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We study the transition probabilities of a two-point measurement on a quantum system, initially prepared in
a thermal state. We find two independent constraints on the difference between transition probabilities when the
system is prepared at different temperatures, which both turn out to be particularly restrictive when the measured
quantum system is small. These bounds take the form of a thermodynamic and of an energetic constraint because
they are associated with the dissipated heat and with the absorbed energy required to increase or to reduce the
temperature of the system. The derived constraints apply to arbitrary system Hamiltonians, including interactions
or nonlinear energy spectra. We show the relevance of these constraints for the special case where transitions are
induced by energy or particle exchange in weakly coupled bipartite systems out of equilibrium. This example
is of interest for a wide range of experimentally relevant systems, from molecular junctions to coupled cavities,
and can be tested by, for instance, measuring the out-of-equilibrium tunneling current and its noise.

DOI: 10.1103/PhysRevResearch.7.023084

I. INTRODUCTION

Fluctuation theorems have been instrumental in studying
the probability distribution of physical variables such as ther-
modynamic work in both classical and quantum stochastic
thermodynamics [1–16]. In particular, detailed fluctuation
theorems [7,17] constrain such probability distributions by
relating the probability of a process to the probability of
its time reverse. These relations provide a powerful frame-
work to study stochastic dynamics out of equilibrium, but
they can also be used, e.g., to derive the equilibrium
fluctuation-dissipation theorem (FDT) [18–20], which relates
the fluctuations of observables to their dissipative responses.
However, establishing a relation analogous to the FDT, link-
ing generic correlations to response functions for systems
out of equilibrium remains challenging [21–23]. For out-
of-equilibrium correlated states, FDTs have been identified
[24–26] for a generalized current operator, whose average and
fluctuations are determined by two independent nonequilib-
rium transfer rates. Specifically, for a charge current induced
by a voltage bias, an FDT [27,28] has been established far
from equilibrium in the (weak) tunneling regime. In essence,
this FDT extension relies on the detailed balance relation
between these rates under the crucial assumption of a uni-
form temperature across the tunneling link. Consequently,
the generalized FDT breaks down in the presence of a more
generic out-of-equilibrium situation, such as in the presence
of a temperature bias.
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However, setups that can subsequently be in contact with
environments at different temperatures, or even subject to
a temperature bias are crucial in (quantum) thermodynam-
ics, where they are used to fuel, e.g., heat engines [29–31].
Pivotal experiments have not only implemented nanoscale
heat engines [32–35] but also explored temperature biases for
transport spectroscopy [36–39]. Importantly, systems exposed
to large temperature biases also occur when one subsystem is
cooled down with the help of a coupling to another, possi-
bly very different, subsystem [40–42]. It is hence important
to understand in which way coupling a system to different
temperatures constrains its dynamics.

In this work, we present general relations between tran-
sition probabilities in a two-point measurement scheme,
comparing situations where the system is initially prepared
in thermal states at different temperatures, see Fig. 1. This
is a different approach than those in earlier studies on

FIG. 1. Two-point measurement schemes starting with an ini-
tially (a) cold or (b) hot state. (c) The Gibbs probabilities (4) of
observing the eigenstate of energy εa for a cold (blue) or hot (red)
initial state only cross at one energy, which we refer to as ε̃.
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fluctuation relations [7,15,17], where transitions of a process
are compared with transitions of the time-reversed process.
Our approach allows us to establish bounds on the difference
between transition probabilities: the main results of this paper
are the thermodynamic constraint (Sec. II B) and the energetic
constraint (Sec. II C) on the temperature-dependent transition
probabilities. They relate the thermodynamic and energetic
cost required to bring the system to these different temper-
atures with the response of the transition probabilities to a
temperature variation. We do not make any assumptions on
the Hamiltonian underlying the transition probabilities, which
can hence involve strong interactions or nonlinear spectral
properties.

One relevant application of our general findings are con-
straints on the dynamics of a bipartite system subject to a
temperature bias. This could, e.g., be a small quantum sys-
tem prepared at an initial temperature and coupled to an
environment at a different temperature. As examples, we
choose bipartite systems with a weak tunnel coupling. The
reason for this choice is the possibility to clearly identify the
two different subsystem states and that the transition rates
can be directly related to tunneling currents and the zero-
frequency current noise [27,28]. This allows us to exploit our
findings to formulate constraints on noise in the spirit of FDTs
but in the presence of a possibly large temperature bias, where
standard FDTs are not applicable [18–20,27,28].

Indeed, in particular for nanoelectronic systems,
fluctuation-dissipation bounds have recently been developed
[43] for current fluctuations (or noise) in the presence of a
temperature bias. Although these bounds apply to conductors
with generic transmission properties, their validity is limited
to systems with weak electron-electron interactions. In the
presence of possibly strong interactions, the perturbative
approach developed in Refs. [25,26] showed that noise
is super-Poissonian in the tunneling regime, even in the
presence of a temperature bias. However, this constraint
does not single out the role of the temperature bias. Hence,
there remains the important question of whether fundamental
bounds on the dynamics for strongly interacting systems
exist, accounting for the impact of a temperature bias.

For such systems, using the derived general thermody-
namic and energetic constraints, we establish bounds on the
nonequilibrium tunneling rates in the presence of a possibly
large temperature bias, accounting for the thermodynamic
quantities required to generate such bias. These findings have
direct implications on how the noise in temperature-biased
systems is constrained by the system dynamics. We thereby
extend the scope of out-of-equilibrium noise at the intersec-
tion of quantum transport and quantum thermodynamics to
systems with possibly strong interactions. Importantly, our
findings do not rely on any close-to-equilibrium fluctuation
theorems.

The remainder of this paper is organized as follows: In
Sec. II A, we briefly introduce the concept of the two-point
measurement with initial thermal states to then subsequently
present a thermodynamic and an energetic constraints on the
transition probabilities. In Sec. III, we apply our general
results to experimentally relevant examples, which can be
classified as weakly coupled bipartite systems in the presence
of a large temperature bias. In Secs. III C and III D, we show-

case the constraints for an atom coupled to a cavity and two
coupled fermionic tight-binding rings. Several Appendixes
provide details of our derivations of key equations.

II. CONSTRAINTS ON DYNAMICS WITH DIFFERENT
INITIAL STATES

Our goal is to compare the dynamics of two-point mea-
surement schemes with different initial thermal states of the
system and to constrain this difference by thermodynamic
quantities. In this section, we present general thermodynamic
and energetic constraints.

A. Transition probabilities

We consider the general case in which a quantum system,
initially prepared in the state described by the density matrix
ρ̂, undergoes a two-point projective measurement process.
The first measurement is done on the basis {|i〉}i and has
outcome a with probability

pa = 〈a|ρ̂|a〉. (1)

Then, the system undergoes an arbitrary unitary evolution
Û (t, 0) until time t , when a second measurement takes place.
This last measurement is done on the basis {|ψi〉}i, which may
differ from that of the initial measurement. The joint probabil-
ity of measuring outcome b in the second measurement, after
the first measurement had outcome a, is given by

pa→b = |〈ψb|Û (t, 0)|a〉|2 pa, (2)

which is the probability of observing a transition a → b in the
measurement outcomes.

These transition probabilities, compared with the transi-
tion probabilities in the time-reversed process, are typically
the starting point to develop fluctuation theorems [7,15,17].
Here, we are interested in finding out the impact of differ-
ent temperatures on the dynamics of a system. We therefore
start with the important statement that the temperatures only
influence the initial state of the two-point measurement and
not the conditional probabilities |〈ψb|Û (t, 0)|a〉|2. This means
that we—instead of what is done in typical derivations of
fluctuation theorems—need to compare the transition proba-
bilities in the same process (i.e., induced by the same unitary
evolution), but with different initial states. In particular, we
consider initial states ρ̂ being Gibbs states,

ρ̂ = e−βĤ0

Z (β )
, (3)

where Ĥ0 is the system’s Hamiltonian at time t = 0, β ≡ T −1

is the inverse temperature of the system (note that tempera-
tures have the units of energy, meaning that we set kB = 1),
and Z (β ) ≡ Tr{e−βĤ0} is the partition function. Furthermore,
we take the first measurement to be in the energy eigenbasis
Ĥ0|a〉 = εa|a〉, such that the probability of observing outcome
a in Eq. (1) reads

pa(β ) = e−βεa

Z (β )
, (4)

where εa is the energy of |a〉. We highlight the dependence on
the inverse temperature β by putting it as an argument of pa

because, in the following, we compare initial states at different
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temperatures, as sketched in Figs. 1(a) and 1(b). Using proper-
ties of the Gibbs distribution, we establish constraints on the
transition probabilities of Eq. (2) in the sections below that
contain thermodynamic quantities, such as the internal energy
U and the entropy S. Those are given by

U (β ) ≡ Tr

{
Ĥ0

e−βĤ0

Z (β )

}
, (5a)

S(β ) ≡ −Tr

{
e−βĤ0

Z (β )
ln

e−βĤ0

Z (β )

}
. (5b)

These quantities of the initial state are of interest for the
constraints to be developed, since the temperature dependence
of the transition probabilities, Eq. (2), enters only via the
initial-state probability, Eq. (1).

B. Thermodynamic constraint

We start with an analysis of the initial state at different tem-
peratures. When comparing a hot state at inverse temperature
βh with a cold state at inverse temperature βc > βh, there is
only one value of εa for which pa(βh) = pa(βc), as shown in
Fig. 1(c). This crossing energy is given by

ε̃ = 1

βc − βh
ln

Z (βh)

Z (βc)
. (6)

Therefore the state-probabilities pa fulfill pa(βh) ≷ pa(βc)
when εa ≷ ε̃. It follows that

[pa(βh) − pa(βc)][εa − ε̃] � 0 (7)

for all εa and βc > βh. Summing (7) over all eigenstates a
leads to the statement that the internal energy is an increas-
ing function of temperature, U (βh) � U (βc). We furthermore
note that the contributions of (7) can partially be written
in terms of a response of the probabilities to a temperature
variation

∂β pa(β ) = [U (β ) − εa]pa(β ). (8)

In contrast, the remaining term [U (βh) − ε̃]pa(βh) −
[U (βc) − ε̃]pa(βc) then includes thermodynamic quantities,
in particular the nonequilibrium free-energy differences,
defined as

�F c ≡ [U (βc) − U (βh)] − Tc[S(βc) − S(βh)], (9a)

�F h ≡ [U (βh) − U (βc)] − Th[S(βh) − S(βc)]. (9b)

We find the relation

[U (βh) − ε̃]pa(βh) − [U (βc) − ε̃]pa(βc)

= − βc�F c

βc − βh
pa(βh) − βh�F h

βc − βh
pa(βc). (10)

In this paper, we are interested in using the inequality (7)
to formulate constraints for transition probabilities pa→b in
a two-point measurement, see Eq. (2). The above discussed
insights can be readily transferred to transition probabilities
by simply multiplying (7), as well as (8) and (10), by the
conditional probability |〈ψb|U (t, 0)|a〉|2, finding

[pa→b(βh) − pa→b(βc)][εa − ε̃] � 0. (11)

FIG. 2. (a) An initially hot system is cooled down to Tc using a
cold bath. In this process, one can extract at most −�F c [Eq. (9a)]
as work. The now cold system undergoes the two-point measurement
scheme. (b) An initially cold system is heated up to Th using a hot
bath. In this process, one can extract at most −�F h [Eq. (9b)] as
work. The now hot system undergoes the two-point measurement
scheme.

Using the properties of (8) and (10) in (11), we establish the
bound on transition probabilities

WThermo
a→b � WResp

a→b, (12)

where we defined a temperature-response function

WResp
a→b ≡ ∂β pa→b(βh) − ∂β pa→b(βc), (13)

and a thermodynamic cost function

WThermo
a→b ≡ − βc�F c

βc − βh
pa→b(βh) − βh�F h

βc − βh
pa→b(βc). (14)

This thermodynamic constraint (12) on the transition proba-
bilities at different temperatures is the first main result of this
paper. It implies that the response of the transition probabil-
ities to a change in temperature is limited by the transition
probabilities themselves and by the thermodynamic cost of
changing the system’s temperature. To intuitively understand
how far it constrains the system dynamics at different initial
temperatures, we consider the thermodynamics of cooling
down a hot system in order to be able to subsequently perform
the two-point measurement scheme starting from a cold state,
as sketched in Fig. 2(a). Analogously, we consider the ther-
modynamics of heating up a cold system in order to be able
to subsequently perform the two-point measurement scheme
starting from a hot state, as sketched in Fig. 2(b).

(a) Cooling. The system initially at Th is cooled down by
bringing it into contact with a bath at Tc < Th [Fig. 2(a)].
Heat flows out of the system until it reaches temperature Tc,
thus inducing the change [U (βc) − U (βh)] in internal energy
and [S(βc) − S(βh)] in entropy. While heat is flowing, it is
possible to extract work, which is at most −�F c. After the
system has been cooled down, the two-point measurement
scheme is performed and leads to the transition probabilities
pa→b(βc).
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(b) Heating. The system initially at Tc is heated up by
bringing it into contact with a bath at Th > Tc [Fig. 2(b)].
Heat flows into the system until it reaches temperature Th, thus
inducing the change [U (βh) − U (βc)] in internal energy and
[S(βh) − S(βc)] in entropy. While heat is flowing, it is possi-
ble to extract work, which is at most −�F h. After the system
has been heated up, the two-point measurement scheme is
performed and leads to the transition probabilities pa→b(βh).

Furthermore, the factors η(h) ≡ βc

βc−βh
= Th

Th−Tc
and η(c) ≡

βh

βc−βh
= Tc

Th−Tc
in Eq. (14) correspond to the coefficient of

performance of a heat pump and of a refrigerator, respectively.
Consequently, the product − βc�F c

βc−βh
sets a lower limit on the

heat absorbed by the cold bath during the cooling process
when the extracted work is maximum, as detailed in Ap-
pendix A. Similarly, the product − βh�F h

βc−βh
sets a lower limit on

the energy absorbed by the system during the heating process.
Thus, in the thermodynamic cost function of Eq. (14) the
hot and cold transition probabilities are weighted by the heat
dissipated to cool down or heat up the system, respectively.

C. Energetic constraint

To set up the second constraint, instead of comparing the
initial probability distribution pa(β ) at two different temper-
atures, we analyze how the distribution changes under an
infinitesimal temperature variation. Differentiating Eq. (8), we
have

∂2
β pa(β ) = pa(β )[U (β ) − εa]2 + pa(β )∂βU (β ). (15)

Since the first term on the right-hand side is always positive,
we can establish the inequality∫ U (βh )

U (βc )
pa(β )[dU (β )] � ∂β pa(βh) − ∂β pa(βc). (16)

Multiplying Eq. (16) by the conditional probability
|〈ψb|U (t, 0)|a〉|2 reveals a constraint on the transition
probability pa→b of Eq. (2), given by

WEnergy
a→b � WResp

a→b (17)

with the temperature-response function of Eq. (13) and the
energetic cost function defined as

WEnergy
a→b ≡

∫ U (βh )

U (βc )
pa→b(β )[dU (β )]. (18)

Equation (17) is the second central result of this paper. We
refer to it as the energetic constraint since—unlike the ther-
modynamic constraint of Eq. (12)—it does not focus on the
thermodynamic cost required to generate the temperature bias,
but rather on the energetic cost. To understand the ingredients
of this second constraint (17), one does not need to consider
both heating and cooling processes depicted in Fig. 2 but only
one continuous heating stroke as shown in Fig. 3. Starting
from the system being at a cold temperature Tc = β−1

c , we
imagine slowly increasing its temperature to the hot temper-
ature Th = β−1

h and identifying the transition probabilities at
each intermediate infinitesimal temperature change, as indi-
cated by the interrupted yellow arrows. The energetic cost is
found by weighting the transition probabilities with the cor-
responding variation of the internal energy needed to increase
the temperature of the system.

FIG. 3. Heating stroke of the system. As the temperature in-
creases from Tc to Th (top to bottom panels), the energy absorbed,
dU , and the transition probabilities, pa→b, are monitored at each
intermediate temperature.

D. Saturating constraints and trivial constraints

The inequalities set up in Eqs. (12) and (17) generically
constrain the difference in transition probabilities in two-point
measurement schemes for initial states at different temper-
atures. Here, we elaborate on the conditions under which
these constraints are saturated and those under which they
are trivial. By construction, both thermodynamic and ener-
getic bounds become equalities at equal temperature, βc = βh.
However, in this regime Eqs. (12) and (17) become trivial
since W (Thermo)

a→b = W (Energy)
a→b = W (Resp)

a→b = 0.
However, the constraints can be saturated nontrivially even

for different temperatures when the energy of the initial state
of the two-point measurement takes on specific values. The
difference between Eq. (12) and Eq. (17) is also reflected in
the conditions required to saturate the two constraints. For the
thermodynamic constraint this energy corresponds to the en-
ergy at which the Gibbs distribution at different temperatures
cross pa(βh) = pa(βc). In this case, namely, when εa = ε̃, the
inequality (7) becomes an equality and hence (11) saturates.
The energetic constraint can only be saturated if the internal
energy of the system U does not vary much in the considered
interval, namely, if U (βc) ≈ U (βh). If in addition, the energy
of the initial state εa approximately equals this internal en-
ergy, the first term on the right-hand side of Eq. (15) can be
neglected and the energetic constraint (17) saturates.

In contrast, the constraints are always trivially fulfilled
when the function characterizing the response to a tempera-
ture variation, W (Resp)

a→b is negative, because the thermodynamic
and energetic costs are positive by construction. This is the
case, when the energy of the initial state εa differs from
the internal energy of the system by more than the internal
energy’s standard deviation, see Appendix B. This means that
the constraints are nontrivial only for those transition rates,
where the initial state is “typical” for the system, namely, with
an energy close to the internal energy of the system.

E. Thermodynamic limit

Here, we comment on the relevance of the constraints (12)
and (17) when the system approaches the thermodynamic
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limit. Notably, both the thermodynamic and the energetic
constraints combine transition probabilities which are always
smaller than one, with extensive properties of the system,
namely, with its internal energy and with its nonequilibrium
free energy. However, the extensive quantities only appear
explicitly on the left-hand side of Eqs. (12) and (17). This
feature implies that the left- and the right-hand sides behave
very differently depending on the size of the system. More
concretely, if the extensive quantities in the thermodynamic
limit scale as

U → λU, �F (c,h) → λ�F (c,h), (19)

where λ is the scale parameter, and the transition probabilities
scale with an arbitrary scaling function f (λ), i.e., pa→b →
f (λ)pa→b, both the thermodynamic constraint of Eq. (12) and
the energetic constraint of Eq. (17) become trivial. Indeed,
the right-hand side contribution from the response W (Resp)

a→b is
smaller than the standard deviation of the internal energy, as
shown in Appendix B. Therefore, for λ → ∞, the right-hand
side becomes negligible, and Eqs. (12) and (17) then reduce
to expressions that state the positivity of the thermodynamic
and energetic costs, respectively, on the left-hand side.

However, the fact that the right-hand sides of these
equations can be neglected in the thermodynamic limit—
independently of how it is taken—leads to a trivial statement.
The thermodynamic and energetic costs are positive by con-
struction: The transition probabilities are positive, pa→b � 0,
and so are the coefficients of performance η(c), η(h) � 0, the
nonequilibrium free energies −�F (c),−�F (h) � 0, as well as
the energy variation dU (x) in the integral in Eq. (17). Thus,
both the thermodynamic and the energetic constraints pose
constraints on small-scale quantum systems that do not satisfy
the thermodynamic limit.

III. PARTICLE AND ENERGY EXCHANGE
IN BIPARTITE SYSTEMS

Up to here, we have established and analyzed general con-
straints on transition probabilities in a two-point measurement
scheme without specifying how the transitions are induced.
One topic of interest in which occurring transitions are de-
tected is, e.g., in bipartite systems exchanging energy and
particles. This could be a system coupled to an environment
or more generally arbitrary coupled systems. In the following,
we apply the thermodynamic and energetic constraints devel-
oped in Secs. II B and II C on such a setting. For simplicity, we
focus on a regime where the coupling between the two subsys-
tems is weak. This has the advantage that a temperature bias
between the two subsystems can be clearly defined. Further-
more, direct relations between transitions rates and fluctuating
transport quantities can be established, thereby exploiting our
results to pose constraints between currents and noise in the
presence of a large temperature bias.

A. Weak tunnel coupling

We study a bipartite system with Hamiltonian Ĥ0 = ĤL +
ĤR, where subsystems L (left) and R (right) may be taken as
generic systems, possibly with strong interactions. Here, we
take subsystem L as the system on which measurements are

performed and subsystem R as the one inducing transitions
in subsystem L; this allows us to directly apply our results
from Sec. II. The subsystems are coupled to each other by the
tunneling Hamiltonian

V̂ (t ) = Âe−iωt + Â†eiωt , (20)

which we assume to be a small perturbation and which in-
duces transitions in the subsystems. Furthermore, in the weak
tunnel-coupling regime, we describe the total system with
the product state ρ̂ = ρ̂L ⊗ ρ̂R, where ρ̂α is the Gibbs state,
defined in Eq. (3), at inverse temperature βα . With this, the
rates �� for absorbing or emitting a quantum of energy h̄ω,
induced by the coupling, are—in the spectral representation
[18,24]—given as

�→ ≡
∑
nm

[
2π

h̄

∑
lk

|Anmlk|2δ
(
ε(L)

mn + ε
(R)
kl − h̄ω

)
p(R)

l

]
p(L)

n ,

�← ≡
∑
nm

[
2π

h̄

∑
lk

|Anmlk|2δ
(
ε(L)

mn + ε
(R)
kl − h̄ω

)
p(R)

k

]
p(L)

m .

(21)

See Appendix C for the derivation starting from two-
point measurement transition probabilities. Here, Anmlk ≡
〈mk|Â|nl〉 is the matrix element of Â in the basis of the
eigenstates of the generic Hamiltonian Ĥ0, namely, ĤL|nl〉 =
ε(L)

n |nl〉 and ĤR|nl〉 = ε
(R)
l |nl〉. Furthermore, we have defined

the energy differences ε (α)
mn ≡ ε (α)

m − ε (α)
n , and the occupation

probability of the state |n〉 as p(α)
n |n〉 = ρ̂α|n〉. The terms in the

square brackets in Eq. (21), which are multiplied by the initial
probabilities p(L)

n/m, represent the conditional probabilities per
unit time for system L to transition from a given state n to
state m (�→) with absorption of h̄ω or from m to n (�←) with
emission of h̄ω. We can thus, as presented in Sec. III B below,
use the developed constraints for the transition rates ��,
which are sums over two-point measurement transition rates.
Note that the partition of the system into two weakly coupled
subsystems is obviously not required for the general con-
straints of Eqs. (12) and (17), but, importantly, it here allows
us to implement a well-defined and meaningful temperature
bias. Indeed, the tunneling rates depend on two temperatures,
�� ≡ ��(βL, βR), via the occupation probabilities p(L)

n and
p(R)

l , see Eq. (21).
Interestingly, the transition rates in the weak-tunneling

regime can be directly connected to transport quantities,
namely, to a current and its zero-frequency noise [18,25]

I

q
= �→ − �←, (22a)

S
q2

= �→ + �←, (22b)

where q is a generalized charge, defined in terms of an
operator Q̂ satisfying [Q̂, Ĥ0] = 0 and [Q̂, Â] = qÂ, see the
derivation in Appendix D.
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B. Constraints in the tunneling regime

The thermodynamic and energetic constraints on the
nonequilibrium tunneling rates—in the presence of a temper-
ature bias—can be written starting from Eqs. (12) and (17):

W (Thermo)
� � W (Resp)

� , (23a)

W (Energy)
� � W (Resp)

� , (23b)

with the cost functions1

W (Resp)
� ≡ ∂L��(βh, βc) − ∂L��(βc, βc), (24a)

W (Thermo)
� ≡ −�F (c)

L η(h)��(βh, βc)

−�F (h)
L η(c)��(βc, βc), (24b)

W (Energy)
� ≡

∫ UL(βh )

UL(βc )
��(x, βc)d[UL(x)]. (24c)

Importantly, the rates here depend on two temperatures. We
write this temperature dependence out explicitly, where the
first argument is always the temperature of the left system and
the second one the temperature of the right system. Note that
we could have chosen any temperature TR = β−1

R , as becomes
clear from the derivation of the general constraints on transi-
tion probabilities in Sec. II. Here, however, we choose one of
the settings in the absence of a temperature bias, where the
two subsystems have equal temperatures, in order to be able
to compare with an easily accessible, experimentally relevant
reference situation when establishing constraints for the out-
of-equilibrium tunneling rate in the presence of a temperature
bias. We therefore deliberately choose βR ≡ βc and hence
compare the tunneling rates when the two subsystems have
the same temperature, i.e., ��(βc, βc), with those under the
desired out-of-equilibrium condition, i.e., ��(βh, βc). The
rate response W (Resp)

� accounts for both the equilibrium and
out-of-equilibrium response of the tunneling rates to a change
in the temperature of subsystem L. Derivatives with respect
to the first temperature argument are indicated in the cost
function for the temperature response by ∂L. In what follows,
for conciseness, we refer to the equal-temperature tunneling
rates ��(βc, βc) as equilibrium tunneling rates, even though
we want to emphasize here that the dependence on the energy
transfer h̄ω, see Eq. (21), implies the full treatment of pos-
sible nonequilibrium conditions beyond a temperature bias,
induced by an external agent.

We emphasize that Eq. (23a) directly translates into a con-
straint on the out-of-equilibrium noise, which is given by the
sum of the tunneling rates via Eq. (22b). This also means,
from a more practical, experimental viewpoint, that one pos-
sibility to test the constraint (23a) is by measuring the noise
and tunneling current in two configurations: (i) When both
subsystems have the same cold temperature, and (ii) in the
desired out-of-equilibrium condition. One can then access the

1Notably, the derivatives in the rate response W (Resp)
� [Eq. (24a)]

can alternatively be understood in terms of higher-order correlation
functions of the tunneling operator Â in Eq. (20). More specifically,
we find that ∂L�→ = 1

h̄2

∫
dt〈Â†

H(t )eiωt Â [UL − ĤL]〉, and equiva-

lently for �←, where we recall that ÂH(0) = Â.

tunneling rates as 2q2�� = S ± qI . All the other quantities
entering the inequality can be calculated once the state of the
subsystem considered at the different temperatures is known.2

Similarly to the thermodynamic constraint, Eq. (23b) directly
translates into an energetic constraint on the integral over the
out-of-equilibrium noise in Eq. (22b) by taking the sum of the
energetic constraints for both tunneling directions. However,
this integral makes the energetic constraint less relevant from
an experimental point of view because it requires knowledge
of both internal energy and tunneling rates at all intermediate
temperatures of subsystem L.

From the thermodynamic constraint (23a), we can also de-
rive a direct lower bound on the out-of-equilibrium tunneling
rates ��(βh, βc) in terms of the equilibrium rates (see the
derivation in Appendix E). These constraints furthermore con-
tain the rate response (integrals) of thermodynamic quantities,
and they read

��(βh, βc) � ��(βc, βc) exp

[∫ βc

βh

g(x)dx

]

−
∫ βc

βh

f (x) exp

[∫ x

βh

g(s)ds

]
dx, (25)

where we defined

f (x) ≡ ∂L��(βc, βc) − �F (c)
L (x)η(h)(x)��(βc, βc),

g(x) ≡ −�F (h)
L (x)η(c)(x). (26)

While the bound (25) has a more complex shape, containing
integrals over thermodynamic functions, it has the important
advantage that it does not depend on the out-of-equilibrium
responses ∂L��(βh, βc). Instead, only the more easily ac-
cessible equilibrium response function, ∂L��(βc, βc), enters
Eq. (25). We emphasize that Eq. (25) directly provides a
lower bound for the out-of-equilibrium noise. In particular,
compared with Ref. [25], it provides a nontrivial constraint
indicating how much super-Poissonian the noise is.

A further insightful way of writing the constraints of
Eqs. (23a) and (23b) is by highlighting their contributions
from sums over resonances. Indeed, we notice that both the
thermodynamic, W (Thermo)

� , and energetic cost, W (Energy)
� , as

well as the rate response W (Resp)
� can be recast as

W (i)
� =

∑
nmlk

w
(i)
�,nmlkδ

(
ε(L)

mn + ε
(R)
kl − h̄ω

)
, (27)

where i ∈ {Thermo, Energy, Resp}. This is done by using the
expression of the rates in Eq. (21) and the definitions in
Eqs. (24a), (24b), and (24c). For the examples studied below,
we focus on the amplitude of the resonance at energy h̄ω of
interest by considering

C (i)
�(ω) ≡

∑
{nmlk|ε(L)

mn +ε
(R)
kl =h̄ω}

w
(i)
�,nmlk, (28)

and thus sum over all the resonances at the same frequency ω.
Since both the thermodynamic and energetic constraints hold

2Note that it is not necessary to know the Hamiltonian of the
subsystem R kept at fixed temperature, which may be arbitrarily
complicated, to test these constraints.
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FIG. 4. Illustration of the two setups considered in Sec. III. (a) A
two-level atom with frequency ωA is weakly coupled, g � h̄ωA,C, to
a cavity with characteristic frequency ωC and Kerr nonlinearity uC,
see Sec. III C. (b) Two interacting fermionic tight-binding rings with
different sizes are weakly coupled at a single (“0”) site, see Sec. III D.

separately at each resonance, Eqs. (23a) and (23b) also hold
for each amplitude C (i)

�(ω), i.e.,

C(Thermo)
� (ω) � C(Resp)

� (ω),

C(Energy)
� (ω) � C(Resp)

� (ω). (29)

This establishes natural quantities, which we compute in the
following analysis of the example systems.

Concretely, to illustrate the constraints (23a) and (23b), we
consider two different physical settings, represented by the
systems depicted in Fig. 4: An atom coupled to a nonlinear
cavity [Fig. 4(a)], see Sec. III C, and two fermionic chains in-
terchanging particles at a single site [Fig. 4(b)], see Sec. III D.
Such examples are chosen not only because of illustration
purposes, but also because they are of experimental relevance
to test our predictions with state-of-the art setups. These two
examples include optical or mechanical cavities coupled to-
gether [44] or to (artificial) atoms [45–50], and tunneling
bridges across molecules [37,39,51] or magnetic impurities
[52–54].

C. Atom coupled to nonlinear cavity

In this section, we consider an atom weakly coupled to a
nonlinear cavity [55]. Its Hamiltonian is given by

Ĥ = h̄ωA
σ̂z

2
+ h̄ωCn̂ + uC

2
n̂(n̂ − 1) + g(âσ̂+ + â†σ̂−).

(30)

Here, one of the subsystems is the atom, described by the Pauli
matrix σ̂z and characterized by the frequency ωA. The cavity is
the other subsystem and is described by the number operator
n̂ = â†â, with [â, â†] = 1, and the cavity frequency ωC. We
also include a Kerr nonlinearity, parametrized by uC, which
plays the role of effective interactions between cavity photons
in this system. The atom and the cavity exchange photon
quanta through the weak-tunneling term g(âσ̂+ + â†σ̂−) with
g � h̄ωA, h̄ωC and where σ̂+ and σ̂− are the raising and low-
ering operators of the atom states. Note that, in the language
of Eq. (20), we choose ω = 0 since any external driving fre-
quency can be incorporated in the laser detuning—replacing
ωC—in the rotating frame [41]. For uC = 0, the Hamiltonian
(30) reduces to the Jaynes-Cummings Hamiltonian [56].

FIG. 5. Thermodynamic cost (dashed lines), energetic cost (dot-
ted lines), and rate response (solid lines) for an atom coupled to a
cavity as functions of the inverse temperature difference βA − βC.
The atom and cavity frequencies are taken in resonance, ωA = ωC,
and the different curve colors denote different Kerr nonlinearities,
uC/h̄ωA = 0, 10, in blue and red, respectively. In panels (a) and
(c) the cavity is kept at the cold temperature (βC > βA), whereas
in panels (b) and (d) it is the atom that has the colder temperature
(βA > βC).

To relate to the theoretical framework of Sec. III A, we now
identify the tunneling operator Â = gâσ̂+, which we use to
calculate the zero-frequency amplitudes C (i)

�(0) in Eq. (28).

Note that a possible observable Q̂ with which a current and
its noise may be defined according to (22) could here be
the atomic occupation Q̂ = σ̂z+1

2 , satisfying [Q̂, Â] = Â. The
result for C (i)

�(0) is shown in Fig. 5, where we plot C (i)
�(0) for

different values of the nonlinearity uC. Since we are free to
choose the L subsystem, in Figs. 5(a) and 5(c) the atom is the
subsystem considered at two different temperatures, whereas
in Figs. 5(b) and 5(d) the cavity is. In general, Fig. 5 shows
that the thermodynamic cost and the energetic cost are very
similar to each other and that there is no hierarchy between
them, namely, it depends on the specific parameters whether
the thermodynamic or the energetic cost is larger.3 We fur-
thermore see that—unsurprisingly both thermodynamic and
energetic constraints are trivially saturated at equal temper-
ature. However, for sizable temperature biases, considering
the atom or the cavity at different temperatures affects the
constraints.

Figures 5(a) and 5(c) illustrate the case where the cavity is
always taken at the cold temperature, while we compare the

3This can, for example, be seen in Fig. 5(b), where, in the absence
of the Kerr nonlinearity the thermodynamic cost is larger than the
energetic cost, but in the presence of such a nonlinearity the opposite
holds true.
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rates for the atom being taken at two different temperatures.
We see that the rate �→ has a nontrivial constraint via the
thermodynamic and energetic cost: for all temperature biases,
the response contribution C (Resp)

→ is positive and it thereby con-
strains the thermodynamic and energetic costs nontrivially. In
contrast, for the rate �←, the response contribution is always
negative, thereby not putting any nontrivial constraint on the
energetic and the thermodynamic cost, which are positive
by definition. This can be understood from the fact that the
rate �← characterizes the process in which the atom emits a
photon into the cavity, requiring the atom to be in an excited
state. However, if all allowed transitions start in states with
energies that are more than a standard deviation away from the
internal energy of the subsystem, here the atom, then the rate
response is negative W (Resp) � 0, and the constraints become
trivial, see Appendix B for a detailed proof.

In Figs. 5(b) and 5(d), we show results where the atom
is always kept at the cold temperature, while the cavity can
be taken at two different temperatures. Here, we see that the
bounds are trivial in the absence of the nonlinearity, uC = 0.
Instead, a nonvanishing cavity nonlinearity allows one to ap-
proach both thermodynamic and energetic constraints also at
large temperature biases for both rates ��. This can be under-
stood from how the nonlinearity affects the constraints (29).
There are two effects of the nonlinearity: On the one hand,
finite values of uC break the degeneracy of the atom-cavity
transitions, making the atom couple only to two consecutive
cavity states. On the other hand, a large uC increases the
energy spacing of the cavity. This feature reduces the number
of states that have non-negligible occupation at finite cavity
temperature βC �= 0. These two aspects effectively reduce the
size of the cavity (which here plays the role of the system on
which the two-point measurement is performed, see Sec. II),
moving it further away from the thermodynamic limit and
thereby making the bounds more constraining.

D. Coupled fermionic rings

Here, we consider two fermionic tight-binding rings with
Lα sites for subsystem α = D, U, see Fig. 4. Their Hamiltoni-
ans read

Ĥα =
Lα−1∑
i=0

tα (ĉ†
α,i+1ĉα,i + ĉ†

α,i ĉα,i+1) + uα

2
N̂α (N̂α − 1), (31)

where we take periodic boundary conditions ĉα,Lα
= ĉα,0

for the fermionic operators obeying {ĉα,i, ĉ†
β, j} = δαβδi j . The

charging energy contribution in Eq. (31), parametrized by
uα , depends on N̂α = ∑Lα−1

i=0 ĉ†
α,iĉα,i, i.e., the total number

operator for subsystem α. Next, we introduce weak tunneling
between the two rings, taken at the site i = 0, by adding the
tunneling Hamiltonian

V̂ (t ) = g(ĉ†
D,0ĉU,0e−iωt + ĉ†

U,0ĉD,0eiωt ), (32)

with g � tα . Here, we identify the tunneling operator Â =
gĉ†

D,0ĉU,0, which transfers a fermion from the upper ring (U)
to the lower ring (D). Then, using this tunneling operator Â,
we calculate the amplitudes C (i)

�(ω) of Eq. (28). Note that a

possible observable Q̂ could here be the number of fermions
in one ring, e.g., Q̂ = N̂D, which satisfies [Q̂, Â] = Â. The

×

×

FIG. 6. Thermodynamic cost (dashed lines), energetic cost (dot-
ted lines), and rate response (solid lines) for two (U and D) coupled
fermionic rings with sizes LD = 3 and LU = 10. The costs are plotted
vs the inverse-temperature difference βD − βU. The ring hopping
parameters, tD and tU, and the driving frequency are fixed as tU =
4
5 tD = 2h̄ω. The upper ring charging energy uU = 0 is also fixed,
while the down ring charging energy is taken as uD/2tD = 0, 10 for
curves in blue and red, respectively. In panels (a) and (c) the upper,
larger ring is kept at the cold temperature (βU > βD), whereas in
panels (b) and (d) it instead is the down, smaller ring that is colder
(βD > βU).

result for C (i)
�(ω) is shown in Fig. 6, where we plot C (i)

�(ω)
at different values of the charging energy uD in the lower
ring, and in Fig. 7 for different sizes LU of the upper ring.
Note that the frequency ω of the tunneling Hamiltonian can
emerge from a potential bias between the rings after a gauge
transformation [27,57].

Similarly to the atom-cavity system considered in
Sec. III C, the charging energy uD influences the thermo-
dynamic and energetic constraints in the system of coupled
rings. In Figs. 6(a) and 6(c), we show results where the
lower ring, namely, the one displaying finite interaction, is
the one that is considered at two different temperatures when
comparing out-of-equilibrium rates. This produces nontrivial
constraints for both ��, similar to the case of the atom-cavity
system, where the cavity with nonlinearity uC is taken at two
different temperatures, as shown in Figs. 5(b) and 5(d). In
contrast, as shown in Figs. 6(b) and 6(d), for the case where
the upper ring is taken at two different temperatures, only the
rate �← is nontrivially constrained, as long as the charging
energy uU = 0 vanishes.

Furthermore, as discussed in Sec. II E, increasing the size
of the ring that is considered at two different temperatures
(namely corresponding to the one on which the two-point
measurement is performed, see Sec. II), when comparing
out-of-equilibrium rates, weakens the constraints, as is seen
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× ×

××

FIG. 7. Thermodynamic cost (dashed lines), energetic cost (dot-
ted lines), and rate response (solid lines) for the two coupled
fermionic rings with charging energies uD/2tD = 10, uU = 0, plotted
vs the inverse temperature difference βU − βD. The lower ring has
fixed size LD = 3, and the upper ring has sizes LU = 4, 10 for the
curves in blue and red, respectively. All other parameters are the
same as in Fig. 6. In panels (a) and (c), the upper, larger ring is kept
at the cold temperature (βU > βD), whereas in panels (b) and (d) the
lower, smaller ring is kept fixed at the cold temperature (βD > βU).

in Figs. 7(b) and 7(d). In this example, the tunneling rates
scale inversely with the ring size, i.e., with a scaling function
f of the form f (LU) ∼ 1/LU [see below Eq. (19)], whereas
the extensive quantities entering the thermodynamic and en-
ergetic costs scale linearly with LU. Thus, while the costs are
essentially unaffected upon increasing LU, the rate responses
instead decrease. By contrast, if the ring that is considered at
two different temperatures has a fixed size, both costs and rate
responses scale as 1/LU because of the scaling of the tunneling
rates alone, see Figs. 7(a) and 7(c). This feature implies that,
as long as the size of the subsystem considered at two different
temperatures remains small, there are nontrivial constraints on
the tunneling rates, irrespective of the size of the subsystem
with fixed temperature.

IV. CONCLUSIONS

We have studied the transition probabilities of two-point
measurement schemes for different initial thermal state oc-
cupations in an otherwise generic quantum system. For such
setups, we have proved two novel bounds that the transi-
tion probabilities (2) satisfy: (i) the thermodynamic constraint
(12), stating that the response of the transition probabilities
for different initial temperatures bounds from below the mag-
nitude of the probabilities themselves multiplied by the heat
dissipated while cooling or heating the system to these tem-
peratures; and (ii) the energetic constraint (17), which states
that the response of the transition probabilities to temperature

variations also bounds from below the transition probabilities
weighted by the continuous change in the internal energy
required to heat the system.

As one application of interest, we have analyzed the devel-
oped constraints for the tunneling rates of transitions between
two weakly coupled subsystems driven out of equilibrium by
a temperature bias. As a key consequence of these bounds,
also the tunneling current and its low-frequency noise become
bounded in the presence of a temperature bias.

Our results thus highlight a fundamental connection be-
tween thermodynamic potentials and transport quantities for
small-size quantum systems. In particular, they should be
testable for a broad range of state-of-the-art experimental
setups, including optical or mechanical cavities coupled to-
gether [44] or to (artificial) atoms [45–50], and tunneling
bridges across molecules [37,39,51] or magnetic impurities
[52–54]. Beyond the weak-coupling examples studied in the
present paper, also the strong-coupling regime is captured by
our general constraints and it would be intriguing to inves-
tigate, e.g., coherent oscillations between strongly coupled
few-level systems in the future.
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APPENDIX A: WORK EXTRACTION AND
NONEQUILIBRIUM FREE ENERGY

By closely following Ref. [58], we show in this Ap-
pendix how the nonequilibrium free energy limits work
extraction. Consider a system S coupled to a bath B, described
by the total Hamiltonian

Ĥ (t ) = ĤS(t ) + ĤB + ĤSB(t ). (A1)

Here, ĤS(t ) and ĤB are the system and bath Hamiltonians,
respectively, and ĤSB(t ) is the time-dependent coupling be-
tween system and bath. The rate of work done on the system
and the heat production in the bath are defined as

Ẇ (t ) ≡ Tr

{
dĤ (t )

dt
ρ̂(t )

}
, (A2a)

Q̇B(t ) ≡ Tr

{
ĤB

d ρ̂(t )

dt

}

= −Tr

{
(ĤS(t ) + ĤSB(t ))

d ρ̂(t )

dt

}
. (A2b)

In this way, we can write an expression equivalent to
the first law of thermodynamics. To this end, one considers
the change in the energy of S, denoted U (t ) ≡ Tr{[ĤS(t ) +
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ĤSB(t )]ρ̂(t )}, namely,

dU (t )

dt
= Ẇ (t ) − Q̇B(t ). (A3)

Integrating from the beginning of the work extraction opera-
tion at t = 0 to its end at t = τ , we have

�U (τ ) ≡ U (τ ) − U (0) = W (τ ) − �QB(τ ). (A4)

To write an expression equivalent to the second law of ther-
modynamics, we assume that, before the work extraction, the
system and the bath are uncorrelated, i.e., ρ̂(0) = ρ̂S(0) ⊗
ρ̂B(0). Then, the change in entropy of system and bath can
partially be written in terms of the relative entropy between
the initial and the time-evolved density matrices. Generally,
the relative entropy between two density matrices ρ̂1 and ρ̂2 is
defined as

D[ρ̂1||ρ̂2] ≡ Tr{ρ̂1(ln ρ̂1 − ln ρ̂2)}, (A5)

which applied to the evolution of the coupled system and bath
becomes

D[ρ̂(t )||ρ̂S(t ) ⊗ ρ̂B(t )] = �SS(t ) + �SB(t ) � 0. (A6)

Here, �Sα (t ) ≡ S[ρ̂α (t )] − S[ρ̂α (0)] is the difference in von
Neumann entropy, and the positivity stems from Klein’s in-
equality. If the bath is sufficiently large, its entropy change is
well approximated by the Clausius relation

�SB(t ) ≈ �QB(t )

TB
, (A7)

where TB is the temperature of the bath. Then, combining
Eqs. (A4), (A6), (A7) we find that the performed work is
limited from below by the nonequilibrium free energy �F as

W (τ ) � �U (τ ) − TB�SS(τ ) ≡ �F. (A8)

In the present paper, we are interested in the situation where,
at the beginning and at the end of the operation, the system
Hamiltonian and the system-bath interaction satisfy

ĤS(0) = ĤS(τ ), ĤSB(0) = ĤSB(τ ) = 0, (A9)

i.e., the system Hamiltonian is left unchanged after the op-
eration, and no system-bath coupling exists at the beginning
and at the end of the operation. Then, the nonequilibrium free
energy reads

�F = �FS = �US(τ ) − TB�SS(τ ), (A10)

with �US(τ ) ≡ US(τ ) − US(0) and US(t ) ≡ TrS{ĤS(t )ρ̂S(t )}.
These features allow us to calculate the maximum work that
can be extracted W ext(τ ) = −W (τ ) by using only the knowl-
edge of the system’s density matrix at the beginning and at the
end of the operation:

W ext(τ ) � −�FS. (A11)

Furthermore, if the initial and final states of the system
are thermal states at temperatures T and TB, respectively, the
entropy variation of the system reads

�SS(τ ) = β�US(τ ) + (βB − β )US(τ ) + ln

(
ZS(τ )

ZS(0)

)
,

(A12)

with ZS(0) = TrS{exp[−βĤS(0)]} and ZS(τ ) =
TrS{exp[−βBĤS(τ )]} being the partition functions at the
inverse temperatures β = T −1 and βB = T −1

B , respectively.
We now recall that the internal energy of a thermal state is
related to the partition function as US(τ ) = − ∂

∂βB
ln ZS(τ ),

and by using the concavity of − ln ZS as a function of the
inverse temperature, Eq. (A12) leads to the inequality

�SS(τ ) � β�US(τ ). (A13)

We next combine Eqs. (A4), (A6), (A13) in two different
ways, depending on whether we focus on the heat absorbed
by the bath, �QB(τ ), or on the energy variation in the system,
�US(τ ). For these two situations, we find

W (τ ) −
(

1 − TB

T

)
�US(τ ) � 0, (A14a)

W (τ ) −
(

1 − T

TB

)
�QB(τ ) � 0. (A14b)

As detailed in Fig. 2, we are interested in both cases
T < TB and T > TB, depending on whether we are cooling or
heating the system. When T < TB, we focus on Eq. (A14a).
There, �US(τ ) � 0, since the system is heated by the hot
bath, and W (τ ) � 0 since we are using the heat flow to extract
energy. Then

�US(τ ) � W ext(τ )
T

TB − T
= W ext(τ )η(c). (A15)

Instead, when T > TB, we focus on Eq. (A14b), where
�QB(τ ) � 0 as the cold bath receives heat from the (initially
hotter) system, and again W (τ ) � 0 as we are extracting work.
Then,

�QB(τ ) � W ext(τ )
TB

TB − T
= W ext(τ )η(h). (A16)

APPENDIX B: SUFFICIENT CONDITION
FOR TRIVIAL CONSTRAINTS

Both thermodynamic and energetic costs, Eqs. (14) and
(18), respectively, are positive by definition, and are lower-
bounded by the response term W (Resp)

a→b in Eq. (13). Therefore,
the thermodynamic and energetic constraints are nontriv-
ial whenever W (Resp)

a→b > 0. In this Appendix we provide a
sufficient condition for W (Resp)

a→b < 0, making the results of
Eqs. (12) and (17) trivial, and a sufficient condition for
W (Resp)

a→b > 0, making the results of Eqs. (12) and (17) nontriv-
ial. Starting from the definition of the response contribution
(13) and recalling that derivatives with respect to β only act
on the probabilities pa, we consider

∂β pa(β ) = [U (β ) − εa]pa(β ). (B1)

Taking a second derivative with respect to β we find

∂2
β pa(β ) = [∂βU (β ) + [U (β ) − εa]2]pa(β ). (B2)

We now focus on all energies εa lying far from the internal en-
ergy U . Namely, we suppose that the distance between εa and
U is larger than the standard deviation of the internal energy,
such that the following inequality holds for all β ∈ [βh, βc]:

|U (β ) − εa| � δU (β ), (B3)
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where

δU (β ) =
√∑

a

(εa)2 pa(β ) − U 2(β ) = √−∂βU (β ) (B4)

is the standard deviation of the internal energy. In this energy
interval, defined by Eq. (B3), the second derivative of the
occupation probabilities is positive, i.e., ∂2

β pa(β ) � 0, making
∂β pa(β ) an increasing function in the inverse temperature β.
This in turn makes the rate response negative,

∂β pa(βh) − ∂β pa(βc) � 0 ⇒ W (Resp)
a→b � 0, (B5)

thus trivializing both thermodynamic and energetic con-
straints.

Conversely, the condition that the energies of the initial
states lie within a standard deviation from the internal energy
for all inverse temperatures in [βh, βc] is a sufficient condition
for the rate response to be positive W (Resp)

a→b � 0. Indeed, this
condition on the energies makes ∂β pa(β ) a decreasing func-
tion in the inverse temperature β, leading to

∂β pa(βh) − ∂β pa(βc) � 0 ⇒ W (Resp)
a→b � 0. (B6)

We demonstrate this reasoning with a simple example: for
the two-level system considered in Sec. III C, we can easily
compute both the internal energy and its standard deviation

UA(β ) = h̄ωA p(A)
1 ,

δUA(β ) = h̄ωA

√
p(A)

1

[
1 − p(A)

1

]
, (B7)

with p(A)
1 = (1 + eβ h̄ωA )−1 � 1/2. Therefore, when only the

transition in which the atom emits a photon into the cavity
is allowed, the only possible initial state for the atom is the
excited one, with energy h̄ωA, which however satisfies

h̄ωA � UA(β ) + δUA(β ) (B8)

for all β. Therefore, the rate response associated with the
emission of a photon is always negative, and it puts a con-
straint neither on the thermodynamic cost nor on the energetic
cost.

APPENDIX C: TRANSITION RATES IN THE
WEAK-TUNNELING REGIME

In this Appendix, we derive expressions for the weak-
tunneling transition rates of Eq. (21) starting from the
two-point measurement probabilities of Eq. (2), closely fol-
lowing the derivation presented in Ref. [59]. As our starting
point, we consider the unitary evolution from time 0 to
time t of the full Hamiltonian Ĥ (t ) = Ĥ0 + V̂ (t ). The time-
evolution operator reads

Û (t, 0) = T exp

{
− i

h̄

∫ t

0
Ĥ (s)ds

}
, (C1)

where T denotes the time ordering. By treating the tunnel-
ing Hamiltonian V̂ (t ) perturbatively, we next expand the full
unitary evolution as Û (t, 0) ≈ Û0(t, 0) + δÛ (t, 0), where

Û0(t, 0) ≡ e−iĤ0t/h̄, (C2a)

δÛ (t, 0) ≡ − i

h̄

∫ t

0
dx Û0(t, x)V̂ (x)Û0(x, 0), (C2b)

are the evolution induced by the free Hamiltonian Ĥ0 and
the first correction due to the tunneling Hamiltonian V̂ (t ),
see Eq. (20). For the conditional probability between two
common eigenstates a, b of the Hamiltonian Ĥ0, this means

|〈b|U (t, 0)|a〉|2
≈ |〈b|Û0(t, 0) + δÛ (t, 0)|a〉|2

≈
∣∣∣∣δab − i

[
Aba

e−iωt − e−iεbat/h̄

εba − h̄ω
+ A∗

ab

eiωt − e−iεbat/h̄

εba + h̄ω

]∣∣∣∣
2

,

(C3)

where we used the matrix elements of the tunneling Hamilto-
nian Aba = 〈b|Â|a〉 and the energy differences εba = εb − εa.
If we now further assume that the tunneling operator allows
for either the transition |a〉 → |b〉 or |b〉 → |a〉 but not for
both, i.e., AabAba = 0, we find

|〈b|U (t, 0)|a〉|2 ≈ |Aba|2 2 − 2 cos [(εba/h̄ − ω)t]

(εba − h̄ω)2

+ |Aab|2 2 − 2 cos [(εba/h̄ + ω)t]

(εba + h̄ω)2 (C4)

for b �= a. The long-time limit tunneling rates from state a to
state b are then simply obtained by taking a time derivative, to-
gether with the limit t → ∞, while keeping |Aba|t

h̄ ,
|Aab|t

h̄ � 1,

∂t |〈b|U (t, 0)|a〉|2 t→∞−−−→ 2π

h̄
|Aba|2δ(εba − h̄ω)

+ 2π

h̄
|Aab|2δ(εba + h̄ω). (C5)

We now choose the transition matrix element Aba to be the
nonzero one. The transition rates are obtained by multiplying
by the probability of the initial state,

�a→b = 2π

h̄
δ(εba − h̄ω)|Aba|2 pa, (C6)

�a←b = 2π

h̄
δ(εba − h̄ω)|Aba|2 pb. (C7)

Finally, to get the full transport rates, we multiply by the
probability of the initial state and sum over all initial and final
states contributing to the process of absorption or emission
of h̄ω, namely, �→ = ∑

a,b �a→b and �← = ∑
a,b �a←b.

Specializing to a bipartite system, with Ĥ0 = ĤL + ĤR and
ĤL|nl〉 = ε (L)

n |nl〉, ĤR|nl〉 = ε
(R)
l |nl〉, the rates take the form

�mk←nl ≡ 2π

h̄
δ
(
ε(L)

mn + ε
(R)
kl − h̄ω

)|Amk,nl |2 p(R)
l p(L)

n ,

�mk→nl ≡ 2π

h̄
δ
(
ε(L)

mn + ε
(R)
kl − h̄ω

)|Amk,nl |2 p(R)
k p(L)

m , (C8)

leading to Eq. (21) in the main text.

APPENDIX D: CURRENT AND NOISE IN THE
WEAK-TUNNELING REGIME

It is interesting to connect these rates to transport quanti-
ties. On one hand, this allows us to exploit our constraints to
develop bounds on the noise under a temperature bias in terms
of currents. On the other hand, it provides an experimental
access to test our bounds on transition probabilities and rates.
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We start by defining a current operator via Heisenberg’s
equation of motion as

Î (t ) ≡ − i

h̄
([Q̂, Â]e−iωt + [Q̂, Â†]eiωt ), (D1)

where the operator for a generalized charge has the properties
[Ĥ0, Q̂] = 0 and Q̂|a〉 = qa|a〉 for the common eigenstates
|a〉. By treating the tunneling Hamiltonian V̂ (t ) perturbatively,
we now study the average current I = I (t ) ≡ 〈ÎH(t )〉 and its
zero-frequency noise S ≡ ∫

dt〈δÎH(t )δÎH(0)〉, where ÎH(t ) is
the current operator in the Heisenberg picture and δÎH(t ) ≡
ÎH(t ) − I (t ) its fluctuation.

With Eq. (C2), the average current can be expanded in pow-
ers of the tunneling operator A as 〈ÎH(t )〉 ≈ I (1)(t ) + I (2)(t )
with

I (1)(t ) ≡ Tr{Û†
0 (t, 0)Î (t )Û0(t, 0)ρ̂0}, (D2a)

I (2)(t ) ≡ Tr{[δU†(t, 0)Î (t )Û0(t, 0) + Û†
0 (t, 0)Î (t )δU (t, 0)]ρ̂0},

(D2b)

with Î (t ) given in Eq. (D1) and ρ̂0 is the state of the system
at time t = 0. Connecting to Appendix C, we assume that
[ρ̂0, Ĥ0] = 0, such that, if {|a〉} are the eigenstates of Ĥ0 with
energies εa, their occupations are given by ρ̂0|a〉 = pa|a〉. For
the zero-frequency noise, instead we start from the expansion

S (t ) ≈ 〈ÎH(t )Î (0)〉 ≈ Tr{Û†
0 (t, 0)Î (t )Û0(t, 0)Î (0)ρ̂0}. (D3)

We now again assume that the tunneling operator satisfies
AabAba = 0, which means that only one of the transitions
between |a〉 → |b〉 and |b〉 → |a〉 is possible. After some al-
gebra, we find the current and noise expressed in terms of the
transition rates (C6) and (C7)

I =
∑

ab

(qb − qa)[�b→a − �b←a],

S =
∑

ab

(qb − qa)2[�b→a + �b←a], (D4)

where we recall that qa|a〉 = Q̂|a〉. If we now add the hypoth-
esis [Q̂, Â] = qÂ as for standard charge currents, such that one
has (qb − qa) → q, the results for current and noise in terms
of rates of Sec. III in the main text are thus recovered.

APPENDIX E: GRÖNWALL INEQUALITY ON
OUT-OF-EQUILIBRIUM RATES IN A BIPARTITE SYSTEM

From the thermodynamic constraint in Eq. (23a), it is pos-
sible to remove the out-of-equilibrium response of tunneling
rates ∂L��(βh, βc) by means of Grönwall’s lemma [60]. In-
deed, Eq. (23a) can be cast as

y′(x) � f (x) + g(x)y(x), (E1)

where x is the inverse temperature of subsystem L, and

y(x) ≡ ��(x, βc),

f (x) ≡ ∂L��(βc, βc) − �F (c)
L (x)η(h)(x)��(βc, βc),

g(x) ≡ −�F (h)
L (x)η(c)(x). (E2)

Considering the corresponding homogeneous differential
equation,

v′(x) = g(x)v(x) → v(x) = exp

[∫ βc

x
g(s)ds

]
, (E3)

we see that v(βc) = 1 and v(x) � 0 for all x. The derivative
of y(x)/v(x) reads

d

dx

y(x)

v(x)
= v(x)y′(x) − y(x)v′(x)

v(x)2 � f (x)

v(x)
. (E4)

Integrating this expression from βh to βc leads to

y(βc) − y(βh)

v(βh)
�

∫ βh

βc

f (x) exp

[
−

∫ βc

x
g(s)ds

]
dx, (E5)

which is Grönwall’s inequality. Reordering the terms we find

��(βh, βc) � ��(βc, βc) exp

[∫ βc

βh

g(x)dx

]

−
∫ βc

βh

f (x) exp

[∫ x

βh

g(s)ds

]
dx. (E6)

Notably, the right-hand side of Eq. (E6) contains neither the
out-of-equilibrium rates nor their derivatives.
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