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continuously driven two-level system
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Jiaying Yang 1,2 , Ingrid Strandberg 1, Alejandro Vivas-Viaña 3,4, Akshay Gaikwad1,
Claudia Castillo-Moreno 1, Anton Frisk Kockum1, Muhammad Asad Ullah 2, Carlos SánchezMuñoz3,4,
Axel Martin Eriksson1 & Simone Gasparinetti 1

The ability to generate entangled states of light is a key primitive for quantum communication and
distributed quantum computation. Continuously driven sources, including those based on
spontaneous parametric downconversion, are usually probabilistic, whereas deterministic sources
require accurate timing of the control fields. Here, we experimentally generate entangled photonic
modes by continuously exciting a quantum emitter - a superconducting qubit - with a coherent drive,
taking advantage of mode matching in the time and frequency domain. Using joint quantum state
tomography and logarithmic negativity, we show that entanglement is generated between modes
extracted from the two sidebands of the resonance fluorescence spectrum. Because the entangled
photonicmodes are perfectly orthogonal, they canbe transferred into distinct quantummemories.Our
approach can be utilized to distribute entanglement at a high rate in various physical platforms, with
applications in waveguide quantum electrodynamics, distributed quantum computing, and quantum
networks.

Entanglement is a fundamental property of quantum physics, describing
nonlocal correlations that are paramount for secure quantum
communications1–3, remote quantum sensing4–6, quantum algorithms7,8,
and large-scale distributed quantum computing9–11. Traditionally, in
quantum optics, entangled photons have been produced from spontaneous
parametric downconversion in combination with beamsplitters and pho-
todetectors for heralding12,13. The probabilistic nature of this process can be
inconvenient, and more recent experiments have been able to generate
entangled photonic states on demand, i.e., deterministically, with emitted
photonic quantum bits (qubits) defined either in the polarization14–16 or a
time-bin17–19 degree of freedom.

The time-frequency degree of freedom can be a valuable tool for high-
dimensional quantum information processing, and optical time- or
frequency-bin entangled two-photon states are typically produced in para-
metric downconversion or spontaneous four-wave mixing processes20–23. In
these parametric processes, the temporal mode shape of the output is
selected by the spectral shape of the pump24. In the microwave frequency
range, frequency-entangled states have been produced via Josephson junc-
tion circuit elements25–31, but besides considering time-bin qubit
encoding32,33, the temporal degree of freedom has been overlooked.

Here, we demonstrate a simple scheme to generate entangled time-
frequency bosonic states from the steady-state emission of a single quantum

emitter, a transmon-type superconducting circuit coupled to a waveguide.
When the emitter is driven close to resonance, it exhibits resonance
fluorescence34,35, a cornerstone of quantum optics and a source of anti-
bunched photons. Studies of frequency-filtered modes of the emission
spectrum have unveiled a rich landscape of multi-photon processes, evi-
dencing the generationofnon-classical correlations36–41. In the timedomain,
it has beenpredicted that under certain conditions, selected temporalmodes
from the resonance-fluorescence emission exhibit a negative Wigner
function, a hallmark of nonclassicality42,43, and this prediction has been
experimentally verified44.

In the present study, we combine the time and frequency dimensions
by selecting two temporally overlapping, but spectrally orthogonal photonic
modes. We provide evidence of entanglement through joint quantum state
tomography of the two selected modes, from which we determine the
logarithmic negativity as ameasure of entanglement45. For optimally chosen
parameters, we show entanglement between the two modes with a loga-
rithmic negativity of 0.062. The generated entangled photonic modes could
be physically extracted and transferred to quantum memories to perform
quantum information processing tasks, entanglement distribution, or
entanglement distillation46–48. The demonstrated method is agnostic to the
physical platform and can be extended to consider emission from quantum
systems with different level diagrams and pumping schemes. Our results
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thus open a new avenue to extract entanglement from continuously driven
quantum systems.

Results
Implementation with a superconducting circuit
Weutilize anX-mon-type49 superconducting circuit capacitively coupled to
a waveguide [Fig. 1(a)] as the quantum emitter. The transition frequency
between the ground state and the first excited state of the emitter isωge/2π=
4.94 GHz. The relaxation rate of the emitter into the waveguide is Γ/2π =
8MHz, corresponding to a relaxation timeT1 = 1/Γ ~ 20 ns. The waveguide
connects to the input and output lines in a reflection configuration
[Fig. 1(b))]. This setup guides the input field to the qubit via the input line
and the waveguide. Subsequently, the reflected output field travels in the
reverse direction through the waveguide, and we then measure it from the
output line using a linear amplification chain (see Supplementary Material
Sec. I for more details on the setup). In the experiment, we continuously
drive the emitter andmeasure the propagating outputfield in thewaveguide
[Fig. 1(c)]. The drive has a strength characterized by the Rabi frequency Ω
(see SupplementaryMaterial Sec. IV fordrive-strength calibration) and is on
resonance with the fundamental transition of the emitter.

Defining the temporal modes
We apply two temporal filters fk(t) (k = 1, 2) to the output field, extracting
single propagating modes âk out of the time-dependent output field âoutðtÞ
as50

âk ¼
Z 1

�1
dtf kðtÞâoutðtÞ; ð1Þ

The extracted modes fulfill bosonic commutation relations ½âk; âyk� ¼ 1,
ensured by the normalization condition for the filter functionR1
�1 dtjf kðtÞj2 ¼ 1. Here, âoutðtÞ is given by the input-output

relation50,51âoutðtÞ ¼
ffiffiffi
Γ

p
σ̂ðtÞ � âinðtÞ, where âinðtÞ is the input field.

Generally, it is possible to consider correlations between any pair of the
propagating modes, including non-orthogonal ones. However, the ortho-
gonality of the two temporalmodes ensures that they are independent, and as
such, can be physically extracted and mapped into separate quantum
memorieswithout addednoise. For this reason, in the following,wewill study
correlations also for overlapping modes, but restrict to orthogonal modes
when discussing entanglement (see Section “Two-mode entanglement” for
more details). The condition for the two temporal filters to be orthogonal is

Z
f �1ðtÞf 2ðtÞdt ¼ 0: ð2Þ

where f1(t) and f2(t) are the two temporal filters with carrier frequencies ω1

and ω2 that fulfill

f kðtÞ ¼ vkðtÞ � eiðωktþϕÞ; k ¼ 1; 2: ð3Þ

Here, vk(t) denotes the wavepacket profile of the kth filter. We take both
profiles to be identical boxcar functions of duration T, such that v1(t) =
v2(t) = v(t). For our case with two filters of the form Eq. (3), the ortho-
gonality condition reduces to (ω2−ω1)/2π=m/T, wherem is an arbitrary
integer. In this work, we useT = 100 ns, so the condition for orthogonality
between the two modes is (ω2 − ω1)/2π = m ⋅ 10MHz. Additionally,
modes that are separated by a large frequency detuning can also be con-
sidered orthogonal to a good extent.

To characterize the modes âk, we apply the corresponding filter
functions to the measured time traces and collect enough statistics to cal-
culate the relevantmoments of the distribution. To characterize and remove
the added noise from the amplification chain, we interleave measurements
with the drive on and off, while maintaining the same settings for the
temporal filters, and apply known techniques52,53 to deconvolve the prob-
ability distribution of the output field from the added noise. Additionally,
the coherent background, originating from the reflected input, is removed
during post-processing (see Methods “Removal of coherent background”
for details). To justify this operation, we note that it can be physically
implemented without significant degradation of the modes, for example,
using a cancellation tone fed into the output via a directional coupler54.

Optimization of parameters for a single mode
We first characterize the power emitted into a single mode, f1(t). We sweep
the detuning Δ1 = ω1 − ωge between the modulation frequency of the
temporalfilter and the frequencyof the emitter in the rangeof -40MGz to40
MHz, and measure the second-order moment hây1â1i, the mean photon
number (Fig. 2).With increasing drive power, side peaks appear atΔ±≡±Ω
[Fig. 2(a)]. The frequencydifference between the central peak and these side
peaks corresponds to the drive Rabi frequencyΩ. This observed structure is
the well-known Mollow triplet35,55 of the resonance-fluorescence emission
spectrum. In41, Lopez et al. theoretically propose a method for generating
entangled photons by off-resonantly driving a two-level system and mea-
suring the emission from the side peaks of theMollow triplet. In contrast to
the continuous mode analysis in41, in the rest of the paper, we focus on
exploring the entanglement of temporally selected modes at the side-peak
frequencies while coherently driving the qubit.

The duration of the filter affects its spectral content [Fig. 2(b)]; when
the filter duration is short, the side peaks are not visible due to spectral
broadening.Wemodel ourmeasurementswithmaster equation and input-
output theory (see Methods “Theoretical model”) and find a good agree-
ment between theoretical predictions and experimental data.

In the following, we set the drive Rabi frequency toΩ = 4.04Γ and the
duration of the temporal modes to T = 100 ns, corresponding to a well-
developed Mollow triplet and a filter function for which the side peaks are

(c)

(b)

Emitter

Waveguide

(a)
Emitter

Waveguide

Fig. 1 | Experimental implementation for entangled-photon generation based on
a superconducting circuit. a False-color optical micrograph of the device. A
transmon qubit (orange) is capacitively coupled to a waveguide (red). The coupling
element visible to the left of the transmon is not used in this work. b Schematic
representation of the device and the measurement setup. âin and âout represent the
input and output modes of the emitter’s field, respectively. c Temporal mode
matching. The emitter is continuously driven at its frequency ωge (orange), and its
emitted radiation is recorded as a time trace (red). The two insets represent the
temporal filters f1(t) (blue) and f2(t) (green) applied on the time trace to match the
two propagating modes.
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well resolved. This sideband-resolved regime allows us to obtain entangle-
ment between the two orthogonal modes, as demonstrated in the next
section.

Two-mode entanglement
Wematch themeasured time tracewith twosimultaneously applied temporal
filters, f1(t) and f2(t), to verify entanglement at optimal frequencies between
the two selected propagating modes. The temporal profiles of the filters v(t)
are perfectly overlapping, v1(t) = v2(t), while their frequencies, ω1 andω2, are
independently varied in the range [ωge − 40MHz, ωge + 40MHz]. At each
frequency of both temporal filters, we obtain the first- and second-order
moments of the two propagatingmodes [See Fig. 3(a–h). Thefirst row shows
the simulated results (from the model in Methods “Theoretical model”) and
the second row shows the measured results (See Methods “Moment
denoising” to “Two-mode moments calculation” for data-analysis details)].
In the frequency regions around (Δ1, Δ2) = (Δ−, Δ+) or (Δ+, Δ−), near the
anti-diagonal corners of the 2Dmaps, themoments hâ1i and hâ2i are close to
zero [Fig. 3(a, b)],while the cross-second-ordermoment â1â2

� �
showsapeak

[Fig. 3(g)]. This indicates a two-mode squeezing type of entanglement.While

in the region near (Δ1, Δ2) = (Δ+, Δ+) or (Δ−, Δ−), along the diagonal of the

2Dmomentmaps, the cross-second-ordermoment hây1â2i showsapeak [Fig.
3(h)], indicating a beam-splitter type of entanglement. Note, however, that in
this scenario, the two modes overlap both temporally and in frequency, and
are generally not orthogonal. In the following, we focus on the frequency
point (Δ−, Δ+), where the two modes belong to opposite side peaks of the
Mollow triplet and satisfy the frequencyorthogonality condition inEq. (2).At
the selected point, we reduce the measurement noise level by performing
more repetitions (n = 2 × 107), allowing for the computation of moments up

to the fourth order. Specifically, we computemoments hðây1Þ
m1 âm1

1 ðây2Þ
m2 ân22 i

for m1; n1;m2; n2 2 0; 1; 2f g and m1 + n1 + m2 + n2 ≤ 4, resulting in 27
moments excluding conjugation redundancy [Fig. 3(i, j)].

At this frequency point, we also reconstruct the density matrix of the
two propagatingmodes by joint quantum state tomography [Fig. 4(a)]. The
tomography utilizes least-squares optimization56,57 to find the most-likely
density matrix corresponding to the measured moments [Fig. 4(a)]. In the
reconstructed densitymatrix,multiple photon states are involved. Although
the component 〈00∣ρ∣11〉 (where ∣ij

�
represents the number of photons in

each mode) is the largest, there are additional off-diagonal elements
(coherences) that are nonzero. The state overlap between the reconstructed
and the simulated density matrices is 96.6%, with the state overlap defined

as58 Fðρ; ρ0Þ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
ρ0

ffiffiffi
ρ

pp� �2
, where ρ and ρ0 are the simulated and

measured density matrices, respectively.
Further, to demonstrate that the two modes are entangled around the

selected frequency point (Δ−, Δ+), we perform joint quantum state tomo-
graphy with n = 2 × 107 repetitions across the frequency ranges Δ1 ∈ [−40,
−10]MHz and Δ2 ∈ [10, 40]MHz. We then calculate the logarithmic
negativity EN from the reconstructed density matrices as a metric to
quantify entanglement. We notice that the computation of EN is very
sensitive to small values of coherences of the density matrix. As a result, its
value presents large fluctuations when we use least-squares optimization to
reconstruct the density matrix. To reduce fluctuations in EN , we employ
compressed-sensing optimization59,60, which is a more aggressive approach
that aims to find the optimal sparse solution of the density matrices. Given
that our target density matrix is sufficiently sparse and we utilize a heavily
reduceddata set [using only 27moments up to the fourth order, listed inFig.
3(i,j), for reconstruction], compressed-sensing optimization effectively
minimizes the impact of noisy coherent components in the reconstructed
density matrices. This method thereby enables a clearer distribution of EN
[see Fig. 4(b), and see “Methods” “Joint Quantum state tomography” for
details of the two optimization methods].

We observe the maximum EN from the reconstruction near the fre-
quency point (Δ−, Δ+), with EN ¼ 0:128, while that from the simulation
reaches a maximum value of 0.062, at the same point [Fig. 4(c)] (See Sup-
plementary Material Sec. II for simulations in more parameter regimes). We
conjecture that the discrepancy between the simulated and measured EN is
due to our use of 27 moments up to fourth order, instead of the full 325
moments for a Fock-space cutoff at N = 5, which includes all cases fulfilling
m1; n1;m2; n2 2 0; 1; 2; 3; 4f g. The excludedmoments are between the fifth
and 16th order, which are omitted due to high noise levels. Indeed, if we
reconstruct the state using the same moments as done for the experiment,
using simulated values,weobtain consistentlyhigher values forEN , very close
to the experiment [Fig. 4(d)]. By contrast, if we use all 325 combinations of
simulatedmoments,we reproduce theEN distributionobtaineddirectly from
the simulation (see direct comparison in Methods “Joint Quantum state
tomography”). Based on these considerations, we conclude that the max-
imumEN observed inour experiment is close to the simulationvalueof 0.062.

Discussion
Our work introduces and demonstrates an approach for generating entan-
glement in the time-frequency domain between propagating bosonicmodes.
Theoretical studies suggest that entangled photons are generated in the

Fig. 2 | Second-ordermoment hây1â1i of a single propagatingmode under varying
drive conditions. a hây1 â1i of the output mode as a function of Rabi frequency Ω,
with the template-matching duration fixed at T ¼ 100 ns. b hây1 â1i as a function of
template-matching duration T , with Ω fixed at 4:04Γ. In both panels, each curve is
vertically offset by 0.6 for clarity. The filled circles are the measured data, while the
black solid lines are the simulation results. The red vertical lines mark the positions
of ± Ω, which match the location of the side peaks of the corresponding curves.
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Mollow triplet sideband emission observed in the resonance fluorescence
from a single two-level emitter41,61.We experimentally confirm generation of
entanglement from steady-state resonance fluorescence in a continuously
and coherently driven emitter by temporally matching two photonic modes
from the continuous spectrum. At the frequencies of the opposite side peaks
of theMollow triplet, the reconstructed densitymatrix of the two-mode state
exhibits a maximum logarithmic negativity of 0.128, which provides evi-
dence of entanglement, aligning with our theoretical model of 0.062 after
considering the limitations of our reconstruction scheme.

Entanglement in the time-frequency degree of freedom is a valuable
asset for high-dimensional quantum information processing. In previous
experiments, time-frequencymodeshavebeenutilizedwith entangled single-
photon pairs24,62,63. Our approach naturally incorporates multiphoton states,
inwhich thenumber of photons is determinedby themode shape andoutput
intensity of the quantum emitter. This experiment used a boxcar filter to
define temporal modes, but simulation results presented in Supplementary
Material II suggest that Hermite–Gauss modes yield higher logarithmic
negativity. As such, there is potential to explore and optimize themode shape
to obtain states with higher entanglement or other desired properties.

While in our experiment we selected and characterized the modes
simply by applying digital filters, these modes could be physically extracted
and transferred to quantummemories64,65 to performquantum information
processing tasks or entanglement distribution. In the optical regime, the so-
called quantum pulse gate66 is capable of selecting an arbitrary time-
frequencymode fromahigh-dimensional input24,67. Selectedmodes can also
be captured in cavities by tunable coupling68,69, a technique which is well
suited formicrowave photons in superconducting circuits, in which cavities
with adjustable couplers can be fabricated on-chip.

Compared to previous works17,27,70–73, this system for entanglement
generation has twomain advantages: i) it uses a simple system with a single

emitter; ii) the entangled modes are generated by driving the emitter at
steady state, so there is no timing constraint in applying the temporal filters.
Additionally, the entanglement generation rate is only limited by the line-
width of the emitter, which can be made of the order of 1 GHz in super-
conducting circuits74.

Although we focused on resonance fluorescence of a superconducting
circuit, our method is broadly applicable since resonance fluorescence has
been observed in a multitude of systems, including trapped ions75,76, cold
atoms77, color centers in diamond78–80, and semiconductor quantum dots81,82,
even at telecom wavelength83,84. The method could also be applied using
steady-state emission from other quantum systems as a resource, be it a
comparatively simple arrangement such as a Kerr cavity85, or more complex
systems, for example, emitters in topological waveguides86–88 or those pro-
ducing superradiance89.

Methods
Theoretical model
Entanglement source. We describe the emitter as a two-level system,
spanning a basis f∣g�; ∣eig, with transition frequency ωge and lowering
operator σ̂ ¼ ∣g

�
eh ∣. We focus on the case of resonant driving, where the

emitter is excited by a microwave pulse of frequency ωge and Rabi fre-
quencyΩ. In a frame rotating at the drive frequency and under a rotating-
wave approximation, the Hamiltonian of the driven qubit is given by

Ĥq ¼ �iΩðσ̂y � σ̂Þ=2: ð4Þ

The interaction between the qubit and the coplanar waveguide intro-
duces incoherent processes by which the qubit is de-excited through
spontaneous emission at a rate Γ. The dissipative dynamics of the reduced

(i)

(j)

Fig. 3 | Moments and correlations of temporally matched modes. a–h Moments
up to second order for the temporal modes defined in Eq. (3) as a function of
frequency detunings Δk = ωk − ωge, where k = 1, 2. The upper row shows the data
measured from the experiments. The lower row shows the 2D maps of the
moments calculated from the simulation. The 2D map of the second-order
moments hây1â1i and hây2 â2i are normalized to have the same maximum value as

the simulation, and the other moments are scaled accordingly. i, j The real and
imaginary parts of moments up to fourth order at the frequencies (Δ1, Δ2) = (Δ−,
Δ+). The blue bar is the measured data, while the black wireframe is the simu-
lation. The error bar for each measured moment is obtained by splitting the data
into 20 segments, calculating the moments for each segment, and obtaining the
standard deviation over them.
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density matrix of the qubit is described by the master equation90–92

dρ̂=dt ¼ �i½Ĥq; ρ̂� þ
Γ

2
D½σ̂�ρ̂; ð5Þ

where we have defined the Lindblad superoperator as D½Â� �
2Âρ̂Â

y �fÂy
Â; ρ̂g.

A diagonalization of Ĥq yields two eigenstates ∣± i � ð∣g�± ∣eiÞ= ffiffiffi
2

p
with corresponding eigenenergies E± = ± Ω, which in the dressed-atom
picture can be understood as hybrid light-matter states between the qubit
and thedrive. In the strongdriving regime (Ω>Γ/4), these eigenenergies can
be resolved, and the emission spectrum of resonance fluorescence acquires
the Mollow-triplet structure55, with two side peaks emerging around a
central peak at the drive frequency (see Fig. 2). This structure can be
understood as transitions between the dressed eigenstates, the central peak
at ω = ωge corresponding to the doubly-degenerate transition ∣± i ! ∣± i,
and the two side peaks at frequencies ω± = ωge ± Ω corresponding to
transitions ∣þi ! ∣�i and ∣�i ! ∣þi, respectively.

Joint quantumstateof temporalmodes. The densitymatrix describing
the joint quantum states of both modes can be computed by using
the input-output theory for quantum pulses93,94. This approach treats the
system and the emission as a cascaded quantum system51, in which
the desired temporal mode is described as a virtual cavity (with annihi-
lation operator âk) coupled non-reciprocally to the system with a time-
dependent coupling. Here, we extend this approach to capture simulta-
neously several temporal modes by introducing two virtual cavities,
resulting in the following cascaded master equation in the rotating frame
of the drive:

dρ̂
dt

¼ �i½Ĥq; ρ̂� þ
Γ

2
D½σ̂�ρ̂þ

X2
k¼1

jgkðtÞj2
2

D½âk�ρ̂

�P2
k¼1

ffiffiffi
Γ

p
g�kðtÞ½âyk; σ̂ρ̂� þ gkðtÞ½ρ̂σ̂y; âk�

� �
:

ð6Þ

Fig. 4 | Entangled temporal modes.Density matrix
from the joint quantum state tomography and the
obtained logarithmic negativity. a Comparing the
real part of the reconstructed and simulated density
matrices in Fock space up to N = 5, while only the
selected lower-order components satisfyingN≤3 are
shown. The colored bars show the measurement
result, and the black wireframes are the simulated
prediction. The imaginary components of both the
simulated and reconstructed density matrices,
which are not shown, are less than 0.015 across all
elements of the matrices. b The logarithmic nega-
tivity EN reconstructed from the 27 measured
moments over the frequency ranges Δ1 ∈ [−40,
−10] MHz and Δ2 ∈ [10, 40] MHz. There are seven
not-a-number points, shown in white, due to the
optimizer failing to meet the standard deviation
constraints of the moments at these frequency
points during reconstruction. c The numerically
simulated logarithmic negativity EN over the same
frequency range. d EN reconstructed from the 27
simulatedmoments over the same frequency ranges.
This distribution matches (c) if reconstructed using
all combinations of simulated moments up to N = 5
(see “Methods”, “Joint Quantum state
tomography”).

(a) Re[   ]
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The temporal filters defined in Eq. (3) are encoded into time-
dependent coupling95,96,

gkðtÞ ¼ � f kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR t
0 dt

0jf kðt0Þj2
q : ð7Þ

In our implementation, the profile v(t) of the temporal filters (see Eq. (3)) is
defined as a normalized boxcar function vðtÞ ¼ 1ffiffiffi

T
p ½Θðt � t0Þ � Θðt�

t0 � TÞ�, with Θ(t) the Heaviside step function and t0 the start time of the
temporal filters. This results in the time-dependent couplings (in the
rotating frame of the drive) gkðtÞ ¼ �eiðΔktþϕÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
t � t0

p
, where Δk ≡ ωk −

ωge is the kth sensor-laser detuning.
We note that related previous works41,97 used a version of the master

equation in Eq. (6) that includes a factor 1=
ffiffiffi
2

p
in the last term. Such a factor

would stem from a description in which, prior to the capture of eachmode,
the output is physically split (e.g., by a beam splitter). In that description, the
state obtained for each mode depends strongly on the total number of
modes included, since the physical splitting has the effect of introducing
important vacuum contributions. This would not accurately describe the
digital filtering of the modes performed in this experiment, where the
particular choice of f1 should not affect the results obtainedwhenfiltering f2.
This condition is not fulfilled by the cascaded multi-mode setups proposed
in ref. 93. Themaster equation in Eq. (6), however, ensures independence of
the filtered modes, and therefore serves as a good description of the type of
mode-matching performed in this experiment.

Experimentally, t0 = 200 ns is a sufficient waiting time to reach steady
state. Numerically, we evolve the system until time t0+ T solving the time-
dependent cascaded master equation Eq. (6) using QuTiP98–100. The simu-
lated density matrix and moments of the two-mode state are obtained and
used for comparison with experimental results. Then, we quantify the
degree of entanglement between the two filtered temporal modes by means
of the logarithmic negativity101–103, a commonly used entanglement witness
in bipartite systems. Given a general bipartite state, composed by systemsA
and B, the logarithmic negativity is defined as

EN � log2ðjjρTA jj1Þ; ð8Þ

where TA denotes the partial transpose operation oversystemA, and ∣∣ ⋅ ∣∣1 is
the trace norm.

Moment denoising
Due to measurement noise arising from cable losses, amplification chain,
mode-matching inefficiency, and other factors, the directly obtained total
mode from temporal template matching, denoted as Ŝk, does not solely
represent the target modes âoutk . Instead, Ŝk comprises both the target mode
âoutk and an additional noise mode ĥ

y
, Ŝk ¼ âoutk þ ĥ

y
. To remove the noise

mode ĥ
y
, we operate an interleaved measurement to sweep between two

cases with andwithout the qubit drive. In the first case, wemeasure the total
mode, including both the targeted mode and the noise mode. In the second
case, the targetmode is left in vacuumand themeasurement canbe served as
a reference of the noise mode. The switching between the two cases is
repeated n times, with n varying from 105 to 2 × 107 across different mea-
surements, given that the added noise photon from the amplification chain
is nadded = 11 in our setup. We use number of repetitions n = 105 in
Fig. 3(a–h), n = 106 in Fig. 2 and n= 2 × 107 in Fig. 3(i, j) and Fig. 4.We then
calculate the averaged moments from these repetitions. As we investigate
higher-ordermoments, the number of required repetitions increases due to
the escalating statistical errors associated with higher orders104.

Thefirst- and second-ordermoments of the twopropagatingmodes105,
âoutk

� �
and ðâoutk Þyâoutk

D E
, are obtained by

âoutk

� � ¼ Ŝk � ĥ
yD E

;

ðâoutk Þyâoutk

D E
¼ Ŝ

y
kŜk � Ŝkĥ� Ŝ

y
kĥ

y þ ĥĥ
yD E

;
ð9Þ

where the angle brackets represent the averaging over the n repetitions.
These moments are with the coherent background from the reflected input
drive; and in the next section, we discuss the subtraction of the coherent
background.

Removal of coherent background
The relation between the input and the outputmodes is according to input-
output theory106

ffiffiffi
Γ

p
σ̂�k ¼ âoutk � âink : ð10Þ

The emission operator of the qubit,
ffiffiffi
Γ

p
σ̂�k , is the difference between the

output field and the input field. In the main text, we choose to present
experimental results and simulations for the emission operator of the qubit
alone, that is, after the coherent input field has been removed. The sub-
traction of a coherent field of arbitrary amplitude and phase, corresponding
to a displacement in phase space, is a physically justified operation. For
example, in ref. 54, the subtraction is performed directly in the experimental
setup, by adding a cancellation pulse through a weakly coupled directional
coupler. Here, we remove the coherent background from the output mode
obtained through measurement by post-processing instead.

We calculate the reflected inputmode that is captured by the temporal
filter through,

âink
� � ¼ Ω=

ffiffiffi
Γ

p
�
Z T

0
eiðωktþϕBÞ cosðωIFtÞdt; ð11Þ

whereΩ is the Rabi frequency of the drive signal, Γ is the decay rate of qubit
to the waveguide, ωk is the frequency of the temporal filter, and ωIF is the
down-converted frequency of the qubit.

Aside from the phase rotation parameters of the input mode, ϕB, we
also introduce an amplification parameter A a phase rotation ϕA, to the
measured output mode âoutk , and an amplification parameter B to the input
mode âink . The same set of parameters A, B, ϕA, and ϕB is used for both
modes. By optimally selecting these parameters, we aim to equate the
simulated first-order moment with the transformed combination of these
fields, thus achieving parameter identification and system characterization:

âk
� �

sim ¼ AeiϕA âoutk � Bâink
� �

: ð12Þ

Shifting our focus to the second-order moment, we relate simulation
and measurement as follows:

âykâk
D E

sim
¼ ðAeiϕA âoutk � Bâink Þ

yðAeiϕA âoutk � Bâink Þ
D E

¼ A2 ðâoutk Þyâoutk

D E
þ B2 ðâink Þ

y
âink

D E

�AB e�iϕA âink ðâoutk Þy
D E

þ eiϕA ðâink Þ
y
âoutk

D E� �
:

ð13Þ

By using a Scipy107 optimizer to align the measured moments [calcu-
lated with Eq. (9)] with the simulated second-order moment according to
Eq. (13), we find the optimal parametersA0, ϕ0A, B

0, and ϕ0B. This procedure,
including integration, optimization, and subtraction, is executed on both
measured output modes. The optimal subtraction of the coherent back-
ground for each mode is

ffiffiffi
Γ

p
σ̂�k
� � ¼ A0eiϕ

0
A âoutk

� �� B0 âink
� �

: ð14Þ
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Thismethod identifies the emissionoperator,
ffiffiffi
Γ

p
σ̂�k , and ensures consistent

normalization and phase rotation between the measured and simulated
moments. For simplicity, we use âk �

ffiffiffi
Γ

p
σ̂�k to denote the modes without

coherent background.

Two-mode moments calculation
After removing the coherent background fromboth propagatingmodes, we
calculate the moments of the two propagating modes, âk, up to the fourth
order. The recalculated moments hðây1Þ

m1 âm1
1 ðây2Þ

m2 ân22 i satisfy
m1; n1;m2; n2 2 0; 1; 2f g andm1+ n1+m2+ n2 ≤ 4. These moments are
computed as follows105 in Eq. (15),

hðŜ1
yÞ

m1
Ŝ1

n1 ðŜ2
yÞ

m2
Ŝ2

n2 i ¼ Pm1;n1;m2 ;n2

i1 ;j1;i2 ;j2¼0

m1

i1

� �
n1
j1

� �
m2

i2

� �
n2
j2

� �

× ðây1Þ
i1 âj11 ðây2Þ

i2 âj22 ihðĥ
y
1Þ

m1�i1
ĥ
n1�j1
1 ðĥy2Þ

m2�i2
ĥ
n2�j2
2

	 

:

ð15Þ

Allmoments shown inResults have the coherent background removed
through the procedure in Methods “Removal of coherent background”
before the calculation.

Joint quantum state tomography
Optimizationmethod. In the joint quantum state tomography of the two
propagating modes, we reconstruct the optimal density matrix from the
moments of the two modes using two different methods: least-squares
optimization56,57 and compressed-sensing optimization59,60. In this sub-
section, we discuss and compare the two methods.

Mathematically, the least-squares optimization method solves the
following convex optimizationproblem tofind theoptimal densitymatrix ρ:

min
ρ

ð~B �A~ρÞ �~ϵ
��� ���

‘2
; ð16aÞ

subjectto ρ≥ 0; ð16bÞ

Tr ðρÞ ¼ 1; ð16cÞ

while the compressed-sensing optimization method is described by:

min
ρ

~ρ
�� ��

‘1
; ð17aÞ

subject to ~B �A~ρ
��� ���

‘2
≤ ~ϵk k‘2 ; ð17bÞ

ρ≥ 0; ð17cÞ

Tr ðρÞ ¼ 1; ð17dÞ

where~ρ in the objective function given in Eq. (16a) and (17a) repre-
sents the vectorized form of the density matrix. In Eq. (16a) and (17b),
~B is a column vector containing the experimentally measured or
numerically simulated moments hðây1Þ

m1 ân11 ðây2Þ
m2 ân22 i. For both opti-

mizations, the matrix A is commonly referred to as the sensing
matrix57, which only depends on the operator basis set (f∣ii j

�
∣g) and the

measurement observable set (fðây1Þ
m1 ân11 ðây2Þ

m2 ân22 g).~ϵ in Eq. (16a) and
(17b) quantifies the level of uncertainty in the measurement, which is
defined as the standard deviation vector. We calculate the standard
deviation by splitting the data into 20 segments, computing moments
for each segment, and then calculating the standard deviation across
the moments from all segments. The Hadamard division operator ⊘
represents the element-wise vector division in Eq. (16a). Furthermore,
k�k‘1 and k�k‘2 represent the ℓ1 and ℓ2 norms, respectively. The ℓ1 norm
is calculated as the sum of the absolute values of the vector

components, while the ℓ2 norm, also known as the Euclidean norm,
is calculated as the square root of the sum of the squared vector
components. The additional constraints given in Eq. (16b)–(16c) and
Eq. (17c)–(17d) are positive semi-definite and unit trace conditions of
the density matrix, ensuring its physical validity.

In the least-squares optimization, we minimize the least-squares
distance between~B andA~ρ defined by ℓ2 norm, weighting the different
moments by dividing with~ϵ element-wisely [Eq. (16a)]. This approach
assigns lower weights in the optimization cost function to moments
with higher standard deviation and larger uncertainty, and higher
weights to those with less uncertainty, thereby adjusting their influence
in the optimization process accordingly. Least-squares optimization is a
widely usedmethod, which can find the optimal densitymatrix from the
measuredmoments [Fig. 4(a)]. On the other hand, compressed-sensing
optimization minimizes the ℓ1 norm of~ρ based on ρ being sparse—a
property demonstrated in our simulation. This method is particularly
advantageous when working with a heavily reduced dataset, such as the
27 moments used in our case. By emphasizing sparsity, compressed
sensing effectively reconstructs the density matrix with fewer noisy
coherent components, enabling us to see the distribution of logarithmic
negativity EN [Fig. 4(b)]. For both methods, we use convex optimiza-
tion to find the minimization, using CVXPY108.

Details on reconstructed density matrices. The state overlap between
the reconstructed density matrix ρ0 and the simulated density matrix is

defined ρ as58, Fðρ; ρ0Þ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
ρ0

ffiffiffi
ρ

pp� �2
. Here we present the state

overlap across the frequencies of the two photonic modes, for both
optimizations (Fig. 5). We observe a higher state overlap when using
compressed-sensing optimization, which results in a clearer repre-
sentation of logarithmic negativity compared to other methods.

Furthermore, we calculate and present the purity of the density
matrices at various frequencies of the two modes. The purity P of a density
matrix ρ is defined as

P ¼ Tr ðρ2Þ: ð18Þ

We illustrate the purity of the density matrices obtained from both
experimental reconstructions and numerical simulations in Fig. 6.

Fig. 5 | State overlap of the joint quantum state tomography. a State overlap
between reconstructed density matrices (using 27 measured moments) and simu-
lated density matrices, over the frequency ranges Δ1 ∈ [−40, −10] MHz and Δ2 ∈
[10, 40] MHz, utilizing least-squares optimization. b State overlap over the same
frequency ranges, utilizing compressed-sensing optimization. Note the white points
indicating not-a-number values due to optimization failures during reconstruction
[see explanation under Fig. 4(b)].
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Reconstruction from the simulated moments. In Section “Two-mode
entanglement”, we compare the logarithmic negativity EN derived from
the reconstructed density matrix using the measured moments with that
obtained from simulated moments. Figure 3(c) presents EN calculated
from 27moments with order up to four. Here, we extend this calculation
to EN obtain from reconstructed density matrices using all 325 noiseless
simulatedmoments hðây1Þ

m1 ân11 ðây2Þ
m2 ân22 i form1,m1,m2,n2∈ {0, 1, 2, 3, 4}

[Fig. 7(a) uses least-squares optimization and Fig. 7(b) uses compressed-
sensing optimization], excluding conjugation redundancy. In both
optimizations, we recover the same distribution as EN obtained from the
numerical simulation [Fig. 7(c)].

Data availability
Data is available from the corresponding author upon reasonable request.

Code availability
Code for analyzing data and generating plots is available from the corre-
sponding author upon reasonable request.
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