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Morrey’s classical inequality implies the Hölder continuity of 
a function whose gradient is sufficiently integrable. Another 
consequence is the Hardy-type inequality
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d
1−n/p
Ω

∥∥∥∥p
∞

≤
∫
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|Du|p dx

for any open set Ω ⊊ Rn. This inequality is valid for functions 
supported in Ω and with λ a positive constant independent 
of u. The crucial hypothesis is that the exponent p exceeds 
the dimension n. This paper aims to develop a basic theory 
for this inequality and the associated variational problem. In 
particular, we study the relationship between the geometry of 
Ω, sharp constants, and the existence of a nontrivial u which 
saturates the inequality.
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1. Introduction and main results

The topic of this paper concerns a geometric Hardy inequality in the setting of a 
Sobolev space for which the associated exponent p is larger than the dimension of the 
ambient space. Specifically, the inequality states that if Ω is a proper open subset of Rn

and p > n, there exists a constant λ > 0 such that

λ

∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥p
∞

≤
∫
Ω 

|Du|p dx (1.1)

for all u ∈ C∞
c (Ω). Here and in what follows dΩ(x) denotes the distance from x to the 

complement of Ω. The inequality extends to u being an element of the Sobolev space 
D1,p

0 (Ω) as discussed in Section 2 below.
The one-dimensional case of this inequality previously appeared in [35] and the general 

case in [37]. This inequality has also recently been considered in [5] where it occurs as 
an endpoint case of a family of inequalities interpolating between Sobolev, Morrey, and 
Hardy inequalities. Nevertheless, we will explain below that the existence of a constant 
λ such that (1.1) holds is a direct consequence of Morrey’s classical inequality (see 
also [37]). As a result, it is natural to refer to (1.1) as a Hardy–Morrey inequality. We 
also acknowledge that this terminology has been used to describe related inequalities 
in [15,36,37].

In this note, we turn our attention to the variational problem associated to (1.1). 
Namely, we define
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Rp(Ω, u) =
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥−p

∞
‖Du‖pp for u ∈ D1,p

0 (Ω)

and observe that the sharp constant λ in (1.1) can be characterized as

λp(Ω) = inf 
u∈D1,p

0 (Ω)\{0}
Rp(Ω, u) . (1.2)

Here ‖·‖p denotes the Lp(Ω) norm. Whenever the infimum (1.2) is attained by a nontrivial 
u ∈ D1,p

0 (Ω), we say that u is an extremal and that Ω has an extremal.
The questions addressed in this paper are:

(1) How does λp(Ω) depend on the geometry of Ω?
(2) When does Ω have an extremal?

As it turns out, both of these questions are subtle. To some extent, we shall see that 
this subtlety can be traced back to the fact that λp(Ω) is invariant under orthogonal 
transformations, translations, and dilations of Ω.

1.1. Main results

Our first result provides sharp upper and lower bounds for λp(Ω). The upper bound 
involves the halfspace Rn

+ = {x ∈ Rn : xn > 0}.

Theorem A. Assume p > n ≥ 1. If Ω ⊊ Rn is open, then

C−p
n,p = λp(Rn \ {0}) ≤ λp(Ω) ≤ λp(Rn

+) = 2n−1C−p
n,p .

Here Cn,p is the sharp constant in Morrey’s inequality (see (2.3)).

A natural question to ask is whether equality is attained in the bounds of the theorem 
only when Ω = Rn

+ or Ω = Rn \ {0} up to the natural symmetries of the problem (see 
Section 2). It turns out that this is not the case.

Theorem B. Suppose p > n ≥ 2.

(1) If Ω ⊊ Rn is convex and open, then

λp(Ω) = λp(Rn
+)

and Ω has an extremal if and only if Ω is a halfspace.
(2) If Ω ⊂ Rn is open and x0 ∈ Ω, then

λp(Ω \ {x0}) = λp(Rn \ {0})
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and Ω \ {x0} has an extremal if and only if Ω = Rn.
(3) If K ⊂ Rn is compact, then

λp(Rn \K) = λp(Rn \ {0})

and Rn \K has an extremal if and only if K is a singleton.

According to this theorem, the infimum (1.2) is attained for a halfspace and a punctured 
whole space. More generally, we will show that this holds whenever Ωc is a closed convex 
cone. See Section 7.

In view of our remarks above, one might suspect that extremals exist only in rather 
special geometries. However, the following two theorems assert that this is far from the 
case. As will be elaborated on later, the first result is a consequence of a more general 
compactness threshold-result in the spirit of the work of Brezis and Nirenberg [8] (see 
Proposition 3.4). In what follows, we will simply say that Ω is Ck if ∂Ω is Ck-regular.

Theorem C. Fix p > n ≥ 2. If Ω ⊂ Rn is bounded, open, and C1 with

λp(Ω) < λp(Rn
+) , (1.3)

then Ω has an extremal.

We will verify the above claim by establishing that any minimizing sequence {uk}k≥1 ⊂
D1,p

0 (Ω) for (1.2) with ‖Duk‖p = 1 for all k is precompact in D1,p
0 (Ω). In particular, we 

will show that {uk}k≥1 has a subsequence which converges to an extremal.
We will say that a C2 subset Ω ⊂ Rn is mean convex provided that the mean curvature 

at each point of ∂Ω is nonnegative. We will always measure mean curvature with respect 
to the outward unit normal so that convex shapes have nonnegative mean curvature. 
The central assertion of our work is that a bounded Ω which is not mean convex admits 
an extremal.

Theorem D. Let p > n ≥ 2. If Ω ⊂ Rn is bounded, open, C2, and not mean convex, 
then (1.3) holds. Therefore, Ω has an extremal.

In addition to the above theorems, we provide various examples where our results give 
detailed knowledge about λp(Ω); see Section 7 and 11. These examples encompass for 
instance concave cones, polygons and piecewise C1 sets, epigraphs and examples that 
indicate the instability λp(Ω) with respect to small changes in Ω. It is also worth noting 
that we prove that any λ ∈ [λp(Rn \ {0}), λp(Rn

+)] is realized as λ = λp(Ω) for some 
open Ω ⊊ Rn; refer to Theorem 10.1 below. The last section of this article also includes 
a short list of open problems.
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1.2. Related results

Inequality (1.1) can be seen as the limiting case as q → ∞ of the family of Hardy-type 
inequalities

λp,q(Ω)
∥∥∥∥ u 
d γ
Ω

∥∥∥∥p
q

≤
∫
Ω 

|Du|p dx , (1.4)

where γ = n/q + 1 − n/p and n < p ≤ q < ∞. The special case when p = q

λp,p(Ω)
∥∥∥∥ u 
dΩ

∥∥∥∥p
p

≤
∫
Ω 

|Du|p dx (1.5)

has been the topic of many studies. Making use of Hölder’s inequality, it is straightforward 
to conclude that (1.4) follows from (1.1) and (1.5), which can be seen as the endpoints 
of this family of inequalities. This has recently been observed in [5]. However, the theory 
for (1.1) and (1.4) in general is still in its infancy.

As previously mentioned, the one-dimensional version of (1.1) appears in Chapter 1.5 
of [35] and (1.4) is treated in Chapters 2 and 3. The n-dimensional version of (1.1) as well 
as (1.4) is mentioned in [34]; see page 22 in Paper A. Other versions of inequality (1.1)
also appear in Section 2.1.6 in [33] and Section 2.1.0 in [38].

Hardy’s inequality (1.5) was first proved in the one dimensional setting by Hardy 
(cf. [21] and [22]) even though a special case was perhaps known as early as 1907 (see [4]). 
For an overview of Hardy’s inequality (1.5) and its rich history, we refer the reader 
to [3,18,27,35]. The validity of such an inequality for p ≤ n is a rather delicate matter. 
However, in the case p > n that we are concerned with, (1.5) holds for any open set 
Ω (see [2], [29], [30], and [42]). Since (1.1) is also valid for general open sets, Hölder’s 
inequality implies that the same is true for (1.4).

There is also a well established connection between the geometry of Ω, the optimal 
constant, and the existence of extremals for inequality (1.5). These results are very much 
in the spirit of what we accomplish in Theorems B, C and D. For instance, it has been 
proved that λp,p(Ω) ≤ cp with

cp =
(

1 − 1 
p

) 1 
p

for bounded and sufficiently regular Ω and λp,p(Ω) = cp for convex Ω. Moreover, for 
sufficiently smooth bounded sets, λp,p(Ω) = cp if and only if there is no extremal 
(see [30], [31], [32], and [28]). We also remark that a parallel theory for Hardy’s inequal
ity (1.5) on exterior domains has been established (as described in [28], [9], and [12]).

For 1 < p ≤ n and q ∈ [2, 2n 
n−2 ] the inequality in (1.4) was recently considered in [41], 

and its validity established under the assumption that Ω has Lipschitz-regular boundary. 
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For the case p = 2, n ≥ 2 and q ∈ (2, 2n 
n−2 ), results similar to those proved in this paper 

concerning the attainability of the sharp constant in (1.4) were obtained in [39,41].
Another result in the spirit of Theorem D was discovered by Ghoussoub and Robert. 

They considered the Hardy–Sobolev inequality

μs(Ω)
(∫

Ω 

|u|2∗

|x|s dx

)2/2∗

≤
∫
Ω 

|Du|2 dx (1.6)

for a smooth and bounded domain Ω with 0 ∈ ∂Ω. Here n ≥ 3, s ∈ (0, 2),

2∗ = 2(n− s)
n− 2 

,

and the admissible functions u belong to the Sobolev space H1
0 (Ω).

Ghoussoub and Robert showed that if ∂Ω has negative mean curvature at 0, then 
inequality (1.6) has an extremal [19]. That is, equality holds in (1.6) for a nontrivial 
u ∈ H1

0 (Ω). This extended earlier work by Egnell [13] who showed that extremals of (1.6)
exist for certain conical domains and by Ghoussoub and Kang [16] who verified existence 
when ∂Ω is negatively curved at 0. For other results along these lines, see [10,11,17,20,40].

1.3. Outline of the strategy

Our approach rests heavily upon the fundamental property that λp is invariant under 
translations, rotations and dilations (cf. Section 2.2). We follow two main strategies 
which we now briefly explain.

The first strategy consist of obtaining information about the value of λp and possible 
extremals by transplanting a competitor defined in Ω into the corresponding minimiza
tion problem for a different set Ω′. In certain situations, this will allow us to deduce 
interesting bounds for λp. In particular, we obtain bounds by finding an appropriate 
exhaustion of a set Ω and using Lemma 2.5, or by touching Ω from outside with a clev
erly chosen larger set Ω′ and using Proposition 5.3. These ideas lead up to the proof of 
Theorems A and B in Section 6.

The second line of our analysis, which is the more technical, consists of studying 
the nature of sequences of trial functions which in a certain sense either concentrate 
at a boundary point or move of towards infinity. In order to explain this idea, it is 
convenient to first state a few properties of minimizers and introduce some notation. A 
first important observation is that any extremal u satisfies

−Δpu = 0 in Ω \ {x0}

for some x0 ∈ Ω; see Proposition 3.1. This leads to the useful idea (cf. Proposition 3.3) 
that it is enough to study solutions of this PDE for a given x0 ∈ Ω which satisfy u(x0) = 1
and u|∂Ω = 0 when searching for an extremal. We call such functions potentials.
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The above observations lead to Proposition 3.4, where we deduce that the following 
statements are equivalent:

(1) Ω has an extremal.
(2) There exists a sequence {xk}k≥1 ⊂ Ω such that limk→∞ xk ∈ Ω and the correspond

ing sequence of potentials is a minimizing sequence.

It therefore becomes crucial to understand when a sequence of points xk related to a 
minimizing sequence of potentials stays inside Ω, approaches the boundary or escapes to 
infinity. The background for this is developed in Section 3 and these questions are then 
pursued in detail in Sections 8 and 9.

In Section 8, we are able to obtain estimates in terms of λp for certain global proto
type sets that locally or globally approximate Ω. The main outcome of this analysis is 
Theorem C. The local analysis amounts to performing a blow-up. Despite the substantial 
difference in how this approach is carried out, the underlying idea is similar to ideas used 
also in the context of Hardy’s inequality (1.5). See for instance Brezis–Marcus [7] and 
Marcus–Mizel--Pinchover [31] for more.

In Section 9 we perform an analysis in the spirit of a domain variation. This is done 
to prove that if the boundary has a point of negative mean curvature, the sequence of 
points xk corresponding to a minimizing sequence of potentials cannot approach the 
boundary. This is one of the main ideas used to prove Theorem D.
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2. Preliminaries

Throughout the paper, we will assume n ∈ N and p > n. We will denote by Br(x) the 
ball of radius r centered at x. In the case when x = 0, we will simply write Br. Unless 
otherwise stated, Ω will always be a proper, nonempty, open subset of Rn, and

dΩ(x) = inf 
y∈Ωc

|x− y| , x ∈ Rn .
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Note that for x ∈ Ω, dΩ is the distance to the boundary of ∂Ω.
Our work below will concern functions in the homogeneous Sobolev space

D1,p(Rn) = {u ∈ L1
loc(Rn) : ux1 , . . . , uxn

∈ Lp(Rn)}

equipped with the seminorm u 	→ ‖Du‖p. As usual, uxi
denotes the weak partial deriva

tive with respect to xi. When p > n any u ∈ D1,p(Rn) has a Hölder continuous 
representative u∗, and we will identify u with u∗ going forward.

In what follows, we shall mostly consider functions u ∈ D1,p(Rn) which vanish on the 
complement of an open set Ω ⊊ Rn. We will denote this space of functions by

D1,p
0 (Ω) = {u ∈ D1,p(Rn) : u(x) = 0 for each x 
∈ Ω} .

By Morrey’s inequality (2.1), u 	→ ‖Du‖p is a norm on the restricted space D1,p
0 (Ω). 

Moreover, the space D1,p
0 (Ω) is a Banach space which can be identified as the completion 

of C∞
c (Ω) (see Lemma 2.3).

We will make use of Morrey’s inequality, which asserts that there is C > 0 depending 
on n, p such that

sup
x�=y 

|u(x) − u(y)|
|x− y|1−n/p

≤ C

(∫
Rn

|Du|p dz
)1/p

(2.1)

for each u ∈ D1,p(Rn). Morrey’s inequality is a consequence of Morrey’s estimate that 
posits that there is another constant c = c(n, p) such that if B is a ball of radius r and 
x, y ∈ B, then

|u(x) − u(y)| ≤ cr1−n/p

(∫
B

|Du|p dz
)1/p

(2.2)

(see [14, Theorem 4.10]). We note that (2.1) holds with C = c. Let us denote by

Cn,p, the smallest C > 0 for which Morrey’s inequality holds. (2.3)

We will now show that for any Ω ⊊ Rn inequality (1.1) holds with some constant λ. 
In what follows, the quotient u/d1−n/p

Ω should be interpreted as zero in the complement 
of Ω for u ∈ D1,p

0 (Ω).

Proposition 2.1. For any u ∈ D1,p
0 (Ω),

C−p
n,p

∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥p
∞

≤
∫
Ω 

|Du|p dx .
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Proof. Let u ∈ D1,p
0 (Ω) ⊂ D1,p(Rn). By Morrey’s inequality

|u(x) − u(y)|
|x− y|1−n/p

≤ Cn,p

(∫
Ω 

|Du|p dz
)1/p

for distinct x, y ∈ Rn. In particular, if we choose x ∈ Ω and y ∈ ∂Ω such that dΩ(x) =
|x− y|, then

|u(x)| 
dΩ(x)1−n/p

≤ Cn,p

(∫
Ω 

|Du|p dz
)1/p

.

We conclude by taking the supremum over x ∈ Ω. �
By the previous proposition, R(Ω, u) ≥ C−p

n,p for any u ∈ D1,p
0 (Ω) with u 
≡ 0. Since 

λp(Ω) is defined in (1.2) as the infimum of all such quotients,

λp(Ω) ≥ C−p
n,p . (2.4)

In particular, λp(Ω) is positive and the above lower bound is independent of Ω.
Next we recall some technical results concerning functions in D1,p

0 (Ω).

Lemma 2.2. Suppose u ∈ D1,p
0 (Ω).

(i) If y ∈ ∂Ω, then

lim 
x→y
x∈Ω

u(x) 
dΩ(x)1−n/p

= 0 .

(ii) If Ω is unbounded,

lim 
|x|→∞
x∈Ω

u(x) 
dΩ(x)1−n/p

= 0 .

(iii) The function |u|/d1−n/p
Ω achieves its supremum within Ω.

Proof. In this proof, we will exploit the following limits, which were established in Sec
tion 6 of [26]. For any v ∈ D1,p(Rn),

lim 
|x−y|→0

|v(x) − v(y)|
|x− y|1−n/p

= 0 (2.5)

and
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lim 
|x|+|y|→∞

|v(x) − v(y)|
|x− y|1−n/p

= 0 . (2.6)

Claim (i) follows from (2.5) and (ii) follows from (2.6). As for (iii), we may select a 
maximizing sequence {xk}k≥1 ⊂ Ω for |u|/d1−n/p

Ω . If {xk}k≥1 has a cluster point at the 
boundary of Ω or if {xk}k≥1 is unbounded, then |u|/d1−n/p

Ω vanishes identically by (i) 
and (ii). Otherwise, since x 	→ |u(x)|/dΩ(x)1−n/p is continuous in Ω its maximum is 
attained at cluster points of {xk}k≥1 in Ω. �
2.1. Approximation results

In this section, we recall some facts about approximation of functions in D1,p
0 (Ω) by 

smooth functions and list some consequences. The first result is the following lemma, 
which will be important in many of our constructions.

Lemma 2.3. Suppose u ∈ D1,p
0 (Ω) and ε > 0. There exists v ∈ C∞

c (Ω) such that

‖Du−Dv‖p ≤ ε‖Du‖p .

Note that we did not assume any regularity or boundedness of the set Ω in the above 
lemma. This is a feature which is special to the supercritical setting p > n. As the proof 
is standard, yet somewhat lengthy, it is deferred to Appendix A.

An important consequence of Lemma 2.3 is that in the infimum (1.2) defining λp(Ω)
the space of test functions D1,p

0 (Ω) can be exchanged with C∞
c (Ω).

Lemma 2.4. The infimum (1.2) is also given by

λp(Ω) = inf 
u∈C∞

c (Ω)\{0}
Rp(Ω, u) .

Proof. Let ε > 0. There exists a v ∈ D1,p
0 (Ω) such that

Rp(Ω, v) ≤ λp(Ω) + ε .

According to Lemma 2.2, there is x0 ∈ Ω so that

|v(x0)| 
dΩ(x0)1−n/p

=
∥∥∥∥ v

d
1−n/p
Ω

∥∥∥∥
∞

.

In view of Lemma 2.3, we may select u ∈ C∞
c (Ω) such that ‖Du−Dv‖p ≤ ε′‖Dv‖p for 

every ε′ > 0. Note v(x0) = u(x0) + O(ε′) by the Hardy–Morrey inequality.
As a result,

Rp(Ω, u) =
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥−p

∞
‖Du‖pp
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≤
dΩ(x0)p−n‖Du‖pp

|u(x0)|p

≤
dΩ(x0)n−p‖Dv‖pp

|v(x0)|p
(1 + oε′→0(1))

= Rp(Ω, v)(1 + oε′→0(1))

≤ λp(Ω) + oε′→0(1) + ε .

Therefore,

λp(Ω) ≤ inf 
u∈C∞

c (Ω)
Rp(Ω, u) ≤ λp(Ω) + oε′→0(1) + ε .

We conclude after sending ε′ and then ε to zero. �
We will say that Ω is exhausted by {Ωj}j≥1 whenever every Ωj ⊂ Rn is open, Ωj ⊂

Ωj+1 for each j ≥ 1, and Ω =
⋃

j≥1 Ωj . It turns out that λp is upper semicontinuous 
with respect to exhaustions.

Lemma 2.5. If Ω is exhausted by {Ωj}j≥1, then

lim sup
j→∞ 

λp(Ωj) ≤ λp(Ω) .

Proof. Fix ε > 0. By Lemma 2.4, there exists u ∈ C∞
c (Ω) such that

Rp(Ω, u) ≤ λp(Ω) + ε .

Since u supported in a compact subset of Ω and {Ωj}j≥1 is an open cover of Ω, supp(u) ⊂
Ωj for all sufficiently large j. Moreover, Ωj ⊂ Ω implies that dΩj

(x) ≤ dΩ(x) for all 
x ∈ Ωj . Hence,

λp(Ωj) ≤ Rp(Ωj , u) ≤ Rp(Ω, u) ≤ λp(Ω) + ε 

for all large enough j. Since ε was arbitrary, this proves the lemma. �
2.2. Similarity invariance

For Q ∈ O(n), r > 0 and y ∈ Rn, we define the similarity transform

Tr,Q,y : Rn → Rn ; x 	→ rQx + y .

For a set U ⊂ Rn, we write

Tr,Q,yU = rQU + y = {rQx + y : x ∈ U}
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to denote the image of U under the similarity transform. Note that

T−1
r,Q,y = T1/r,Q−1,−Q−1y/r .

If the parameters r,Q, y are understood, we may write simply T .
Since Tr,Q,y is a diffeomorphism of Rn, it must be that

∂(Tr,Q,yΩ) = Tr,Q,y∂Ω .

It follows that

dTr,Q,yΩ(Tr,Q,yx) = rdΩ(x) , (2.7)

which will be useful below.
An all important property of the best constant λp(Ω) is that it is invariant under 

similarity transformations. We will sometimes refer to this as similarity invariance.

Lemma 2.6. If T : Rn → Rn is a similarity transform and Ω ⊊ Rn is open, then

λp(TΩ) = λp(Ω)

and

Rp(Ω, u) = Rp(TΩ, u ◦ T−1) for all u ∈ D1,p
0 (Ω) .

Proof. Let T = Tr,Q,y. Suppose u ∈ D1,p
0 (Ω) and set v = u ◦ T−1. Then v vanishes in 

TΩc and by a change of variables∫
TΩ

|Dv(z)|p dz = rn
∫
Ω 

|Dv(Tx)|p dx = rn−p

∫
Ω 

|Du(x)|p dx .

Consequently, v ∈ D1,p
0 (TΩ). Moreover, by (2.7),

sup 
z∈TΩ

|v(z)|p
dTΩ(z)p−n

= sup 
x∈Ω

|v(Tx)|p
dTΩ(Tx)p−n

= sup 
x∈Ω

|u(x)|p
dΩ(x)p−n

rn−p .

Therefore,

Rp(TΩ, v) = Rp(Ω, u) .

This proves the second claim.
For any ε > 0, there exists u ∈ D1,p

0 (Ω) such that

λp(Ω) ≥ Rp(Ω, u) − ε .
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By the above, the function u ◦ T−1 ∈ D1,p
0 (TΩ) satisfies Rp(Ω, u) = Rp(TΩ, u ◦ T−1)

and thus

λp(Ω) ≥ Rp(TΩ, u ◦ T−1) − ε ≥ λp(TΩ) − ε .

Since ε was arbitrary it follows that λp(Ω) ≥ λp(TΩ). Switching the roles of Ω and TΩ
in this argument gives the reverse inequality and completes the proof. �
3. Extremals and potentials

In this section, we focus on properties satisfied by extremals and more generally to 
properties of potentials. We recall that a function u ∈ D1,p

0 (Ω) with u 
≡ 0 is an extremal 
provided that λp(Ω) = R(Ω, u). That is,

λp(Ω)
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥p
∞

=
∫
Ω 

|Du|p dx .

Below, δx0 is the Dirac delta distribution at x0.

Proposition 3.1. Let Ω ⊊ Rn be an open set. A function u ∈ D1,p
0 (Ω)\{0} is an extremal 

if and only if there is x0 ∈ Ω for which u is a weak solution of
⎧⎪⎨
⎪⎩

−Δpu = λp(Ω) |u(x0)|p−2u(x0)
dΩ(x0)p−n

δx0 in Ω ,

u = 0 on ∂Ω .
(3.1)

Proof. Suppose u is a weak solution of (3.1). Then

∫
Ω 

|Du|p−2Du ·Dv dx = λp(Ω) |u(x0)|p−2u(x0)
dΩ(x0)p−n

v(x0)

for each v ∈ D1,p
0 (Ω). Choosing v = u gives

∫
Ω 

|Du|p dx = λp(Ω) |u(x0)|p
dΩ(x0)p−n

≤ λp(Ω)
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥p
∞
.

We conclude that u is an extremal.
Assume that u ∈ D1,p

0 (Ω) is an extremal. By part (iii) of Lemma 2.2, there is x0 ∈ Ω
with ∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥
∞

= |u(x0)| 
dΩ(x0)1−n/p

.
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For t > 0 and v ∈ D1,p
0 (Ω),

∫
Ω 

(
|Du + tDv|p − |Du|p

pt 

)
dx = 1 

pt

∫
Ω 

|Du + tDv|p dx− 1 
pt

∫
Ω 

|Du|p dx

≥ λp(Ω)
pt 

∥∥∥∥ u + tv 

d
1−n/p
Ω

∥∥∥∥p
∞
−λp(Ω)

pt 

∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥p
∞

≥ λp(Ω)
pt 

|u(x0) + tv(x0)|p
dΩ(x0)p−n

− λp(Ω)
pt 

|u(x0)|p
dΩ(x0)p−n

= λp(Ω) 
dΩ(x0)p−n

(
|u(x0) + tv(x0)|p − |u(x0)|p

pt 

)
.

By routine estimates, we find
∫
Ω 

|Du|p−2Du ·Dv dx ≥ λp(Ω) |u(x0)|p−2u(x0)
dΩ(x0)p−n

v(x0)

in the limit as t → 0+. Replacing v by −v gives equality. Thus, u is a weak solution of 
the boundary value problem (3.1). �

Based on our characterization of extremals, it is natural to consider the following 
family of functions. Given y ∈ Ω we call the unique weak solution wΩ

y ∈ D1,p
0 (Ω) of the 

equation ⎧⎪⎪⎨
⎪⎪⎩

−Δpw
Ω
y = 0 in Ω \ {y} ,

wΩ
y = 0 on ∂Ω ,

wΩ
y (y) = 1 ,

(3.2)

a potential in Ω. That wΩ
y is a weak solution of (3.2) is equivalent to it being a weak 

solution of the equation

{
−Δpw

Ω
y = ‖DwΩ

y ‖ppδy in Ω ,

wΩ
y = 0 on ∂Ω .

In addition,

‖DwΩ
y ‖p ≤ ‖Dv‖p

among all v ∈ D1,p
0 (Ω) which satisfy v(y) = 1. Furthermore, wΩ

y is the unique function 
in D1,p

0 (Ω) with this property. We will refer to this variational characterization of wΩ
y

several times below and call any v ∈ D1,p
0 (Ω) which satisfies v(y) = 1 a competitor for 

wΩ
y .
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Corollary 3.2. If Ω ⊊ Rn and y ∈ Ω, then wΩ
y is identically zero in each connected 

component of Ω except the one which contains y where wΩ
y is everywhere positive. In 

particular, if u ∈ D1,p
0 (Ω) is an extremal, then u vanishes identically in all but one 

component of Ω where it is either everywhere positive or everywhere negative.

Proof. If Ω′ is a connected component of Ω and y / ∈ Ω′, then −Δpw
Ω
y = 0 in Ω′ with 

wΩ
y |∂Ω′ = 0, so wΩ

y ≡ 0 in Ω′. Let Ω0 be the connected component of Ω containing y. 
Then wΩ

y (y) = 1, −Δpw
Ω
y ≥ 0 in Ω0 and wΩ

y |∂Ω0 = 0. Therefore, wΩ
y > 0 in Ω0 by 

the strong minimum principle. By Proposition 3.1, there exists y ∈ Ω, c 
= 0 such that 
u = cwΩ

y . The assertion for u follows. �
As remarked in our proof above, any extremal is a non-zero multiple of a potential. 

The next result tells us that not only must any extremal be a potential, but it is in fact 
sufficient to consider the infimum defining λp(Ω) restricted to potentials (even in the 
case extremals do not exist). Recall that Lemma 2.2 implies that |u|/d1−n/p

Ω attains a 
maximum in Ω provided u ∈ D1,p

0 (Ω).

Proposition 3.3. If u ∈ D1,p
0 (Ω) \ {0} and x0 ∈ Ω satisfies

|u(x0)| 
dΩ(x0)1−n/p

=
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥
∞

, (3.3)

then

Rp(Ω, u) ≥ dΩ(x0)p−n‖DwΩ
x0
‖pp ≥ Rp(Ω, wΩ

x0
) . (3.4)

Equality holds in the first inequality if and only if u = u(x0)wΩ
x0

in which case equality 
holds also in the second.

Proof. As u(x0)−1u is a competitor for wΩ
x0

,

‖DwΩ
x0
‖p ≤ ‖D(u(x0)−1u)‖p = |u(x0)|−1‖Du‖p . (3.5)

Moreover, equality holds if and only if u = u(x0)wΩ
x0

.
Using

∥∥∥∥ wΩ
x0

d
1−n/p
Ω

∥∥∥∥
∞

≥
wΩ

x0
(x0) 

dΩ(x0)1−n/p
= 1 

dΩ(x0)1−n/p
,

together with (3.3) and (3.5), we find

Rp(Ω, wΩ
x0

) ≤ dΩ(x0)p−n‖DwΩ
x0
‖pp ≤

‖Du‖pp(
|u(x0)| 

dΩ(x0)1−n/p

)p = Rp(Ω, u) .
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In addition, equality holds in the second inequality if and only if u = u(x0)wΩ
x0

. In this 
case, equality also holds in the first inequality by (3.3). �

A direct consequence of Proposition 3.3 is that

λp(Ω) = inf 
x∈Ω

Rp(Ω, wΩ
x ) . (3.6)

Since Rp(Ω, wΩ
x ) is a continuous function of x ∈ Ω, the infimum above is a minimum 

if the value at some interior point is smaller than any limit either as x approaches the 
boundary or |x| tends to infinity. Along such sequences, it is useful to study a quantity 
that is slightly larger than Rp(Ω, wΩ

x ) but has the key property that its limit is the same 
along minimizing sequences.

In order to formalize this idea we introduce the following notation. For a given Ω, 
define YΩ as the collection of sequences {xk}k≥1 ⊂ Ω satisfying

lim inf
k→∞ 

|xk| = ∞ or lim sup
k→∞ 

dΩ(xk) = 0 .

That is, YΩ is the set of sequences which eventually leave every compact subset of Ω. 
Define

Λp(Ω) := inf
{

lim inf
k→∞ 

dΩ(xk)p−n‖DwΩ
xk
‖pp : {xk}k≥1 ∈ YΩ

}
. (3.7)

By a standard diagonalization argument, it follows that the infimum defining Λp is 
actually a minimum (see Appendix B). The quantity Λp(Ω) is analogous to the ``Hardy 
constant at infinity'', which is central to the study of the existence of extremals for 
inequality (1.5) [7,9,12,28,32].

In view of (3.4) and (3.6),

λp(Ω) ≤ Λp(Ω) .

Next, we show that the only way that Ω can lack an extremal is if it is favorable for 
minimizing sequences to concentrate at the boundary or move away to infinity.

Proposition 3.4. If

λp(Ω) < Λp(Ω) , (3.8)

then Ω has an extremal. Furthermore, all minimizing sequences {uk}k≥1 for (1.2) with 
‖Duk‖p = 1 for all k are precompact in D1,p

0 (Ω).

Proof. Let {uk}k≥1 ⊂ D1,p
0 (Ω) be a minimizing sequence for λp(Ω) with ‖Duk‖p = 1

for each k ≥ 1. Since {uk}k≥1 is bounded in D1,p
0 (Ω) there exists a subsequence that 
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converges weakly in D1,p
0 (Ω). Upon renaming this subsequence, we assume that the full 

sequence {uk}k≥1 converges weakly to u in D1,p
0 (Ω). In particular, this implies that 

uk → u in C0,α
loc (Rn) for any 0 < α < 1 − n/p. It then suffices to show that uk → u

in D1,p
0 (Ω) and u is an extremal. We will use (3.8) to exclude the possibility that {uk}

either concentrates at the boundary or moves off to infinity.
By Lemma 2.2, there exists a sequence {xk}k≥1 ⊂ Ω such that∥∥∥∥ uk

d
1−n/p
Ω

∥∥∥∥
∞

= |uk(xk)| 
dΩ(xk)1−n/p

.

We claim that no subsequence of {xk}k≥1 can belong to YΩ. Indeed, if a subsequence 
of {xk}k≥1 belonged to YΩ the corresponding subsequence of the sequence of potentials 
{wΩ

xk
}k≥1 ∈ D1,p

0 (Ω) is admissible in the definition of Λp(Ω). In view of Proposition 3.3, 
the existence of such a subsequence would imply

Λp(Ω) ≤ lim sup
k→∞ 

dΩ(xk)p−n‖DwΩ
xk
‖pp ≤ lim 

k→∞
Rp(Ω, uk) = λp(Ω) .

This contradicts our assumption and proves the claim. Consequently, lim sup
k→∞ 

|xk| < ∞
and lim inf

k→∞ 
dΩ(xk) > 0. Therefore, {xk}k≥1 is precompact in Ω.

Passing to another subsequence if necessary, we may assume limk→∞ xk = x0 ∈ Ω. 
Thus,

lim 
k→∞

∥∥∥∥ uk

d
1−n/p
Ω

∥∥∥∥
∞

= lim 
k→∞

|uk(xk)| 
dΩ(xk)1−n/p

= |u(x0)| 
dΩ(x0)1−n/p

≤
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥
∞

.

Since ‖Duk‖p = 1 for all k and {uk}k≥1 is a minimizing sequence, u(x0) 
= 0. We also 
have

‖Du‖p ≤ lim 
k→∞

‖Duk‖p = 1 (3.9)

by weak convergence. Therefore,

λp(Ω) = lim 
k→∞

Rp(Ω, uk) = lim 
k→∞

dΩ(xk)p−n

|uk(xk)|p
= dΩ(x0)p−n

|u(x0)|p
≥

∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥−p

∞
‖Du‖pp .

As λp(Ω) ≥ Rp(Ω, u) and u ∈ D1,p
0 (Ω), u is an extremal. In addition, equality must 

hold in (3.9), from which we conclude that uk → u in D1,p
0 (Ω), as weak convergence 

together with convergence of the Lp-norm implies strong convergence (see [6, Proposition 
3.32]). �
4. A complete picture in one dimension

We can now fully describe what happens in the case n = 1.
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Lemma 4.1. Assume n = 1. Then

(1) λp(Ω) = 1, and
(2) Ω has an extremal if and only if Ω contains an unbounded interval.

Proof. Fix y ∈ Ω and consider the potential wΩ
y ∈ D1,p

0 (Ω). By Corollary 3.2, wΩ
y vanishes 

in all connected components of Ω except the one containing y. We may assume that the 
connected component of Ω which contains y is given by (a, b) with −∞ ≤ a < b ≤ ∞ and 
either −∞ < a or b < ∞. Routine computations lead us to the following observations.

(1) If −∞ < a < b < ∞, then

wΩ
y (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if x / ∈ (a, b) ,
x− a

y − a 
if a < x ≤ y ,

b− x

b− y 
if y < x < b ,

and ‖DwΩ
y ‖pp = 1 

(y − a)p−1 + 1 
(b− y)p−1 .

(2) If a = −∞, then

wΩ
y (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x ≤ y ,
b− x

b− y 
if y < x < b ,

0 if x ≥ b ,

and ‖DwΩ
y ‖pp = 1 

(b− y)p−1 .

(3) if b = ∞, then

wΩ
y (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ≤ a ,
x− a

y − a 
if a < x < y ,

1 if x ≥ b ,

and ‖DwΩ
y ‖pp = 1 

(y − a)p−1 .

Note that in the cases of an unbounded interval, Rp(Ω, wΩ
y ) = 1, while in the bounded 

case,

Rp(Ω, wΩ
y ) = 1 +

(
min{y − a, b− y} 
max{y − a, b− y}

)p−1

> 1 .

Nevertheless, this expression for Rp(Ω, wΩ
y ) can be made arbitrarily close to 1 by letting y

approach either a or b. In view of Proposition 3.3, we conclude that in all cases λp(Ω) = 1. 
Furthermore, Ω 
 y 	→ Rp(Ω, wΩ

y ) attains the value 1 if and only if Ω contains an 
unbounded interval. �
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Fig. 1. A non-convex polygon P which is fully supported by an infinite sector with opening angle ϕ with one 
such supporting sector depicted in red. Equivalently, P satisfies a uniform (infinite) exterior cone condition. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

5. Universal bounds via supporting sets

In this section, we turn to the question of universal upper and lower bounds for λp(Ω). 
We first notice that if Ω ⊆ Ω′ then any u ∈ D1,p

0 (Ω) also belongs to D1,p
0 (Ω′). In this 

case, we also have dΩ ≤ dΩ′ so that∥∥∥∥ u 

d
1−n/p
Ω′

∥∥∥∥
∞

≤
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥
∞

.

Therefore, Rp(Ω, u) ≤ Rp(Ω′, u) provided that u 
≡ 0. In certain situations we can in 
fact conclude that Rp(Ω, u) = Rp(Ω′, u) . To this end, we introduce the following notion.

Definition 5.1. Suppose Ω,Ω′ ⊊ Rn. We say that Ω′ supports Ω at x ∈ ∂Ω if

Ω ⊆ Ω′ and x ∈ ∂Ω′ .

We say that Ω is fully supported by Ω′, if for each x ∈ ∂Ω there exists a similarity 
transformation T so that TΩ′ supports Ω at x.

Remark 5.2. A set Ω is fully supported by Rn
+ if and only if Ω is convex. In fact, the 

notion of supporting sets is intended as a generalization of this property of convex sets. 
An example of a set fully supported by an infinite sector is depicted in Fig. 1.

As we shall see, the following proposition can be useful both in proving upper and 
lower bounds for λp.

Proposition 5.3. Assume Ω′ supports Ω at y0 ∈ ∂Ω. If u ∈ D1,p
0 (Ω) and x0 ∈ Ω satisfies∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥
∞

= |u(x0)| 
dΩ(x0)1−n/p

and |x0 − y0| = dΩ(x0) ,
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then

Rp(Ω, u) = Rp(Ω′, u) .

Furthermore, if Ω is fully supported by Ω′ then

λp(Ω) ≥ λp(Ω′) .

Proof. As u ∈ D1,p
0 (Ω′) and dΩ ≤ dΩ′ ,

|u(x)| 
dΩ(x)1−n/p

≥ |u(x)| 
dΩ′(x)1−n/p

for all x ∈ Ω . (5.1)

Since Ω ⊆ Ω′, y0 ∈ ∂Ω ∩ ∂Ω′, and dΩ(x0) = |x0 − y0| it follows that dΩ′(x0) = |x0 − y0|. 
Therefore, equality holds in (5.1) for x = x0. Consequently,

|u(x0)| 
dΩ′(x0)1−n/p

= |u(x0)| 
dΩ(x0)1−n/p

=
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥
∞

=
∥∥∥∥ u 

d
1−n/p
Ω′

∥∥∥∥
∞

.

We conclude that Rp(Ω, u) = Rp(Ω′, u).
If Ω is fully supported by Ω′, then for each u ∈ D1,p

0 (Ω) we can apply Lemma 2.2 and 
the above reasoning to deduce that there exists a similarity transform Tu such that u ∈
D1,p

0 (TuΩ′) and Rp(Ω, u) = Rp(TuΩ′, u). By Lemma 2.6, Rp(TuΩ′, u) = Rp(Ω′, u◦T−1
u ). 

Therefore,

λp(Ω′) ≤ inf 
u∈D1,p

0 (Ω)\{0}
Rp(Ω′, u ◦ T−1

u ) = inf 
u∈D1,p

0 (Ω)\{0}
Rp(Ω, u) = λp(Ω) . �

We obtain the following corollaries which follow directly from Proposition 5.3.

Corollary 5.4. For any open Ω ⊊ Rn,

λp(Rn \ {0}) ≤ λp(Ω) ≤ λp(B1) .

Proof. The lower bound follows from the translation invariance of λp and noting that if 
x ∈ ∂Ω then Rn \{x} supports Ω at x. This implies that every Ω ⊊ Rn is fully supported 
by Rn \ {0}. The upper bound follows by the similarity invariance combined with the 
observation that B1 is fully supported by any set Ω. Indeed, for any y0 ∈ Ω, Ω supports 
the ball BdΩ(y0)(y0) at x0 where |x0 − y0| = dΩ(y0). Since B1 is rotationally invariant, 
we conclude that B1 is fully supported by Ω (Fig. 2). �

Corollary 5.5. If Ω ⊊ Rn is convex then

λp(Rn
+) ≤ λp(Ω) ≤ λp(B1) .
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Fig. 2. A schematic description of the fact that every open set Ω fully supports B1. Given Ω, y0 ∈ Ω, x ∈ ∂B1
a similarity transform T is constructed satisfying that Ty0 = 0 and TΩ supports B1 at x.

Proof. The upper bound was proved above, so we focus on the lower bound. As noted 
in Remark 5.2, Ω is fully supported by Rn

+. We can therefore conclude that λp(Ω) ≥
λp(Rn

+). �
6. Proof of Theorem A and Theorem B

Our next aim is to prove Theorem A and Theorem B. We first establish the lemma 
below, where we study the particular cases Ω = Rn

+ and Ω = Rn \ {0}. It turns out that 
both the value of λp(Ω) and extremals for these domains can be expressed in terms of 
the sharp constant in Morrey’s inequality and Morrey extremals, respectively. Here we 
call v ∈ D1,p(Rn) a Morrey extremal if v is not constant throughout Rn and equality 
holds in (2.1) with C = Cn,p.

Lemma 6.1. The following assertions hold.

(i) λp(Rn
+) = 2n−1C−p

n,p.
(ii) If y ∈ Rn

+, then w
Rn

+
y is an extremal for λp(Rn

+). Furthermore, the odd extension 

of wRn
+

y through the hyperplane xn = 0 is a Morrey extremal.
(iii) λp(Rn \ {0}) = C−p

n,p.
(iv) If y ∈ Rn \ {0}, then wRn\{0}

y is an extremal for λp(Rn \ {0}) and a Morrey 
extremal.

Proof. Part 1: (i) and (ii). We claim that Rp(Rn
+, w

Rn
+

y ) is independent of y ∈ Rn
+. Note 

that if y = (y′, yn) ∈ Rn
+, then

w̃(x) = w
Rn

+
y ((y′, 0) + ynx) ∈ D1,p

0 (Rn
+)

satisfies
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⎧⎪⎪⎨
⎪⎪⎩

−Δpw̃ = 0 in Rn
+ \ {en} ,

w̃ = 0 on ∂Rn
+ ,

w̃(en) = 1 .

(6.1)

That is, w̃ = w
Rn

+
en . Lemma 2.6 then implies that Rp(Rn

+, w
Rn

+
y ) = Rp(Rn

+, w
Rn

+
en ). By (3.6), 

λp(Rn
+) = Rp(Rn

+, w
Rn

+
y ). We conclude that wRn

+
y is an extremal.

Again fix y = (y′, yn) ∈ Rn
+. By [26, Theorem 2.4], there exists a Morrey extremal u

satisfying

u(y) = 1 , u((y′,−yn)) = −1 , and [u]1−n/p = |u(y) − u((y′,−yn))|
|y − (y′,−yn)|1−n/p

. (6.2)

Here [u]1−n/p denotes the 1 − n/p Hölder seminorm of u. Moreover, −Δpu = 0 in 
Rn \ {y, (y′,−yn)}. By [25, Theorem 1.1], u is antisymmetric across the hyperplane 

xn = 0. In particular, u vanishes on this hyperplane. It follows that u|Rn
+

= w
Rn

+
y . 

Therefore, the odd extension of wRn
+

y through this hyperplane is u.
Let us write w = w

Rn
+

en and u for the odd reflection of w through xn = 0. As noted 
above, u is a Morrey extremal satisfying (6.2) with y = en. As a result,

1 = |w(en)| 
dRn

+
(en)1−n/p

≤
∥∥∥∥ w

d
1−n/p
Rn

+

∥∥∥∥
∞

= sup 
x∈Rn

+

|w(x)| 
|xn|1−n/p

= 2−n/p sup 
x∈Rn

+

|u(x) − u((x′,−xn))|
|x− (x′,−xn)|1−n/p

≤ 2−n/p[u]1−n/p

= 1 

and

λp(Rn
+) =

∥∥∥∥ w

d
1−n/p
Rn

+

∥∥∥∥−p

∞
‖Dw‖pp = 2n−1[u]−p

1−n/p‖Du‖pp = 2n−1C−p
n,p .

Part 2: (iii) and (iv). As we argued above, we can deduce that Rp(Rn \ {0}, wRn\{0}
y )

does not depend on y ∈ Rn \ {0} by showing

wRn\{0}
en (x) = wRn\{0}

y (|y|Qx)
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for any Q ∈ O(n) with Qen = y/|y|. Again, equation (3.6) implies that λp(Rn \ {0}) =
Rp(Rn \ {0}, wRn\{0}

y ). It follows that wRn\{0}
y is an extremal.

Let u be a Morrey extremal with

u(0) = 0 , u(y) = 1 , and [u]1−n/p = |u(y)| 
|y|1−n/p

.

As u ∈ D1,p
0 (Rn \ {0}) and −Δpu = 0 in Rn \ {0, y}, u = w

Rn\{0}
y . It follows that

λp(Rn \ {0}) =
∥∥∥∥ u 

d
1−n/p
Rn\{0}

∥∥∥∥−p

∞
‖Du‖pp = [u]−p

1−n/p‖Du‖pp = C−p
n,p . �

We will now prove Theorems A and B by applying various of the assertions derived 
above.

Proof of Theorem A. We first observe that Rn
+ can be exhausted by {Bj(jen)}j≥1. 

Therefore, by Lemma 2.5 and the similarity invariance

λp(B1) = lim 
j→∞

λp(Bj(jen)) ≤ λp(Rn
+) .

The theorem now follows from this inequality together with Lemma 6.1 and Corol
lary 5.4. �
Proof of Theorem B. (1) Assume Ω is convex. By Theorem A and Corollary 5.5,

λp(Rn
+) ≤ λp(Ω) ≤ λp(B1) ≤ λp(Rn

+) .

That is, λp(Ω) = λp(Rn
+).

Now suppose u ∈ D1,p
0 (Ω) is an extremal. By Corollary 3.2, we may assume that u > 0

in Ω. Let us also choose x0 ∈ Ω with
∥∥∥∥ u 

d
1−n/p
Ω

∥∥∥∥
∞

= u(x0) 
dΩ(x0)1−n/p

and y0 ∈ ∂Ω with dΩ(x0) = |x0 − y0|. Since Ω is convex, there exists a halfspace Π such 
that

Ω ⊆ Π and y0 ∈ ∂Π . (6.3)

Then u ∈ D1,p
0 (Π) and dΠ(x0) = |x0 − y0|. By Proposition 5.3,

Rp(Π, u) = Rp(Ω, u) = λp(Ω) = λp(Rn
+) = λp(Π) .
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Hence, u is also an extremal for Π. If Ω ⊊ Π, then u vanishes in the open set Π \ Ω. 
This contradicts Corollary 3.2 since Π is connected. As a result, Ω does not admit an 
extremal unless it is a halfspace.

(2) Suppose Ω ⊂ Rn is open. By translation invariance, we may assume x0 = 0. We 
have already established that λp(Ω \ {0}) ≥ λp(Rn \ {0}) in Theorem A. As for the 
upper bound, Rn \ {0} is exhausted by {jΩ \ {0}}j≥1, therefore Lemma 2.5 implies that 
λp(Ω \ {0}) ≤ λp(Rn \ {0}). Arguing as in (1), we can show that if u ∈ D1,p

0 (Ω \ {0})
is an extremal, it is also an extremal in Rn \ {0} which vanishes at any point in the 
complement of Ω \ {0}. As Rn \ {0} is connected, u would have to vanish identically 
unless Ω = Rn. We conclude that no such extremal exists for Ω \ {0} unless Ω = Rn.

(3) Let K ⊂ Rn be compact and nonempty. By translation invariance, we may assume 
0 ∈ K. According to Theorem A, λp(Rn \K) ≥ λp(Rn \{0}). Since Rn \{0} is exhausted 
by {j−1(Rn \ K)}j≥1, Lemma 2.5 gives λp(Rn \ K) ≤ λp(Rn \ {0}). Similar to how 
we reasoned in (2) and (3), we may conclude that the only way for Rn \K to have an 
extremal is if K = {0}. �
Remark 6.2. The method used to prove the nonexistence of extremals in Theorem B can 
also be used to show: if Ω has an extremal and λp(Ω) = λp(Rn \{0}), then Ω = Rn \{x0}
for some x0. The key observation here is that Ω is fully supported by Rn \ {0}. We leave 
the details to the reader.

Remark 6.3. Modulo symmetry, the only connected sets whose extremals are restrictions 
of Morrey extremals are those covered by Lemma 6.1. Indeed, if Ω ⊊ Rn is a connected 
set and u ∈ D1,p

0 (Ω) is an extremal for λp(Ω) which is the restriction of a Morrey 
extremal v, then ∂Ω is the zero level set of this Morrey extremal. By [26], each level set 
of a Morrey extremal is either a bounded convex set, a halfspace, or the complement 
of a bounded convex set. If Ω is convex and not a halfspace then Ω does not admit an 
extremal, contradicting that u = v|Ω is an extremal. Similarly if Ω is the complement of 
a compact set then Ω admits an extremal if and only if this compact set is a singleton. 
Therefore, halfspaces and Rn \ {x0} are the only connected sets having extremals given 
by restrictions of Morrey extremals.

7. Dilation invariant domains

We will say C ⊂ Rn is a cone if

tC = C for each t > 0 .

That is, C is a cone if it is dilation invariant. It is evident that the complement of a cone 
is also a cone. It is also easy to check that if a cone is convex, then it is closed under 
vector addition. In this section, we will give sufficient conditions under which a cone 
admits an extremal. We will assume throughout that Ω ⊊ Rn is open and nonempty and 
n ≥ 2.
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Proposition 7.1. Suppose Ω ⊊ Rn is a cone. Further assume there is a compact

K ⊂ {x ∈ Ω : dΩ(x) = 1}

such that for each x ∈ K there is y ∈ Rn with
{
x + y ∈ K ,

y + Ω ⊂ Ω .

Then Ω admits an extremal u for which |u|/d1−n/p
Ω attains its maximum in K.

Proof. Step 1. Let {uk}k≥1 ⊂ D1,p
0 (Ω) with

λp(Ω) = lim 
k→∞

Rp(Ω, uk)

and choose {zk}k≥1 ⊂ Ω which satisfies∥∥∥∥ uk

d
1−n/p
Ω

∥∥∥∥
∞

= |uk(zk)| 
dΩ(zk)1−n/p

for each k ≥ 1. Since Ω is a cone, we may define vk ∈ D1,p
0 (Ω) by setting

vk(x) = uk(dΩ(zk)x)
dΩ(zk)1−n/p

.

By Lemma 2.6, Rp(Ω, vk) = Rp(Ω, uk). Therefore, {vk}k≥1 is also a minimizing sequence.
Next we set

xk = zk
dΩ(zk)

and note that ∥∥∥∥ vk

d
1−n/p
Ω

∥∥∥∥
∞

= |vk(xk)| 
dΩ(xk)1−n/p

.

By (2.7), dΩ is positively homogeneous as Ω is dilation invariant. It follows that dΩ(xk) =
1, so |vk|/d1−n/p

Ω attains its maximum in the set {x ∈ Ω : dΩ(x) = 1}.

Step 2. By assumption, there exists yk ∈ Rn for each k with
{
xk + yk ∈ K ,

yk + Ω ⊂ Ω .

Setting
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wk(x) = vk(x− yk) ,

we observe that wk ∈ D1,p
0 (Ω) and

‖Dwk‖p = ‖Dvk‖p . (7.1)

Moreover, since yk + Ω ⊆ Ω

dΩ(x− yk) = dyk+Ω(x) ≤ dΩ(x)

for all x ∈ yk + Ω. Thus,

|wk(x)| 
dΩ(x)1−n/p

≤ |wk(x)| 
dΩ(x− yk)1−n/p

= |vk(x− yk)| 
dΩ(x− yk)1−n/p

≤
∥∥∥∥ vk

d
1−n/p
Ω

∥∥∥∥
∞

(7.2)

for all x ∈ supp(wk) ⊆ yk + Ω with equality when x = xk + yk ∈ K. Combining (7.1)
and (7.2) leads to

Rp(Ω, wk) = Rp(Ω, vk) .

It follows that {wk}k≥1 is a minimizing sequence satisfying that |wk|/d1−n/p
Ω is attained 

in K for each k ≥ 1.

Step 3. Since K is compact, {xk + yk}k≥1 has a subsequence which converges to a limit 
x ∈ K. Arguing as at the end of the proof of Proposition 3.4, we deduce that along this 
subsequence wk converges locally uniformly and in D1,p

0 (Ω) to a function u which is an 
extremal for λp(Ω). As |wk|/d1−n/p

Ω was maximized in K for each k ≥ 1, it follows that 
this property remains true for |u|/d1−n/p

Ω . We leave the details to the reader. �
We will verify that Ω satisfies the hypotheses of Proposition 7.1 whenever its comple

ment is a convex cone. First we will need to justify the following lemma.

Lemma 7.2. Assume Ωc is a convex cone, x0 ∈ Ω, and y0 ∈ ∂Ω with dΩ(x0) = |x0 − y0|. 
Then

−y0 + Ω ⊂ Ω and dΩ(x0 − y0) = |x0 − y0| .

Proof. Let x ∈ Ω. We aim to prove that −y0 + x ∈ Ω. If this were not the case, then 
x = (−y0+x)+y0 ∈ Ωc since Ωc is a convex cone. However, this would be a contradiction. 
As x ∈ Ω was arbitrary, we conclude that −y0 + Ω ⊂ Ω.

Since 0 ∈ ∂Ω,

dΩ(x0 − y0) ≤ |x0 − y0| .
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We are left to verify the opposite inequality. To this end, we recall that

(x0 − y0) · (x− y0) ≤ 0

for all x ∈ Ωc as Ωc is closed and convex [6, Theorem 5.2]. Choosing x = 2y0 and x = 0
gives (x0 − y0) · y0 = 0 and hence

Ωc ⊂ Π := {x ∈ Rn : (x0 − y0) · x ≤ 0} .

It follows that

dΩ(x0 − y0) = inf 
w∈Ωc

|x0 − y0 − w| ≥ inf 
w∈Π

|x0 − y0 − w| .

And as (x0 − y0) · w ≤ 0 for w ∈ Π,

|x0 − y0 − w|2 = |x0 − y0|2 + |w|2 − 2(x0 − y0) · w ≥ |x0 − y0|2 + |w|2 ≥ |x0 − y0|2 .

We conclude that

dΩ(x0 − y0) ≥ inf 
w∈Π

|x0 − y0 − w| = |x0 − y0| . �
Theorem 7.3. Assume that Ωc is a convex cone. Then Ω has an extremal.

Proof. Note that

K = {x ∈ Ω : dΩ(x) = 1} ∩B1

is a compact subset of {x ∈ Ω : dΩ(x) = 1}. If x ∈ Ω and y ∈ ∂Ω with dΩ(x) = |x−y| = 1, 
the previous lemma shows that

{
x− y ∈ K ,

−y + Ω ⊂ Ω .

We conclude the proof by appealing to Proposition 7.1. �
Theorem 7.3 implies the existence of extremals proved in Lemma 6.1 since the comple

ment of Rn
+ and Rn \ {0} are convex cones. We will consider another family of examples 

below.

Example 7.4. For ϕ ∈ (0, π), set

Cn
ϕ =

{
x = (x′, xn) ∈ Rn : xn > cot(ϕ)|x′|

}
.
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Fig. 3. A domain C2
ϕ ⊂ R2 for ϕ ∈ (π/2, π]. The domain is the region of the plane above the blue curve. 

The purple curve indicates the set dC2
ϕ

= 1, which is the union of three curves; two rays (dashed) and a 
circular arc K2

ϕ (solid). In higher dimensions the set Cn
ϕ can be obtained by rotation of C2

ϕ around the axis 
of symmetry.

We will also consider the limiting case as the angle ϕ tends to π

Cn
π = Rn \ {x = (x′, xn) ∈ Rn : |x′| = 0, xn ≤ 0} .

The set Cn
ϕ is a circular cone around the positive xn-axis with opening angle ϕ measured 

relative to the xn-axis (see Fig. 3). If ϕ < π/2, then Cn
ϕ is a convex cone which is not 

a halfspace. By Theorem B, λp(Cn
ϕ) = λp(Rn

+), and no extremals exist. Alternatively, if 
ϕ ≥ π/2, the set Cn

ϕ is the complement of a convex cone. Theorem 7.3 therefore implies 
that Cn

ϕ has an extremal for every ϕ ∈ [π/2, π].

The family Cn
ϕ is of particular interest as it forms a natural class of limiting profiles 

that can occur in the analysis developed in Sections 8 and 11 (especially, for n = 2). 
With this in mind, we note for future reference that [π/2, π] 
 ϕ 	→ λp(Cn

ϕ) is strictly 
decreasing.

Lemma 7.5. For π/2 ≤ ϕ1 < ϕ2 ≤ π,

λp(Cn
ϕ2

) < λp(Cn
ϕ1

) .

Proof. Given x0 ∈ ∂Cn
ϕ1

we observe that Cn
ϕ1

⊂ x0 + Cn
ϕ2

and x0 ∈ ∂(x0 + Cn
ϕ2

). There
fore, Cn

ϕ1
is fully supported by Cn

ϕ2
; Proposition 5.3 implies that λp(Cn

ϕ2
) ≤ λp(Cn

ϕ1
). By 

Proposition 7.1, Cn
ϕ1

has an extremal u ∈ D1,p
0 (Cn

ϕ1
). If λp(Cn

ϕ2
) = λp(Cn

ϕ1
), then u would 

be an extremal also in Cn
ϕ2

. As u vanishes in Cn
ϕ2

\Cn
ϕ1


= ∅, this contradicts Corollary 3.2. 
Thus, λp(Cϕ2) < λp(Cϕ1). �
Remark 7.6. It is also possible to show that [π/2, π] 
 ϕ 	→ λp(Cn

ϕ) is continuous.
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8. Local and global analysis of Λp(Ω)

In this section, we will focus on understanding how Λp compares to the value of λp in 
simpler model sets. The typical model sets are dilation invariant sets such as halfspaces 
or cones, which were discussed in Section 7. Our aim is to prove upper bounds on 
Λp(Ω), and in turn on λp(Ω), in terms of blow-up/blow-down limits of Ω. We will also 
establish lower bounds on Λp(Ω), by studying the asymptotic behavior of Rp(Ω, wΩ

xk
)

when {xk}k≥1 ⊂ Ω does not have a limit in Ω. The combination of these lower bounds 
and Proposition 3.4 will be one our main tools in proving the existence of extremals for 
λp(Ω).

For a given Ω ⊊ Rn, we will deduce upper bounds on Λp(Ω) by making the following 
observation: if we can locally approximate a dilation invariant set C to arbitrary precision 
by a sequence of dilations and translations acting on Ω, then a trial sequence for Λp(Ω)
can be constructed from an almost minimizer of λp(C). There are two important cases 
to have in mind. The first is zooming in at a boundary point of Ω, in which case C is the 
blow-up of Ω at this point (an example is shown in Fig. 4). The second case occurs when 
zooming out so far that only asymptotic features of Ω remain visible and are described 
by a cone C.

Lemma 8.1. Let C ⊊ Rn be an open cone. Assume for all small enough δ ∈ (0, 1) there 
are t = t(δ) > 0 and y = y(δ) ∈ Rn such that

(tΩ − y) ∩B1 ⊃ {x ∈ C : dC(x) > δ} ∩B1

and for each x ∈ C ∩B1/2

lim 
δ→0

dtΩ−y(x) = dC(x) .

Then

Λp(Ω) ≤ λp(C) .

Proof. Fix ε > 0. By Lemma 2.4, there exists an r > 0 and a function u ∈ C∞
c (C ∩Br)

so that

Rp(C, u) ≤ λp(C) + ε .

Since both C and the Rayleigh quotient are invariant under dilations, we can ensure that 
r = 1/2. By Lemma 2.2, there is x∗ ∈ C ∩B1/2 such that

|u(x∗)| 
dC(x∗)1−n/p

=
∥∥∥∥ u 

d
1−n/p
C

∥∥∥∥
∞

.
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Fig. 4. A sequence of four blow-ups around a point on the boundary of a domain Ω with a limiting profile 
C depicted in blue.

For δ > 0, define

Cδ = {x ∈ C : dC(x) > δ} .

By assumption, there are t > 0, y ∈ Rn such that (tΩ − y) ∩ B1 ⊃ Cδ ∩ B1. As the 
support of u is a compact subset of C ∩B1/2, supp(u) ⊂ Cδ ∩B1/2 for sufficiently small 
δ. Consequently, vδ defined by vδ(x) = u(tx− y) belongs to D1,p

0 (Ω) for all small enough 
δ.

Set xδ = t−1(x∗ + y). By similarity invariance,

dΩ(xδ)p−n
‖Dvδ‖pp
|vδ(xδ)|p

= dtΩ−y(x∗)p−n
‖Du‖pp
|u(x∗)|p .

It follows from the definition of u and x∗ that

dtΩ−y(x∗)p−n
‖Du‖pp
|u(x∗)|p = dtΩ−y(x∗)p−n

dC(x∗)p−n
Rp(C, u) ≤ dtΩ−y(x∗)p−n

dC(x∗)p−n
(λp(C) + ε) .

By hypothesis

lim 
δ→0

dtΩ−y(x∗) = dC(x∗) , (8.1)

which gives

lim sup
δ→0 

dΩ(xδ)p−n
‖Dvδ‖pp
|vδ(xδ)|p

≤ λp(C) + ε . (8.2)
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Moreover, the variational characterization of wΩ
xδ

implies that

lim sup
δ→0 

dΩ(xδ)p−n‖DwΩ
xδ
‖pp ≤ λp(C) + ε . (8.3)

We split the remainder of this proof into two cases depending on the asymptotic 
behavior of t and y as δ → 0.

Case 1: If along a sequence {δk}k≥1 with limk→∞ δk = 0 it holds that

lim sup
k→∞ 

t(δk) = ∞ , lim inf
k→∞ 

t(δk) = 0 , or lim sup
k→∞ 

|y(δk)| = ∞ , (8.4)

then we claim that a subsequence of {xδk}k≥1 belongs to YΩ. Thus along this subsequence 
wΩ

xδk
is admissible in the definition of Λp(Ω), which when combined with (8.3) implies

Λp(Ω) ≤ λp(C) + ε .

Since ε was arbitrary, we would then conclude our proof in this case.
To prove the claim, we argue as follows. By (8.1),

dΩ(xδk) = t(δk)−1dt(δk)Ω−y(δk)(x∗) = t(δk)−1(dC(x∗) + o(1)) 

as k → ∞. Therefore, if lim infk→∞ t(δk) = 0, then lim supk→∞ |xδk | = ∞, and 
a subsequence of {xδk}k≥1 belongs to YΩ. If instead lim supk→∞ t(δk) = ∞, then 
lim infk→∞ dΩ(xδk) = 0 and again a subsequence of {xδk}k≥1 belongs to YΩ. Finally 
if there exist c, C > 0 so that c < t(δk) < C for all k but lim supk→∞ |y(δk)| = ∞, then

lim sup
k→∞ 

|xδk | = lim sup
k→∞ 

|t(δk)−1(x∗ + y(δk))| = ∞ .

Again we deduce that {xδk}k≥1 belongs to YΩ.

Case 2: If (8.4) fails, then there exists t0 > 0, y0 ∈ Rn, and a sequence {δk}k≥1 such that

lim 
k→∞

δk = 0 , lim 
k→∞

t(δk) = t0 , and lim 
k→∞

y(δk) = y0 .

As limδ→0 dtΩ−y(x) = dC(x) for x ∈ C ∩B1/2,

lim 
k→∞

dt(δk)Ω−y(δk)(x) = dt0Ω−y0(x) = dC(x) for x ∈ C ∩B1/2 .

Here we used that dΩ is continuous and dtΩ−y(x) = tdΩ(t−1(x+y)). As a result, we have 
that C ∩B1/2 ⊂ t0Ω − y0.

Since C is dilation invariant, the function defined by vs(x) = u((t0x− y0)/s) belongs 
to D1,p

0 (Ω) for any s ∈ (0, 1). Moreover, we claim that
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∥∥∥∥ vs

d
1−n/p
Ω

∥∥∥∥
∞

= |vs(xs)| 
dΩ(xs)1−n/p

with xs = sx∗ + y0

t0

for s ∈ (0, 1). To see this, recall that dC = dt0Ω−y0 in B1/2 ∩ C, supp(u(·/s)) ⊂ C ∩Bs/2, 
and dC(x/s) = s−1dC(x) for all x ∈ supp(u(·/s)). It follows that

|vs(x)| 
dΩ(x)1−n/p

= t
1−n/p
0

|u((t0x− y0)/s)| 
dt0Ω−y0((t0x− y0))1−n/p

= (t0/s)1−n/p |u((t0x− y0)/s)| 
dC((t0x− y0)/s)1−n/p

≤ (t0/s)1−n/p |u(x∗)| 
dC(x∗)1−n/p

,

with equality for x = xs. Thus,

Rp(Ω, vs) = Rp(C, u) ≤ λp(C) + ε . (8.5)

Notice that y0/t0 = lims→0 xs ∈ ∂Ω since

lim 
s→0

dΩ(xs) = t−1
0 lim 

s→0
dt0Ω−y0(sx∗) = t−1

0 lim 
s→0

dC(sx∗) = t−1
0 lim 

s→0
sdC(x∗) = 0 .

Therefore, along any sequence {sk}k≥1 with sk → 0 the sequence {xsk}k≥1 ∈ YΩ. Con
sequently, the potentials {wΩ

xsk
}k≥1 are admissible in the definition of Λp(Ω). Combining 

this observation with Proposition 3.3 and (8.5), we have

Λp(Ω) ≤ lim inf
k→∞ 

dΩ(xsk)p−n‖DwΩ
xsk

‖pp ≤ lim inf
k→∞ 

Rp(Ω, vsk) ≤ λp(C) + ε .

Since ε was arbitrary, this completes our proof. �
The most evident case when Lemma 8.1 can be applied is if the boundary has at least 

one point at which it is differentiable. More generally it holds when ∂Ω is asymptotically 
a cone at some boundary point.

Corollary 8.2. Assume

Ω ∩Br = {x = (x′, xn) ∈ Br : xn > f(x′)}

for some r > 0, where f : Rn−1 → R is continuous with f(0) = 0. Further suppose the 
limit

F (x′) = lim 
t→∞

tf(x′/t)

exists locally uniformly. Then Λp(Ω) ≤ λp(C), where

C = {x = (x′, xn) ∈ Rn : xn > F (x′)} .
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Proof. As F is positively homogeneous and continuous, C is an open cone. Therefore, it 
suffices to check the two hypotheses of the previous lemma for each δ ∈ (0, 1).

By assumption, there is t > r−1 with F (x′) − δ < tf(x′/t) < F (x′) + δ uniformly in 
|x′| ≤ 1. Since

tΩ ∩B1 = {(x′, xn) ∈ B1 : xn > tf(x′/t)} ,

it follows that

(C + δen) ∩B1 ⊂ tΩ ∩B1 ⊂ (C − δen) ∩B1. (8.6)

Observe that if dC(x) > δ, then Bδ(x) ⊂ C. In this case, x− δen ∈ Bδ(x) ⊂ C and thus 
x ∈ C + δen. In view of the first inclusion in (8.6),

{x ∈ Rn : dC(x) > δ} ∩B1 ⊂ tΩ ∩B1 .

This verifies the first hypothesis of the lemma.
For the remainder of this proof, fix x ∈ C with |x| < 1/2. We claim that

dtΩ∩B1(x) = dtΩ(x)

To see this, we note dtΩ∩B1(x) ≤ |x| < 1/2 since 0 / ∈ tΩ. Moreover, if the distance from x
to the complement is realized for some y 
∈ B1, then dtΩ∩B1(x) = |x−y| ≥ 1−|x| > 1/2. 
The claim follows. As 0 / ∈ C + δen, we also conclude

d(C+δen)∩B1(x) = d(C+δen)(x) .

Based on the first inclusion in (8.6) and the observations just made,

dtΩ(x) ≥ dC+δen(x) ≥ dC(x) − δ .

Moreover, by the second inclusion in (8.6)

dtΩ(x) ≤ d(C−δen)∩B1(x) ≤ dC−δen(x) ≤ dC(x) + δ .

We deduce that the second hypothesis of the lemma holds as |dtΩ(x) − dC(x)| ≤ δ. �
Remark 8.3. The corollary holds under the weaker assumption that

F (x′) = lim 
k→∞

tkf(x′/tk)

locally uniformly for some sequence tk → ∞ provided that F is positively homogeneous.
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Remark 8.4. In the above corollary, if f is differentiable at 0, then F (x′) = Df(0) ·x′. In 
this case, C is a halfspace. We conclude that Λp(Ω) ≤ λp(Rn

+) whenever ∂Ω has at least 
one point where it is differentiable.

Now we turn our attention to a lower bound on Λp and the behavior of sequences of 
potentials associated with sequences belonging to YΩ. In the statement below, we will 
use the notation Tr,Q,y(x) = rQx + y for a similarity transformation as discussed in 
subsection 2.2.

Proposition 8.5. Assume {xk}k≥1 ⊂ Ω and {yk}k≥1 ⊂ ∂Ω satisfy

|yk − xk| = dΩ(xk) 

and choose Qk ∈ O(n) with Qk(en) = (xk − yk)/dΩ(xk) for each k ≥ 1. Then

vk = wΩ
xk

◦ TdΩ(xk),Qk,yk
,

defines a bounded sequence in D1,p
0 (Rn \ {0}). If vk ⇀ v in D1,p

0 (Rn \ {0}) then the set 
{v > 0} ⊂ Rn is open,

B1(en) ⊂ {v > 0} ⊂ Rn \ {0} ,

and

lim inf
k→∞ 

dΩ(xk)p−n‖DwΩ
xk
‖pp ≥ ‖Dv‖pp ≥ λp({v > 0}) .

Proof. As w(x) = (1 − |x− xk|/dΩ(xk))+ is a competitor for wΩ
xk

,

‖DwΩ
xk
‖pp ≤ |B1|dΩ(xk)n−p .

We also have

‖DvΩ
k ‖pp = dΩ(xk)p−n‖DwΩ

xk
‖pp ≥ Rp(Ω, wΩ

xk
) ≥ λp(Ω)

by Proposition 3.3. Therefore, the sequence {vk}k≥1 is bounded in D1,p
0 (Rn \ {0}) with

λp(Ω)1/p ≤ ‖Dvk‖p ≤ |B1|1/p .

Assume that vk ⇀ v in D1,p
0 (Rn \ {0}). By the weak lower semi-continuity of the 

Dirichlet energy,

lim inf
k→∞ 

dΩ(xk)p−n‖DwΩ
xk
‖pp = lim inf

k→∞ 
‖Dvk‖pp ≥ ‖Dv‖pp .

This proves the first inequality in the proposition.
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Since we always identify v ∈ D1,p(Rn) with its Hölder continuous representative the 
set {v > 0} is open. To see that B1(en) ⊂ {v > 0} ⊂ Rn \ {0} we observe that for each 
k ≥ 1, vk is p-superharmonic in B1(en), nonnegative and satisfies vk(en) = 1. By passing 
to a subsequence if necessary, we may assume vk → v uniformly on compact subsets, 
by the Arzelà–Ascoli theorem and Morrey’s inequality. Therefore, the above properties 
hold true also for v. The strong minimum principle implies that v > 0 in B1(en).

As 0 ∈ ∂{v > 0} and B1(en) ⊂ {v > 0}, it follows that d{v>0}(en) = 1. By combining 
these two observations,

‖Dv‖pp =
(

v(en) 
d{v>0}(en)1−n/p

)−p

‖Dv‖pp ≥
∥∥∥∥ v

d
1−n/p
{v>0}

∥∥∥∥−p

∞
‖Dv‖pp ≥ λp({v > 0}) .

This completes the proof of the proposition. �
The application of the previous result gives the following lemma.

Lemma 8.6. Assume n ≥ 2. Suppose further that {xk}k≥1 ∈ YΩ, x0 ∈ ∂Ω and r > 0 are 
such that

lim 
k→∞

xk = x0

and that ∂Ω ∩Br(x0) is C1 regular or Ω ∩Br(x0) is convex. Then

lim inf
k→∞ 

dΩ(xk)p−n‖DwΩ
xk
‖pp ≥ λp(Rn

+) .

Proof. Let {xk}k≥1 be as in the statement of the lemma. By passing to a subsequence 
we may without loss of generality assume that

lim inf
k→∞ 

dΩ(xk)p−n‖DwΩ
xk
‖pp = lim 

k→∞
dΩ(xk)p−n‖DwΩ

xk
‖pp .

Let {yk}k≥1 ⊂ ∂Ω be a sequence such that

|xk − yk| = dΩ(xk) for each k ≥ 1 ,

and {Qk}k≥1 ∈ O(n) be a sequence of rotations such that Qk(en) = xk−yk

dΩ(xk) . Define

vk = wΩ
xk

◦ TdΩ(xk),Qk,yk

as in Proposition 8.5. We will analyze {v > 0}, where v is a subsequential limit of vk.
Performing a translation and rotation, we can assume that x0 = 0 without loss of 

generality. By assumption, there exists a function f : Rn−1 → R with

Ω ∩Br = {x = (x′, xn) ∈ Rn : xn > f(x′)} ∩Br .



36 R. Hynd et al. / Journal of Functional Analysis 289 (2025) 111002 

If Ω∩Br is convex, f is convex. While if ∂Ω∩Br is C1, then f is C1. In either case, we 
may assume that f is Lipschitz.

Since {xk}k≥1 converges and limk→∞ dΩ(xk) = limk→∞ |xk − yk| = 0, it follows that 
limk→∞ yk = x0 = 0. In particular, |yk| < r/2 for k large enough and

(yk)n = f(y′k) .

Therefore, x ∈ Ω ∩Br if and only if |x| < r and

(x− yk)n > f(x′) − f(y′k) .

Consequently, if z ∈ BR with R < r/(2dΩ(xk)) then yk + dΩ(xk)Qk(z) ∈ Ω if and only if

(Qk(z))n >
f(dΩ(xk)(Qk(z))′ + y′k) − f(y′k)

dΩ(xk) 
.

Since {vk}k≥1 ⊂ D1,p
0 (Rn \ {0}) is bounded we may by passing to a subsequence 

assume that vk ⇀ v in D1,p
0 (Rn \ {0}) and vk → v uniformly on compact sets. Since 

O(n) is compact we may also pass to a further subsequence such that Qk → Q0. In 
particular, this implies that ṽk := wΩ

xk
(dΩ(xk) · +yk) ⇀ v(Q−1

0 ·) := ṽ. We claim that 
{ṽ > 0} = Q0{v > 0} is given by the region above a Lipschitz graph. We first observe 
that since wΩ

xk
is a potential

ṽk(z) = 0 if zn ≤ f(dΩ(xk)z′ + y′k) − f(y′k)
dΩ(xk) 

,

ṽk(z) > 0 if zn >
f(dΩ(xk)z′ + y′k) − f(y′k)

dΩ(xk) 
,

(8.7)

for z ∈ BR. Moreover, ṽ(Q0en) = 1 and since the p-Laplacian is invariant under the 
action of O(n), ṽ is p-superharmonic whenever ṽ > 0.

Since f is Lipschitz, the functions

fk(z′) := f(dΩ(xk)z′ + y′k) − f(y′k)
dΩ(xk) 

are uniformly bounded and Lipschitz for |z′| < R for any fixed R > 0 provided k is 
large enough (with a Lipschitz constant independent of R). Therefore, we can pass to a 
subsequence along which fk converges uniformly to a limit f0,R in |z′| < R. It follows 
that ṽ is nonnegative, ṽ = 0 in {zn < f0,R(z′)} ∩ BR and ṽ is p-superharmonic in 
{zn > f0,R(z′)} ∩BR. Since, ṽ(Q0en) = 1, the strong minimum principle implies

{z ∈ Rn : ṽ(z) > 0, |z| < R} = {z ∈ Rn : zn > f0,R(z′), |z| < R}.
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As {ṽ > 0} is independent of R, f0,R is the restriction of some globally Lipschitz function 
f0 and {ṽ > 0} = {zn > f0(z′)}.

If f was convex, then f0 is convex; so {ṽ > 0} and thus {v > 0} is convex. If f was C1

at 0, then f0(z′) = Df(0) · z′; so {ṽ > 0} and hence {v > 0} is a halfspace. In either case 
λp({v > 0}) = λp(Rn

+) by Theorem B. Appealing to Proposition 8.5, we finally conclude 
that

lim 
k→∞

dΩ(xk)p−n‖DwΩ
xk
‖pp ≥ λp(Rn

+) . �
Remark 8.7. In the above proof, we only used the regularity assumption on ∂Ω∩Br(x0)
when concluding that λp({v > 0}) = λp(Rn

+). Whenever ∂Ω ∩ Br(x0) is given by a 
Lipschitz graph it follows in the same manner that {v > 0} is the region above a Lipschitz 
graph.

Combining the results of this section we are able to determine Λp(Ω) if Ω is regular.

Corollary 8.8. Assume n ≥ 2. If Ω is bounded and C1, then Λp(Ω) = λp(Rn
+).

Proof. Fix a sequence {xk}k≥1 ∈ YΩ such that

lim 
k→∞

dΩ(xk)p−n‖DwΩ
xk
‖pp = Λp(Ω) .

Since Ω is compact, we may assume that {xk}k≥1 converges to some limit x0. As 
{xk}k≥1 ∈ YΩ, it follows that x0 ∈ ∂Ω. By Lemma 8.6, Λp(Ω) ≥ λp(Rn

+). In view 
of Corollary 8.2 (and Remark 8.4), we also have Λp(Ω) ≤ λp(Rn

+). �
Remark 8.9. While the equality in Corollary 8.8 is not true in general, it is possible to 
prove an analogue of Theorem A for Λp. Namely, for any Ω ⊊ Rn,

λp(Rn \ {0}) ≤ Λp(Ω) ≤ λp(Rn
+) .

Indeed, the lower bound follows directly from the general fact that λp(Ω) ≤ Λp(Ω) and 
the lower bound in Theorem A. The upper bound can be obtained by transplanting a 
sequence of potentials realizing Λp(B1) = λp(Rn

+) into Ω in the spirit of our proof of 
Corollary 5.4.

We are now ready to prove Theorem C by combining our previous results.

Proof of Theorem C. By Corollary 8.8, Λp(Ω) = λp(Rn
+). Therefore, the assumption of 

this theorem implies that λp(Ω) < Λp(Ω). Proposition 3.4 yields the desired conclu
sion. �
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9. Refined analysis at points of negative mean curvature

The aim of this section is to prove that if ∂Ω has a point x0 where the mean curvature is 
negative then λp(Ω) < λp(Rn

+). The idea is to take a sequence of potentials whose singular 
point approaches x0 from within Ω and show that along this sequence Rp is eventually 
smaller than when it is evaluated on a potential in Rn

+. We begin by considering a model 
situation in which ∂Ω is a parabola in a neighborhood of x0. We will assume throughout 
this section that p > n ≥ 2 and Ω ⊊ Rn is open.

Let K ∈ R(n−1)×(n−1) be a real symmetric matrix and denote its operator norm by 
‖K‖. Define

ΩK = {x = (x′, xn) ∈ Rn : xn > x′ ·Kx′, |x| < 1} ,

and set uK,ε = wΩK
εen for ε ∈ (0, 1/2). Recall that uK,ε ∈ D1,p

0 (ΩK) is the solution of

⎧⎪⎪⎨
⎪⎪⎩

−ΔpuK,ε = 0 in ΩK \ {εen} ,

uK,ε = 0 on ∂ΩK ,

uK,ε(εen) = 1 .

(9.1)

We will also write u0 = w
Rn

+
en and use that u0 ∈ D1,p

0 (Rn
+) is characterized as the solution 

of ⎧⎪⎪⎨
⎪⎪⎩

−Δpu0 = 0 in Rn
+ \ {en} ,

u0 = 0 on ∂Rn
+ ,

u0(en) = 1 .

(9.2)

The crucial ingredient in our proof of Theorem D is the following proposition.

Proposition 9.1. Assume K ∈ R(n−1)×(n−1) is symmetric with ‖K‖ < 1/2. There are 
constants C > 0 and γ ∈ (0, 1] so that

εp−n‖DuK,ε‖pp ≤ ‖Du0‖pp + ε tr(K) p− 1 
n− 1

∫
Rn−1

|Du0(x′, 0)|p|x′|2 dx′ + Cε1+γ

for ε ∈ (0, 1/8).

With this proposition in hand we can prove the following theorem. An illustration of 
the geometric assumption made in this theorem is shown in Fig. 5.

Theorem 9.2. Assume that there exist x0 ∈ ∂Ω, Q ∈ O(n), r > 0, and a symmetric matrix 
K ∈ R(n−1)×(n−1) with tr(K) < 0 such that
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{x = (x′, xn) ∈ Rn : xn > x′ ·Kx′} ∩Br ⊂ Q(Ω − x0) .

Then λp(Ω) < λp(Rn
+).

Proof. Since λp(Ω) = λp(Q(Ω − x0)), we may assume without loss of generality that 
x0 = 0 and Q = Id. Also observe that if the assumption of the theorem holds for some 
r > 0, then it is also valid for any smaller value of r. As such, we may assume that

r‖K‖ <
1
2 . (9.3)

It suffices to construct w ∈ D1,p
0 (Ω) which satisfies Rp(Ω, w) < λp(Rn

+). With this in 
mind, we define wε ∈ D1,p

0 (rΩrK) via wε(x) = urK,ε/r(x/r). As

rΩrK = {x = (x′, xn) ∈ Rn : xn > x′ ·Kx′} ∩Br ⊂ Ω ,

we also have wε ∈ D1,p
0 (Ω). Moreover, ‖Dwε‖p = rn/p−1‖DurK,ε/r‖p. And since 

wε(εen) = 1 for ε < r and 0 ∈ ∂Ω,

∥∥∥ wε

d
1−n/p
Ω

∥∥∥
∞

≥ |wε(εen)| 
dΩ(εen)1−n/p

≥ εn/p−1 .

Consequently,

Rp(Ω, wε) ≤ (ε/r)p−n‖DurK,ε/r‖pp .

In view of (9.3), ‖rK‖ < 1/2, so Proposition 9.1 can be applied. As ‖Du0‖pp = λp(Rn
+),

Rp(Ω, wε) ≤ λp(Rn
+) + ε tr(K) p− 1 

n− 1

∫
Rn−1

|Du0(x′, 0)|p|x′|2 dx′ + C(ε/r)1+γ

for all ε sufficiently small. By Lemma 6.1, u0 is the restriction of a Morrey extremal to 
Rn

+. It then follows that |Du0(x′, 0)| > 0 for x′ ∈ Rn−1 [26, Proposition 3.6]. As a result,

∫
Rn−1

|Du0(x′, 0)|p|x′|2 dx′ > 0 .

In addition, this integral is finite by the decay estimate proved in [23]. Finally, as tr(K) <
0 and γ > 0, we can choose ε sufficiently small so that Rp(Ω, wε) < λp(Rn

+). �
We are now ready to prove Theorem D. Let us briefly recall the formula for the mean 

curvature of a surface in Rn given by the graph of C2 function f : Rn−1 → R. The mean 
curvature H at x = (x′, f(x′)) is given by
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Fig. 5. A depiction of the geometric assumptions in Theorem 9.2. Here Ω is the set above the black curve, 
x0 is the origin, Q the identity, and ∂Ω can be touched at x0 from the inside with a negatively curved 
parabola (blue).

(n− 1)H = div
(

Df √
1 + |Df |2

)
.

This is the mean curvature with respect to the unit normal (Df,−1)/
√

1 + |Df |2 at 
x, and the derivatives of f are evaluated at x′. Also note that (n − 1)H = Δf at 
x = (x′, f(x′)) whenever Df(x′) = 0.

Proof of Theorem D. By assumption, Ω is C2 and there is x0 ∈ ∂Ω which has negative 
mean curvature. After translating and rotating Ω, we may assume x0 = 0 and

{x = (x′, xn) ∈ Rn : xn > f(x′)} ∩Br = Ω ∩Br (9.4)

for some r > 0. Here f : Rn−1 → R is C2 when |x′| < r and satisfies that f(0) =
|Df(0)| = 0, and Δf(0) < 0.

Fix ε so small that tr(K) < 0, where

K = 1
2D

2f(0) + ε Id′ .

Here Id′ is the (n−1)× (n−1) identity matrix. Reducing r if necessary, f(x′) ≤ Kx′ ·x′

for |x′| < r by Taylor’s theorem. In view of (9.4),

{x = (x′, xn) ∈ Rn : xn > x′ ·Kx′} ∩Br ⊂ Ω .

We conclude that λp(Ω) < λp(Rn
+) by Theorem 9.2. Theorem C in turn implies that Ω

has an extremal. �
Remark 9.3. The assumptions in Theorem D can be weakened significantly. It suffices to 
assume that
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(1) Ω is bounded,
(2) that after an appropriate rotation and translation 0 ∈ ∂Ω and there exists r > 0 so 

that

Ω ∩Br ⊃ {x = (x′, xn) ∈ Rn : xn > x′ ·Kx′} ∩Br

where K ∈ R(n−1)×(n−1) is a symmetric matrix with tr(K) < 0, and
(3) that for every x ∈ ∂Ω there exists r > 0 so that either

(a) Ω ∩Br(x) is convex, or
(b) ∂Ω ∩Br(x) is C1-regular.

Indeed, under these assumptions Lemma 8.6 implies that Λp(Ω) ≥ λp(Rn
+). By Theo

rem 9.2, λp(Ω) < λp(Rn
+). Then Proposition 3.4 yields the existence of an extremal.

9.1. Proof of Proposition 9.1

Proposition 9.1 is a direct consequence of the following two lemmas.

Lemma 9.4. Assume K ∈ R(n−1)×(n−1) is symmetric with ‖K‖ < 1/2. There are con
stants C > 0 and γ ∈ (0, 1] so that

εp−n‖DuK,ε‖pp

≤ ‖Du0‖pp − ε
2p 

n− 1tr(K)
∫
Rn

+

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (x′, 0) dx + Cε1+γ

for ε ∈ (0, 1/8).

Lemma 9.5. The equality
∫
Rn

+

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (x′, 0) dx = −p− 1

2p 

∫
Rn−1

|Du0(x′, 0)|p|x′|2 dx′

holds and both integrals are convergent.

Proof of Lemma 9.4. We prove this lemma by exploiting the variational characterization 
of uK,ε. In particular, we will derive the desired inequality by constructing an appropriate 
competitor for uK,ε.

Step 1. For y = (y′, yn) ∈ Rn, define

Φ(y) = (y′, yn − y′ ·Ky′) . (9.5)
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This mapping is a diffeomorphism from Rn to itself, Φ(ten) = ten for all t ∈ R,

Φ({y ∈ Rn : yn > y′ ·Ky′}) = Rn
+ , and Φ−1(x) = (x′, xn + x′ ·Kx′) . (9.6)

As

DΦ(y) =
(

Id 0
−2(Ky′)� 1

)
, (9.7)

it also follows that detDΦ(y) = 1 for all y ∈ Rn.
In addition, we claim

|Φ(y)| ≥ 1/2 for all y ∈ Bc
1 . (9.8)

We first note that if |y| ≥ 1 and |y′| ≥ 1/2, then

|Φ(y)|2 = |y′|2 + (yn − y′ ·Ky′)2 ≥ |y′|2 ≥ 1/4 .

Next, we observe that if |y| ≥ 1 and |y′| < 1/2, then

|yn|2 = |y|2 − |y′|2 ≥ 3/4 .

As ‖K‖ < 1/2 and t2 − t/4 is increasing for t ≥
√

3/2,

|Φ(y)|2 = |y′|2 + (yn − y′ ·Ky′)2

≥ |yn|2 − 2yny′ ·Ky′

≥ |yn|2 −
1
4 |yn|

≥
(3

4

)
− 1

4

(√3
2 

)
>

1
4 .

We conclude that (9.8) holds.
Set

φ(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 if s ≤ 0 ,

s if 0 < s < 1 ,

1 if s ≥ 1 ,

and define

w(y) = φ
(
2 − 4|Φ(y)|

)
u0(Φ(y)/ε)
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for ε ∈ (0, 1/8) and y ∈ Rn. Since |Φ(y)| ≥ 1/2 whenever |y| ≥ 1, the first factor of 
w vanishes for |y| ≥ 1. The second factor of w vanishes for all y with yn < y′ · Ky′. 
Indeed Φ maps this set of points to (Rn

+)c, where u0 vanishes. Therefore, w is supported 
in ΩK .

Since the first factor of w is Lipschitz with compact support and the second factor be
longs to D1,p(Rn), w ∈ D1,p

0 (ΩK). Further, w(εen) = φ(2−4ε)u0(en) = 1 as 0 < ε < 1/4. 
It follows that

‖DuK,ε‖pp ≤ ‖Dw‖pp

by the variational characterization of uK,ε. We now wish to estimate ‖Dw‖pp in terms of 
u0 and ε.

Step 2. In view of (9.7),

DΦ(Φ−1(x))�z = z − zn(2Kx′, 0) and |DΦ(Φ−1(x))�z| ≤ |z|(1 + |x′|) (9.9)

for x, z ∈ Rn. Using the change of variables y = Φ−1(x) in the integral below leads 
to ∫

Rn

|Dw(y)|p dy

=
∫

B1/2

∣∣DΦ(Φ−1(x))�D
(
φ(2 − 4|x|)u0(x/ε)

)∣∣p dx
= ε−p

∫
B1/4

∣∣DΦ(Φ−1(x))�Du0(x/ε)
∣∣p dx

+
∫

B1/2\B1/4

∣∣∣DΦ(Φ−1(x))�
(
−4u0(x/ε)

x 
|x| + 1

ε 
(2 − 4|x|)Du0(x/ε)

)∣∣∣p dx
≤ ε−p

∫
B1/4

|Du0(x/ε) − ∂xn
u0(x/ε)(2Kx′, 0)|p dx

+ (3/2)p
∫

B1/2\B1/4

∣∣∣−4u0(x/ε)
x 
|x| + 1

ε 
(2 − 4|x|)Du0(x/ε)

∣∣∣p dx
≤ ε−p

∫
B1/4

|Du0(x/ε) − ∂xn
u0(x/ε)(2Kx′, 0)|p dx

+ (3/2)p4p2p−1
∫

B1/2\B1/4

|u0(x/ε)|p dx + (3/2)pε−p2p−1
∫

B1/2\B1/4

|Du0(x/ε)|p dx .

(9.10)
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Note that the first inequality is due to (9.9) and the second follows from the elementary 
inequality: (a + b)p ≤ 2p−1ap + 2p−1bp for a, b ≥ 0.

We shall also utilize the estimate

|z + h|p ≤ |z|p + p|z|p−2z · h + p(p− 1)
2 

|z|p−2|h|2

for z, h ∈ Rn with |h| ≤ |z|; see Lemma 10.2.1 in [1], for example. With z = Du0(x/ε)
and h = −∂xn

u0(x/ε)(2Kx′, 0), the above inequality and that |Kx′| ≤ ‖K‖|x′| < |x′|/2
gives

∫
B1/4

|Du0(x/ε) − ∂xn
u0(x/ε)(2Kx′, 0)|p dx

≤
∫

B1/4

|Du0(x/ε)|p dx− 2p
∫

B1/4

|Du0(x/ε)|p−2∂xn
u0(x/ε)Du0(x/ε) · (Kx′, 0) dx

+ p(p− 1)
2 

∫
B1/4

|Du0(x/ε)|p|x′|2 dx

≤
∫

B1/4

|Du0(x/ε)|p dx− 2p
∫
Rn

+

|Du0(x/ε)|p−2∂xn
u0(x/ε)Du0(x/ε) · (Kx′, 0) dx

+ p(p− 1)
2 

∫
B1/4

|Du0(x/ε)|p|x′|2 dx

+ 2p
∫

Bc
1/4

|Du0(x/ε)|p−2∂xn
u0(x/ε)Du0(x/ε) · (Kx′, 0) dx

≤
∫
Rn

+

|Du0(x/ε)|p dx− 2p
∫
Rn

+

|Du0(x/ε)|p−2∂xn
u0(x/ε)Du0(x/ε) · (Kx′, 0) dx

+ p(p− 1)
2 

∫
B1/4

|Du0(x/ε)|p|x′|2 dx + p

∫
Bc

1/4

|Du0(x/ε)|p|x′| dx .

Changing variables x 	→ εx in the integrals above and combining this inequality with 
the upper bound on ‖Dw‖pp in (9.10) gives
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∫
Rn

|Dw(y)|p dy

≤ εn−p

∫
Rn

+

|Du0(x)|p dx− 2pεn+1−p

∫
Rn

+

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (Kx′, 0) dx

+ C0ε
n+2−p

∫
B1/(4ε)

|Du0(x)|p|x′|2 dx + C0ε
n+1−p

∫
Bc

1/(4ε)

|Du0(x)|p|x′| dx

+ C0ε
n

∫
B1/(2ε)\B1/(4ε)

|u0(x)|p dx + C0ε
n−p

∫
B1/(2ε)\B1/(4ε)

|Du0(x)|p dx .

(9.11)
Here C0 is a constant which only depends on p.

Since u0 is the restriction of a Morrey extremal, u0 is axially-symmetric about the 
xn-axis [25, Theorem 1.1]. Therefore,

∂xn
u0(rθ, xn) = ∂xn

u0(rθ0, xn) and (Du0(rθ, xn))′ = θ|(Du0(rθ0, xn))′|

for any θ, θ0 ∈ Sn−2, r > 0, xn > 0. Furthermore, if θ0 ∈ Sn−2 is fixed, then

∫
Rn

+

|Du0(x)|p−2∂xnu0(x)Du0(x) · (Kx′, 0) dx

=
∞ ∫
0 

∞ ∫
0 

∫
Sn−2

|Du0(rθ0, xn)|p−2∂xnu0(rθ0, xn)|Du0(rθ0, xn)′|(θ ·Kθ)rn−1 dσ(θ)drdxn

=
tr(K)
n− 1 

∞ ∫
0 

∞ ∫
0 

∫
Sn−2

|Du0(rθ0, xn)|p−2∂xnu0(rθ0, xn)|Du0(rθ0, xn)′||θ|2rn−1 dσ(θ)drdxn

=
tr(K)
n− 1 

∫
Rn

+

|Du0(x)|p−2∂xnu0(x)Du0(x) · (x′, 0) dx.

(9.12)

Here σ denotes the surface measure and we used the identity

1 
σ(Sn−2)

∫
Sn−2

θ ·Kθ dσ(θ) = tr(K)
n− 1 

.
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Combining (9.11), (9.12), we arrive at the estimate

εp−n‖DuK,ε‖pp ≤ ‖Du0‖pp − ε
2p tr(K)
n− 1 

∫
Rn

+

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (x′, 0) dx

+ C0ε
2

∫
B1/(4ε)

|Du0(x)|p|x′|2 dx + C0ε

∫
Bc

1/(4ε)

|Du0(x)|p|x′| dx

+ C0ε
p

∫
B1/(2ε)\B1/(4ε)

|u0(x)|p dx + C0

∫
B1/(2ε)\B1/(4ε)

|Du0(x)|p dx .

(9.13)
It remains is to bound the last four terms.

Step 3. It follows from [23] that for any

0 < β < β0(p) := −1
3 + 2 

3(p− 1) +

√(
−1

3 + 2 
3(p− 1)

)2
+ 1

3 (9.14)

there is a constant C1 depending on β and p such that

|u0(x)| ≤ C1|x|−β and |Du0(x)| ≤ C1|x|−β−1 (9.15)

for all |x| ≥ 2. Note that [2,∞) 
 p 	→ β0(p) is decreasing. As limp→∞ β0(p) = 1
3 , 

it must be that β0(p) > 1/p for all p > 3. Moreover, the monotonicity of β0 implies 
that

β0(p) ≥ β0(3) = 1 √
3
>

1
2 ≥ 1 

p
for all p ∈ [2, 3] .

Therefore, β0(p) > 1/p for all p ∈ [2,∞).
We now fix

1 
p
< β < β0(p),

and use the decay estimates (9.15) to bound the four error terms in (9.13). To estimate 
the integral of |Du0(x)|p|x′|2 over B1/(4ε) we split it into two parts; one away from the 
singularity where we can employ the decay estimates, and one near to the singularity 
where we simply use that |Du0| ∈ Lp.

Observe that

ε

∫
Bc

1/(4ε)

|Du0(x)|p|x′| dx ≤ σ(Sn−1)C1ε

∞ ∫
1/(4ε)

r−(β+1)prn dr ≤ C2ε
p−n+βp ,
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ε2
∫
B2

|Du0(x)|p|x′|2 dx ≤ 22ε2
∫
B2

|Du0(x)|p dx ≤ C2ε
2 ,

ε2
∫

B1/(4ε)\B2

|Du0(x)|p|x′|2 dx ≤ σ(Sn−1)C1ε
2

1/(4ε)∫
2 

r−(β+1)p+n+1 dr ≤ C2ε
p−n+βp ,

εp
∫

B1/(2ε)\B1/(4ε)

|u0(x)|p dx ≤ σ(Sn−1)C1ε
p

1/(2ε)∫
1/(4ε)

r−βp+n−1 dr ≤ C2ε
p−n+βp ,

∫
B1/(2ε)\B1/(4ε)

|Du0(x)|p dx ≤ σ(Sn−1)C1

1/(2ε)∫
1/(4ε)

r−(β+1)p+n−1 dr ≤ C2ε
p−n+βp .

Here C2 is a constant which only depends on p, n, and β. Combining these estimates 
with (9.13), we deduce

εp−n‖DuK,ε‖pp ≤ ‖Du0‖pp − ε
2p tr(K)
n− 1 

∫
Rn

+

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (x′, 0) dx

+ C3(εp−n+βp + ε2)

for some constant C3. Choosing

γ = min{p− n + βp− 1, 1}

completes the proof since γ > 0 and C3(εp−n+βp + ε2) ≤ 2C3ε
1+γ . �

Proof of Lemma 9.5. We first note that |Du0|p|x′| ∈ L1(Rn
+) by the decay estimate 

proved in [23]. It follows that the integral on the left-hand side of the lemma is well
defined. Therefore, dominated convergence implies that∫

Rn
+

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (x′, 0)dx

= lim 
δ→0+

∫
Rn

+\Bδ(en)

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (x′, 0)dx .

Next observe that since u0 is smooth and p-harmonic in Rn
+ \ {en},

|Du0(x)|p−2Du0(x) ·DV (x)�Du0(x) = div
(
|Du0(x)|p−2Du0(x)Du0(x) · V (x)

)
− 1 

p
D
(
|Du0(x)|p

)
· V (x)
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− div
(
|Du0(x)|p−2Du0(x)

)︸ ︷︷ ︸
Δpu0=0 

Du0(x) · V (x)

= div
(
|Du0(x)|p−2Du0(x)Du0(x) · V (x)

)
− 1 

p
D
(
|Du0(x)|p

)
· V (x) 

for any x ∈ Rn
+ \ {en} and V ∈ C∞(Rn;Rn).

Employing this identity with V (x) = (0, . . . , 0, |x′|2/2) and integrating by parts gives∫
Rn

+\Bδ(en)

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (x′, 0) dx

=
∫

Rn
+\Bδ(en)

div
(
|Du0(x)|p−2Du0(x)Du0(x) · V (x)

)
dx

− 1 
p

∫
Rn

+\Bδ(en)

D
(
|Du0(x)|p

)
· V (x) dx

=
∫

∂(Rn
+\Bδ(en))

|Du0(x)|p−2Du0(x) · V (x)Du0(x) · ν(x) dσ(x)

+ 1 
p

∫
Rn

+\Bδ(en)

|Du0(x)|pdiv(V (x)) dx

− 1 
p

∫
∂(Rn

+\Bδ(en))

|Du0(x)|pV (x) · ν(x) dσ(x) ,

where ν is the outward unit normal to the surface and σ is the surface measure. The 
expression above simplifies as div(V ) ≡ 0 for our choice of V . Moreover, Du0(x) =
−ν∂xn

u0(x) for x ∈ ∂Rn
+ since u0 vanishes on ∂Rn

+. As a result, the equality above 
reduces to∫

Rn
+\Bδ(en)

|Du0(x)|p−2∂xn
u0(x)Du0(x) · (x′, 0) dx

= −p− 1
2p 

∫
∂Rn

+

|Du0(x)|p|x′|2 dx′

+ 1
2

∫
∂Bδ(en)

|Du0(x)|p−2∂xn
u0(x)|x′|2Du0(x) · en − x 

|en − x| dσ(x)

− 1 
2p

∫
∂Bδ(en)

|Du0(x)|p|x′|2 1 − xn

|en − x| dσ(x) .

(9.16)
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Since |x′| ≤ δ on ∂Bδ(en) and |Du0(x)| ≤ C|x − en|−
n−1
p−1 (by, e.g., [24, Proposition 

2.8]), the integrals above over ∂Bδ(en) can be estimated as

∣∣∣∣∣
∫

∂Bδ(en)

|Du0(x)|p−2∂xn
u0(x)|x′|2Du0(x) · en − x 

|en − x| dσ(x)

∣∣∣∣∣ ≤ σ(Sn−1)Cδn+1−pn−1
p−1 

and ∣∣∣∣∣
∫

∂Bδ(en)

|Du0(x)|p|x′|2 1 − xn

|en − xn|
dσ(x)

∣∣∣∣∣ ≤ σ(Sn−1)Cδn+1−pn−1
p−1 .

Our assumption p > n gives

n + 1 − p
n− 1
p− 1 

= 1 + p− n

p− 1 
> 1 .

We conclude upon sending δ → 0 in (9.16). �
10. On the range of λp(Ω)

Theorem A asserts that

λp(Rn \ {0}) ≤ λp(Ω) ≤ λp(Rn
+)

for any open Ω ⊊ Rn. In this section, we shall use Theorem D to deduce that every point 
in the interval

[
λp(Rn \ {0}), λp(Rn

+)
]

equals λp(Ω) for some Ω. In fact, we shall prove that it suffices to consider the annular 
regions

Ar1,r2 = {x ∈ Rn : r1 < |x| < r2} for 0 < r1 < r2 .

Theorem 10.1. Assume p > n ≥ 2. For any

λp(Rn \ {0}) < λ < λp(Rn
+)

there exists a unique δ ∈ (0, 1) such that λ = λp(Aδ,1).

Proof. If suffices to show the function (0, 1) 
 δ 	→ λp(Aδ,1) is increasing, continuous, 
and satisfies
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lim 
δ→0+

λp(Aδ,1) = λp(Rn \ {0}) and lim 
δ→1−

λp(Aδ,1) = λp(Rn
+) .

First we will make a few preliminary observations.
By Theorem D, Aδ,1 admits an extremal uδ and λp(Aδ,1) < λp(Rn

+) for each δ ∈ (0, 1). 
As Aδ,1 is rotationally symmetric, we may assume

uδ = w
Aδ,1
rδen

for some rδ ∈ (δ, 1). If 1−rδ ≤ rδ−δ, then dAδ,1(rδen) = dB1(rδen). It would then follow 
from Proposition 5.3 that

λp(Aδ,1) = Rp(Aδ,1, uδ) = Rp(B1, uδ) ≥ λp(B1) = λp(Rn
+) ,

which is a contradiction. Therefore,

rδ − δ < 1 − rδ .

That is, rδen is closer to the inner boundary sphere of Aδ,1 than to its outer boundary 
sphere.

Part 1 (Monotonicity): Suppose 0 < δ1 < δ2 < 1. Observe that Aδ1,1 fully supports 
Aδ2,1. Indeed, if y0 ∈ ∂Aδ2,1 and |y0| = 1, then Aδ1,1 supports Aδ2,1 at y0. If |y0| = δ2
instead, then TAδ1,1 supports Aδ2,1 at y0, where T (x) = (δ2/δ1)x. By Proposition 5.3,

λp(Aδ1,1) ≤ λp(Aδ2,1) .

We claim that this inequality is strict.
Note that w̃(x) = w

Aδ2,1
rδ2en

∈ D1,p
0 (Aδ2,δ2/δ1). And as rδ2 − δ2 < 1 − rδ2 < δ2/δ1 − rδ2 ,

λp(Aδ1,1) = λp(Aδ2,δ2/δ1) ≤ Rp(Aδ2,δ2/δ1 , w̃) = Rp(Aδ2,1, w̃) = λp(Aδ2,1) .

Consequently, if λp(Aδ1,1) = λp(Aδ2,1), w̃ is an extremal for λp(Aδ2,δ2/δ1). However, this 
would contradict Corollary 3.2 since w̃ vanishes in A1,δ2/δ1 
= ∅. Therefore, λp(Aδ1,1) <
λp(Aδ2,1).

Part 2 (Continuity): We will argue that δ 	→ λp(Aδ,1) is both right and left continuous 
at a fixed but arbitrary δ0 ∈ (0, 1). By the monotonicity from Part 1, the function 
δ 	→ λp(Aδ,1) has both left and right limits at δ0. By Lemma 2.5,

lim 
δ→δ+

0

λp(Aδ,1) ≤ λp(Aδ0,1) .

Also note that the monotonicity proved above implies λp(Aδ0,1) ≤ λp(Aδ,1) for δ > δ0. 
Therefore,
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λp(Aδ0,1) ≤ lim 
δ→δ+

0

λp(Aδ,1) .

This verifies right continuity at δ0.
Monotonicity also gives

lim 
δ→δ−0

λp(Aδ,1) ≤ λp(Aδ0,1) .

In order to conclude the left continuity at δ0, we need to verify that

lim 
δ→δ−0

λp(Aδ,1) ≥ λp(Aδ0,1) . (10.1)

To this end, we choose an increasing sequence {δk}k≥1 of positive numbers tending to δ0. 
Passing to a subsequence of {δk}k≥1 if necessary, we may also assume that rδk converges. 
As rδk ≥ δk for all k,

lim 
k→∞

rδk = δ0 (10.2)

or

lim 
k→∞

rδk > δ0 . (10.3)

We will consider both cases separately below.
Case 1 . We claim that (10.2) cannot occur. If (10.2) holds, we will show that

lim 
k→∞

λp(Aδk,1) = λp(Rn
+) . (10.4)

As δ 	→ λp(Aδ,1) is increasing, (10.2) would imply that λp(Aδ,1) > λp(Rn
+) for δ >

δ0 but this contradicts Theorem A. As a result, we can focus on proving that (10.2)
implies (10.4).

Assume that (10.2) holds. Consider the rescaled sequence of extremals defined by

wk(y) = w
Aδk,1
rδken

(
(rδk − δk)y + δken

)
.

Notice that wk = wΩk
en , where Ωk is the annulus

Ωk =
{
y ∈ Rn : δk

rδk − δk
<

∣∣∣∣y + δken
rδk − δk

∣∣∣∣ < 1 
rδk − δk

}
.

As

λp(Aδk,1) = (δk − rδk)p−n‖Dw
Aδk,1
rδken

‖pp = ‖Dwk‖pp ,
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{wk}k≥1 ⊂ D1,p
0 (Rn \ {0}) is bounded. By passing to a subsequence if needed, we may 

assume wk ⇀ w0 in D1,p
0 (Rn \ {0}) and wk → w0 uniformly in B2. It follows that

lim 
k→∞

λp(Aδk,1) = lim inf
k→∞ 

‖Dwk‖pp ≥ ‖Dw0‖pp.

Recall that Bsk(−sken) is an exhaustion of {y ∈ Rn : yn < 0} for any increasing 
sequence sk → ∞. Since

B δk
rδk

−δk

(
− δken
rδk − δk

)
⊂ Ωc

k

and δk/(rδk − δk) → ∞, Bs(−sen) ⊂ Ωc
k for any s > 0 provided k is large enough. It 

follows that w0 vanishes in Bs(−sen) for every s > 0. This implies w0(y) = 0 whenever 
yn ≤ 0. Therefore, w0 ∈ D1,p

0 (Rn
+). By uniform convergence in B2, we also have w0(en) =

1. Thus,

lim 
k→∞

λp(Aδk,1) ≥ ‖Dw0‖pp ≥ Rp(Rn
+, w0) ≥ λp(Rn

+) .

By Theorem A, λp(Aδk,1) ≤ λp(Rn
+) for each k and thus we conclude that (10.2) im

plies (10.4).
Case 2. Now we assume that (10.3) holds. By passing to a subsequence, we may 

assume that the sequence wk = w
Aδk,1
rδken

converges weakly to some w0 ∈ D1,p
0 (Aδ0,1) and 

uniformly to w0 on compact sets. In particular, w0(r0en) = 1. We deduce that

lim 
k→∞

λp(Aδk,1) = lim 
k→∞

(δk − rδk)p−n‖Dwk‖pp

≥ (δ0 − r0)p−n‖Dw0‖pp
≥ Rp(Aδ0,1, w0)

≥ λp(Aδ0,1) .

Therefore, (10.1) holds. This concludes the proof that δ 	→ λp(Aδ,1) is continuous.

Part 3 (Endpoint limits): By Theorem A, λp(Aδ,1) ≥ λp(Rn \ {0}) for any δ ∈ (0, 1). 
Lemma 2.5 yields that

lim 
δ→0+

λp(Aδ,1) ≤ λp(B1 \ {0}) .

Therefore, in view of Theorem B,

lim 
δ→0+

λp(Aδ,1) = λp(B1 \ {0}) = λp(Rn \ {0}) .

As for the limit

lim 
δ→1+

λp(Aδ,1) = λp(Rn
+) ,



R. Hynd et al. / Journal of Functional Analysis 289 (2025) 111002 53

we can adapt our argument in Case 1 of Part 2 by choosing a sequence of positive 
numbers δk tending to 1 from below. In this case, we also have rδk ∈ (δk, 1) for each k. 
Therefore, it must be that rδk → 1. As a result, the argument used in Case 1 of Part 2 
translates directly to establish the above limit. �
11. Examples

In Corollary 8.8, we computed Λp(Ω) = λp(Rn
+) under the assumption that all bound

ary points of Ω are regular. The key to this result was that we were able to characterize 
all limiting geometries as halfspaces. The existence of well-defined limits may hold under 
weaker regularity assumptions on ∂Ω. However, it is in general difficult both to charac
terize all possible limits and even more so to compute the value of λp at these limits. 
In this section, we shall illustrate how the analysis can be carried for certain classes of 
domains.

11.1. Polygonal domains

We will now proceed to study the best constant λp in polygonal domains. Specifically, 
we say that a domain Ω ⊂ R2 is polygonal if ∂Ω is nonempty and consists of the union 
of finitely many line segments or rays {Γj}Kj=1 only intersecting at their endpoints. We’ll 
also require that each endpoint belongs to exactly two of the Γj’s. We will denote by 
SΩ the collection of corners of a polygonal domain Ω, which are defined as the set of 
endpoints of the Γj . To each y ∈ SΩ we can associate the corresponding interior angle 
ϕy ∈ (0, 2π). We emphasize that we do not exclude ϕy = π even though such an angle 
could be removed by merging the two line segments that meet at y.

The following claim is a corollary of Lemma 8.1. It basically asserts that the family 
of cones C2

ϕ for ϕ ∈ (0, π) constitutes the natural class of local model sets for polygonal 
domains.

Lemma 11.1. If Ω ⊊ R2 is polygonal with SΩ 
= ∅, then

Λp(Ω) ≤ min 
y∈SΩ

λp(C2
ϕy/2) = λp(C2

max 
y ∈ SΩ

ϕy/2) .

Furthermore, if Ω is bounded equality holds.

Proof. Each y ∈ SΩ is isolated, so there exists an r > 0 small enough so that up to 
translation and rotation Br(y) ∩ Ω agrees with Br ∩ C2

ϕy/2. Therefore the inequality 
follows by applying Lemma 8.1 at each of the corners and recalling that ϕ 	→ λp(C2

ϕ) is 
non-increasing by Lemma 7.5.

To deduce that we have equality in the case when Ω is bounded we argue as in 
Corollary 8.8. Take a sequence {xk}k≥1 ∈ YΩ such that

lim 
k→∞

dΩ(xk)p−n‖DwΩ
xk
‖pp = Λp(Ω) .
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Since {xk}k≥1 ∈ YΩ and Ω is compact, {xk}k≥1 has a convergent subsequence whose 
limit x0 belongs to ∂Ω. If x0 / ∈ SΩ, then ∂Ω is C1-regular in a neighborhood of x0 so 
Λp(Ω) ≥ λp(Rn

+) by Lemma 8.6. Alternatively, if x0 ∈ SΩ, then following the argument 
in Lemma 8.6 one proves that Λp(Ω) ≥ λp(C2

ϕx0/2
) if the approach of {xk}k≥1 to x0 is 

non-tangential while Λp(Ω) ≥ λp(Rn
+) if the approach is tangential. Since we established 

above that Λp(Ω) ≤ miny∈SΩ λp(C2
ϕy/2), it follows from Lemma 7.5 and Theorem A that 

either

Λp(Ω) = Λp(C2
ϕx0/2

) = min 
y∈SΩ

λp(C2
ϕy/2) or Λp(Ω) = λp(Rn

+) = min 
y∈SΩ

λp(C2
ϕy/2) .

We note that the latter case can only happen if maxy∈SΩ ϕy ≤ π. In either case, we have 
proved the desired equality. �

Recall that Theorem B asserts that convex domains in Rn which are not halfspaces do 
not admit extremals. By applying Proposition 5.3 there is a similar criterion for a class 
of polygonal domains. We say that a polygonal domain Ω is fully supported if Ω is fully 
supported by C2

ϕ∗/2 with ϕ∗ = maxy∈SΩ ϕy. In the case ϕ∗ ≤ π, Ω is a convex polygon, 
while for ϕ∗ > π, Ω satisfies a uniform (infinite) outer cone condition with opening angle 
2π − ϕ∗.

Lemma 11.2. Suppose Ω ⊂ R2 is a fully supported polygonal domain with ϕ∗ =
maxy∈SΩ ϕy. Then

λp(Ω) = λp(C2
ϕ∗/2).

Moreover, Ω does not admit an extremal unless Ω = x + QC2
ϕ∗/2 for some x ∈ R2 and 

Q ∈ O(2).

Remark 11.3. In Fig. 6, four polygonal domains are shown together with the implications 
of Lemmas 11.1 and 11.2 concerning their respective values of λp.

Proof. That λp(Ω) = λp(C2
ϕ∗/2) is a direct consequence of Proposition 5.3 and 

Lemma 11.1. To see that Ω does not admit an extremal, we can argue that the exis
tence of an extremal would contradict Corollary 3.2 (as in the proof of Theorem B). �

Lemmas 11.1 and 11.2 can be directly extended to planar domains whose boundary 
is C1 outside of a finite set of corners at which the boundary is given by two simple C1

curves that meet at a common endpoint. In this setting it is natural to allow for corners 
with interior angles equal to 0 or 2π to allow for boundaries with cusps. Lemmas 11.1
and 11.2 can also be generalized to polytopes in higher dimension by following the 
argument given above almost verbatim. However, the statements obtained become more 
complicated as the class of relevant model sets is much larger and our understanding of 
λp for these sets is limited. Nevertheless, in the next subsection, we will provide a family 
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Fig. 6. Four polygonal domains. For P1,P3 the largest interior angle is 3π
2 and for P2,P4 the largest 

interior angle is 7π
5 . The polygons P1,P2 are fully supported while P3,P4 are not. Therefore, by Lem

mas 11.1 and 11.2, we know that λp(P1) = λp(C2
3π/4), λp(P2) = λp(C2

7π/10), λp(P3) ≤ λp(C2
3π/4), 

λp(P4) ≤ λp(C2
7π/10).

of bounded, non-smooth, and non-convex domains in arbitrary dimension where we can 
determine the value of λp.

11.2. Examples of non-smooth domains in higher dimensions

Using the strategy discussed in the previous subsection, we can construct examples of 
bounded simply connected domains Ω whose boundary is regular except at a single point 
and λp(Ω) = λp(Cn

ϕ) for every n ≥ 2 and ϕ ∈ (0, π]. Specifically one can construct such 
domains by starting from B1∩Cn

ϕ and regularizing the boundary in a small neighborhood 
of ∂B1∩∂Cn

ϕ in such a manner that the resulting set remains fully supported by Cn
ϕ. Two 

such domains are depicted in Fig. 7. The resulting set Ω satisfies that λp(Ω) = λp(Cn
ϕ) by 

combining Proposition 5.3 and Lemma 8.1 with a blow-up around the singular boundary 
point.

11.3. Epigraphs

In much of our analysis we have utilized Lemma 8.1 and Proposition 8.5 by looking 
at the local geometry near some point on the boundary. In this subsection we demon
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Fig. 7. Two planar domains constructed as described. The value of λp for domain on the left is λp(C2
5π/6)

and for the domain to the right λp(C2
π). Examples for n > 2 can be obtained by rotation around the axis 

of symmetry.

strate how these results can yield interesting information when instead zooming out. An 
argument of this form was applied in the proof of case (3) in Theorem B but the idea is 
interesting enough to deserve including a second example. Specifically, we shall consider 
sets given by the region that lies above the graph of a function.

Let f : Rn−1 → R be a continuous function with f(0) = 0 and such that along a 
sequence {tk}k≥1 ⊂ (0,∞) with limk→∞ tk = 0 it holds that Fk : Rn−1 → R defined by 
z 	→ tkf(z/tk) converges locally uniformly to a one-homogeneous function F : Rn−1 → R. 
If we define

Ωf = {x = (x′, xn) ∈ Rn : xn > f(x′)}

and the dilation invariant set

ΩF = {x ∈ (x′, xn) ∈ Rn : xn > F (x′)}

then it holds that Λp(Ωf ) ≤ λp(ΩF ). Indeed, by the uniform convergence when zoom
ing further and further out the set Ωf locally converges to ΩF allowing us to apply 
Lemma 8.1. Indeed, given δ > 0 there is k sufficiently large so that

(ΩF + δen) ∩B1 ⊂ tkΩf ∩B1 ⊂ (ΩF − δen) ∩B1 .

Thus by arguing as in the proof of Corollary 8.2, the assumptions of Lemma 8.1 are 
fulfilled.

A similar argument can be made to work even if the limit of tf(θ/t) is infinite on 
some set. However, in this situation one needs to replace the locally uniform convergence 
in a suitable manner which is in general difficult. But in special cases there are natural 
ways to do this. For instance if f : Rn → R is such that f(0) = 0 and f(x) ≤ −c|x|α if 
|x| ≥ R for some constants c > 0, α > 1, and R > 0, then arguing as above one proves
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Λp(Ωf ) ≤ λp(Cn
π ) .

In fact, since Ωf (for any f) is fully supported by Cn
π the prescribed asymptotic behavior 

implies that λp(Ωf ) = λp(Cn
π ) by Proposition 5.3. Indeed, the picture to keep in mind is 

that if viewing Ωf from farther and farther away the asymptotic behavior of f will lead 
to the epigraph more and more resembling Cn

π .

11.4. Instability under small perturbations

Here we provide a few examples of domains which are almost identical but in which 
the value of λp and the existence/non-existence of extremals are different.

Example 11.4. Let Ω ⊊ Rn be an open set satisfying the assumptions of Theorem D. 
Then λp(Ω) < λp(Rn

+) and Ω admits an extremal. Assume that λp(Ω) > λp(Cn
ϕ) for 

some ϕ ∈ (π/2, π]. Given any r > 0 and x0 ∈ ∂Ω we can construct a set Ω′ such that 
ΩΔΩ′ ⊂ Br(x0) and λp(Ω′) ≤ λp(Cn

ϕ) < λp(Ω). The idea is to remove a small conical 
piece of Ω near x0, see Fig. 8.

By translation and rotation we can without loss of generality assume that x0 = 0 and 
that the outward unit pointing normal to ∂Ω at x0 is (0, . . . ,−1). The regularity of ∂Ω
ensures that there is an 0 < r′ < r so that ∂Ω∩Br′ is contained in a r′/4 neighborhood 
of the hyperplane xn = 0. We can then take Ω′ as

(Ω ∩Bc
r′) ∪ (Ω ∩ (Cn

ϕ + r′

2 en)) .

That is we locally remove a conical piece of Ω in such a manner that we create a singular 
boundary point matching that of Cn

ϕ. That λp(Ω′) ≤ λp(Cn
ϕ) now follows directly from 

Lemma 8.1.

Example 11.5. Let Ω ⊊ Rn be an open, bounded, convex set with C2-regular boundary. 
Part (1) of Theorem B implies that λp(Ω) = λp(Rn

+) and that Ω does not admit an 
extremal. Given r > 0, x0 ∈ ∂Ω we can construct Ω′ ⊂ Rn so that ΩΔΩ′ ⊂ Br(x0) and, 
either

(1) λp(Ω′) = λp(Cn
ϕ) for any ϕ ∈ (π/2, π] and Ω′ does not admit an extremal, or

(2) λp(Ω′) < λp(Rn
+) and Ω′ admits an extremal.

The construction for (1) is identical to that in the previous example we consider 
Ω′ = Ω ∩ (QCn

ϕ + y0) for a suitably chosen y0 ∈ Ω ∩ Br(x0) and Q ∈ O(n). That 
λp(Ω′) ≥ λp(Cn

ϕ) follows by noting that Ω being convex implies that Ω′ is fully supported 
by Cn

ϕ. By Lemma 8.1 and a blow-up at y0 we also have λp(Ω′) ≤ Λp(Ω′) ≤ λp(Cn
ϕ). 

Non-existence of an extremal follows by observing that if an extremal existed it would 
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Fig. 8. A pictorial description of Example 11.4. Given Ω, x0, r we construct the modified set Ω′ by locally 
removing a conical piece from Ω.

be extremal also for some rotated and translated copy of Cn
ϕ and so Corollary 3.2 would 

imply that Ω′ coincides with Cn
ϕ up to translation and rotation which is impossible.

The construction for (2) is similar but instead of introducing a singular point at the 
boundary we make a smooth indentation and apply Theorem D. Since Ω is convex there 
exists an 0 < r′ < r so that ∂Ω∩Br′(x0) can be represented as the graph of a C2 convex 
function. By rotation and translating we may assume that x0 = 0 and that there is a 
convex function f : Rn−1 → [0,∞) such that f(0) = |Df(0)| = 0 and

Ω ∩Br′ = {x = (x′, xn) ∈ Rn : xn > f(x′)} ∩Br′ .

If we set

φδ(x′) =
{
e1−1/(1−|x′|2/δ2) for |x′| < δ ,

0 otherwise,

then we can define Ω′ by letting

Ω′ ∩Br′ =
{
x = (x′, xn) ∈ Rn : xn > f(x′) + r′

2 
φδ(x′)

}
∩Br′

for some 0 < δ < r′. Provided δ is chosen sufficiently small the mean curvature of the 
boundary at (0, . . . , 0, r′/2) will be negative and we can apply Theorem D to draw the 
desired conclusion.

Example 11.6. Fix a nontrivial f ∈ C2(Rn−1) which has compact support and define

Ωf = {x = (x′, xn) ∈ Rn : xn > f(x′)} .
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Then Ωf admits an extremal and λp(Ωf ) < λp(Rn
+). To see this we first argue that 

Λp(Ωf ) = λp(Rn
+). By Remark 8.4, Λp(Ωf ) ≤ λp(Rn

+). For the reverse inequality, let 
{xk}k≥1 ∈ YΩf

realize the infimum defining Λp(Ωf ). Then up to passing to a subsequence 
we may assume that either lim infk→∞ |xk| = ∞ or lim supk→∞ dΩf

(xk) = 0. In either 
case, as f is C1 and has compact support, the set {v > 0} in Proposition 8.5 will be a 
halfspace so Λp(Ωf ) ≥ λp(Rn

+). Since

∫
Rn−1

div
(

Df(x′) √
1 + |Df(x′)|2

)
dx′ = 0

it follows that the mean curvature of ∂Ωf must be negative somewhere. Therefore, 
Theorem 9.2 implies that λp(Ωf ) < λp(Rn

+). The desired conclusion thus follows from 
Proposition 3.4.

12. Open problems

We bring this paper to an end by listing a few open problems that appear as natural 
possible extensions of the results we obtained.

Open problem 1. Assume that Ω ⊊ Rn is connected, that λp(Ω) = λp(Rn
+), and that Ω

admits an extremal. Is it true that Ω is a halfspace?

Open problem 2. Assume that Ω ⊊ Rn is mean-convex. Is it true that λp(Ω) = λp(Rn
+)?

Open problem 3. Assume that Ω ⊊ Rn is bounded and has boundary homeomorphic to 
Sn−1. Is it true that λp(Ω) ≥ λp(Cn

π )?

Open problem 4. If Ω ⊊ Rn admits an extremal, is the extremal unique up to multipli
cation by constants and similarity transforms that leave Ω invariant?

Remark on open problem 1. By Theorem B, the only convex domains with an extremal 
are halfspaces. We also recall that if Ω ⊂ R2 is a bounded C2 domain, then either Ω is 
convex, Ω does not have an extremal, and λp(Ω) = λp(R2

+) or Ω is not convex, Ω has an 
extremal, and λp(Ω) < λp(R2

+).

Remark on open problem 2. We saw that if Ω is bounded and fails to be mean-convex, 
then λp(Ω) < λp(Rn

+). Furthermore, the hypothesis of this problem implies that every 
connected component of Ω is convex when n = 2. It follows that in the plane, the answer 
is yes by Theorem B. It is also worth noting that for Hardy’s inequality (1.5), the sharp 
constant in any bounded, C2, and mean-convex domain coincides with the constant of 
the halfspace [30]. That is, the analog of open problem 2 is settled for inequality (1.5).

Remark on open problem 3. The motivation behind this problem is to further under
stand to what degree λp is governed by local and/or global geometric properties. The 
assumptions entail that Ω is topologically very simple and the suggested lower bound is 
motivated by the fact that Cn

π should be the blow-up that gives the lowest value of λp
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possible under the assumptions. We note that Proposition 5.3 yields the desired conclu
sion if Ω is additionally assumed to be fully supported by Cn

π . In particular, this includes 
the case when Ω is a star-shaped domain. Indeed, suppose Ω is star-shaped with respect 
to the 0 ∈ Ω and x ∈ ∂Ω. Then tx ∈ Ω for t ∈ [0, 1) and tx 
∈ Ω for t ≥ 1. It follows that 
there is Q ∈ O(n) with Q(Ω − x) ⊂ Cn

π . As x ∈ ∂Ω was arbitrary, Ω is fully supported 
by Cn

π .

Remark on open problem 4. The answer is yes when Ω is a halfspace or a punctured 
wholespace for n ≥ 2. This follows from Proposition 6.1 and the uniqueness of Morrey 
extremals up to similarity transformations (Section 3 of [26]).
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Appendix A. Approximation

This appendix is dedicated to proving Lemma 2.3. To this end, we suppose u ∈ D1,p
0 (Ω)

and ε > 0. Recall that our goal is to find v ∈ C∞
c (Ω) with

‖Du−Dv‖p ≤ ε‖Du‖p . (A.1)

By translating Ω if necessary, we may assume that 0 ∈ ∂Ω. And to ease notation in the 
following proof, we will write d(x) for dΩ(x).

Step 1. First, we choose a non-increasing η ∈ C∞([0,∞)) with 0 ≤ η ≤ 1, η(1/2) = 1, 
and η(1) = 0. Next, we set

f(x) = (1 − η(d(x)/δ))η(|x|/r) (A.2)

for x ∈ Ω and r, δ > 0. It is evident that f is supported in {x ∈ Ω : d(x) ≥ δ/2, |x| ≤ r},

f = 1 in {x ∈ Ω : d(x) ≥ δ, |x| ≤ r/2} , (A.3)

and f is Lipschitz continuous. It follows that

v1 = fu ∈ D1,p
0 (Ω)

and

supp(v1) ⊂ {x ∈ Ω : d(x) ≥ δ/2, |x| ≤ r} . (A.4)
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Direct computation gives

Dv1(x) = f(x)Du(x) − δ−1η′(d(x)/δ)η(|x|/r)u(x)Dd(x)

+ r−1(1 − η(d(x)/δ))η′(|x|/r)u(x) x 
|x| .

Employing (A.3) and recalling |Dd| ≤ 1 almost everywhere, we also find

‖Du−Dv1‖p ≤ ‖χ{d<δ}Du‖p + ‖χRn\Br/2Du‖p + δ−1‖η′‖∞‖χ{d<δ}u‖p
+ r−1‖η′‖∞‖χBr\Br/2u‖p .

By dominated convergence,

‖χ{d<δ}Du‖p + ‖χRn\Br/2Du‖p ≤ ε 
4‖Du‖p ,

provided we choose δ sufficiently small and r sufficiently large. To see that the remaining 
terms δ−1‖η′‖∞‖χ{d<δ}u‖p and r−1‖η′‖∞‖χBr\Br/2u‖p can also be made small, we argue 
as follows.

Step 2. By Morrey’s estimate (2.2), there is a constant c such that

|u(x)|p ≤ cd(x)p−n

∫
Bd(x)(x)

|Du(w)|p dw 

for all x ∈ Ω. Therefore,

δ−p

∫
Ω 

χ{d<δ}(x)|u(x)|p dx ≤ cδ−p

∫
Ω 

χ{d<δ}(x)d(x)p−n

∫
Bd(x)(x)

|Du(w)|p dwdx

= cδ−p

∫
Ω 

∫
Ω 

χ{d<δ}(x)χBd(x)(x)(w)d(x)p−n|Du(w)|p dwdx .

It is not hard to see that if d(x) < δ and w ∈ Bd(x)(x), then d(w) < 2δ and x ∈ Bδ(w). 
As a result,

d(x)p−nχ{d<δ}(x)χBd(x)(x)(w) ≤ δp−nχ{d<δ}(x)χBd(x)(x)(w)

≤ δp−nχ{d<2δ}(w)χBδ(w)(x) .

Thus, there is a constant C with

δ−p

∫
Ω 

χ{d<δ}(x)|u(x)|p dx ≤ cδ−n

∫
Ω 

∫
Ω 

χ{d<2δ}(w)χBδ(w)(x)|Du(w)|p dwdx



62 R. Hynd et al. / Journal of Functional Analysis 289 (2025) 111002 

≤ C

∫
Ω 

χ{d<2δ}(w)|Du(w)|p dw .

By dominated convergence,

δ−1‖η′‖∞‖χ{d<δ}u‖p ≤ ε 
4‖Du‖p

provided δ > 0 is small enough.

Step 3. In order to estimate r−1‖uχBr\Br/2‖p, we first change variables in the integral

r−p

∫
Br\Br/2

|u(x)|p dx =
∫

B1\B1/2

|rn/p−1u(ry)|p dy .

Recall that we assumed that 0 ∈ Ωc. Thus for y ∈ B1 \B1/2 such that ry ∈ supp(v) ⊂ Ω,

|rn/p−1u(ry)| = d(ry)1−n/p

r1−n/p

|u(ry)| 
d(ry)1−n/p

≤ |y|1−n/p |u(ry)| 
d(ry)1−n/p

≤ |u(ry)| 
d(ry)1−n/p

.

Consequently,

r−1‖χBr\Br/2u‖p ≤
( ∫

B1\B1/2

|u(ry)|p
d(ry)p−n

dy

)1/p

.

By (1.1), the functions B1 
 y 	→ |u(ry)| 
d(ry)1−n/p are bounded uniformly in r > 0; and by 

Lemma 2.2 (ii), they tend to zero pointwise in the limit as r → ∞. Therefore,

r−1‖η′‖∞‖χBr\Br/2u‖p ≤ ε 
4‖Du‖p

provided r > 0 is large enough. In summary, for r > 0 sufficiently large and δ > 0
sufficiently small

‖Du−Dv1‖p ≤ 3ε
4 
‖Du‖p .

Step 4. Select any ψ ∈ C∞
c (Rn) with supp(ψ) ∈ B1 and 

∫
Rn ψ(x) dx = 1. Also define 

ψτ = τ−nψ(·/τ) and note that supp(ψτ ) ∈ Bτ . Using (A.4), it is straightforward to 
verify

v = ψτ ∗ v1 ∈ C∞
c (Ω)

for τ < δ/2. Note that

‖Du−Dv‖p ≤ ‖Du−Dv1‖p + ‖Dv1 −Dv‖p ≤ 3ε
4 
‖Du‖p + ‖Dv1 − ψτ ∗Dv1‖p .
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Since |Dv1| ∈ Lp(Rn), it follows from standard results on mollification that the last term 
is smaller than ε 4‖Du‖p for τ > 0 chosen sufficiently small (see, e.g. [14]). This concludes 
the proof of (A.1).

Appendix B. Λp(Ω) is attained

In this appendix, we argue that for any open Ω ⊊ Rn there exists a sequence 
{xk}k≥1 ⊂ YΩ which realizes the infimum defining Λp(Ω). Namely, we will show

lim inf
k→∞ 

dΩ(xk)p−n‖DwΩ
xk
‖pp = Λp(Ω) .

With this goal in mind, we let {εj}j≥1 ⊂ (0, 1) satisfy limj→∞ εj = 0. For each j, there 
exists a sequence {xj

k}k≥1 ∈ YΩ with

lim inf
k→∞ 

dΩ(xj
k)

p−n‖DwΩ
xj
k

‖pp ≤ Λp(Ω) + εj . (B.1)

Let A ⊂ N be the subset of indexes j such that lim infk→∞ |xj
k| = ∞. Recall that for 

j ∈ Ac, lim supk→∞ dΩ(xj
k) = 0. Notice that at most one of A and Ac is a finite set.

First suppose that A is infinite, and consider the subsequence of the sequence of 
sequences {xj

k}k≥1 for which j ∈ A. Relabeling the subsequence if necessary, we obtain 
a collection of sequences {xj

k}k≥1 ∈ YΩ which satisfy (B.1) for some sequence of positive 
numbers {εj}j≥1 with limj→∞ εj = 0 and for which lim infk→∞ |xj

k| = ∞ for each j.
We now iteratively construct a new sequence {x∗

k}k≥1 ∈ YΩ as follows. Let x∗
1 = x1

1. 
Given {x∗

k}N−1
k=1 for N ≥ 2, choose x∗

N = xN
l , where l is the first index so that

|xN
l | ≥ |x∗

N−1| + 1 and dΩ(xN
l )p−n‖DwΩ

xN
l
‖pp ≤ Λp(Ω) + 2εN .

The construction implies that

lim inf
k→∞ 

|x∗
k| ≥ lim inf

k→∞ 
(k − 1) = ∞

and

lim inf
k→∞ 

dΩ(x∗
k)p−n‖DwΩ

x∗
k
‖pp ≤ lim inf

k→∞ 
Λp(Ω) + 2εk = Λp(Ω) .

Thus {x∗
k}k≥1 ∈ YΩ and

lim inf
k→∞ 

dΩ(x∗
k)p−n‖DwΩ

x∗
k
‖pp = Λp(Ω) .

The case when A is finite can be treated similarly except the first criteria when 
choosing x∗

N is replaced with dΩ(xN
l ) ≤ dΩ(x∗

N−1)/2.
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