
Development of physics-informed machine-learning models to enhance
understanding and prediction of membrane fouling

Downloaded from: https://research.chalmers.se, 2025-06-01 09:08 UTC

Citation for the original published paper (version of record):
Saeedi Garakani, S., Chew, J. (2025). Development of physics-informed machine-learning models to
enhance understanding and prediction
of membrane fouling. Journal of Membrane Science, 728.
http://dx.doi.org/10.1016/j.memsci.2025.124133

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Development of physics-informed machine-learning models to enhance 
understanding and prediction of membrane fouling

Sadaf Saeedi Garakani , Jia Wei Chew *

Division of Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden

A R T I C L E  I N F O

Keywords:
Membrane fouling
Separation
Machine learning
Physics-informed neural network
Flux decline

A B S T R A C T

Although membrane technology is a promising separation means due to the relatively low energy requirement 
and amenability for continuous operation, more widespread implementation persists to be plagued by the 
inevitable membrane-fouling phenomena. To enable predictions of flux decline, the Hermia laws have laid out 
four governing equations for the four basic fouling mechanisms more than four decades ago, and subsequently 
combined fouling models have provided more complex equations that account for two to three fouling mecha-
nisms simultaneously. More recently, data-driven black-box machine-learning models that do not require any 
physical equations have improved understanding and predictions. To leverage the benefits of physical laws to 
govern the right trends, physics-informed machine-learning models have gained much momentum. Here, the 
four Hermia fouling equations were hybridized with neural networks to develop a physics-informed neural 
network (PINN) architecture to enhance mechanistic understandings from flux-decline data and enable more 
accurate predictions of flux decline. A comprehensive dataset consisting of over 50 flux decline curves from more 
than 10 studies was compiled. Firstly, the relative dominance of the four fouling mechanisms in influencing flux 
decline was quantified, allowing direct knowledge of which is most operative. This was enabled by applying a 
fractional weighing factor to each of the mechanisms and employing neural network to best-fit the empirical data 
to the resulting equation. Secondly, more accurate predictions of flux decline even with a much-reduced dataset 
was enabled by a PINN model, which dynamically assigns weights to all four fouling mechanisms to embed the 
physical laws into the learning process. This study demonstrates the potential of physics-informed machine- 
learning models in significantly augmenting the understanding, prediction and operation of membrane-filtration 
processes.

1. Introduction

Membrane-based filtration is gaining increasing attention as an 
energy-efficient separation technology. One of the key issues impeding 
more widespread application is well-acknowledged to be the inevitable 
membrane-fouling phenomena, which is the progressive deposition of 
feed constituents onto the membrane. This not only reduces the filtra-
tion rate, but also increases downtime for membrane cleaning and 
replacement. Even though membrane technology is the main purifica-
tion means for the water industry and membrane materials constantly 
improves [1], membrane fouling persists to be challenging, particularly 
as the foulant types (e.g., heavy metal ions [2]) and regulations (e.g., 
Contaminants of Emerging Concern (CECs) [3]) evolve.

Understanding the flux evolution during filtration offers critical in-
sights into fouling and aids in improving filtration systems. Many studies 

on membrane-fouling relied on the Hermia fouling laws [2], which laid 
out the four basic fouling mechanisms (i.e., intermediate pore blockage, 
complete pore blockage, pore constriction, and cake filtration), and on 
the concept of critical flux [4,5], which defines the permeation flux 
below which negligible fouling occurs. While an equation for each 
fouling mechanism exists, using singular equations to describe the flux 
decline curve expectedly falls short. To address this, combined fouling 
models that account for two to three mechanisms have been reported. 
Ho and Zydney established a fouling model that integrates pore blocking 
with cake filtration and reported good fits for bovine serum albumin 
(BSA) filtration, despite the neglection of internal fouling [6]. 
Duclos-Orsello et al. further developed a fouling model that integrates 
more mechanisms, namely, pore constriction, complete pore blockage, 
and cake formation [7]. Furthermore, Trinh et al. reported on a fifth 
fouling mechanism of internal cake filtration, and designed a model that 
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incorporates pore blocking, pore constriction and internal cake filtration 
[8]. More recently, Zydney presented a model that accounts for inter-
connected pore structures and flow through permeable foulant layers 
[9]. While integrating multiple fouling mechanisms enables the 
extraction of more fouling parameters, the resulting equations from such 
combined fouling models often become highly stiff. This stiffness poses 
significant challenges in achieving numerical accuracy and imple-
menting these models in real-time operational scenarios. Furthermore, 
which existing combined fouling models are valuable for accounting for 
two to three fouling mechanisms, they fall short of incorporating all four 
mechanisms simultaneously. In this study, we address this gap by 
considering all four fouling mechanisms - intermediate pore blockage, 
complete pore blockage, pore constriction, and cake filtration - through 
the Hermia fouling laws.

Data-driven machine-learning methods have become very popular, 
since first-principles understanding remains incomplete. For instance, 
Tanudjaja et al. applied machine-learning methods on 30 years of 
protein-fouling data, finding via random forest (RF) the dominance of 
pore size on both flux and rejection, and demonstrating good predictive 
capability for the broad dataset via neural network (NN) [10]. Liu et al. 
employed an NN model to forecast the performance of an MF system 
functioning under critical and supra-critical flux circumstances, 
demonstrating that the predictions derived from five input variables 

closely agreed with experimental data [11]. Lee and Kim applied a 
hybrid NN and RF methodology to estimate the rejection rates of organic 
contaminants in NF/RO systems based on 701 data points derived from 
84 organic compounds, revealing accurate solute rejection predictions 
with R2 values greater than 0.9 [12]. Li et al. [13] integrated response 
surface methodology (RSM) with artificial neural networks (ANNs) to 
optimize membrane fabrication conditions for wastewater treatment, 
achieving highly accurate predictions for membrane performance. Zhao 
et al. [14] employed a genetic algorithm back-propagation (GABP) ANN 
to quantify interfacial interactions related to membrane fouling, 
significantly reducing computational time compared to conventional 
thermodynamic models. Although data-driven models are promising for 
understanding and predicting membrane fouling, the shortcomings 
include the requirement for large datasets and the lack of physical 
governance for the processes.

Physics-informed machine-learning models are grey-box models 
(Fig. 1), developed based on balancing the trade-off between fully 
deterministic white-box models (i.e., well-defined physics so no data 
input needed) and fully stochastic black-box models (i.e., large datasets 
needed but no physics needed). For membrane-filtration, as is the case 
for all engineering processes, some physical understanding is available, 
but a complete understanding is not tenable. This makes such grey-box 
models, which hybridizes the limited physical governing laws with 
empirical data, highly valuable. Recent advancements, such as the 
Legendre Improved Extreme Learning Machine (L-IELM) [15] and the 
Deep Learning-based Iteration Scheme Approximation (DeLISA) [16], 
have demonstrated efficacy in addressing high-dimensional equations 
through the incorporation of physical knowledge. Raissi et al. developed 
a physics-informed neural network (PINN) model and used deep 
learning in conjunction with Navier-Stokes equations to forecast pres-
sure distributions in incompressible fluids [17]. Chen et al. developed a 
PINN for accurate state-of-health estimation in lithium-ion batteries, 
achieving a 0.87 % mean absolute percentage error (MAPE) by modeling 
degradation dynamics across diverse battery types and charge protocols 
[18]. Since all engineering processes are governed by physical laws, 
grey-box physics-informed machine-learning models are superior to 
black-box ones with respect to ensuring the right physical trends.

This study hypothesizes that physics-informed machine-learning 
models can enhance the understanding and predictive capability of 
membrane fouling - an inevitable challenge in membrane-filtration that 
limits its broader applicability. While the Hermia fouling laws, estab-
lished in the 1980’s, for describing the four basic fouling mechanisms, 
they fail to capture flux decline trends because a few mechanisms 
typically act simultaneously. Since the 2000’s, combined fouling models 
have sprouted to account for two to three fouling mechanisms concur-
rently, but such equations are stiff. To address this limitation, this study 
incorporates all four fouling mechanisms and leverages the outstanding 
regression capabilities of neural networks to develop a hybrid model. In 
an earlier study, Tagliavini and Snyder [19] enhanced the Hermia model 
with machine learning using initial flux, organic load, and fluorescence 
spectra inputs to predict fouling under varying conditions, demon-
strating good predictive capability of flux decline. Specifically, to 
improve the model’s applicability for complex feeds, they first identified 
the dominant mechanism, then quantified the model parameters via 
regression. As an alternative approach, this study attempts to use the 
Hermia equations as physical governing equations to constrain machine 
learning models. The goals were twofold based on more than 50 
flux-decline curves: (1) quantify the relative dominance of the four basic 
fouling mechanisms, and (2) compare the accuracy of such grey-box 
models to those of black-box models, and assess the feasibility to pro-
vide good predictions with reduced data volume.

Fig. 1. Trade-off between data volume and physical governance.

Fig. 2. Schematic diagram of the four basic membrane-fouling mechanisms.

Table 1 
Mathematical formulation of the four basic membrane-fouling mechanisms.

Fouling mechanism n k Flux formulation Eq. (#)

Cake Filtration 0 kc J = J0
(
1 + 2 kc J2

0 t
)− 0.5 (3)

Intermediate Pore Blockage 1 ki J = J0(1 + ki J0 t)− 1 (4)
Pore Constriction 1.5 ks J = J0

(
1 + 0.5 ks J0.5

0 t
)− 2 (5)

Complete Pore Blockage 2 kb J = J0 e− kb t (6)
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2. Methods

2.1. Fouling models

To describe the inevitable membrane-fouling phenomenon, the 
fouling model presented by Hermia more than 40 years ago [5] remains 
widely used. Fig. 2 presents the schematic diagrams of the four 
membrane-fouling mechanisms, namely, pore constriction (i.e., reduc-
tion in pore volume due to internal pore fouling), intermediate pore 
blockage (i.e., partial external pore blockage), complete pore blockage 
(i.e., total blockage of pore) and cake filtration (i.e., additional 
surface-layer resistance). Overall, the resulting flux decline with respect 
to time has been expressed as [5]: 

d2t
dV2 = k

(
dt
dV

)n

(1) 

where V represents the cumulative volume of filtrate over filtration time 
t, k is a permeability parameter, and n defines the fouling mechanism at 
play. Regarding n, values of 0, 1, 1.5 and 2 represent respectively cake 
filtration, intermediate pore blockage, pore constriction and complete 
pore blockage. Since filtration performance is typically characterized by 
flux versus time, Eq. (1) can be reformulated with respect to flux J [20,
21]: 

dJ
dt

= − kn J3− n (2) 

Table 1 provides a summary of the equations corresponding to each 
of the four mechanisms. It should be noted that the Hermia’s fouling 
models are strictly only applicable for constant-pressure, dead-end 
filtration. Other underlying assumptions include cylindrical, parallel 
membrane pores, as well as spherical, uniform-sized, non-deformable 
spheres – these criteria are relaxed here.

Since the various fouling mechanisms likely occur simultaneously 
rather than independently, numerous combined fouling models that 
incorporate two to three fouling mechanisms each have been developed 
[22]. While these models have invariably been useful to enhance the 
understanding of membrane fouling, such equations are typically com-
plex and best-fitting to experimental data may be challenging for 
instance in cases where the initial flux decline is very steep.

2.2. Machine learning

The datasets examined in this work include flux decline versus time 
data from more than 10 sources in the literature, encompassing a range 
of particulate types, membranes and experimental conditions (e.g., 
concentration, pressure). Over 50 flux decline curves have been 
compiled to facilitate a comprehensive examination under a variety of 
experimental conditions. Data extraction was carried out manually, by 
either collecting numbers from the tables or text, or using Origin’s 
PlotDigitizer tool to extract numbers from figures.

All time and flux data were scaled to the range of − 1 and 1. The 
conventional linear regression method was assessed alongside four 
common machine-learning models, namely, Random Forest, Gradient 
Boosting, Support Vector Regressor (SVR), and Artificial Neural 
Network (ANN). In each case, the hyperparameters were optimized 
using grid search in Python. For example, for Random Forest model, the 
number of trees (100, 200, 300) and the maximum tree depth (3, 4, 5) 

Fig. 3. Architecture of physics-informed neural network (PINN).

Fig. 4. (a) Performance comparison of four machine-learning models vis-à-vis 
linear regression based on MSE values for the 12 flux decline curves. NN ach-
ieved the best performance with MSE = 0.59. Each half error bar shown denotes 
one standard deviation.
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were assessed. For SVR, the regularization parameter (0.1, 1, 10), the 
kernel coefficient (’scale’ and ’auto’), and different kernel types (linear, 
polynomial, and RBF) were evaluated. MSE and MAE were quantified 
using the following expressions: 

MSE=
1
N

∑N

i=1
(Jdata − JPredict)

2 (7) 

MAE=
1
N

∑N

i=1
(Jdata − JPredict) (8) 

where Jdata is experimental flux, Jpredict is predicted flux, and N is the 
dataset size.

2.2.1. Physics-informed neural network (PINN)
As black-box models, neural networks (NNs) make predictions based 

only on empirical data and require no input of physical governing 
equations. Although NNs efficiently generate targeted output values 
from input data, they do not explain the underlying mechanisms. ANNs 
are made up of nodes, or neurons, that have location information and 
connections that control the flow of information based on weighted 
values. Through hidden layers, the model links input and output pa-
rameters. Each neuron uses a transfer function to process inputs. Each 
neuron’s weights and biases are iteratively changed throughout the 
training phase in order to reduce the discrepancy between the actual 
(experimental) and anticipated (output) values. To evaluate the model’s 
accuracy and reliability in novel scenarios, it is validated and tested after 
training using different data that was not used for training [23,24].

In this study, the Hermia fouling equations (Table 1) were amal-
gamated with the NN model to create the PINN model (Fig. 3), which 
leverages both theoretical tenets and superior regression capability of 
NN [25,26]. In contrast to earlier fouling models that only account for 
up to three fouling mechanisms, all four mechanisms can be factored in 
here. Specifically, the developed PINN fits the flux data (J) to enable the 
derivation of all four individual fouling coefficients (kn). To quantify the 
errors of PINNs, loss functions that represent both the physical model 
and the NN model are used. It is essential to weigh these losses appro-
priately, particularly when the data is noisy or when physical models are 
approximations. To address this, advanced methodologies such as un-
certainty assessment dynamically modify weights to improve both pre-
cision and stability [27,28]. This multi-loss methodology offers resilient 
solutions by preventing overfitting or instability in the hybridizing of the 
physics-based and data-driven frameworks.

As for the total loss of the PINN model, it is typically expressed as 
[17]: 

LPINN =(1 − λ)Ldata + λ Lphysics (9) 

where λ is a weighing factor of between 0 and 1 that regulates the 
contribution by the physical and data-driven tenets to minimize the 
overall loss. To minimize the error of the PINN models, several hyper-
parameters were systematically optimized. Specifically, the number of 
layers (two and three), the number of neurons per layer (64 and 128), 
activation function (ReLU and Tanh), learning rates (0.0005–0.001), 
batch size (32 and 64), epoch counts (100 and 200), and λ (0.1, 0.15 and 
0.2) were assessed. A grid search over these hyperparameters was con-
ducted using itertools in Python. Specifically, for each permutation, the 
model was trained and the losses quantified. The model that gave the 
least error was employed for the analysis here. A sensitivity analysis on 
the impact of λ on mean squared error (MSE) over repeated runs was 
performed to ensure model stability and prediction accuracy, particu-
larly under conditions of limited or noisy data.

The overall physics-based loss incurred by each of the fouling 
mechanisms (Table 1) is expressed as follows: 

Lphysics =Wb⋅Lb + Ws⋅Ls + Wi⋅Li + Wc⋅Lc (10) 

where W is the fractional weight corresponding to each mechanism that 
is adjusted to minimize the overall loss, and L is the loss corresponding 
to each mechanism. For this study, to reduce the computational cost, the 
step size for each is set at 0.2, which means W can be either 0, 0.2, 0.4, 
0.6, 0.8 or 1. Smaller steps can be used in the future for higher-resolution 
insights on fouling.

3. Results and discussion

This study analyzed more than 50 flux decline curves obtained under 
various experimental conditions, membrane types, and particle in-
teractions to comprehensively evaluate model performance across 
different fouling scenarios. The analyses of 12 flux decline curves are 
presented in this section to illustrate model accuracy, limitations, and 
predictive capabilities. Detailed analyses of the rest can be found in 
Supplementary Information.

Specifically, the 12 flux declines correspond to commonly reported 
model foulants (namely, polyamide (PA) and polystyrene (PS)) filtered 
through cellulose acetate membranes (nominal pore size = 5 μm) in 
dead-end mode [29]. The report includes flux decline data at various 
transmembrane pressures (TMPs) and particle concentrations. The 

Fig. 5. (a) Comparison of MSE values for 12 flux decline curves (Cases 1–12) from three model types, namely, black-box ANN model, grey-box model based on 
computing weights of Hermia fouling mechanisms using ANN, and grey-box PINN model (Fig. 3). (b) Variabilities of MSE values based on 10 repeats for PINN, 
Gradient Boosting, SVR and ANN models for Case 3. The width of the violin plot at each point along the y-axis represents the density of the data distribution, while 
the interquartile range (IQR), shown by the thicker section of the violin, indicates where the middle 50 % of the data lies.
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Fig. 6. Predicted and actual normalized flux-decline trends for the 12 cases. Inset figures show training dataset and the main figures show the testing dataset. The 
ratio of the training:testing data is 8:2.
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relatively smaller PA particles have higher hydrophobicity and neutral 
charges, leading to denser cakes and worse fouling. On the other hand, 
the larger PS particles are of irregular shapes and negative charges, 
resulting in looser cakes, reduced fouling, and increased membrane 
abrasion.

3.1. machine-learning models

Alongside linear regression, four common machine-learning models 
(namely, Random Forest, Gradient Boosting, Support Vector Regressor 
(SVR), and Artificial Neural Network (ANN)) were assessed concerning 
the capability to best-fit the flux decline data. The essential hyper-
parameters for each model, including the number of estimators for 
ensemble methods and kernel functions for SVR, were tuned prior to 
optimize the learning process. Fig. 4 shows the resulting MSE values for 
the 12 flux decline trends. Linear regression gives an MSE value of an 
order-of-magnitude greater than any of the four machine-learning 

models evaluated, demonstrating the superiority of the latter. Out of 
the four models, the Neural Network gives the lowest MSE. Thus, the NN 
model was employed for the analyses in this study.

Furthermore, three variations of NN models were developed using 
each of the 12 flux decline curves: (A) black-box model based only on the 
empirical data, (B) grey-box model based on minimizing Lphysics (Eq. (9)) 
to compute the fractional weights (W; ranges between 0 and 1), and (C) 
grey-box PINN model (Eq. (10)). Fig. 5a compares the resulting MSE 
values obtained. Two observations are worth highlighting. Firstly, the 
black-box NN (Model A) consistently performs the worst in terms of 
giving MSE values that are orders-of-magnitude higher, indicating that 
incorporating mechanistic understanding via descriptive equations into 
a data-driven framework reduces the error and improves prediction 
accuracy. Secondly, the PINN (Model C) generally performs the best by 
giving the lowest MSE values. Of the two grey-box models, the better 
performance of Model C relative to Model B underscores the superiority 
of the PINN framework (Fig. 3). This suggests that the reliance of Model 

Table 2 
Resulting MSE values from training NN to compute the fractional weights (W; ranges between 0 and 1) of each fouling mechanism per the Hermia model. The flux 
decline data were extracted from an earlier dead-end microfiltration study [29]. PS = polystyrene; PA = polyamide.

Case Foulant Concentration (mg/ 
L)

TMP 
(Bar)

MSE Complete pore-blockage 
(Wb)

Pore constriction 
(Ws)

Intermediate pore- blockage 
(Wi)

Cake filtration 
(Wc)

1 PS 1 0.3 0.0115 0.8 0 0.2 0
2 PS 5 0.3 0.003 0.8 0 0 0.2
3 PS 10 0.3 0.001 0.8 0 0 0.2
4 PS 20 0.3 0.001 0.8 0 0 0.2
5 PA 1 0.3 0.002 0.2 0 0.8 0
6 PA 5 0.3 0.005 0.2 0 0.8 0
7 PA 10 0.3 0.002 0.8 0 0.2 0
8 PA 20 0.3 0.002 0.8 0.2 0 0
9 PS Not 

Specified
0.1 0.004 0 0.8 0 0.2

10 PS Not 
Specified

0.3 0.001 0.8 0.2 0 0

11 PS Not 
Specified

0.5 0.003 0.8 0 0.2 0

12 PS Not 
Specified

0.7 0.004 0 0 0.8 0.2

Table 3 
Errors of PINN, Gradient Boosting, SVR, and NN for the 12 flux-decline cases when the ratio of the training:testing data is 8:2.

Grey-box model Black-box models

Foulant information Case PINN Gradient Boosting SVR NN

MSE MAE MSE MAE MSE MAE MSE MAE

PS 1 mg/L 1 0.0028 0.04277 0.7741 0.7277 0.5917 0.6249 0.6005 0.637
PS 5 mg/L 2 0.0018 0.03501 0.4517 0.5309 0.4005 0.5003 0.3874 0.4887
PS 10 mg/L 3 0.001 0.02474 0.2291 0.4071 0.1682 0.3499 0.1703 0.3446
PS 20 mg/L 4 0.0011 0.02866 0.4002 0.5309 0.4017 0.5243 0.3049 0.4535
PA 1 mg/L 5 0.0024 0.03028 1.0493 0.673 1.1711 0.6532 0.8453 0.5836
PA 5 mg/L 6 0.0011 0.02798 0.5246 0.6077 0.3549 0.4861 0.4241 0.5426
PA 10 mg/L 7 0.0016 0.02656 0.7432 0.5631 0.4174 0.4146 0.4738 0.4399
PA 20 mg/L 8 0.0023 0.02992 1.0493 0.673 1.1711 0.6532 0.8453 0.5836
PS 0.1 Bar 9 0.0036 0.05133 0.7184 0.732 0.6348 0.6777 0.6229 0.6777
PS 0.3 Bar 10 0.0008 0.02414 0.2208 0.3922 0.1577 0.3259 0.1505 0.3142
PS 0.5 Bar 11 0.0008 0.02362 0.7078 0.6862 1.0242 0.7168 0.492 0.5684
PS 0.7 Bar 12 0.0017 0.02698 2.3225 1.093 3.1749 1.0923 1.8384 0.9212

Table 4 
Errors of PINN, Gradient Boosting, SVR, and NN on 4 flux-decline cases when the ratio of the training:testing data is 4:6.

Foulant information Case PINN Gradient Boosting SVR NN

MSE MAE MSE MAE MSE MAE MSE MAE

PS 10 mg/L Case 3 0.001 0.0258 0.2245 0.4028 0.1636 0.3379 0.1594 0.3258
PS 20 mg/L Case 4 0.0011 0.0278 0.4434 0.571 0.4816 0.5395 0.3204 0.4711
PA 10 mg/L Case 7 0.0016 0.0259 0.6525 0.5467 0.3526 0.396 0.3485 0.3919
PS 0.1 Bar Case 9 0.006 0.0523 0.6571 0.6871 0.5768 0.632 0.5582 0.6248

S.S. Garakani and J.W. Chew                                                                                                                                                                                                               Journal of Membrane Science 728 (2025) 124133 

6 



B on the summation of the weighted losses (Eq. (9)) may be too rigid, 
leading to suboptimal fits. On the other hand, the PINN mitigates this 
limitation by dynamically calibrating the contribution between the data- 
driven and physical components by adjusting the weighing factor λ (Eq. 
(10)). Fig. S1 presents the derived λ values, indicating the lower 
weighting for the physics component compared to the data component, 
and thus the relatively greater prominence of the former in the PINN 
model. This suggests the efficacy of the Hermia equations in describing 
the flux-decline trends.

Since machine-learning models are by nature stochastic, repeated 
runs give a range of MSE values. To ascertain that the spread in MSE 
values across repeats of each model is not so large as to overlap among 
the different models, Fig. 5b displays the variabilities of MSE values 
from 10 repeated runs for one flux decline curve (namely, Case 3). The 
results indicate that, despite the span of MSE values, that corresponding 
to PINN remain two orders-of-magnitude lower than Gradient Boosting, 
SVR and ANN.

3.2. mechanistic understanding

Τhe classical fouling models allow for determination of which of the 
four basic mechanisms is governing (Fig. 2; Table 1), while the com-
bined fouling models allow for the extraction of fouling parameters, 
including pore-blockage α, pore-constriction β, and cake resistance Rc. 
All these models have been invaluable in enhancing mechanistic insights 
into membrane fouling. What remains amiss but would be valuable is 

quantification of the relative dominance of the four fouling mechanisms. 
To address this, an NN model can be trained to determine the fractional 
weights of each fouling mechanism contributing to the overall flux 
decline (Eq. (10); Model B). The low MSE values (Fig. 5a) provide 
confidence on the reliability of the NN model as a robust framework for 
understanding the fouling mechanisms.

Fig. 6 presents the flux decline curves for the 12 cases, with details of 
the conditions given in Table 2. These curves were obtained for two 
different foulants, and a range of concentrations and TMPs [29]. The 
distinctly different trends in Fig. 6 reflect different fouling phenomena 
caused by the different conditions. Through the quantified weights (W; 
Eq. (10)), Table 2 reveals the relative dominance of the four fouling 
mechanisms in each of the 12 cases, while Table S1 presents the results 
for 41 other reported datasets. It should be noted that the step size for W 
was set at 0.2 (i.e., W can only be 0, 0.2, 0.4, 0.6, 0.8 or 1) to reduce the 
computational load, but smaller step sizes can be set to provide higher 
resolution. As an example, for Case 1, complete pore-blockage is 
responsible for 80 % of the flux decline, while intermediate 
pore-blockage for the remaining 20 %, and the other two mechanisms 
play negligible roles. The results are generally consistent with that re-
ported earlier [29], which indicated complete pore-blocking as the 
primary fouling mechanism.

Regarding the effects of foulant type and concentration, Table 2 re-
veals that fouling by PA is more sensitive to concentration than that by 
PS. With reference to Cases 5–8 for PA, the dominant fouling mechanism 
was intermediate pore-blockage at lower concentrations, but complete 

Fig. 7. Comparing the discrepancy between actual normalized flux and normalized flux predicted by PINN for 4 flux-decline cases. The training:testing ratio is 4:6.
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Fig. 8. Predicted and actual normalized flux-decline trends for 4 cases. The ratio of the training:testing data is 2:8.
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pore-blockage at higher concentrations. In contrast, referring to Cases 
1–4 for PS, complete pore-blockage dominated for the entire concen-
tration range, which can be tied to the larger particle size and irregular 
shape of the PS foulants. As for the effect of increasing TMP, while Fig. 6
shows steeper flux declines, Table 2 shows clearly the variations in 
fouling mechanisms among Cases 9–12. The earlier experimental study 
indicated the impact of TMP on both the complete pore blocking kinetic 
constant and blocked surface area parameter are non-monotonic, with 
the minimum values at the intermediate TMP of 0.3 bar [29]. To 
elucidate this, the W values in Table 2 indicate that, the dominant 
fouling mechanism transitioned from pore-constriction to complete 
pore-blockage to intermediate pore-blockage as TMP increased. While 
earlier studies have reported on the influence of various parameters - 
such as physical properties of foulants, foulant concentration and TMP - 
on the fouling mechanisms by microplastics [31,32], the model here can 
directly quantify the relative dominance of the mechanisms.

The NN model developed here thus further augments the value of the 
dataset by providing detailed quantitative insights on the relative con-
tributions of the four basic fouling mechanisms. Armed with these 
quantities, machine-learning tools like random forest can be further 
applied to determine the relative dominance of each parameter (e.g., 
concentration, TMP) on each fouling mechanism.

3.3. predictive capability

Beyond mechanistic understanding, predictive capability for flux 
decline is important in membrane-filtration applications. Fig. 6 and 
Fig. S2 illustrate the predicted flux in comparison to the measured flux 
for the 12 cases. The high R2 values affirm the efficacy of the PINN 
model to predict flux values across the different experimental condi-
tions. To ascertain the predictive accuracy by PINN versus black-box 
models (namely, gradient boosting, SVR and NN), the MSE and MAE 
values are compiled in Table 3. Clearly, the errors for PINN are the 
lowest, specifically approximately 50–100 times lower than the three 
black-box models, highlighting the superior accuracy.

One of the advantages of grey-box models relative to black-box 
models is the requirement for a smaller dataset for training, which is 
particularly beneficial in scenarios of limited data like during scale-up. 
To assess the resilience of PINN with reduced data, the ratio of the 
training and testing dataset was changed from 8:2 to 4:6, which means 
the number of training datapoints for each case was halved (i.e., from 
approximately 280 to 140 datapoints). For the halved dataset, Table 4
presents the MSE and MAE values involved for PINN vis-à-vis three 
black-box models. While the errors for the black-box models remain 
similar for the reduced dataset, the errors for PINN remain by far the 
lowest, affirming the enhanced accuracy. Fig. 7 provides direct com-
parisons of the actual flux and flux predicted by PINN for the halved 
dataset for 4 flux-decline cases, demonstrating good agreement.

To further test the limits of PINN with regards to the dataset size 
required, the data used for training was further halved, such that the 
training:testing ratio becomes 2:8 and only approximately 70 datapoints 
were used for training. Fig. 8 displays the predicted versus actual flux- 
decline trends, indicating good agreement for both the training and 
testing datasets. Even with the inherent noise in the data due to the 
repeated runs, the PINN persist to give accurate predictions with limited 
datasets. This highlights the resilience and effectiveness of the PINN 
model even in data-scarce scenarios. Such adaptability underscores its 
potential for applications where obtaining extensive datasets is 
challenging.

4. Conclusion

This study focuses on the use of grey-box models, which integrates 
physical white-box models (i.e., Hermia fouling laws) with data-driven 
black-box models (i.e., neural network), to extract more mechanistic 
understandings from and facilitate better predictions of flux decline.

The first part determined the relative dominance of the four fouling 
mechanisms. By applying a fractional weighing factor to each of the 
fouling mechanisms and employing neural network to best-fit the 
empirical data, the contribution of each mechanism to the flux-decline 
curve was quantified. The second part developed the PINN architec-
ture to enhance the prediction of flux decline during membrane filtra-
tion. Specifically, the PINN dynamically assigns weights to all four 
fouling mechanisms to embed the physical laws into the learning pro-
cess. Compared to the black-box models, PINN consistently gives lower 
errors. Even when the dataset was reduced by 80%, the predictive 
capability remains superior, underscoring its potential for scenarios 
whereby obtaining extensive datasets is challenging like during scale- 
up.

This study highlights the potential of such hybridized models that 
integrate machine-learning methods with physical governing equations 
to provide new dimensions of understanding and improve the accuracy 
of membrane fouling predictions. Using data from model foulants, the 
proof of concept of this approach is demonstrated here. However, real- 
world fouling scenarios – e.g., industrial wastewater treatment or bio-
pharmaceutical separation - may require the incorporation of additional 
physical governing equations, such as those accounting for interfacial 
energy, concentration polarization, and shear effects. These factors can 
be readily integrated into this versatile hybrid framework. Furthermore, 
the model developed in this study has the potential to provide critical 
insights into the dynamic evolution of fouling processes, such as iden-
tifying time-dependent transitions between fouling mechanisms (by 
incorporating for instances sliding time windows and/or dynamic 
weight adjustments in the PINN model), and atypical flux trends.
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