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Progress in understanding multi-scale collisionless plasma phenomena requires employ-
ing tools which balance computational efficiency and physics fidelity. Collisionless fluid
models are able to resolve spatio-temporal scales that are unfeasible with fully kinetic
models. However, constructing such models requires truncating the infinite hierarchy of
moment equations and supplying an appropriate closure to approximate the unresolved
physics. Data-driven methods have recently begun to see increased application to this end,
enabling a systematic approach to constructing closures. Here, we use sparse regression
to search for heat flux closures for one-dimensional electrostatic plasma phenomena. We
examine OSIRIS particle-in-cell simulation data of Landau-damped Langmuir waves and
two-stream instabilities. Sparse regression consistently identifies six terms as physically
relevant, together regularly accounting for more than 95 % of the variation in the heat flux.
We further quantify the relative importance of these terms under various circumstances
and examine their dependence on parameters such as thermal speed and growth/damping
rate. The results are discussed in the context of previously known collisionless closures
and linear collisionless theory.

Keywords: plasma simulation, plasma dynamics

1. Introduction

Global modelling of multi-scale collisionless plasma phenomena is a long-standing
computational challenge. Even with state-of-the-art computing resources, it is often
computationally infeasible to resolve the smallest scale, kinetic effects within large-
scale, global domains relevant for fusion and astrophysical systems. Thus, progress
in understanding these systems is bound to happen through a combination of ab
initio kinetic modelling and reduced models. In the latter category, collisionless
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fluid models have demonstrated their utility in global modelling (Dong et al. 2019;
TenBarge et al. 2019; St-Onge et al. 2020; Ng et al. 2020) and as part of
hybrid (kinetic-fluid) schemes (Shi et al. 2021; Arzamasskiy et al. 2023; Achikanath
Chirakkara et al. 2023). For such reduced models to be able to capture the essence
of the kinetic physics at play, a systematic approach to constructing accurate fluid
closures is called for. A fluid closure relates higher-order fluid quantities (e.g. heat
flux) – for which the exact evolution equation is not retained – to lower-order fluid
quantities (e.g. density, flow velocity) and fields, allowing the truncation the other-
wise infinite hierarchy of fluid equations. Due to the lack of a universal closure for
collisionless dynamics, each closure must be tailored to the phenomena of interest.

In collisional systems, the distribution functions of the particles remain close
to local thermodynamic equilibrium, allowing for rigorous construction of closed
fluid models (Braginskii 1958; Chapman & Cowling 1991). There is, however, no
generally applicable closures for collisionless systems that are characterised by sig-
nificant departures from Maxwellianity and non-local kinetic phenomena, such as
wave–particle interactions. Nevertheless, there are theoretical approaches which dis-
til various aspects of the relevant physics into the form of the closure equations.
The closure by Hammett & Perkins (1990) is constructed to capture Landau damp-
ing, the Chew–Goldberger–Low (CGL) closure (Chew, Goldberger & Low 1956)
evolves the (generally anisotropic) pressure in such a way as to conserve adiabatic
invariants in collisionless magnetised plasmas, and the closure by Levermore (1996)
is based on the principle of maximum entropy, to name a few. However, all of these
approaches, while theoretically motivated, have limited scope – such as requiring
linearity or exact adiabaticity. These assumptions break down for many problems
of interest, for instance, in the presence of turbulence or magnetic reconnection.
Furthermore, some variants are numerically difficult to work with due to spatial
non-locality. In addition, there are ad hoc closures, such as the relaxation closure
that drives the pressure tensor towards an isotropic pressure (Wang et al. 2015).
These have had varying success in reproducing kinetic simulation results, and may
contain free parameters that cannot be determined theoretically, and the choice of
which can drastically alter dynamics.

An alternative systematic line of action to obtain closures for collisionless plasma
systems is to look towards data-driven methods, where the closures are constructed
to conform with kinetic simulation data. Neural network-based machine learning
is an effective tool to this end (Wang et al. 2020; Maulik et al. 2020; Qin et al.
2023), though it lacks interpretability, which makes it difficult to gain intuition and
generalisable understanding from. However, symbolic regression (Makke & Chawla
2024) and sparse regression (SR) (Brunton, Proctor & Kutz 2016; Rudy et al. 2017;
Schaeffer 2017) methods can be used to infer interpretable and generalisable equa-
tions describing a dynamical system. The models thus obtained are parsimonious,
lying at the Pareto-front trading between predictive power and model complex-
ity. SR has been used to discover the governing equations of dynamical systems
in a broad range of fields previously, but it has only recently been introduced in
plasma physics (Dam et al. 2017; Kaptanoglu et al. 2021b, 2023a; Alves & Fiuza
2022) and there is only a very limited number of attempts to use it for closure
discovery. Donaghy & Germaschewski (2023) employ SR to recover collisionless
fluid equations and discover a heat flux closure in the strongly nonlinear state of a
two-dimensional Harris-sheet reconnection scenario. They do not attempt to inter-
pret the found closure and avoid the linear regime, which is difficult due to noise
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at small amplitudes. Combining sparse regression and deep learning neural net-
works, Cheng et al. (2023) recover fluid equations and the local approximation
(Sharma et al. 2006; Ng et al. 2020) of the Hammett–Perkins closure in a
one-dimensional linearly Landau-damped Langmuir standing wave set-up.

Here, we employ the SINDy (Sparse Identification of Nonlinear Dynamics) algo-
rithm (Brunton et al. 2016; Rudy et al. 2017) for sparse regression to obtain a heat
flux closure – an expression for the heat flux in terms of lower-order moments –
in one-dimensional (1-D) electrostatic plasma scenarios. Specifically, we examine
Landau-damped Langmuir waves, and to gain further insights into the identified clo-
sure terms and illustrate their more general nature, we also study set-ups exhibiting
two-stream instability (Stix 1992) (and the following nonlinear dynamics), ubiquitous
in space and astrophysical systems (Khotyaintsev et al. 2019). Using particle-in-cell
simulation data produced with the OSIRIS code (Fonseca et al. 2002, 2008), we
search for optimally accurate expressions for the heat flux at each given model
complexity (i.e. number of terms in the closure expression). Covering both linear
and nonlinear stages, we follow the time evolution of the closure terms across the
development of an electrostatic two-stream scenario, from growth through satura-
tion via the formation and merging of phase-space holes. We also elaborate on the
parametric dependences of the terms found and quantify their relative importance.
The expressions are interpreted in the context of the local Hammett–Perkins clo-
sure. Analytically obtained constraints between the various closure terms are also
provided to support the regression results and to assist their interpretation.

The rest of the article is organised as follows. In § 2, we describe the sparse regres-
sion method employed and the simulation set-up for the systems we study, exhibiting
Landau damping and growth. In § 3, we outline and analyse the heat flux model
terms identified by SR. More specifically, we describe the results of applying SR to
simulations of Landau-damped Langmuir waves and two-stream instabilities in §§ 3.1
and 3.2, respectively. We then examine the relative importance of the various terms
found in § 3.3, relate the six terms found most consistently by SR to linear collision-
less theory in § 3.4 and finally, in § 3.5, discuss a fundamentally nonlinear seventh
term which is also identified as relevant by SR in many cases. We conclude by sum-
marising our results and giving an outlook on future work in § 4. Furthermore, we
include Appendix A, containing a derivation of 1-D electrostatic linear collisionless
theory from the Vlasov–Maxwell system, as well as the constraints this imposes on
the heat flux model found by SR. Finally, in Appendix B, we give a demonstration of
how SR works by going through how one can recover the 1-D momentum equation
from simulation data.

2. Methods

Our aim is to find approximate, spatio-temporally local analytical expressions for
the heat flux in terms of lower-order fluid quantities, such that these expressions
capture most of the variation in the heat flux observed in kinetic simulation data.
When discovering heat flux closures for a given physical system, we start by per-
forming a kinetic simulation of the system in question using the particle-in-cell (PIC)
code OSIRIS. During the simulation, we export diagnostics for all fluid quanti-
ties present in the three lowest-order collisionless fluid equations (A.2), namely the
number density nσ = ∫

d3vfσ (v), flow velocity V σ = n−1
σ

∫
d3vvfσ , mass-normalised

pressure tensor pσ = ∫
d3v(v − V σ )(2)fσ and mass-normalised heat flux tensor qσ =∫

d3v(v − V σ )(3)fσ for each species σ , as well as electromagnetic field data (electric
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field E and magnetic field B) at regular time intervals. Here, fσ (v) denotes the dis-
tribution function for species σ , and we use notation where [ab]ij = aibj and a(2) is
shorthand for aa. For accurate regression results, it is important that the version of
OSIRIS used here corrects for the otherwise occurring half-time step shifts between
position and momentum data, characteristic of PIC codes using a leap-frog scheme
(Boris & Shanny 1972; Hockney & Eastwood 2021). We also post-process our data
to correct for staggering of the fields through linear interpolation (see Appendix B
for a demonstration of the importance of correcting for such misalignments).

2.1. Sparse regression
In general, the aim of a sparse regression (SR) algorithm is to find an approxi-

mate relationship between some target quantity y and a set of M possibly relevant
quantities

{
θj
}M

j=1, while keeping model complexity low. In the version of SINDy we
use, which is one of the modified versions of the PDE-FIND algorithm described by
Alves & Fiuza (2022), the aim is specifically to approximate y as a linear combina-
tion of the θj quantities. To accomplish this, we randomly select N small space–time
volumes from the simulation domain and integrate both y and all θj quantities over
these small volumes to reduce noise.

1
We then collect the volume-integrated y and

θj quantities from all the sampled points in the domain into a vector y and a matrix
Θ defined so that

[
y
]
i = y

∣∣∣∣∣
pt i

and [Θ]ij = θj

∣∣∣∣∣
pt i

. (2.1)

With these definitions, the task of approximating y becomes a question of finding
the coefficient vector ξ that optimally solves the equation

y = Θξ . (2.2)

For us, ‘optimally’ means achieving a low mean squared error with as few non-
zero terms as possible, maximising not just accuracy but also model simplicity and
generalisability. Thus, our cost function looks like

C(ξ ) = ‖y − Θξ‖2 + λ ‖ξ‖0 , (2.3)

where ‖ξ‖0 denotes the 0-norm of ξ , i.e. the number of non-zero coefficients. The
λ hyperparameter is effectively gradually increased from 0, leading to increasingly
harsher penalisation of models with many non-zero terms. The end result of this
procedure is a sequence of models which are optimally accurate at each given model
complexity, sweeping along the Pareto front. To curb overfitting and more easily
discern which terms are spurious, we perform 10-fold cross-validation – terms in
� which are found consistently are more likely to be physical. The efficacy of our

1This approach, where one reduces the effect of particle noise by integrating over the data with some kernel,
is in general known as the weak formulation of SR (Schaeffer & McCalla 2017). Integrating over small space–time
volumes ‘without a kernel’, as we do, is a special case of this approach, effectively corresponding to using a space–
time box function as a kernel. It should be noted that using smooth test functions, as is done in SPIDER (Gurevich
et al. 2024) and WSINDy (Messenger & Bortz 2021), provides better accuracy when higher-order derivatives are
important.
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SR approach is demonstrated in Appendix B through a recovery of the electron
momentum equation.

In our case, we seek a heat flux closure for modelling electrostatic plasma phe-
nomena, meaning our y quantities are the elements of the heat flux tensor qσ . As
for the set of possibly relevant quantities θj, in principle, one would want to include
all possible expressions involving nσ , V σ , pσ , E and B. In practice, however, this
is infeasible, since the space of possible expressions is infinite. As it turns out, even
restricting to e.g. arbitrary products of the form

θj = nα
σ

∏
k

Vβk
σk Eγk

k Bδk
k

∏
l

pεkl
σkl, (2.4)

where the exponents α, βk, γk, δk and εkl are non-negative integers summing to
� some integer s, results in enormous term libraries Θ even when s is relatively
small due to the combinatorics involved. Since having a very large term library not
only increases computational cost, but also often leads to issues with convergence,
choosing a term library with as few superfluous terms as possible is desired.

For the one-dimensional electrostatic plasma problems we consider, where only
electron physics is relevant over the time scales of interest, we can first restrict
ourselves to considering only ne, Ve1, E1, pe11 and set y = qe111. Since only electrons
are relevant, and all vectors and tensors in 1-D have just a single degree of freedom,
we can also suppress species and coordinate indices from now on. For convenience,
we also normalise to the electron mass me, the elementary charge e, the speed of
light c and the plasma frequency ωpe =√

n̄ee2/(ε0me) at the unperturbed electron
density n̄e. This also normalises distances to the electron inertial length δe = c/ωpe.

To further narrow the range of possible candidate terms, we start with only those
terms which are dimensionally consistent with our y variable q, i.e. terms of the form

θj = nvα
thV 3−α (2.5)

for some integer α � 3, where vth = √
T = √

p/n, defining T = p/n to be (the
11-component of) the mass-normalised temperature tensor. Inspired by the local
approximation (Ng et al. 2020) of the Hammett–Perkins closure, which involves
a temperature gradient, we extend this initial set of candidate terms to also allow
similar ones with first-order spatial derivatives, e.g. nvth∂x(vth)∂x(V ). It should be
noted, however, that the presence of the spatial derivative in these additional terms
means that the coefficient corresponding to each such term will be dimensional. For
instance, the example term mentioned above with two spatial derivatives necessitates
a coefficient with a dimensionality of length squared. This in turn suggests a scaling
∼L2 for the coefficient in question, where L is the characteristic length scale for the
variation in the quantities involved.

We emphasise that restricting our term library in this way specifically is an arbi-
trary choice, made to limit the term library size so as to make SR convergence more
likely. We start by considering dimensionally consistent terms mainly because mod-
els constructed from such terms contain only unitless coefficients, which facilitates
generalisability. The restriction to integer α is made for convenience. Our exclusion
of terms with higher-order derivatives is chiefly motivated by the fact that their inclu-
sion would lead to difficulties with SR convergence due to the vastly increased term
library size. Furthermore, closures constructed from such terms are more difficult
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to work with computationally, since even first-order derivatives in the expression for
q yield second-order derivatives in ∇ · q and thus in the fluid equation system one
needs to solve. Importantly, the function space we have restricted ourselves to seems
sufficient to model q accurately, as we shall see.

2.2. Simulation set-up
In all of our simulations, we kinetically model an electron–proton plasma in one

spatial and three
2

velocity dimensions in the centre-of-mass (CoM) frame, with
physical mass ratio, a spatial resolution of x = 10−3 δe and periodic boundary
conditions. Since our simulations are all performed in the initial CoM frame and ion
flow velocities remain negligibly small, every instance of an electron flow velocity
V below can be thought of as V − vCoM, with a spatial average value of 0. Here,
vCoM is the velocity of the centre of mass. This quantity is invariant under Galilean
transformations, just like n and vth, meaning that all terms in our term library are
frame-independent with this interpretation of V . This is very much desirable since q,
the quantity we are seeking to model, is a Galilean-invariant quantity.

3
For numeri-

cal stability, we consistently use a simulation-internal time step slightly smaller than
the spatial resolution: 9.5 × 10−4ω−1

pe . To limit the amount of data output as diag-
nostics, we save the state of the simulation only once every 100 time steps, thus our
regression analysis uses an effective temporal resolution of t = 0.095ω−1

pe .

2.2.1. Landau-damped Langmuir waves
When studying Landau-damped Langmuir waves, we initialise the plasma as a
Maxwell distribution with various non-relativistic thermal speeds vth ∼ 0.01c using a
domain size of 0.256δe with 105

(
104

)
electrons (ions) per cell. To excite Langmuir

waves, we then apply and smoothly turn off an external sinusoidal E-field pertur-
bation propagating in the +x or −x direction with wavenumber |k| = 4π/ (0.256δe)
and a frequency ωr matching that of the analytic Langmuir mode. More specifically,
this is done by using a single-cycle sine squared envelope, reaching maximum ampli-
tude at ωpet = 3 and being fully turned off at ωpet = 6. The values of vth considered,
along with corresponding |k|λD,e values (where λD,e is the electron Debye length),
as well as frequencies and growth rates of the resulting Langmuir waves, are shown
in table 1.

After the external forcing is removed, the system is left to evolve self-consistently,
with the resulting Langmuir waves decaying due to Landau damping – initially expo-
nentially, with only linear processes involved, as can be seen in figure 1(a). The
PDE-FIND algorithm is then applied to find a closure for q during the timeframe
of length tL where decay is judged to be exponential (e.g. 6.0 < ωpet < 21.0 for
initial vth � 0.01c – see also figure 1a, where this time range is highlighted in red). In
total, ∼ 6 % of this space–time range is randomly sampled per cross-validation fold,
of which there are 10. The values of tL for all values of vth considered are listed
in table 1, together with the estimated bounce times tb for trapped electrons. Note
that for the four lower thermal speeds considered, decay is exponential for roughly

2As noted above, however, we only expect the components along the single modelled spatial dimension to be
of importance, meaning we are for most intents and purposes treating our simulation as 1D1V.

3An alternative approach to ensuring Galilean or Lorentz invariance (or some other symmetry of the system)
is the augmentation of simulation data through application of transformations of the corresponding type before
performing SR (McGrae-Menge et al. 2023).
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Initial vth/(0.01c): 0.8 0.9 1 1.1 1.25 1.5
Resulting |k|λD,e: 0.393 0.442 0.491 0.540 0.614 0.736
ωr/ωpe (±0.06∗): 1.24 1.31 1.36 1.42 1.50 1.67
Resulting ωr/ (kvth): 3.16 2.97 2.77 2.63 2.44 2.27
γ /ωpe: −0.0692 −0.109 −0.150 −0.195 −0.291 −0.429
ωpetL: 15.0 15.0 15.0 14.5 8.3 6.4
ωpetb: 7.30 7.66 8.10 8.61 9.56 11.3

TABLE 1. Values of vth used when studying Landau-damped Langmuir waves, the frequency
ωr and the (negative) growth rate γ of the excited Langmuir wave and the duration tL of
the period of exponential decay, over which SR is applied, as well as the estimated bounce
time tb for trapped electrons in each case. We also list the values of |k|λD,e and ωr/(kvth)
resulting from the other parameters. The frequencies ωr are calculated via Jacobsen interpo-
lation (Jacobsen & Kootsookos 2007) of the peaks in the discrete Fourier transform (DFT)
spectrum for the E-field, with uncertainty (∗) corresponding to half the DFT bin size. The
growth rate γ is calculated via linear regression on logarithmised data of the average E-field
energy density over the period of exponential decay. The estimated bounce time is calculated
as tb =√

me/(e|k|Erms), where Erms =√〈E2〉 is the spatial root-mean-square average of the
E-field magnitude at the point in time when the external drive is switched off.

γ = −0.150 ωpe

vth = 0.01 c γ = 0.184 ωpe nb/ne = 0.1
(a) (b)

FIGURE 1. Evolution of the spatially averaged E-field energy density 〈 1
2ε0E2〉 over time (a) in

the Landau damping case where vth = 0.01c and (b) in the two-stream case where nb/ne = 0.1,
normalised to the rest energy of an electron and the unperturbed electron number density n̄. The
linear decay/growth phase is highlighted in red.

twice the bounce time, meaning that we may expect slight nonlinear trapping effects
towards the end of the sampled time window. At higher values of vth, however, these
effects are drowned out by numerical noise present at the low perturbation ampli-
tudes reached towards the end of exponential decay. Indeed, this is the reason for
tL being lower than tb for the two highest vth values considered – in these cases,
the decay is so rapid that the perturbation disappears in the numerical noise before
trapping effects become visible.
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nb/ne: 0.01 0.02 0.05 0.1 0.2 0.4 0.5
vth/(0.01c): 0.373 0.422 0.503 0.678 0.860 1.03 1.05
δekchar: −60.8 −59.9 −60.2 −62.3 −64.3 −67.6 −67.4
Resulting |kchar|λD,e: 0.227 0.253 0.303 0.422 0.553 0.696 0.708
ωr/ωpe (±0.03∗): 1.00 0.96 0.88 0.80 0.66 0.19 0
γ /ωpe: 0.0515 0.0837 0.137 0.184 0.234 0.273 0.276
ωpetL: 31.3 23.7 20.9 19.0 13.3 12.3 11.9
ωpetb: 5.95 4.95 3.54 2.94 2.54 2.28 2.29

TABLE 2. Values of nb/ne examined when studying two-stream instabilities and the cor-
responding values of vth, as well as the frequency ωr, growth rate γ and characteristic
wavenumber kchar for the excited perturbation (also listing |kchar|λD,e), together with the dura-
tion tL of exponential growth and the bounce time tb. The same methods are used to calculate
ωr and γ as in the Landau damping cases, described in table 1. The values of kchar are calcu-
lated by using a weighted average over the DFT spectrum at the end of linear growth, using
the absolute value of the Fourier amplitude squared as the weighting. The minus signs sig-
nify propagation towards −x. Similarly to what was done in the Landau damping cases, we
estimate tb =√

me/(e|kchar|Erms), with both kchar and Erms in this case being evaluated at the
time of maximum average E-field energy density. Note that while kchar at this time is slightly

different than the values listed in this table, the difference is marginal (∼1 %).

2.2.2. Two-stream instabilities
Apart from studying Landau damping, we also examine a set-up exhibiting Landau
growth, namely a two-stream unstable plasma. In this case, we choose a larger
domain size of 2.048δe to limit the effects of the periodic boundary conditions
employed. We initialise the ions in equilibrium, with the electrons split into counter-
flowing equal temperature Maxwellian populations – a core population with density
nc and flow velocity Vc, and a beam population with density nb and flow velocity
Vb. The thermal speed for each population individually is uth = 3.16 × 10−3c. We
vary nb as a fraction of the total electron density ne, keeping the relative velocity
Vrel = Vc − Vb constant at 0.02c and staying in the zero-current frame by enforcing
ncVc + nbVb = 0. Specifically, we consider the range of values for nb/ne listed in
table 2. In these simulations, we use 104 (200) electrons (ions) per cell.

Note that the non-zero relative velocity Vrel between the populations means that
the combined electron population had a thermal speed vth = √

p/n > uth. More
specifically, this combined thermal speed is vth = [u2

th + (nb/ne) (1 − nb/ne) V 2
rel]

1/2,
with a maximum of vth ≈ 1.05 × 10−2c for nb/ne = 0.5.

The counterflowing electron populations drive wave growth via inverse Landau
damping. Similarly to the decay of the Langmuir waves above, this growth is initially
exponential. It eventually saturates, however (as can be seen in figure 1b), leading to
the formation of phase-space electron holes. With the data from these simulations,
SR is performed (a) over the linear part of the growth phase, and (b) over small
time slices of length 1.9ω−1

pe covering both the growth phase and the saturated phase
to study how the closure coefficients evolve over time, as illustrated in figure 3 –
in both cases for all values of nb/ne listed in table 2. Part (a) here is very much
analogous to what was done for the Landau damping case. For example, in the case
where nb/ne = 0.1, the time range sampled is 19.0 < ωpet < 38.0, highlighted in red
in figure 1(b), meaning ωpetL = 19.0. In part (b), the time slices are centred on
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time steps t = 1.9 × {1, 2, 3, . . .} ω−1
pe , covering the entire simulation domain up to

the last such time step which is > 0.95ω−1
pe from the end of the simulation, so that

every time slice falls entirely within the domain of the simulation. In both of these
cases, each of the 10 cross-validation folds randomly samples ∼2.5 % of the data in
the space–time ranges of interest.

Since we are now dealing with exponential growth rather than exponential decay,
the influence of noise towards the end of the linear part of the process is signifi-
cantly decreased compared with the situation in the Landau damping simulations.
This is also clearly visible in the stronger relationship between tL and tb in these
simulations – we consistently have tL ∼ 5.5tb, meaning growth is exponential for a
little over five times the bounce time. This suggests that there is a high probability of
nonlinear trapping-related effects being present to some extent in the data towards
the latter half of the sampled time range.

The excited perturbations in this case are more broad-spectrum than the Langmuir
waves examined above, necessitating the introduction of characteristic wavenumbers
kchar, calculated as outlined in the caption of table 2. The temporal spectrum is
dominated by a single frequency peak however, at the value of ωr listed in table 2.
Like in table 1, we also, for convenience, show |kchar|λD,e.

For simplicity and to more easily compare our results with those from the Landau-
damping case, we only consider the combined electron species rather than treating
the counter-streaming populations separately when performing SR. That is, all of
our closure models are models of the total electron heat flux, and our term library is
constructed from fluid quantities relating to the entire electron population. We note,
however, that for the purposes of modelling two-stream unstable systems in fluid
codes, it is likely more practical to treat the two electron populations as separate
species, with their own respective closures. Preliminary results suggest that applying
SR when using such an approach also yields broadly similar closure terms as those
identified here, in appropriately chosen reference frames. To avoid diverting our
focus, we leave a more detailed analysis of two-stream instability along these lines,
with separate closures for the beam and core populations, outside the scope of this
article.

3. Results

For both of the set-ups we considered, SR yields very similar results. In both cases,
a six-term model q = qeven + qodd was found, where{

qeven = A1nv2
thV + A2v3

th∂xn + A3nv2
th∂xvth,

qodd = A4 + A5nv3
th + A6nv2

th∂xV .
(3.1)

The split into qeven and qodd is based on the dependence on the propagation of the
perturbations involved. While the coefficients in front of the qeven terms are indepen-
dent of propagation direction (and thus ‘even in k’), the qodd coefficients switch sign
if the propagation direction is reversed (and are thus ‘odd in k’). This also means
that if there is no wave propagation, or when oppositely propagating waves are of
similar amplitudes, such as in a standing-wave scenario, all qodd coefficients go to
zero. In several cases, an additional term ∝ nvthV 2 is found. As this term mostly
appears for low |γ | – specifically towards the end of linear growth or decay pro-
cesses when |γ | is decreasing – it appears to help capture weak nonlinear trapping
effects.
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(a)

A4

A5

A1
A6

A3A2

(b)
A5

A2×102

A6×102

A3×102

A1

A4×106

|γ|/ωpe

FIGURE 2. Results from the Landau damping simulations. (a) FVU of the successive closures
found for vth/c = 0.01 (where γ = −0.150), with each new term indicated by its coefficient in
(3.1). Circles, unlike triangles, denote consistently found terms and blue (orange) marker colour
corresponds to performance on testing (training) data. Note that while FVU is typically smaller
than unity, it is higher than unity in certain situations. For example, this is the case for the 0-term
model, which is identically zero, meaning ŷi = 0 for all i, while the mean of the y data is y 
= 0.
(b) Dependence of the closure coefficients on vth, for a wave propagating in the +x direction.
Blue (red) lines/symbols indicate qeven (qodd) coefficients. For comparison, |γ |/ωpe is plotted
as a grey tightly dotted line.

We note that, due to the presence of spatial derivatives in terms 2, 3 and 6, the
corresponding coefficients are dimensional, having units of length. When plotting
them, they are implicitly given in units of δe, though often re-scaled by a factor of
102 for readability. In other words, a label A2 × 102 should read 102A2/δe. Similarly,
A4 has the units of mass-normalised heat flux, or number density times velocity
cubed, and is implicitly given in units of n̄c3. Thus, a curve labelled A4 × 106 shows
106A4/(n̄c3).

We consistently quantify the error of the various models found by SR using the
fraction of variance unexplained (FVU), defined as FVU =∑

i (yi − ŷi)2/
∑

i (yi −
y)2, where yi is the value of the y quantity at the ith sampling point, ŷi is the y-value
predicted by the model at that point, y = 1

N
∑

i yi is the mean y-value and the sums
run over the N samples. As stated in § 2, the y-quantity of interest to us is the total
electron heat flux q = qe111.

3.1. Landau-damped Langmuir waves
In the simulations of Landau-damped Langmuir waves, SR found the six-term

closure in (3.1) consistently, with an FVU of 2 %–7 %. The FVU increases with
higher initial vth and corresponding stronger damping. In simulations of standing
waves (i.e. the sum of oppositely propagating waves), only the qeven terms are found,
consistent with the lack of a preferred direction.

We note that in some cases, additional terms are sometimes found consistently.
For example, the unannotated seventh circle marker in figure 2(a) corresponds to
a term ∝ nV 2∂xV . In particular, at low |γ |, where nonlinear trapping effects are
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A4×107A5

A1

A6×102

A3×102

A2×102

γ/ωpe

A5

A2×102

A6×102

A3×102

A4×107

A1

log〈E2〉 (arb. units)

nb/ne = 0.1

(a) (b)

FIGURE 3. Results from the two-stream instability simulations. (a) Dependence of the growth
phase closure coefficients on nb/ne. For comparison, γ /ωpe is plotted as a grey tightly dot-
ted line. (b) Evolution of the coefficients over time in the case where nb/ne = 0.1. Blue (red)
lines indicate qeven (qodd) coefficients. Here, the grey tightly dotted line is the logarithm of the
spatially averaged E-field energy density in arbitrary units, recognisable from figure 1(b).

expected to be slightly more important, a term ∝ nvthV 2 is found, likely helping
capture these weak nonlinear effects.

Since we are examining an electrostatic 1-D setting affected by Landau damping,
one might expect the closure to be similar to the local approximation (Sharma et al.
2006; Ng et al. 2020) of the Hammett–Perkins closure (Hammett & Perkins 1990):
q ∼ − (χ/|kchar|) nv2

th∂xvth, where kchar is a characteristic wavenumber. The value
one should choose for the heat diffusivity χ depends on which values of ω/(kvth) are
of interest, with the original Hammett–Perkins paper focusing on regimes relevant
for the ion temperature gradient (ITG) instability. In our closure, the A3 term can
be identified as playing this role. Sparse regression finds vth-dependent coefficients,
see figure 2(b). For most coefficients, however, this vth-dependence is significantly
weaker than the vth-dependence of γ over the examined range of values – the major
exception being the constant term A4, which does not affect ∂xq, the quantity we
are ultimately in need of a closure for. There is one coefficient with non-negligible
vth-dependence which does affect ∂xq, however – namely, A1. Interestingly, we find
that the improvement in predictive power caused by the introduction of this A1nv2

thV
term into the model is significantly larger than the one coming from the Hammett–
Perkins-like A3nv2

th∂xvth term, as seen in figure 2(a).

3.2. Two-stream instabilities
As noted above, broadly speaking, the same six-term model is found for two-

stream instabilities as for Landau-damped Langmuir waves, at an even lower FVU
than in the Landau damping simulations of between 0.5 % and 5 %. Furthermore,
the term ∝ nvthV 2 is again found in cases with low |γ | – in fact, it appears for all
nb/ne < 0.4 (but is left out of figure 3 for readability). Also, some coefficients are
close to zero at certain nb/ne values – see figure 3(a). Such near-zero coefficients are
generally not found consistently. For example, when nb = 0.5ne = nc, the lack of a
preferred direction forces all qodd coefficients to zero, just like for a Landau-damped
standing wave. The sub-1 % FVU values are achieved in the middle of the examined
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beam density range, where amplitudes are relatively small but growth is still rapid
enough for trapping effects to be mostly negligible throughout the linear growth
phase.

Both in these set-ups and the Landau damping ones examined above, the growth
(or decay) phase value of A3 tends to be roughly twice A2. An exact factor of 2
would correspond to having a single term ∝ vth∂xp = v3

th∂xn + 2nv2
th∂xvth, i.e. a pres-

sure gradient driven contribution to the heat flux, whereas the A2 and A3 terms,
on their own, correspond to contributions due to density and temperature gradient
driven heat flux contributions, respectively. Notably, while A2 and A3 are nega-
tive for Landau damping they are positive in the growth phase of the instability,
where inverse Landau damping occurs. Interestingly, the same holds for A6 in most
cases examined here, despite the fact that the wave propagation is towards −x here,
whereas it is towards +x for the Langmuir waves examined in figure 2. As we will
see in § 3.4, this can be explained quite well by the constraints imposed on the coef-
ficients from linear collisionless theory. Being a k-odd term, the A6 term represents
a contribution to the heat flux coming from the pressure times the rate of change of
flow velocity in the direction of local wave propagation.

So far, we have considered model coefficients obtained only for the growth phase
of the instability. Now, we will consider both the growth phase and the saturated
phase of the simulation, with coefficients obtained in a time-resolved manner. We
find that while the same model terms are sufficient to accurately approximate the
heat flux throughout the simulation,

4
some of the coefficients vary significantly

across these phases. Overall, A3 is very well correlated with the instantaneous growth
rate, as is A2 and A6. This is seen in figure 3(b), but is even more apparent if
one plots the three coefficients in question against the instantaneous growth rate
γ (t) = 1

2∂t ln〈E2〉 itself – see figure 4. What is interesting is that while the amplitude
of the oscillation in A3 decreases along with that of the oscillation in γ (t), the other
two growth-related coefficients exhibit a far smaller change in oscillation amplitude
from the growth phase to the saturated phase. It is also notable that while A2 and A6
are practically equal during the saturated phase, they are desynchronised during the
growth phase, with A2 reaching its growth-phase maximum earlier than A6. Note,
however, that while A2 and A6 are out of phase in this way during the growth phase
for all examined values of nb/ne (disregarding the symmetric set-up with nb/ne = 0.5,
where A6 = 0), the exact nature of their relationship varies depending on nb/ne, as
seen comparing the two cases shown in figure 4. In general, they synchronise earlier
in simulations with higher beam density. Furthermore, the fact that the oscillation
amplitudes of A2 and A6 are approximately equal only holds when nb/ne ∼ 0.1, as
one might suspect from the fact that A6 → 0 as nb/ne → 0.5 by virtue of being
k-odd.

Compared with the growth-related terms, A1 and A5 (as well as A4) vary relatively
slowly over time – especially A5. Overall, the value of A1 fits quite well with the
heuristic A1 ∼ −3 + 1

2 sgn(k)A5 obtained from linear theory in the limit where |γ | �
ωr ∼ ωpe ∼ |k|v̄th (see § 3.4), the actual values in this case being |γ | < 0.2ωpe, ωr =
0.80ωpe and |k|v̄th ∼ 0.4ωpe. The one notable exception to this is the very early

4This is not necessarily what one would expect. In general, the model terms – or even the modelling approach
– might need to be adapted to the various phases of the system’s evolution. To inform one’s choice of model, and
to quantify the complexity of the training data, which affects the difficulty of recovering/discovering terms, the
Shannon information entropy metric (Kaptanoglu et al. 2023; Vasey et al. 2025b) can be used.
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FIGURE 4. Three growth-/damping-related coefficients A2, A3 and A6, compared with the
instantaneous growth rate (a) in the case where nb/ne = 0.1, also shown in figure 3(b), and
in the case where nb/ne = 0.2. As we can see, A3 is very nearly precisely proportional to γ ,
while the other two coefficients are also strongly correlated with it.

growth phase, where the prevalence of high-k noise means that the physics involved
is very far from this limit. In fact, in the later parts of the saturated phase, the
heuristic performs better than expected, given the fact that the merging of electron
holes should decrease the characteristic wavenumber |k| as time goes on. There also
appears to be a contribution from the growth rate γ on top of this, leading to slight
oscillations in A1 over time, consistent with the constraints imposed by linear theory
as outlined in § 3.4.

When it comes to giving a physical interpretation of these non-growth-correlated
terms, A4 can be thought of as a global heat flux induced by passing waves. As seen in
§ 3.4, this term is beyond the purview of linear theory – in fact, the exact mechanism
giving rise to this contribution is unclear. However, the A4 term does not affect
the divergence of the heat flux, which is what one is ultimately seeking to model
when creating a closure for the pressure equation. The A1 term is transparently a
product of pressure and flow velocity, and it provides either the most or the second
most important contribution to q, depending on nb/ne. Its appearance in our closure
might be related to the fact that {Vp} is part of the expression relating the energy
flux Q = ∫

d3vv(3)f to the heat flux q: Q = nV (3) + 3 {Vp} + q. Thus, having a term
in our q model equal to specifically −3 {Vp} (i.e. having A1 = −3, which is quite
a typical value found by SR) would signify a cancelling of this term in the energy
flux. In the 1-D pressure equation, having an A1 term as part of q similarly leads to
partial cancellations. Specifically, writing the rest of q (i.e. q excluding the A1 term)
as qr, the equation reduces to

∂tp + (1 + A1) V∂xp + (3 + A1) p∂xV + ∂xqr = 0, (3.2)

so that the value A1 = −1 would cancel the second term and A1 = −3 would cancel
the third term. The final of the three most important terms in our q model (see
§ 3.3), i.e. the A5 term, is k-odd. Thus, it is clearly related to the wave propagation
direction. Furthermore, in set-ups like ours which are in the CoM frame, V oscil-
lates around zero while n and vth have positive equilibrium values. As discussed
in § 3.4, this means that all of the terms in our six-term model contribute to q at
first-order in perturbation theory. While there are many terms in our term library
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that do this, there are actually only two which contribute to q at zeroth-order in per-
turbation theory due to how our term library is constructed – precisely the A4 and
A5 terms. This may be related to why they are identified by SR as being useful for
modelling q.

The fact that some of the coefficients correlate with growth (or decay) – and
as such, differ significantly between the growth and the saturated phases of the
instability – means that we should not expect to find a closure with fixed coefficients
which is accurate throughout both phases with respect to the contribution from these
terms. To capture both phases, one would need coefficients which are informed
about the phase, through e.g. a volume-averaged electric-to-thermal energy ratio.
We do not aim to provide such closures here. However, as we shall see in the next
section, the growth-related terms contribute relatively little to the accuracy of the
model compared with the A1, A4 and A5 terms, meaning the closure we obtain in
the growth phase remains quite accurate even in the saturated phase.

3.3. Quantifying the importance of terms: δFVU

To get a better sense of the circumstances under which each term in our closure is
important, let us quantify their individual contributions by how much their exclusion
increases the FVU of the closure, a measure we will refer to as δFVU . Doing this for
the various time slices examined in figure 3(b), we get figure 5.

The two by far most important terms are the two terms with order unity coeffi-
cients, i.e. A5 and A1. The next most important term by δFVU is the constant term A4,
although, as noted previously, this term is not very relevant to the accuracy of the
closure since it has no impact on ∂xq. Among the growth-related terms, A3 is overall
the most important by some margin, while A6 and A2 are the least important terms –
A6, in general, being slightly more important than A2 in this case. Interestingly, A2 is
important mostly in the first half of a linear growth or decay process, while A6 mostly
matters during the latter half. This agrees very well with what one might guess from
solely looking at the sizes of the coefficients in question in figure 3(b). While it is not
obvious that this should be the case, it is reasonable from the perspective that if the
best fit for a coefficient is zero at some point in time, its importance is necessarily
also zero. Since the achieved FVU is at best ∼5 × 10−3, any term with δFVU � 10−4

can be safely assumed to be irrelevant at our level of accuracy for describing the
physics during that time range.

The fact that the most important terms, A1 and A5, vary quite slowly means that
regardless of on which time range we perform the regression, we should expect
the resulting closure to work quite well over the entire simulated time range. And
indeed, this is what one finds if one plots the six-term model q = qeven + qodd with
coefficient values from (e.g.) the growth phase over the entire space–time domain
of the simulation and compares it to a plot of the actual q output by OSIRIS – see
figure 6.

This is especially promising since one of the primary use cases envisioned for these
kinds of closures is sub-grid scale modelling within a larger simulation, where the
instability occurs on a very short time scale compared with the overall time scales of
interest. In such a situation, modelling the saturated phase ‘end state’ where γ ≈ 0
is the most important. The fact that there is no growth on average means that the
six-term model can be reduced to a three-term model with only A1, A4 and A5 – and,
of course, providing a value for A4 is unnecessary if one is only interested in solving
the fluid equations, since A4 does not affect ∂xq.
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FIGURE 5. Importance of the six terms found by SR as they vary over time in the two-stream
unstable set-up with nb/ne = 0.1, as measured by δFVU .
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FIGURE 6. A comparison of the OSIRIS q data (top left) from the nb/ne = 0.1 simulation with
our six-term SR model (top middle) and a local Hammett–Perkins model equivalent to keeping
only A3 and A4 (top right), as well as the resulting ∂xq (bottom row). Both models are trained
solely on data from the linear growth phase, corresponding to 19.0 < ωpet < 38.0. The six-term
model performs very well even in the saturated regime, corresponding to ωpet � 40. All mass-
normalised heat fluxes, like the A4 coefficient, are given in units of n̄c3, and spatial derivatives
of such quantities are given in units of n̄ωpec2.

In general, using a six-term model trained solely on growth phase data like in
figure 6 tends to yield FVU ∼ 1 % during the growth phase and FVU ∼ 5 %−10 %
in the saturated phase, while using a six-term model trained on data from the sat-
urated phase where there is no net wave growth (or, more-or-less equivalently, a
three-term model with only the A1, A4 and A5 terms) yields FVU ∼ 5 %−10 % in
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the growth phase and FVU ∼ 2 %−5 % in the saturated phase. Thus, our six-term
(or indeed three-term) model seems to be largely sufficient for modelling the satu-
rated phase, despite the presence of nonlinear phenomena like particle trapping and
soliton-like phase-space electron holes.

3.4. Comparison with constraints from linear theory
During linear decay or growth, the plasma should be well described by linear col-

lisionless theory. As explained in Appendix A, this gives us two predictions relating
the different closure coefficients, namely⎧⎨
⎩

kA6 = β +
[
−kA2ωr + 1

2kA3 (1 + Φ−) ωr − 1
2A5 (1 + 3Φ+) γ

]
kv̄th
|ω|2 ,

A1 = −3 − α +
[
−kA2γ + 1

2kA3 (1 + Φ+) γ + 1
2A5 (1 + 3Φ−) ωr

]
kv̄th
|ω|2 ,

(3.3)

where we are using shorthand notation

α = ω2
pe + γ 2 − ω2

r

k2v̄2
th

, β = 2ωrγ

k2v̄2
th

, Φ± = ω2
pe ± |ω|2
k2v̄2

th

. (3.4)

Let us first consider some limiting cases. First, take a marginally stable perturbation
with γ → 0, where (3.3) simplifies to⎧⎪⎪⎨

⎪⎪⎩
A6 =

[
−A2 + 1

2A3

(
1 + ω2

pe−ω2

k2v̄2
th

)]
kv̄th
ω

,

A1 = −3 − ω2
pe−ω2

k2v̄2
th

+ 1
2A5

(
1 + 3

ω2
pe−ω2

k2v̄2
th

)
kv̄th
ω

,

(3.5)

with ω = ωr real. We can immediately see that one solution of the first of these
equations is A2 = A3 = A6 = 0, in agreement with the relationship A2,3,6 ∼ γ found
via SR. The second equation is less straightforward to interpret. If ω ∼ ωpe ∼ |k|v̄th,
like in most of our simulations, we expect A1 ∼ −3 + 1

2 sgn(k)A5 – and this should
hold as a rule of thumb even when γ is non-zero but small compared with ωr.
Qualitatively, this agrees decently with our results, even those from the growth phase
where γ > 0 (but in most cases < ωr). Generally, both A1 and A5 are order unity,
and A1 is shifted a bit upwards from −3 in figures 2 and 3 for all set-ups we consider
except the symmetric two-stream set-up, matching the fact that sgn(kA5) = +1. That
this case should disagree with our rule of thumb is not surprising, since it has ωr ≈ 0,
while γ is finite.

The growth rate is truly negligible mainly during parts of the saturated phase of our
two-stream simulations. However, the saturated phase is generally dominated by non-
linear physics, thus linear theory should not be expected to give accurate predictions.
Therefore, we restrict our comparison with (3.5) to the start at the saturated phase,
before the created electron holes start to merge. Specifically, let us examine the time
around when the peak average E-field energy is reached, marked in figure 7(a) for
the case where nb/ne = 0.1. Performing SR over the region where the instantaneous
growth rate satisfies |γ (t)|/ωpe < 0.02 near this peak for each two-stream simula-
tion and comparing the SR value of A1 with the value predicted by (3.5) yields
figure 7(b). As we can see, the agreement is good for weaker beam strengths, but
becomes less accurate when approaching nb/ne = 0.5, where the physics involved is
more nonlinear by virtue of the larger perturbation amplitudes.
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(a) (b)

FIGURE 7. (a) Time range around peak E-field energy density where |γ |/ωpe < 0.02 for nb/ne =
0.1. (b) Values of A1 found by SR in the two-stream simulations during the equivalent time range
for all examined values of nb/ne, compared with the linear theory prediction at γ = 0 given by
(3.5), inserting the values of A5 found by SR.

If we instead consider the limit ωr → 0, corresponding to a non-oscillatory – but
possibly growing or decaying – perturbation, we get⎧⎪⎪⎨

⎪⎪⎩
kA6 = −1

2A5

(
1 + 3

ω2
pe+γ 2

k2v̄2
th

)
kv̄th
γ

,

A1 = −3 − ω2
pe+γ 2

k2v̄2
th

+
[
−kA2 + 1

2kA3

(
1 + ω2

pe+γ 2

k2v̄2
th

)]
kv̄th
γ

.
(3.6)

Similar to the case with γ → 0, the first equation allows for a solution where A6 =
A5 = 0, consistent with the lack of wave propagation – in fact, A4 can also be set
to zero. As for the second equation, if we insert inferred parameter values from the
symmetric two-stream unstable set-up,⎧⎪⎨

⎪⎩
γ = 0.276 ωpe,

v̄th = 1.05 × 10−2c,

k ≈ kchar = −67.4 δ−1
e ,

(3.7)

we get

ω2
pe + γ 2

k2v̄2
th

≈ 2.15 and
kv̄th

γ
≈ −2.56, (3.8)

giving a prediction of

A1 ≈ −5.15 + 2.56 (kA2 − 1.58kA3) . (3.9)

The coefficient values found by SR in this case are⎧⎪⎨
⎪⎩

A1 = −3.90,

A2 = 7.18 × 10−3δe,

A3 = 9.56 × 10−3δe,

(3.10)
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FIGURE 8. Values of A1 and A6 found by SR during the growth phase compared with the linear
theory prediction given by (3.3), inserting the values of the other coefficients found by SR. The
plot on the left contains the results from the Landau-damped Langmuir wave simulations, while
the plot on the right contains the results from those with two-stream unstable set-ups.

and if we insert our values for A2 and A3 into the approximate expression for
A1, we get A1 = −3.79, which is reasonably accurate considering the quite broad
k spectrum.

Performing a similar comparison between the values of A1 and A6 found by SR
during linear decay/growth, and those predicted by (3.3) for all simulations, given
the other coefficients as input, yields figure 8. The agreement is decent for both the
Landau damping simulations and the two-stream instability ones. Interestingly, the
two-stream instability simulations agree even better with linear theory, despite their
more broad-spectrum nature. This is likely due to a combination of several factors.
The instantaneous decay rate in the Landau damping case oscillates throughout the
decay, which means that assigning the A2, A3 and A6 coefficients a single value for
the entire decay phase is less accurate than doing the same for the growth phase
in the two-stream simulations. In addition, the space–time domain is larger in the
two-stream simulations, yielding higher-resolution DFT spectra.

3.5. A term ∝ nvthV 2

The terms making up the six-term model are in some cases not the only ones
found consistently by SR. In particular, a term ∝ nvthV 2 appears consistently in
regressions over the growth phase when |γ | is small – at v̄th/c < 0.01 corresponding
to |γ |/ωpe � 0.15 for the Landau damping simulations and at nb/ne < 0.4, i.e. |γ | <
0.27ωpe, in the two-stream simulations. Like the terms in qodd, this term is k-odd,
switching sign depending on the propagation direction of the waves. Notably, the
cases where the term shows up are precisely those where one would expect a k-odd
trapping-related term to show up, corresponding to high tL/tb and a clear wave
propagation direction (i.e. high |ω/k|).

Examining how the importance of this term evolves over time, as measured by
δFVU , we consistently find that it is almost as important as the A2 and A6 terms. At
a few instances during the simulations, however, it is significantly more important
than these two terms and sometimes even more important than A3. It is never
as important as the A1 and A5 terms, however. Consistently, the periods where it
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(a) (b)

FIGURE 9. Variation over time of (a) the importance of the braking term CnvthV 2 as measured
by δFVU and (b) the coefficient value C itself, for the two-stream unstable set-up with nb/ne =
0.1. In panel (a), we also show the δFVU values corresponding to the A2, A3 and A6 terms for
reference, illustrating how the braking term is of similar importance. We highlight the time
ranges where the δFVU value is above the semi-arbitrary cutoff 4 × 10−4, largely corresponding
to decreasing |γ (t)|. We also show the time evolution of the E-field energy in arbitrary units. In
panel (b), we show the instantaneous growth rate γ (t), illustrating its correlation with C. In the
highlighted region, the prevalence of high-frequency noise and rapid oscillation in the growth
rate causes the best-fit value of C to oscillate wildly. To improve legibility, we thus only show C
at ωpet > 20.

is of higher importance occur towards the end of linear processes, when |γ (t)| is
decreasing, as can be seen in figure 9(a), which shows the case nb/ne = 0.1. Because
of this, it might be reasonable to refer to this term as a kind of ‘braking term’,
working to damp ongoing growth or decay.

As for the value of the coefficient itself (which we can call C), it correlates well with
γ (t) starting in the latter half of the growth phase. This can be seen in figure 9(b),
where the time evolution of the C coefficient in the case where nb/ne = 0.1 is shown.
Unlike terms A2, A3 and A6, however, it only changes sign once for this value of
nb/ne, going from positive in the growth phase to negative in the saturated phase.
However, its magnitude continues to oscillate along with the growth-related terms
even in the saturated phase. The high-frequency noise (and oscillation in γ ) in the
beginning of the growth phase causes the best fit value to oscillate wildly during this
time span, and because of this, we plot C only after these oscillations start to die
down. At other values of nb/ne, the time evolution of C is similar, but the average
value of the coefficient in the saturated phase, around which it oscillates, varies.
More specifically, both the average value and the oscillation amplitude of C seem
to grow in absolute value as nb/ne increases, until the term becomes unimportant at
nb/ne → 0.5 like the other k-odd terms.

This behaviour can be partly explained by the fact that nvthV 2 is second-order
in r since V ∼ rvph, while both n and vth have non-zero unperturbed values. More
specifically, because of its second-order nature, we expect this term to matter only
when the processes of interest deviate significantly from linearity.
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4. Discussion and conclusions

Using methods from across the spectrum between physics fidelity on one hand
and numerical tractability on the other is vital in exploring and understanding colli-
sionless multi-scale plasma systems. In this context, collisionless fluid models play an
important role, allowing global, long-time scale modelling of systems where this is not
feasible with kinetic simulations. However, fluid models require closures to capture
essential unresolved kinetic physics relevant to the plasma phenomena in question.
Furthermore, theoretical closures are often derived by making idealised assump-
tions such as linearity or adiabatic invariance, which in many cases are broken by
the dynamics of the system, motivating the use of data-driven approaches.

We have performed a theoretical and numerical study of how sparse regression can
be used to discover local heat flux closures in 1-D electrostatic plasmas, examining
Landau-damped Langmuir waves as well as two-stream instabilities. To ensure our
inferred closures are able to capture kinetic effects, we generate our data using first-
principles kinetic simulations – specifically, the OSIRIS code. The closures identified
by sparse regression regularly account for more than 95% of the variation in the heat
flux, while remaining limited in complexity. Thus, we demonstrate the utility of an
SR-based approach to systematic closure discovery.

As noted in § 2, the high accuracy of the models found by SR suggests that our
term library is large enough to capture the majority of the physics at play. To test
whether there is room for improvement by exploring a larger function space (while
having the closure remain local), one could employ neural network models and see
how they perform compared with our SR models. No such analysis is included in
this paper, however, since our models already reach FVU values of a few percent.

In addition to a local approximation of the Hammett–Perkins closure, we con-
sistently find several additional closure terms in both scenarios. Notably, the three
overall most important terms – often accounting for over 90% of the variation in
q – do not include the local Hammett–Perkins term. As one of these is a constant
term, most of the variation in the heat flux divergence is captured by only two terms
in the q model: one ∝ nv2

thV and one ∝ nv3
th. We further describe how the accuracy

of the closure can be further improved by adding three more terms. These include
a term ∝ nv2

th∂xvth, the local approximation of the Hammett–Perkins closure, along
with terms ∝ v3

th∂xn and ∝ nv2
th∂xV . These terms are closely connected to the growth

or decay of waves, their best-fit coefficients being approximately proportional to the
growth rate.

Among these six terms, three are independent of propagation direction and three
change sign depending on propagation direction (and are thus ‘k-even’ and ‘k-odd’,
respectively). In a three-dimensional (3-D) setting, this likely corresponds to the
absence or presence of a unit vector in the wave propagation direction in the
tensorial expression for the closure terms, so that terms with k-odd expressions
would appear as e.g. ∝ {k̂Ω} for some two-tensor Ω . This dependence on propa-
gation direction for the k-odd terms also means that they can only exist when wave
propagation or beam asymmetry breaks isotropy.

Having reached these results, we compared the closure coefficients with predic-
tions from linear collisionless theory, overall with quite good agreement. The two
constraints imposed by linear theory give relationships between the coefficients of
the various terms found by SR and the wave parameters ωr, γ and k, as well as the
plasma frequency ωpe and ambient thermal speed v̄th of the plasma. Not entirely
unexpectedly, the appearance of frequency and wavenumber in these constraints
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suggests that fully capturing wave–plasma interactions requires a spatio-temporally
non-local model.

Local approximations can still very much be used, however, provided one knows
which parameter regimes are likely to be most relevant for the physics – cf. the local
approximation of the originally non-local Hammett–Perkins closure, which needs to
be supplied with a characteristic wavenumber and heat diffusivity. Already from the
two constraints given by linear theory, various heuristics can be extracted depending
on the parameter regime of interest. Ultimately, all parameter dependencies should
be made explicit and absorbed in the closure terms, so that the coefficients are
parameter-independent, giving the closure as wide a range of applicability as possi-
ble. Further elucidating the parameter dependencies of the closure coefficients is left
for future work.

After examining these six terms, which are all zeroth- or first-order in the pertur-
bation amplitude r = ñ/n̄, we also studied one additional term with non-negligible
influence on q. This term, ∝ nvthV 2, is second-order in r, and was found to mostly
be important when growth or decay is slowing down. The importance of each of
these seven terms was then investigated by examining their respective contributions
to lowering the fraction of variance unexplained, or FVU, of the model.

Despite the high accuracy of the models described in this work, expanding the term
library used by SR does merit some further investigation. Apart from more compli-
cated expressions involving n, V and vth, the E and B fields are also of interest –
especially for higher-dimensional non-electrostatic set-ups. However, if the relevant
physics is 2-D or 3-D, the number of relevant components of the vectors and tensors
involved increases as well, necessitating even more careful selection of which terms
to include in the SR term library. There is also reason to explore alternative algo-
rithms for sparse regression such as SINDy-PI (Kaheman, Kutz & Brunton 2020),
which generalises PDE-FIND to allow for implicit expressions for the quantity of
interest y. It should further be noted that using SR in Fourier space to directly iden-
tify non-local closures like the one originally proposed by Hammett and Perkins for
Landau damping warrants more investigation.

As outlined in § 1, exploring ways of systematically discovering fluid closures is
chiefly motivated by the enormous computational complexity of accurately mod-
elling multi-scale processes in plasmas. In particular, one of the main envisioned use
cases for closures of the type presented in this paper is sub-grid scale modelling of
rapid, small-scale processes within larger simulations. When modelling instabilities
in this way, the far future limit of the saturated regime (relative to the time scales of
the instability) is the most important regime to model correctly.

Finally, evaluating the performance of – and fully benefiting from – data-driven
closures of this type requires a flexible implementation of closure terms in colli-
sionless fluid solvers, such as the 10-moment solver of Gkeyll (Hakim, Loverich
& Shumlak 2006; Hakim 2008), and comparing the results with equivalent kinetic
simulations. Flexible closure prescription would also be a requirement for e.g. the
robust – and challenging – approach demonstrated by Joglekar & Thomas (2023).
In that work, the free parameters of a fluid closure are learned by neural network
models, and a differentiable fluid solver is used, enabling the calculation of the loss
function gradient with respect to the neural network weights. The loss function in this
case quantifies the difference between the long time predictions of physics observ-
ables as calculated by a kinetic and the fluid solver. The complexity of this training
process limits the number of free parameters. We envision that the SR approach
we explored here can inform a good (and interpretable) starting point for closure
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parametrisation. The parametric dependences of the coefficients of the model terms
may then be be fine-tuned with a differentiable fluid solver.

It should be noted that implementing fluid closures in existing fluid codes is far
from trivial, due to the possibility of unphysical instabilities arising unless the clo-
sure is chosen with this aspect in mind; indeed, arbitrarily small errors in model
coefficients may lead to numerical instability. Enforcing long-time boundedness of
discovered models is possible in systems with quadratic nonlinearities (Kaptanoglu
et al. 2021a), but it is difficult more generally. In fact, many closures (e.g. the var-
ious existing ad hoc relaxation closures (Wang et al. 2015; Ng et al. 2015)) are in
part used because of their ability to ‘diffuse’ anisotropies, reducing the complexity
of dynamics and increasing the stability of the simulation. In our context, the signs
of the closure coefficients (in particular, that of the Hammett–Perkins-like term A3)
found in the Landau damping scenario are such as to increase entropy and thus pro-
vide stability. However, they correspond to an instability in the two-stream unstable
scenario. It should be emphasised that having such fundamentally instability-driving
terms in our closure in this case is necessary to accurately model the growth phase
solely because we are modelling this physically unstable scenario using only a sin-
gle electron species. Treating the counter-streaming populations as separate fluid
species may be applied to resolve this shortcoming, which is the subject of ongoing
investigations.

Notably, however, closures found by SR such as those described in this paper hold
an advantage when it comes to ensuring stability as compared with those based on
e.g. neural networks. This is due to their interpretability and low complexity, which
makes it possible to study the properties of the closures analytically – something
which is generally not feasible for neural networks.
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Appendix A. Constraints from linear collisionless theory
In this section, we construct constraint relations between terms appearing in a

local expression for the heat flux, which then can be applied to the closure terms
found using SR.
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Our starting point is the Vlasov–Maxwell system, i.e.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tfσ + v · ∇fσ + qσ

mσ
(E + v × B) · ∇vfσ = 0,

∇ · E = 1
ε0

∑
σ qσ nσ ,

∇ · B = 0,

∇ × E = −∂tB,

∇ × B = c−2∂tE + μ0
∑

σ qσ nσ V σ ,

(A.1)

which is the most accurate self-consistent continuum description of collisionless plas-
mas. However, since this coupled system of partial differential equations (PDEs) is
very expensive to solve over large domains while retaining high resolution, it is often
necessary to simplify it. Most relevant for us is the fact that one can integrate the
Vlasov equation over velocity space to instead get the fluid equations (Grad 1949;
Levermore 1996). Truncating these after the pressure equation yields the system
sometimes referred to as the 10-moment model (Wang et al. 2015),⎧⎪⎨

⎪⎩
∂tnσ + ∇ · (nσ V σ ) = 0,

nσ (∂t + V σ · ∇) V σ + ∇ · pσ = qσ

mσ
nσ (E + V σ × B) ,

∂tpσ + ∇ · (V σpσ ) + 2 {pσ · ∇V σ } + ∇ · qσ = 2qσ

mσ
{pσ × B} ,

(A.2)

which needs to be closed by supplying an additional expression for qσ (or ∇ · qσ ) in
terms of the lower moments. Here, {·} denotes symmetrisation, so that e.g.{

ab(2)
}

= 1

3

(
ab(2) + bab + b(2)a

)
, (A.3)

and pσ × B should be interpreted as the two-tensor with elements [pσ × B]ij =
εjkl pσ ikBl .

In 1-D electron–proton set-ups like those of interest to us, where only the electron
dynamics are important, the 10-moment fluid model (sans closure) together with
Maxwell’s equations simplifies to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n (∂t + V∂x) V + ∂xp = − e
me

nE,

(∂t + V∂x) p + 3p∂xV + ∂xq = 0,

∂xE = e
ε0

(n̄ − n) ,

∂tE = e
ε0

nV .

(A.4)

Note that the two remaining Maxwell’s equations imply the continuity equation.
Here, we have taken the ions to be immobile with number density equal to the
average electron density n̄ to ensure quasi-neutrality. Now, let us consider a small
wave-like perturbation around equilibrium in the CoM frame, i.e.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n = n̄ + ñei(kx−ωt),

V = Ṽ ei(kx−ωt),

p = nv2
th, vth = v̄th + ṽthei(kx−ωt),

q = q̄ + q̃ei(kx−ωt),

E = Ẽei(kx−ωt).

(A.5)
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Here, we assume the wavenumber k to be real, but the frequency ω = ωr + iγ is
allowed to be complex, γ being the growth rate. Of course, one could equally well
set ω = ωr − iγ , taking γ as the decay rate.

Inserting ansatz (A.5) into (A.4) and keeping only terms up to first-order in the
perturbations, we get the relations making up 1-D linear collisionless theory:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−iωn̄Ṽ + ik
(
ñv̄2

th + 2n̄v̄thṽth
)= − e

me
n̄Ẽ,

−iω
(
ñv̄2

th + 2n̄v̄thṽth
)+ 3ikn̄v̄2

thṼ + ikq̃ = 0,

ikẼ = − e
ε0

ñ,

−iωẼ = e
ε0

n̄Ṽ ,

(A.6)

or equivalently ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ẽ = i e
kε0

rn̄

Ṽ = rvph,

ṽth = −1
2

(
1 + ω2

pe−ω2

k2v̄2
th

)
rv̄th,

q̃ = −
(

3 + ω2
pe−ω2

k2v̄2
th

)
rn̄v̄2

thvph.

(A.7)

To make the notation neater, we have introduced the (complex) phase velocity
vph = ω/k and the shorthand notation r for ñ/n̄, quantifying the amplitude of the per-
turbation. We have also introduced the electron plasma frequency ωpe =√

e2n̄/meε0.
Note that when the ion dynamics is negligible, any heat flux closure would need to
agree with the expression for q̃ to first-order in r to be viable for modelling weak
wave-like perturbations.

A.1 Evaluating the six-term closure
For a closure to be consistent with theory, the heat flux perturbation amplitude q̃

given by the closure must agree with the final part of (A.7), i.e.

q̃ = −
(

3 + ω2
pe − ω2

k2v̄2
th

)
rn̄v̄2

thvph, (A.8)

to first-order in r. To see whether this is indeed the case, let us calculate the contri-
bution to q̃ from each of the terms in the six-term model. For the terms in qeven, we
get ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
A1

(
ñv2

thV + 2nvthṽthV + nv2
thṼ

)
= A1rn̄v̄2

thvph,

ikA2
(
3ñv2

thṽth + ñv3
th

) = ikA2rn̄v̄3
th,

ikA3
(
ñv2

thṽth + 2nvthṽ2
th + nv2

thṽth
) = −1

2 ikA3

(
1 + ω2

pe−ω2

k2v̄2
th

)
rn̄v̄3

th,

(A.9)

keeping only terms up to first-order in r. In other words,

q̃even = −
[
−A1 + ik

(
1

2
A3 − A2

)
v̄th

vph
+ 1

2
ikA3

v̄th

vph

ω2
pe − ω2

k2v̄2
th

]
rn̄v̄2

thvph. (A.10)
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As for the terms in qodd, the constant term A4 does not contribute to q̃, but the
contribution from the other two terms is non-zero:⎧⎪⎨

⎪⎩
A5
(
ñv3

th + 3nv2
thṽth

) = −1
2A5

(
1 + 3

ω2
pe−ω2

k2v̄2
th

)
rn̄v̄3

th,

ikA6

(
ñv2

thṼ + 2nvthṽthṼ + nv2
thṼ

)
= ikA6rn̄v̄2

thvph.
(A.11)

Thus, the contribution from qodd is

q̃odd = −
[

1

2
A5

v̄th

vph
− ikA6 + 3

2
A5

v̄th

vph

ω2
pe − ω2

k2v̄2
th

]
rn̄v̄2

thvph. (A.12)

Defining

Φ(ω, k) = ω2
pe − ω2

k2v̄2
th

(A.13)

as well as

α = ReΦ = ω2
pe + γ 2 − ω2

r

k2v̄2
th

, β = −ImΦ = 2ωrγ

k2v̄2
th

, (A.14)

demanding (A.8) hold for our closure is equivalent to demanding

(3 + Φ)ω = −(A1 + ikA6)ω +
[

1

2
A5 + ik

(
1

2
A3 − A2

)]
kv̄th + 1

2
(3A5 + ikA3) kv̄thΦ,

(A.15)

or equivalently⎧⎨
⎩

(3 + α)ωr + βγ = −A1ωr + kA6γ + 1
2

[
kA3β + A5(1 + 3α)

]
kv̄th,

− (3 + α)γ + βωr = A1γ + kA6ωr +
[
kA2 − 1

2kA3(1 + α) + 3
2A5β

]
kv̄th.

(A.16)

If we now define

Φ± = ω2
pe ± |ω|2
k2v̄2

th

(A.17)

and solve for A1 and kA6, the result can be simplified to the form of (3.3), giving us
two constraints on the coefficients which we can check.

Appendix B. Demonstration: recovery of the momentum equation
While the main use of sparse regression in this paper is to discover unknown

approximate relations between the heat flux and lower-order fluid quantities, it is
useful to verify that our workflow is able to identify known exact relations that the
simulation data must obey. To illustrate that this is indeed the case, we here show

https://doi.org/10.1017/S0022377825000285 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000285


26 E.R. Ingelsten, M.C. McGrae-Menge, E.P. Alves and I. Pusztai

Model −E −∂xT −T∂x ln n
n̄ −V∂xV ∂xE

1. 0.739
2. 1.234 1.138
3. 0.985 0.977 1.006
4. 0.999 0.998 0.996 0.997
5. (uncorrected E) 1.000 0.998 0.991 0.991 5.00 × 10−4

TABLE 3. Optimal coefficient values for the terms in the various models found by sparse
regression to approximate the momentum equation as given in (B.1). The numbering of the
models is the same as in figure 10. The theoretical value of almost all coefficients multiplying
the terms shown in the first row is 1. The only exception is the non-physical ∂xE term, which is
only found consistently when the staggering of the E field data is not corrected for (model 5).
This coefficient should have the value 5 × 10−4 to provide a first-order correction for the

half-cell size shift of the field data.

how one can recover the density-normalised version of the 1-D momentum equation
for electrons,

∂tV = −V∂xV − T∂x ln
n
n̄

− ∂xT − e
me

E, (B.1)

from our two-stream simulation data. Note that the arbitrary normalisation of n to
the unperturbed total electron density n̄ does not affect the the logarithmic deriva-
tive. In the sparse regression, we now set ∂tV as our target variable y and use a term
library including all products of up to two terms from the set consisting of n, V , T
and E, their spatial derivatives and a constant term.

We work with the nb/ne = 0.1 two-stream instability simulation, sampling ∼2.5 %
of the data in each of the 10 cross-validation folds. This time, we take samples
from almost the entire time domain, and not just e.g. the growth phase. The sparse
regression algorithm yields the sequence of models for ∂tV shown in figure 10(a).

As shown by the marker shapes – indicating whether models contain consistently
the same terms (circles) or different ones (triangles) – SR correctly recovers the
momentum equation and finds no further terms consistently. That the model is
complete at four terms is also supported by the fact that the accuracy plateaus after
this point, at an FVU of ∼3.26 × 10−4. This signifies that ∼99.97 % of the variation
in ∂tV can be explained by the 1-D momentum equation as given in (B.1). SR also
gives us the coefficients of the terms in the equation with an error of less than half
a percent; these are listed in table 3.

Next, we illustrate the importance of appropriately aligning the E-field data with
the fluid data in space. Misalignment between particle and field data naturally
occurs in PIC schemes using a staggered Yee grid (Yee 1966), where the E- and
B-field nodes appear in cell edges and cell faces, respectively, while the particle data
are often cell-centred.

5
This discrepancy then propagates through to any fluid and

electromagnetic field data exported from the simulation.

5In addition, the leap-frog type time integration scheme results in momentum and position information
available half-time step apart from which, unless corrected for (as in the version of OSIRIS we use), may also
lead to a reduced accuracy. Note that, unlike the spatial misalignment, the temporal one cannot be corrected by
post-processing; the correction needs to be made before the fluid quantities are computed by the simulation code.
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(a) (b)

FIGURE 10. Sequence of models found by sparse regression to approximate ∂tV , recovering the
momentum equation as given in (B.1). The consistently found models are labelled by the new
consistently found term which is added to the model compared with the next most simple one.
The coefficients for all terms in each model are provided in table 3 (with the same numbering
of models as here). Circles, unlike triangles, denote consistently found terms, and blue (orange)
marker colour corresponds to testing (training) data (note that they overlap almost completely
here). The two panels show the results (a) when using E-field data which has been corrected for
the half-cell grid shift with respect to the fluid quantities, which finds only the expected terms,
and (b) when using uncorrected E-field data, which also finds a non-physical ∂xE term adding
the correction back in.

In figure 10(b), we show the result of performing SR on the same simula-
tion data without correcting for the misalignment of the electric field data. The
first four consistently found terms are the same as before, but now this four-
term model is less accurate, with an FVU > 10−3. A fifth term ∝ ∂xE is also
consistently identified, however, and if retained, increases the accuracy to match
that achieved with corrected E-field data. This term corresponds to performing
a first-order Taylor expansion to evaluate E half a grid cell further towards −x,
since E

∣∣∣
x− 1

2 x
= E

∣∣∣
x
− 1

2x∂xE
∣∣∣
x
. Specifically, if we insert our spatial resolution

x = 10−3δe, we find that

Ealigned = Eshifted − 5 × 10−4δe∂xEshifted, (B.2)

corresponding exactly to the correction introduced by SR, since δe is our unit of
length.
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