates of {ψdn

r,u}Nu
n=1 and s are available, we propose

an alternating refinement approach that jointly optimizes the
estimated 2D-AODs and MC values. The details are provided
in the following subsections.
B. Initial 2D-AOD Estimation

To obtain an initial estimation of 2D-AODs in an efficient
manner, we relax the constraint (24b) by assuming an MC free
scenario i.e., s = 0Nm

. With this assumption, the RIS phase
configuration vector b for the 2D-AOD ψ can be rewritten as:

bT(ψ) = (ar(ψ)⊙ ar(ψ
a
b,r))

TW , (29)
where W ∈ {WD,WA} denotes the chosen RIS phase profile
codebook. For initial AOD estimation, Uψ is divided into
grids with elevation and azimuth steps, cθ and cϕ, respectively,
resulting in a set of 2D-AODs ψc ∈ R2×Nc . Then, for each
grid point [ψc]:,i, we compute (29) and normalize the result
to obtain the vector b([ψc]:,i)/∥b([ψc]:,i)∥. By stacking the
obtained vectors, the matrix B ∈ CNt×Nc is formed. The grid
point yielding the maximum objective value (27a) is selected
as the initial estimate of the 2D-AOD. Thus, the 2D-AOD of
the n-th location can be estimated as:

ψ̂dn
r,u = [ψc]:,argmaxi|[BHŷn]i|. (30)

It is noteworthy that to improve efficiency, the matrix B can
be computed once and reused for initial 2D-AOD estimation
at any location.

C. Initial MC Coefficient Estimation

1) RIS Profile Matrix Approximation: Although in (28) we
approximated the MC-affected RIS profile using the first Nw+
1 terms of the Neumann series, our simulations indicate that
the first order also provides a consistent, albeit less accurate,
estimation. Thus, for the sole purpose of obtaining an initial
estimation of the MC coefficients, we only keep the first two
terms and approximate Ω

′
t as:

Ω
′
t ≈ Ωt +ΩtSΩt = Ωt +

Nm−1∑

i=0

siΩtAiΩt. (31)

Hence, the zero-order and first-order estimations of the vector
b, denoted by b(0) and b(1) respectively, can be obtained as:

[b(0)n ]t = a
T
r (ψ̂

dn
r,u)Ωtar(ψ

a
b,r), (32)

[b(1)n ]t = [b(0)n ]t +

Nm−1∑

i=0

sia
T
r (ψ̂

dn
r,u)ΩtAiΩtar(ψ

a
b,r).

2) MC Vector Linear Estimation: After stacking all Nt

terms in (32) at the location pu,n:
b(1)n = b(0)n +Lns, (33)

where Ln ∈ CNt×Nm is a matrix whose (t, i)-th element is
defined as:

[Ln]t,i = a
T
r (ψ̂

dn
r,u)ΩtAiΩtar(ψ

a
b,r). (34)

Thus, the n-th term in the objective function (24a) is relaxed
as follows:

∥ŷn − γ̂nb
(1)
n ∥ = ∥ŷn − γ̂n(b

(0)
n +Lns)∥, (35)

2Although we approximate the RIS phase profile in (28) for the sake of
algorithm development, we will employ the exact definition in the CRB calcu-
lation and generating data in simulations section to evaluate the performance
of the proposed algorithms.

where γ̂n denotes the estimated value for γn obtained by
substituting b(0)n in (25). Hence, using LS technique, the vector
Lns can be estimated as:

Lns ≈
1

γ̂n
(ŷn − γ̂nb

(0)
n ). (36)

Thus, after stacking the equation (36) for n = 1, . . . , Nu, a
closed form estimation of MC vector s using the LS technique
can be obtained as:

ŝ = L†
tot(ytot − b(0)tot ), (37)

where Ltot ∈ CNtNu×Nm is a matrix obtained by stacking
the matrices in the set {Ln}Nu

n=1, and similarly the vectors
ytot ∈ CNtNu , and b(0)tot are the defined by stacking the vectors
in the sets {ŷn/γ̂n}Nu

n=1 and {b(0)n }Nu
n=1, respectively.

D. Proposed Algorithm for Joint Localization and MC Coef-
ficients Estimation

Finally, we propose an AO-based algorithm to jointly refine
the 2D-AODs and MC values. Specifically, at each step, we
first fix the MC values and, for each location, update the
corresponding 2D-AODs ψ̂dn

r,u by finding the ML estimate
that maximize the n-th component in (27) using the fast
derivative-free Nelder-Mead (NM) algorithm. Next, we fix the
2D-AODs {ψ̂dn

r,u}Nu
n=1 and update the MC vector ŝ via gradient

descent (GD) based approach. This procedure is repeated until
convergence, which occurs when the maximum change in
optimization variables, i.e., the 2D-AODs or the MC vector,
is less than a predefined threshold, or when the maximum
number of iterations exceeds Nmax

itt . The average number of
iterations is reported in Section V-C3. After the algorithm
converges, the 3D position of the UE at the location pu,n
can be estimated as

p̃u,n = cτ̂bru,nûn, p̂u,n = Rrp̃u,n + pr, (38)
where ûn is the unit direction towards the estimated 2D-AOD
ψ̂dn

r,u, and p̃u,n denotes the estimated position in the local
coordinates of the RIS, and finally p̂u,n is the estimated UE
position in the global coordinates.

The overall proposed algorithm for joint positioning and
MC coefficients estimation is detailed in Algorithm 1.

In each iteration of the NM and GD algorithms in lines
8 and 9, the objective function (or its derivative) (27) needs
to be evaluated. Thus, for efficient optimization, we need to
calculate the vectors bn (defined in (24b)) in a low-complexity
manner. The dominant part contributing to the complexity,
is the calculation of MC affected RIS phase profiles (28).
Considering the fact that the support matrices Ai are fixed,
we first expand the (l + 1)-th term (order l) in the Neumann
series as follows:

(ΩtS)
lΩt =

(
Nm−1∑

i=0

siΩtAi

)l

Ωt =

N l
m∑

j=1

s
(l)
j A

(l,t)
j , (39)

where

s
(l)
j =

l∏

i=1

s[ςl]j,i , A
(l,t)
j =

l∏

i=1

ΩtA[ςl]j,i , (40)

where ςl ∈ ZN l
m×l is a matrix whose rows represent all permu-

tations of length l from the set {0, . . . , Nm−1}. Moreover, as
discussed before, the steering vector ar(ψ

a
b,r) is constant and

can be considered fixed during optimization. Thus, for each
l = 1, . . . , Nw, we define the 3D array Ql ∈ CNt×Mr×N l

m to
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store all vectors used during optimization which is defined as
follows:

[Ql]t,:,j =

{
Ωtar(ψ

a
b,r) l = 0, j = 1

A
(l,t)
j ar(ψ

a
b,r) 1 ≤ l ≤ Nw, 1 ≤ j ≤ N l

m,
(41)

Thus, for given 2D-AOD ψ and MC vector s, the vector bn
in (24b), can be calculated as:

[bn]t =

Nw∑

l=1

S
[ (
aT
r (ψ)[Ql]t,:,:

)
⊙ sTl

]
, (42)

where sl ∈ CN l
m is defined according to (40) as [sl]j = s

(l)
j .

It is easy to see that we can obtain and rewrite sl in more
simplified form as follows:

sl =




1 l = 0

s⊗ · · · ⊗ s︸ ︷︷ ︸
l times

= s⊗l 1 ≤ l ≤ Nw. (43)

In Section V-C3, the lower complexity of (42) is demonstrated
compared to the direct calculation using (28) through obtaining
complexities using big-O notation.

Algorithm 1 Proposed Joint Positioning and MC Estimation
Algorithm

1: Inputs: Signals {Yn}Nn=1 at Nu positions {pu,n}Nu
n=1.

2: Output: Estimated 3D positions {p̂u,n}Nu
n=1 and MC co-

efficients ŝ.

3: For n = 1, . . . , Nu, perform MUSIC method according to
Section III on Yn to estimate τ̂bru,n and obtain compressed
observation signal ŷn using (22).

4: Find initial estimates {ψ̂dn
r,u}Nu

n=1 of 2D-AODs using (30).

5: Find an initial estimation ŝ of MC values based on the
closed-form solution based on (37).

6: repeat
7: for n = 1, . . . , Nu do
8: Update the 2D-AOD ψ̂dn

r,u by maximizing the n-th
component in (27) using the Nelder-Mead algo-
rithm, keeping the other variables fixed.

9: end for
10: Update the estimated MC vector ŝ by maximizing (27)

using gradient descent approach. Keep other variables
fixed during the optimization.

11: until convergence
12: Obtain the estimated positions {p̂u,n}Nu

n=1 using (38).

We provide a convergence analysis of the algorithm in the
following proposition.

Proposition 1. If the initial estimated values for the 2D-AODs
in (30) and the MC vector in (37) are sufficiently accurate,
then Algorithm 1 converges to the optimal solution of the
optimization problem (27).

Proof. Please see Appendix A.
V. LOWER BOUND AND COMPLEXITY ANALYSIS

In this section, first we perform a Fisher information anal-
ysis to obtain the CRBs for the channel and state parameters

for performance analysis. Then, we perform an extensive
complexity analysis for each part of the proposed approach.

A. CRB in the Channel Domain

It is important to emphasize that the CRB analysis in
this subsection is based on the signal model containing only
the RIS-reflected BS-RIS-UE path in (3), rather than the
general signal model in (1). Thus, the model used for CRB
calculation differs from the generative model in (1) used to
generate observations in the simulations. As a result, the CRB
calculation considers a simplified, mismatched model, which
may yield optimistic bounds in the presence of interference.
For the optimization problem in (24), we compute the Fisher
information matrix (FIM) of the unknown channel parameter
vector ϱ ∈ R5Nu+2Nm , which is defined as follows:
[ϱ]5(n−1)+1:5n = [ψ

dT
n

r,u, τbrun , ρbrun , φbrun ]
T, 1 ≤ n ≤ Nu,

(44)
[ϱ]5Nu+2i−1 = ℜ{[s]i}, [ϱ]5Nu+2i = ℑ{[s]i}, 1 ≤ i ≤ Nm,

where we have split the real and imaginary parts of the
MC parameters. Since the observations in (1) are complex
Gaussian, the FIM Iϱ ∈ R(5Nu+2Nm)×(5Nu+2Nm) can be
obtained using the Slepian-Bangs formula [21]. In particular,
the (i, j)-th element of Iϱ can be calculated as:

[Iϱ]i,j =
Nu∑

n=1

S
[
ℜ
{(

∂Y f
n

∂[ϱ]i

)∗
⊙
(
∂Y f

n

∂[ϱ]j

)}]
, (45)

where Y f
n denotes the multipath and noise free observation

matrix at the position pu,n. Thus, we can define the delay and
2D-AOD error bounds (EBs) as follows:

EBθn =
√

[I−1
ϱ ]5(n−1)+1,5(n−1)+1, (46)

EBϕn
=
√
[I−1
ϱ ]5(n−1)+2,5(n−1)+2,

EBτn =
√
[I−1
ϱ ]5(n−1)+3,5(n−1)+3. (47)

Hence, the 2D-AOD EB at the location pu,n is defined as

EBψn =
√

EB2
θn + EB2

ϕn
. Finally, the total delay and 2D-

AOD EBs accounting for all the observations at Nu locations,
are defined as the root mean squared (RMS) of the individual
EBs:

EBψ =

√√√√ 1

Nu

Nu∑

n=1

EB2
ψn

, EBτ =

√√√√ 1

Nu

Nu∑

n=1

EBτn . (48)

B. CRB for 3D Localization and MC Estimation

The vector of location and MC parameters η ∈ R5Nu+2Nm

is defined as follows
[η]5(n−1)+1:5n = [pu,n, ρbrun , φbrun ]

T, 1 ≤ n ≤ Nu, (49)
[η]5Nu+2i−1 = ℜ{[s]i}, [η]5Nu+2i = ℑ{[s]i}, 1 ≤ i ≤ Nm.

It is noteworthy that the channel gains {ρbrun , φbrun}Nu
n=1 and

the MC vector s are nuisance parameters, as they do not
provide any geometric information relevant for localization.
Consequently, these parameters cannot be expressed as func-
tions of other unknown geometric variables. As such, they
appear in both the channel and location domain parameter
vectors in (44) and (49).

To derive the FIM in the location domain, we perform
a variable transformation from the channel vector ϱ to the
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state vector η. Thus, the FIM of η, denoted as Iη , is
obtained using the Jacobian transformation matrix T = ∂ϱT

η ∈
R(5Nu+2Nm)×(5Nu+2Nm) as Iη = TIϱT T. Thus, the posi-
tion EB (PEB) at pu,n is obtained as:

PEBn =
√

tr([I−1
η ]5(n−1)+1:5(n−1)+3:5(n−1)+1:5(n−1)+3).

(50)
Similar to (48), we define the total average PEB by applying
RMS on the corresponding PEBs at all Nu positions as

PEB =

√√√√ 1

Nu

Nu∑

n=1

PEB2
n. (51)

Finally, the EB for the MC vector can be calculated as:

EBMC =
√

tr([I−1
η ]5Nu+1:5Nu+2Nm,5Nu+1:5Nu+2Nm

). (52)

C. Complexity Analysis
1) Complexity of Delay Estimation: The computation of the

SCM in (17) requires a complexity of O(N2
sNt). Additionally,

the EVD in (20) incurs a complexity of O(N3
s ) [14], and

the MUSIC spectrum in (21) is obtained with a complexity
of O(NτN

2
s ), where Nτ denotes the number of delay grids.

Hence, the overall complexity of the delay estimation is given
by:

O1 = O(N2
sNt) +O(N3

s ) +O(NτN
2
s ). (53)

2) Complexities of Initial 2D-AOD and MC Estimation:
The proposed MC-unaware ML method for 2D-AOD esti-
mation in (30) has a computational complexity of O2 =
O(NcNt). For the proposed closed-form initial MC estimation
in (37), the dominant computational cost stems from comput-
ing the pseudo-inverse of the matrix Ltot, which, assuming
Nm ≤ NtNu, requires a complexity of O3 = O(NtNuN

2
m).

3) Complexity of the Proposed Refinement Algorithm: The
complexity of computing the vector bn using (42) is given by:

O(NtMr(1 +

Nw∑

l=0

N l
m)) = O(NtN

Nw+1
m Mr) (54)

It is important to note that as explained before, the MC effect
diminishes as the distance between two elements increases,
resulting in Nm typically being small (less than 5). Fur-
thermore, as will be demonstrated in the simulation results,
setting Nw = 4 yields sufficiently accurate MC estimation.
Consequently, the term NNw+1

m in (54) remains small. The
total complexity of the proposed Algorithm 1 can be expressed
as:

O4 = O(Nitt(NnmNu +Ngd)NtN
Nw+1
m Mr) (55)

where Nitt denotes the average number of iterations of the
proposed Algorithm 1 until convergence. Moreover, Nnm and
Ngd indicate the average number of the iterations of the
NM and GD algorithms in lines 8 and 9 of the algorithm,
respectively. According to our simulations, the average number
of iterations are Nitt = 7.3, Nnm = 17.3, and Ngd = 8.2.
Finally, the total complexity of the proposed method can be
obtained as O =

∑4
i=1 O4

3.

3It is noteworthy that in real-time scenarios, by assuming MC values vary
smoothly over time, previously estimated MC measurements and UE positions
can serve as initialization points, accelerating convergence and reducing the
required iterations Nitt, Nnm, and Ngd. A detailed real-time complexity
analysis is left for future research.

If the direct relation in (28) was used to compute Ω
′
t, the

total computational complexity of the algorithm would be
O(Nitt(NnmNu +Ngd)Nt(NmM2

r +N2
wM

3
r )), (56)

which shows that as Mr dominates the computational com-
plexity due to its larger value, the proposed computation
approach in (42) is approximately M2

r times faster than using
the direct definition (28), demonstrating its efficiency.

Remark 3. The complexity of the proposed method scales
linearly with Mr. Moreover, since all equations and techniques
are derived for a general UPA-shaped RIS, the methodology
is independent of specific RIS sizes. As a result, the approach
remains scalable to larger RISs with only linear complexity
growth, provided the UE position lies in the far-field of the
RIS.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed joint 3D localization and MC coefficients estimation
for RIS-assisted ISAC mmWave systems through numerical
simulations.
A. Simulation Setup

The scenario under consideration includes a BS, an RIS, and
a single UE, which can record signals at multiple independent
locations. The default system parameters are presented in
Table I. In all simulations we use maximum of Nu = 9 UE
locations {pu,n}Nu

n=1, as shown in Fig. 3b. Note that some
parameters may vary in different simulations. Moreover, we set
the number of SPs to NBSU = 2, NBSRU = 2, and NBRSU = 2
whose positions are depicted in Fig. 3b. In all simulations,
we assume Bm = 2, resulting in Nm = 3 MC coefficients.
The default unit norm MC vector s is shown in Table I 4 .
For simulations where ∥s∥ = β, we scale the default s from
Table I by β to achieve the desired norm. For generating
data, for each of the considered UE positions (which is a
subset of the UE positions shown in Fig. 3b), using (1) we
generate the received signals resulting in matrices {Yn}Nu

n=1.
According to the selected uncertainty region U in Table I, the
elevation and azimuth range AODs defined in Section II-C are
[θmin, θmax] = [−11.3◦, 11.3◦] and [ϕmin, ϕmax] = [−45◦, 45◦],
respectively. These intervals are uniformly sampled with a grid
step of dθ = dϕ = 1.8

15 rad ≈ 6.875◦5, resulting in Nt = 59

2D-AODs UψD as shown in Fig. 3a.
B. Evaluation of RIS Profiles

In this subsection, we compare the performance of direc-
tional and adaptive RIS codebooks by computing the PEB
values within the plane −10 < x < 30 and 2 < y < 40,
with a fixed height of z = 2. The results are presented
in Fig. 4. Fig. 4a and Fig. 4b show the PEB values for
M1 = M2 = 20 using directional and adaptive codebooks,
respectively, while Fig. 4c and Fig. 4d depict the results for a
larger RIS with M1 = M2 = 40. In both scenarios, the number
of transmissions is fixed at Nt = 59, and the centers UψA of

4The MC values used in this paper are derived from a realistic scattering
matrix-based model proposed in [23], [33], exhibiting a similar level of
magnitude. This model has been validated through real measurements in [23].

5These values are set according to the half power beamwidth of the RIS
with the shape 15× 15.
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Fig. 3: (a) All possible 2D-AODs of the UE within the uncertainty region U are shown as blue circles. The UE is moved in 0.1m increments, and the
corresponding 2D-AODs from the RIS are calculated. Directional codebook AODs are indicated by orange circles. For adaptive beamforming, rectangles with
dimensions (dθ, dϕ) are formed around each 2D-AOD, subdivided into M1 ×M2 grids, and RIS elements are directed towards the corresponding grids as
(16). (b) BS, RIS, UE, and SP in simulation environment. The colorbar shows the z coordinate values.

TABLE I: System parameters
Default System Parameters Symbol Value
Carrier frequency fc 30GHz
Noise PSD N0 −173.855 dBm
Light speed c 3× 108

Subcarrier bandwidth ∆f 240 kHz
Number of subcarriers Ns 50
MC vector s [0.606 + 0.308j,−0.234 + 0.614j,

0.0375− 0.324j]T

Uncertainty region U 0 < x < 20, 10 < y < 30, 0 < z < 4
Number of UE locations Nu 1 ≤ Nu ≤ 9
BS position pb [0, 3, 2.5]T [m]
BS number of elements Mb 20× 20 = 400
RIS position pr [10, 0, 2]T [m]
RIS number of elements Mr 20× 20 = 400

rectangles in the adaptive codebook are considered the same
as the 2D-AODs UψD. As shown in Fig. 4c, and as discussed in
Section II-C, the directional codebook struggles to generalize
for larger RISs, failing to cover all points in the uncertainty
region and requiring a higher number of beams. In contrast, the
adaptive codebook can more homogeneously cover the entire
uncertainty region with the same number of beams.
C. Approximated RIS Phase Profile Evaluation

In this subsection, we assess the validity and accuracy of
the Neumann series approximation used in (28) for modeling
the RIS phase profile under MC effects. To achieve this, for a
given value of ∥s∥, we randomly generate a scattering matrix
S and diagonal matrix Ω, where the diagonal elements of Ω
are unit modulus with random phases uniformly distributed
between −π and π. We then compute the spectral radius of
the matrix ΩS (i.e., the largest eigenvalue in magnitude). This
process is repeated 1000 times, and the average spectral radius
E{λmax(ΩS)} is plotted against ∥s∥ in Fig. 5a. As shown, the
spectral radius approaches one when ∥s∥ = 0.5, indicating that
the approximation in (28) holds only when ∥s∥ < 0.5.

A similar simulation is conducted to evaluate the accuracy
of the Neumann expansion in (28) for different values of
Nw. The relative Frobenius norm error is used as the per-
formance metric, which is plotted against ∥s∥ in Fig. 5b. As
shown, larger values of Nw lead to more precise estimates;

however, the rate of accuracy improvement diminishes as
∥s∥ approaches 0.5. For the subsequent simulations, we set
Nw = 4, as this value provides sufficient accuracy for joint
localization and MC parameter estimation.
D. Channel Parameters, Position, and MC Estimation Results

In this subsection, we evaluate the performance of the
proposed method by analyzing the root mean squared error
(RMSE) of the proposed algorithm at different power levels.
The CRB values are used as a benchmark for comparison.
A total of Nu = 3 fixed UE locations is considered, cor-
responding to the first three positions {pu,n}3n=1 shown in
Fig. 3b. The proposed method in Algorithm 1 is applied for
joint MC and location estimation in a multipath (MP)-free
environment. For each ∥s∥ ∈ {0, 0.2} and power level P ∈
{10, 15, 20, 25, 30} dBm, a total of Ngen = 500 data samples
are generated for each position, resulting in NgenNu = 1500
data samples for a given power and ∥s∥. To evaluate the effect
of MP interference, we also consider the case where ∥s∥ = 0.2
in the presence of all SPs shown in Fig. 3b, accounting for
MP.

1) Delay Estimation Performance: The delay estimation
RMSE is illustrated in Fig. 6a. As expected, since the delay es-
timation process relies solely on the energy of the beamformed
signals, defined in (18) (i.e., Ebru for the main path), the results
remain unaffected by MC. The slight improvement in RMSE
can be attributed to small power variations in Ebru, caused by
different RIS phase profiles corresponding to various values
of ∥s∥.

In a MP scenario, to show how the different paths manifest
in the delay domain, the MUSIC spectra have been plotted for
three power levels P ∈ {15, 30, 60}dBm using the signal at
location pu,1 in Fig. 6b. The number of detected paths by the
MDL algorithm are 2, 3, and 4, respectively. It can be observed
that, at higher power levels, more paths can be detected
and distinguished, leading to improved estimation accuracy.
Moreover, it is noteworthy that the delays corresponding to
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(a) M1 = M2 = 20, Directional (b) M1 = M2 = 20, Adaptive (c) M1 = M2 = 40, Directional (d) M1 = M2 = 40, Adaptive

Fig. 4: Comparison of directional and adaptive RIS codebooks by calculating the PEB values in a region specified as −10 < x < 30 and 2 < y < 40, with
a fixed height of z = 2.
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Fig. 5: Validation of Neumann series approximation.

the BS-SP-RIS-UE paths are not detected even at high power.
This is due to the fact that these paths, unlike BS-RIS-SP-UE
paths, are attenuated by the sharp directive beams of the BS,
and secondly, their longer distances compared to the BS-SP-
UE paths result in more severe path loss.

2) Positioning and 2D-AOD Estimation Performance:
Fig. 7a and Fig. 7b presents the RMSE for 2D-AOD and 3D
localization, respectively. As ∥s∥ increases, the gap between
the classical MC-unaware ML method and the corresponding
CRB widens. In contrast, the proposed method closely ap-
proaches the CRB, underscoring its superior performance. It is
also noteworthy that in the absence of MC (i.e., ∥s∥ = 0), both
the MC-unaware ML and the proposed method yield identical
results. Moreover, the proposed method remains near the CRB
even in the challenging MP environment with ∥s∥ = 0.2. To
further evaluate the proposed method against the MC-unaware
approach, 2D-AOD RMSE and CRB maps are obtained for
various power levels and ∥s∥ values, as shown in Fig. 8.
Notably, the proposed method consistently approaches the
CRB values, highlighting its superior effectiveness compared
to the MC-unaware approach. However, it can be seen that
in Fig. 8b, the proposed method begins to deviate from the
CRB values when ∥s∥ ≥ 0.3. This performance degradation
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Fig. 6: Delay estimation: (a) shows delay estimation RMSE performance
versus transmitted power, and (b) depicts MUSIC spectra for three test data
with different power P ∈ {15, 30, 60}dBm. Only the detected paths are
shown, and the estimated values are depicted in the legend box.

is due to the increasing inaccuracy of the Neumann series
approximation at larger ∥s∥ values, as illustrated in Fig. 5,
though the results remain close to the CRB. Additionally, it can
be observed that in Fig. 7a and Fig. 8c, for a fixed power, the
CRB values decrease slightly with larger ∥s∥. This is because,
as ∥s∥ increases, the influence of MC on the beampattern
becomes more pronounced (see (28)) in presence of noise,
slightly enhancing MC estimation accuracy, which in turn
improves the estimation of RIS-affected vectors bn and lowers
the CRB. However, as the scattering parameters do not contain
position information, this improvement remains marginal.

3) Scattering Parameter Estimation Performance: Fig. 9a
presents the RMSE values of the estimated MC coefficients
where we have also obtained the results for ∥s∥ = 0.05
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Fig. 7: RMSE performance of the proposed method: (a) 2D-AOD estimation
performance; and (b) Localization performance.

for better comparison. It is observed that the performance
improves with increasing transmission power. Furthermore, the
CRB values exhibit an inverse relationship with ∥s∥, being
higher for smaller ∥s∥. This can be explained by the fact that
for smaller ∥s∥, the scattering matrix S in (28) exhibits lower
absolute values of the MC terms, which can become negligible
compared to noise, complicating MC estimation. While higher
∥s∥ generally facilitates more accurate MC estimation, the
degradation in performance of the classical MC-unaware ML
estimator due to MC effects is more pronounced in such cases,
compared to scenarios with smaller ∥s∥.

4) Impact of Bandwidth in Multipath Scenarios: Fig. 9b
illustrates the RMSE of delay estimation as a function of the
number of subcarriers (or equivalently, bandwidth), alongside
the optimistic CRB values, which do not account for multi-
path effects. As expected, increasing the bandwidth enhances
delay estimation accuracy. The results show that, despite the
presence of multipath, the RMSE closely approaches the CRB
computed under no multipath conditions.
E. Impact of Key Parameters on MC Estimation Accuracy

In this subsection, we conduct additional simulations to
analyze the impact of some key parameters: number of po-
sitions Nu, order of Neumann series used Nw, and ∥s∥ on
MC estimation. In the first experiment, for Nu = i, we utilize
the first i UE positions {pu,i}ij=1 depicted in Fig. 3b for data
generation. The transmitted power is set to P = 10dBm,
and the MC vector norm is fixed at ∥s∥ = 0.2. Upon exe-
cuting the proposed method, we compute the RMSE and the

corresponding CRB values, which are illustrated in Fig. 10a.
As anticipated, the MC estimation performance improves with
larger values of Nu. Notably, since the CRB for Nu = i is
contingent upon the first i positions, the observed improvement
is nonlinear.

Notably, since the considered scenario in this paper is in
the downlink and the designed codebooks are independent
of individual UEs, the proposed methodology can be ap-
plied separately at each UE for localization. Furthermore,
this experiment can be interpreted as a multi-UE cooperative
calibration scenario. As a result, the proposed methodology
not only scales efficiently in multi-UE ISAC systems but
also benefits from an increased number of UEs, leading to
improved localization accuracy and enhanced RIS calibration.

In another experiment, we assess the performance of the
proposed method for various values of Nw in terms of ∥s∥,
as illustrated in Fig. 10b. The transmitted power is fixed at
P = 10dBm, and the number of positions is set to Nu = 3.
It is observed that for small values of ∥s∥, the proposed closed-
form coarse estimation and the first-order (Nw = 1) Neumann
series approximation yield sufficient precision. However, for
∥s∥ > 0.1, the performance of the proposed method with
Nw ∈ {1, 2} diverges from the CRB. Therefore, higher values
of Nw should be employed for larger ∥s∥, although this comes
at the cost of increased complexity.

VII. CONCLUSION

In this paper, we addressed the challenging problem of
3D localization of a single-antenna UE in the presence of
a multi-antenna BS and a UPA-equipped RIS ISAC system
in a multipath environment, in presence of MC effects be-
tween RIS elements. For the initial 2D-AOD estimation, we
developed an efficient MC-unaware ML approach, followed
by a closed-form solution for the initial MC estimation. We
further proposed an AO-based refinement algorithm to jointly
optimize the UE position and MC estimates. Additionally, we
extended our method to scenarios where multiple signals from
independent UE locations are available, leading to enhanced
MC estimation precision. We computed CRB values through
FIM analysis to benchmark the proposed approach, and ex-
tensive complexity analysis was performed to demonstrate its
computational efficiency. Finally, simulation results and CRB
comparisons validated the effectiveness and efficiency of the
proposed methodology. Here are several avenues for extension
of this work, including mobile UEs and examine the combined
impact of multiple hardware imperfections, such as RIS pixel
failures and amplitude variations.

APPENDIX A
PROOF OF PROPOSITION 1

First, we analyze the convergence properties of the proposed
AO based algorithm, which iteratively optimizes the 2D-AODs
{ψdn

r,u}Nu
n=1 via the NM algorithm and the MC vector s via GD.

Let (s(t), {ψdn(t)
r,u }Nu

n=1) denote the updated variables at the t-
th iteration of the algorithm, where t = 0 corresponds to the
initial values. Moreover, in the following, f(.) represents the
objective value (27a).
A. Monotonic Increase in the Objective Function

Each iteration of our algorithm consists of two subproblems:
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(a) MC-unaware ML (b) Proposed (c) AOD CRB

Fig. 8: RMSE comparison of the MC-unaware ML approach with the proposed MC-aware method. The corresponding 2D-AOD CRB heatmap is also plotted
as a benchmark.
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Fig. 9: (a) MC estimation performance.; and (b) Delay estimation under
multipath for different subcarrier counts.

• NM for 2D-AOD Optimization: Given the current value
of s(t), the 2D-AODs {ψdn

r,u}Nu
n=1 are optimized using

the NM algorithm, which is a direct search method
that does not require gradient information. Since NM
is designed to find a local optimum in non-convex set-
tings and each update ensures a non-decreasing objective
value unless a stagnation point6 is reached, we obtain
f(s(t), {ψdn(t+1)

r,u }Nu
n=1) ≥ f(s(t), {ψdn(t)

r,u }Nu
n=1). It is ob-

served that, due to the sufficiently accurate initialization
of the 2D-AODs in (30), the NM algorithm consistently
converges to the global optima of this subproblem in
all simulations performed in this paper. This observation

6A stagnation point in the NM algorithm is reached when it fails to
identify better solutions, resulting in nearly identical function values within
the simplex, leading to algorithm termination due to the absence of further
improvement.
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fine (Nw = 2) fine (Nw = 3)
fine (Nw = 4) fine (Nw = 5)
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(b)

Fig. 10: Impact of key parameters in MC RMSE estimation performance:
(a) versus number of UE locations Nu for ∥s∥ = 0.2. (b) versus ∥s∥ for
different values of Nw .

aligns with findings in the localization literature (e.g.,
see [21]). For a detailed mathematical discussion on
the convergence properties of low-dimensional NM7, we
refer the readers to [46].

• GD for s: Given the updated 2D-AODs {ψdn(t+1)
r,u }Nu

n=1,
we update s using gradient descent. Assuming a
sufficiently small step size and a smooth, differen-
tiable objective function with respect to s, gradient
descent converges to a stationary point and ensures
f(s(t+1), {ψdn(t+1)

r,u }Nu
n=1) ≥ f(s(t), {ψdn(t+1)

r,u }Nu
n=1).

Similar to the previous subproblem, in all simulations
conducted in this paper, gradient descent converges to
the global optima of this subproblem.

Since both steps do not decrease the objective function,
the sequence {f(s(t), {ψdn(t)

r,u }Nu
n=1)} is monotonically non-

decreasing.

7Since NM is applied independently to each of the Nu UE positions, the
problem dimension in this paper is 2.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2025.3565541

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



15

We now present a key lemma that will be utilized in the
next subsection:
Lemma 1. The objective function (27a) is upper-bounded.
Proof. Each term in the summation has the form:
|bHn ŷn|2/∥bn∥2. Applying the Cauchy-Schwarz inequality:
|bHn ŷn|2 ≤ ∥bn∥2∥ŷn∥2 =⇒ |bHn ŷn|2/∥bn∥2 ≤ ∥ŷn∥2 (57)

=⇒ f(s, {ψdn
r,u}Nu

n=1) ≤
Nu∑

n=1

∥ŷn∥2.

If we assume that the compressed received signal vectors
satisfy

∑Nu

n=1∥ŷn∥2 < ∞, then the objective function is upper-
bounded by this finite value. Hence, the proof is complete.
B. Subsequential Convergence and Stationary Point

Since the objective function is continuous in both
s and {ψdn

r,u}Nu
n=1, and the updates are designed to

lead to non-decreasing objective values, the sequence
f(s(t), {ψdn(t)

r,u }Nu
n=1) is monotonically increasing. Further-

more, as the objective function is upper bounded, the monotone
convergence theorem [47, Theorem 3.3.2] guarantees that the
sequence of objective values converges to a finite limit. Under
the assumption that the subproblems reach its local optima
at each step, any accumulation point (s∗, {ψdn∗

r,u }Nu
n=1) must

be a stationary point where further optimization does not
significantly change the objective function.

Although we proved that Algorithm 1 converges to a sta-
tionary point, the non-convex nature of the problem implies
that this point may not be globally optimal for any arbitrary
initialization. Specifically, the stationary point is highly depen-
dent on the initialization. However, thanks to the sufficiently
accurate initial values (s(0), {ψdn(0)

r,u }Nu
n=1) derived in (30) (for

2D-AODs) (37) (for MC vector), the proposed algorithm will
have high chances of converging to the global solution.
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