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Abstract
The rapid development of driving automation systems (DAS) in the automotive industry aims to support
drivers by automating longitudinal and lateral vehicle control. As vehicle complexity increases, it is crucial
that drivers comprehend their responsibilities and the limitations of these systems. This work investigates
the role of the driver’s perception for the understanding of DAS by cross-analysing four empirical studies.
Study I investigated DAS usage across different driving contexts via an online survey conducted in
Germany, Spain, China, and the United States. Study II explored contextual DAS usage and the factors
influencing drivers’ understanding through a Naturalistic Driving Study (NDS), followed by in-depth
interviews. Study III employed a Wizard-of-Oz on-road driving study to simulate a vehicle offering Level
2 and Level 4 DAS, paired with pre- and post-driving interviews. Study IV following up used a Wizard-
of-Oz on-road driving study to simulate Level 2 and Level 3 DAS and subsequent in-depth interviews. The
findings from these studies allowed the identification of aspects constituting a driver’s understanding and
factors influencing their perception of DAS. The identified aspects and factors were consolidated into a
unified conceptual model, describing the process of how perception shapes the driver’s mental model of a
driving automation system.
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Introduction

The development of automated vehicles (AVs) has
garnered significant attention in various sectors,
including industry, academia, and the general
public because of their argued potential to revo-
lutionise transportation. However, the widespread
availability of fully automated vehicles capable of
operating under all situations is unlikely to occur
over the next few decades, despite the rapid
evolution of technology. This has resulted in a
transitional phase for drivers, where the vehicle
and the driver share the responsibility and control
over the driving task. During this transitional
phase, there is a need for clear guidelines and

regulations to ensure the safe integration of driving
automation systems into vehicles.

Driving automation systems (DAS) can be
conceptualised as a compilation of active safety
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technologies designed to assist the driver. There-
fore, DAS are widely recognised as effective
measures for tackling issues related to traffic safety
(Kyriakidis et al., 2015; NHTSA, 2017). However,
drivers find themselves in the situation where the
capabilities and limitations of such systems vary
greatly, as they become increasingly complex with
the introduction of vehicles offering several levels
of automation (LoA). According to the definition
provided by SAE International (2021), the Levels
of Driving Automation range from Level 0 (No
Driving Automation) to Level 5 (Full Driving
Automation). Vehicles classified as Level 0 to
Level 2 automation are fitted with driver assistance
systems that possess varying capabilities and
functions. For example, Level 1 vehicles are
equipped with adaptive cruise control (ACC) and
Level 2 vehicles have both lane-keeping and
adaptive cruise control functionalities (Marcano
et al., 2020). Vehicles equipped with Level 3 and
Level 4 DAS can operate without any input or
intervention from the driver in specified driving
contexts. These are termed operational design
domains (ODDs), that is, specific environment,
scenarios, and situations in which the automated
system is intended to function without human
intervention. Level 5 DAS can fully automate the
vehicle in all ODDs and does not require any driver
input.

A number of studies have investigated different
factors that impact drivers’ safe utilisation of DAS.
Many conclude that the utilisation of automated
systems is heavily influenced by the driver’s mental
model of the capabilities and limitations of these
systems (Ahlström et al., 2018; Ahmed &
Ghasemzadeh, 2018; Papazikou et al., 2017; Zhai
et al., 2018). However, it has been shown manifold
that a significant number of drivers lack awareness or
possess incomplete comprehension about the con-
straints associated with the DAS in their personal
vehicles (Boelhouwer et al., 2020; McDonald et al.,
2018; Regan et al., 2020). Therefore, for these
technologies to improve traffic safety as well as
enhance the driving experience and comfort (Vasile
et al., 2023), DAS must be designed so that drivers
accept them, understand their capabilities and limi-
tations, and use them appropriately, without abusing
them or becoming overly reliant on them.

However, the implementation of several levels
of automation (i.e., driving modes) in vehicles has

brought about a level of intricacy that poses
considerable difficulties for drivers in under-
standing the capabilities of a DAS and their own
role when interacting with such systems (Endsley,
2017). The availability of several driving modes,
which are offered depending on different ODDs,
can result in a state of confusion about what the
system’s and what the driver’s responsibility is at a
given time. The state where a driver is not aware of
what driving mode or automation level is currently
active is also known as mode confusion (Sarter &
Woods, 1995). A simulator study by Feldhütter
and colleagues (2019), the phenomenon of mode
confusion in the interaction with automated ve-
hicles, found that mode confusion between two
driving modes is especially an issue in transitions.
Some work contends that the user interface (UI) is
essential in addressing this issue (cf., Banks et al.,
2018; Carsten & Martens, 2018). A wide range of
studies has investigated how transitions effects in
automated driving (cf. Zhang et al., 2019). A lit-
erature study conducted by Kim and colleagues
(2021) reviewed the effects of the UI in transitions
and found that there are many conflicting results as
to if the UI can have a positive effect on the
driver’s interaction with DAS. These findings
highlight that there are other factors that need to be
investigated.

Therefore, it can be deduced that one of the
elements crucial for the safe utilisation of DAS is
the driver’s mental model of the vehicle’s driving
modes. Failure to acquire this knowledge can re-
sult in an inability to formulate effective usage
strategies and lead to hazardous situations (Banks
et al., 2018; Wilson et al., 2020). Thus, in order to
create a positive driving experience and prevent
the misuse of DAS due to overreliance and mis-
aligned mental models, designers must carefully
consider the implications of various variables,
such as cognitive, behavioural, and contextual
aspects, and how they influence the driver’s per-
ception of and consequent interaction with DAS.

Mental models and perception

Within the automotive research community,
mental models (cf., Rouse & Morris, 1986) have
been recognised as a significant element in en-
suring the safe utilisation of DAS. Mental models,
although subject to development and evolution

2 Journal of Cognitive Engineering and Decision Making 0(0)



through experience, primarily consist of static
knowledge related to the product or system. This
includes its prominent features, operational
mechanisms, interrelationships among different
components, and the anticipated behaviour of its
components when exposed to various external
conditions (Endsley & Garland, 2000).

Different investigations address different as-
pects of the topic. For instance, how do drivers
construct a mental representation of a DAS op-
eration? What is an adequate mental representation
that facilitates safe utilisation? In what ways might
human–machine Interface design contribute to the
formation and development of a mental model?
How do faulty mental models emerge, and how
can they be avoided? How can driver training
support the development of a sufficient mental
model in the interaction with DAS?

However, our comprehension of the world is
based on the information we perceive through our
senses from the environment. In other words,
perception is the process by which objects, events,
and relationships become phenomenally here,
now, and real (Hochberg, 1956). In contemporary
research, there is a prevailing consensus that the
existing theories pertaining to perception do not
offer comprehensive explanations for the intricate
processes involved. Consequently, it can be in-
ferred that the field of study pertaining to per-
ception is an ongoing endeavour. To date, there are
two opposing views concerning the concept: (i)
“bottom-up” theory of perception (Gibson, 1972),
describing this process as a direct interpretation of
incoming stimuli, and (ii) “top-down” theory of
perception (Gregory, 1974), describing the inte-
gration of higher cognitive information, such as
previous experiences and knowledge.

Other work suggests that all information is
processed and interpreted based on a person’s
“perceptual sets” (Allport, 1955), which are pre-
vious experiences, beliefs, and context (Oliver,
1977). Thus, perception is the result of a com-
bined bottom-up and top-down process, and hence,
that categorises what is perceived from the world
in patterns, guided by our needs, expectations, and
beliefs. In other words, perception is the process of
receiving sensory information, and then organising
it into patterns, and recognising or interpreting its
meaning, in order to plan and execute an action.
According to this interpretation, one can infer that

top-down and bottom-up processing occur si-
multaneously during the perception process and
that attention is guided by either of them at any
given moment, depending on the strength of the
stimulus or the individual’s objectives.

The irony of driving automation lies in the
perception of increased capability of such systems,
which leads to a range of human factors issues
(e.g., overreliance and reduced situation aware-
ness), and the introduction of several driving
modes into one vehicle seems to exacerbate the
existing problems (e.g., Feldhütter et al., 2019). It
follows that the more driving modes are introduced
into the vehicle, the less likely it is for the driver to
understand the intricate system states fully, as the
increased complexity makes it difficult for drivers
to understand the various driving modes the ve-
hicle offers, and thus, it becomes more challenging
to grasp how the vehicle will behave in different
situations. This contributes to ambiguity sur-
rounding automation levels in vehicles, reducing
the driver’s overall understanding of the vehicle’s
capabilities and their own responsibilities (cf.
Sarter &Woods, 1995; Seppelt & Lee, 2015; Vagia
et al., 2016). Multiple studies indicate that the
driver’s understanding of the capabilities and
limitations of driving DAS, their awareness of the
available and currently active driving modes, and
ability to maintain the appropriate level of en-
gagement and intervention in crucial scenarios is a
matter of worry (Jenness et al., 2008; Larsson,
2012). These concerns are widely based on evi-
dence about driver misconception of the relevant
functions, or over-confidence in the systems’ ca-
pabilities and limitations. A survey conducted by
Seppelt and colleagues (2018) revealed that the
taxonomy proposed by SAE International (2021)
led to confusion regarding the roles and respon-
sibilities of drivers, for example, that drivers could
distinguish between driver assistance and full
automation but had difficulty distinguishing be-
tween the levels in between. Similarly, Abraham
et al. (2017) demonstrated that the design of DAS
affects the driver’s perception of the system and
the expected levels of accountability. Furthermore,
Homans and colleagues (2020) concluded based
on a survey that drivers’ understanding of auto-
mation levels does not align with the taxonomies.
This ambiguity may result in misuse or even non-
use of the system, thereby diminishing the
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potential benefits that automation support can
provide (Parasuraman et al., 2000).

Some research streams, in search of explanations
for the observed human factor issues, have indicated
that the existing design of DAS does not sufficiently
consider the driver’s mental model of interacting
with a DAS (e.g., Beggiato & Krems, 2013;
McDonald et al., 2018; Novakazi et al., 2021).While
ongoing attempts are being made to address these
enquiries and others of a similar nature, some has
long come to recognise that addressing the mental
model during the design of a DAS can aid drivers in
their understanding the vehicle’s capabilities and
limitations (Dickie & Boyle, 2009; Larsson, 2012);
information and feedback received from the vehicle
is relevant for drivers to be able to develop a mental
model (Blömacher et al., 2020; Boelhouwer et al.,
2020; Seppelt & Lee, 2019); and that the ability to
anticipate potential hazards and make effective de-
cisions and responses on the road is impacted by the
ability to form a sufficient mental model (Beggiato
et al., 2015; Beggiato & Krems, 2013) and that a
more comprehensive mental model affects the in-
teraction with DAS positively (Gaspar et al., 2020).
Hence, many works have investigated how exposure
and use of a system impacts the driver’s mental
model of it (Carney et al., 2022; Jenness et al., 2019),
and a lot of focus has been put on how training and
what different training methods can aid the devel-
opment of a sufficient mental model for the cali-
bration of trust and better utilisation of a DAS
(Gaspar et al., 2021; Merriman et al., 2023, 2023b;
Singer et al., 2024).

However, drivers struggle to understand feed-
back received from the vehicle about the different
mode changes or are confused about information
received from the vehicle, and what they are
supposed to do (Monsaingeon et al., 2021), and
other work shows that car manuals, which include
information about the operation of the systems, are
not successful in training drivers due to the pro-
vided information being too technical and abstract
and therefore go underused (Harms et al., 2020;
Viktorová & Sucha, 2018). As a result, drivers
often encounter challenges when attempting to put
the information into practical application
(McDonald et al., 2018; Oviedo-Trespalacios
et al., 2021).

These results suggest that there may be more
variables, which have not been already taken into

account, that influence the development of a
mental model, that is, the role of driver’s per-
ception in mental model formation. However, the
effect of a priori information provided to the driver
and previous knowledge of and experiences with
the systems is little researched, even though it
appears of big importance for the formation of
mental models. To address some of these chal-
lenges, Biondi (2023) proposes developing clear
and distinct naming conventions, training of users
at the point of sale, and driver self-education as
solutions that can help the user develop a mental
image and points out that the mental model for-
mation should better match and sustain the sys-
tem’s actual design. Other work has explored how
the driver–automation collaboration can be ex-
plored in different ways in order to reveal practical
requirements and design considerations to support
the matching of a mental model (cf. Lee et al.,
2023). The match of the drivers’ mental model to
the system design has long been acknowledged as
a key aspect to the implementation of DAS. Lee
and See (2004) established that a mismatch be-
tween the expected and actual system behaviour
can lead to distrust. Kraus and colleagues (2020)
found that provided information before the inter-
action with a system affects trust and is highly
dependent on the level of previous knowledge.
Furthermore, it has been found that incomplete or
mismatched mental models affect the situation
awareness (Endsley, 2000), as well as the ability to
understand limitations of a system and anticipate
system behaviour and the driver’s own responsi-
bility for the driving task in those situations
(Blömacher et al., 2018). Furthermore, research
suggests that driver’s acceptance and attitude to-
wards driving automation is also affected by the
mental model (Beggiato & Krems, 2013).

Thus, it can be inferred that irrespective of
whether there have been previous experiences or if
it is the first encounter with a DAS, the driver’s
pre-existing knowledge of DAS will impact their
interaction with such systems. This mental pre-
disposition or readiness to perceive sensory stimuli
in a particular way based on previous experiences,
expectations, beliefs, and context is known to be
influenced by “perceptual sets” (Allport, 1955).
Perceptual sets regulate choices between com-
peting alternative activities and, therefore, influ-
ence the outcomes of the perception process. This
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means, at a fundamental level, that perceptual sets
influence what in the available sensory data we
perceive and what we ignore and thus constitute
our existent knowledge of the world. This is also in
line with expectation theory (Oliver, 1977), which
asserts that a person will act in a particular manner
based on their personal frame of reference, moti-
vations, and interests, resulting in that decisions
are based on the individual’s estimation of how
closely the anticipated outcomes of a given be-
haviour correspond to the desired outcomes. The
lack of correlation between expectations and the
actual state of the real condition of the situation
might lead to an adverse outcome than initial
intentions.

In the realm of driving automation this can
result in situations such as the fatal Tesla Model
S accident which occurred on 7th of May 2016
(National Transportation Safety Board, 2017).
Data extracted from the Tesla vehicle revealed
that it was being operated in autopilot mode,
and that the system failed to issue any forwards
collision warnings or intervene by reducing the
velocity of the vehicle. Further, it was shown
that the driver did not attempt to intervene in
any form either. The results of the investigation
did not identify any design defects of the ve-
hicle that may have contributed to the collision,
however deducted that the incident was pri-
marily caused by human error, that is, the
driver being distracted from the driving task for
an extended period, which was described in the
report as “inattention due to overreliance”
(National Transportation Safety Board, 2017).
Historically, human error has been used to
classify and predict issues during interaction
with complex systems (c.f., Embrey, 1986;
Stanton et al., 2009). However, it has long been
argued by different researchers that it is es-
sential to human errors should not be the result
of an investigation, but rather the starting point
for finding an explanation for incidents
(Dekker, 2017), and that is important to un-
derstand the reason for the actions or inactions
of the involved persons within the context of
local rationality (Reason, 1990), in order to
understand the underlying reasoning for their
actions. As previously stated, the answers are
likely to be found in the driver’s perception of
the capabilities and limitations of DASs.

Nevertheless, there is currently a scarcity of
research examining the role of driver’s per-
ception on the subsequent use of these systems.

Human-centric perspectives on driving
automation

Earlier research efforts have investigated a range of
variables that have been deemed important for the
driver’s interaction with a DAS. These studies have
most frequently investigated the topic of safety and
take-over requests, trust and complacency, accep-
tance of and attitude towards automated vehicles,
situation awareness, workload and stress, and
drowsiness and fatigue, among other factors. For a
comprehensive summary, please refer to the literature
review conducted by Frison and colleagues (2020).
The review highlights that existing research often
focuses on a limited range of variables and meth-
odologies, without considering the interplay between
variables in the dynamic driving environment or
triangulating data for a deeper understanding of
driver–automation interaction.

Over the years, different approaches have been
sought to identify variables relevant to the driver’s
interaction with DASs. For example, various
works have attempted to describe the driver’s
interaction with a vehicle through behavioural
models. Michon (1985) conducted a review of
driver behaviour models and identified four dif-
ferent types of models along two dimensions: (i)
behavioural models, representing behaviour, ver-
sus (ii) psychological models, representing cog-
nitive processes, versus (iii) taxonomic models,
representing an inventory of facts and their rela-
tionships, versus (iv) functional models, contain-
ing components which interact dynamically. Based
on his analysis, he remarks on the absence of
driver-related factors such as cognitive functions,
beliefs, and emotions in most models, as they are
behavioural-functional and concentrate on specific
characteristics of the driving task and driver be-
haviours. Thus, they do not answer the question as
to why the driver behaves in a certain way. He
emphasises the need for additional research in the
area of cognitive processes to gain a better un-
derstanding of driver behaviour and driver moti-
vation (Michon, 1985). To date, this circumstance
has not changed.
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Building on Stanton and Young’s (2000) psy-
chological model of driving automation, Heikoop
and colleagues (2015) proposed a consensus-based
model describing interrelations between psycho-
logical constructs. Their model, based on a limited
literature search, includes nine variables (mental
model, situation awareness, attention, trust, mental
workload, stress, feedback, task demands, and
fatigue) and is critiqued for construct proliferation.
The authors acknowledged the need to extend the
model with additional psychological constructs
and empirically investigate these variables and
their interrelations.

Consequently, numerous authors call for a more
human-centric classification of automation levels
(cf. Kaber, 2017; Roth et al., 2018) than provided
by the currently prominent Levels of Driving
Automation provided by the Society of Automo-
tive Engineers (SAE International, 2021). While
there are advantages to utilising established tax-
onomies that categorise levels of automation (cf.
Endsley, 2017), studies show that the driver’s
mental models do not align with the technically
driven taxonomy (cf. Novakazi et al., 2021;
Seppelt et al., 2018; Yang et al., 2017). Some have
proposed improvements, and attempts have been
made to reduce driver confusion, including in-
vestigating how the names of DAS that are as-
sociated with different levels of automation
(Abraham et al., 2017), rephrasing the descriptions
of responsibilities (e.g., Yang et al., 2017), and
framing the driver’s responsibility in terms of
“driving” and “riding” (Seppelt et al., 2018). In
light of this realisation, SAE has added a visual
chart to the initial taxonomy to simplify and clarify
the “Levels of Driving Automation” for consumers
(SAE International, 2021). The addition describes
the levels of automation through simpler language
and graphical representation, illustrating what the
driver must do and what the system does. How-
ever, despite the fact that the human role has been
clarified, the taxonomy continues to illustrate
which actor is responsible for which task and does
not account for human perception of the system.
Further, studies show that the SAE taxonomy is
not only ambiguous to drivers but also to practi-
tioners and researchers, who struggle to find a
unanimous interpretation of the provided LoA (for
an overview, see Parker et al., 2023). Other re-
searchers argue that the extant levels of driving

automation taxonomies are technology-centred
and presented from the perspective of vehicle
technology development or policy development
(Yang et al., 2017), which is problematic as this
approach may impact the design of the driver–
vehicle interaction and might not address the ways
drivers comprehend such systems. Smith (2017)
further argues that the established taxonomies
influence the way designers think about the sys-
tem, resulting in design decisions driven by
technological instead of driver-centric viewpoints.

The aforementioned approaches collectively
indicate an underlying issue: current research ef-
forts lack a cognitive and holistic approach to the
driver’s understanding of DAS.

In an effort to address this, several studies have
examined the difficulties associated with designing
DAS and have reached the consensus that nu-
merous difficulties may emerge in the initial
phases of development. These challenges are
primarily attributed to the adoption of technology-
centric taxonomies, which tend to overlook the
human driver and prioritise task-allocation strat-
egies (cf. Seppelt et al., 2018; Smith, 2018; Yang
et al., 2017), as well as the lack of variety in
methodologies, and no triangulation of data.
Moreover, it has been established through addi-
tional research that the user’s understanding of
automation levels does not align with the existing
taxonomies (Homans et al., 2020).

Seppelt and Victor (2020) developed a con-
ceptual model describing the influence of a driver’s
mental model on automation reliance. The authors
argue that drivers initially construct general mental
models from various sources like manuals and
marketing materials, gaining a basic understanding
of system purpose and operating rules. However,
these general models may lack the specificity
needed for real-time interaction with varying en-
vironmental conditions. Applied mental models
develop through experience with the system,
which in turn will influence the general mental
model. Therefore, assessing both general and
applied mental models, and particularly identify-
ing mismatches between them, is essential for
understanding driver reliance decisions and au-
tomation use. While the model points out that
different information sources influence driver’s
reliance on DASs, it lacks a comprehensive de-
scription of the different aspects constituting a
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driver’s understanding and the factors influencing
mental model development. Therefore, a more
nuanced understanding of the specific components
of driver mental models and the factors that shape
their development is necessary.

Aim

The existing research has placed little attention on
the effects of perception on the construction of
mental models, and the effect this can have on the
interaction with a DAS. To date, the research body
offers only scattered insights, focusing on specific
components that affect a driver’s mental model of a
DAS. Novakazi and colleagues (2021) conducted
empirical on-road observation and in-depth in-
terviews pre- and post-driving in order to inves-
tigate drivers’ understanding of vehicles offering
several levels of automation. Their findings re-
vealed a nuanced understanding, demonstrating
that drivers’mental models are not solely based on
a single automation level or task-allocation per-
spective. Instead, they identified three key levels:
Context, Vehicle, and Driver, each comprising
various aspects that influence driver perception
and interaction with the automated system.

Thus, the here presented manuscript builds
upon this foundational work, aiming to explore
and investigate the different factors that impact
drivers’ perception and subsequently perception’s
role in mental model development, in order to
guide the development of driving automation from
a human-centric perspective.

To the best of the author’s knowledge, no prior
research has made an effort to generate a com-
prehensive description or offer a detailed summary
of the elements that impact the driver’s perception
and subsequent understanding of driving auto-
mation systems. In order to accomplish this, the
framework approach was employed to analyse
pertinent data from four empirical studies in a
cross-study analysis. While the individual studies
have been previously reported (see Table 1 for
details), this research presents a novel analysis of
their combined data, extending beyond previously
reported insights. The results led to the identifi-
cation of key aspects that constitute a driver’s
understanding and the factors that influence their
perception of DAS. The identified aspects and
factors were consolidated into a unified conceptual

model, describing the process of how perception
shapes the driver’s mental model of a driving
automation system.

Method

The present research has been based on the uti-
lisation of inductive and exploratory methodolo-
gies, more specifically a sequential mixed-methods
research design (Creswell, 2014), employing on-
line surveys, naturalistic driving studies, driving
studies paired with observations, in-depth inter-
views, and think-aloud protocols to gather em-
pirical observations. The synthesis of these
observations has been instrumental in identifying
recurring patterns and developing a comprehen-
sive understanding of drivers’ behaviours and
potential challenges for drivers when
utilising DAS.

Summary of studies

To ensure consistency across datasets, each of the
selected studies investigated driver understanding
of DAS in different driving contexts and with
different levels of automation. The section that
follows provides a summary of the four study
designs, including a description of the data col-
lection method(s) and a brief summary of the key
insights. An additional overview presenting details
can be found in Table 1.

As all of the here presented studies involved
human participants, a paramount ethical con-
sideration revolved around ensuring the well-
being, confidentiality, and informed consent of
the individuals involved. To ensure the volun-
tary participation and guaranteeing that the data
collected is utilised responsibly and ethically,
efforts were made for each of the conducted
studies to adhere to the guidelines provided by
the Swedish Research Council (2017). Addi-
tionally, the retrieval, storage, and processing of
the collected data rigorously adhered to the
General Data Protection Regulations (GDPRs)
of the European Union.

Study I. The aim of this study was to investigate the
application of Level 1 and Level 2 DAS, in a
variety of driving contexts. The survey was ad-
ministered to 2000 drivers in Germany (DE), Spain
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(ES), the United States (US), and China (CHN)
and covered their usage and experience with Level
1 and Level 2 DAS. The ages of the respondents
ranged from 18 to over 65. Among the respon-
dents, 27.1% indicated an annual mileage of 5001–
10,000 km, 35.9% drove 10,001–20,000 km an-
nually, 16.9% reported 20,001–30,000 km per
year, and 6.7% said they drove above 30,000 km
annually.

The driving contexts in all countries were
mainly urban areas, followed by motorways or
highways, and then the countryside, with a fairly
even distribution between these, with the excep-
tion of China, where the majority of participants
drove primarily in urban areas, with close to no
driving in the other driving contexts.

The responses were collected via an online
survey which was sent out via email by a third
party with access to the various markets. There
were a total of 36 questions, and it took partici-
pants between 10 and 15 minutes to complete the
survey. The majority of the questions were Likert-
type (Likert, 1932), scenario-based statements
querying the participants on their use of the DAS in
their personal vehicles in different driving con-
texts, for example, road types, weather and light

conditions, road conditions, and the drivers’
physical and mental condition.

Key insights. The study identified the driving
context, encompassing both situational factors,
such as road types, traffic conditions, weather, and
time of day, and the driver’s physical or mental
state, including boredom, monotony, and tired-
ness, as crucial for understanding the capabilities
and limitations of DAS. Regardless of the auto-
mation level, knowing the ODD is essential.
However, despite DAS not being designed for all
traffic, weather, and road conditions, the study
found that participants often used these systems
outside the intended ODD.

Study II. The aim of this study was to acquire a
more in-depth understanding of the drivers’ mo-
tivations for using Level 1 and Level 2 DAS, as
well as the drivers’ understanding of the capa-
bilities and limitations of these systems. Building
upon Study I, the contextual effects on the uti-
lisation of the systems were also investigated. The
Naturalistic Driving (ND)1 Study was conducted
over a period of 7 months, collecting data from
132 vehicles, and followed up with in-depth

Table 1. Overview of the Studies, Describing Data Collection Method, Assessed Level of Automation (According to
SAE International, 2021), Number of Participants, and Context.

Method of data collection
Level of
automation Number of participants Context

Further results
reported in

Study I Online survey Level 1 Completed
questionnaires:
568 Germany;
532 Spain; 516 USA;
504 China

China, Germany,
Spain, USA,
2018

Karlsson &
Novakazi
(2023)

Level 2

Study II Naturalistic driving study,
7-month data collection;
consecutive semi-
structured interviews

Level 1 NDS: 132 vehicles,
7-month data
collection period

Gothenburg,
Sweden,
2018–2019

Novakazi et al.
(2020);
Orlovska
et al. (2020)Level 2 Interviews:

12 participants
Study III Wizard-of-Oz, on-road

driving study;
observations, and semi-
structured interviews

Level 2 20 participants, novice
users

San Francisco,
USA, 2019

Johansson et al.
(2025);
Novakazi
et al. (2021)

Level 4

Study IV Wizard-of-Oz, on-road
driving study; A/B GUI
test; observations, and
semi-structured
interviews

Level 2 16 participants, novice
users

Gothenburg,
Sweden, 2022

Kim et al.
(2025);
Novakazi
et al. (2025)

Level 3
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interviews. The results from the NDS were cat-
egorised into driver behaviour and system per-
formance and measured in order to evaluate them
independently and investigate their
relationship. To evaluate driving contexts, the
evaluation incorporated vehicle speed, driving
distance, time of day, GPS data, wiper sensor
status, road conditions data, and other sensor data.
This analysis allowed for the identification of the
driving conditions (e.g., road, traffic, and weather)
in which the driver utilised the systems or decided
to disable them. Subsequently, using in-depth,
semi-structured interviews, an investigation and
validation of the quantitative data were conducted
to investigate the individual driver experience and
understanding of the systems. The interview study
consisted of 12 participants, 2 females and
10 males, with an age range of 31–62 years (Mean
52.4, SD = 9.0). The participants who had recently
purchased a new car and were novice users of a
Level 2 system were recruited via an email
newsletter. All participants commuted every day,
with five participants accounting for an annual
mileage of more than 30,000 km, four participants
driving between 20,001 km and 30,000 km per
year, and three covering between 10,001 km and
20,000 km. The interview covered four sections:
Contextual Information, System Usage and Sce-
narios, Perception and System Experience, and
Information Display and Controls. Accordingly, a
series of open-ended questions were formulated
based on the four major themes. The structure of
and questions in the interview were based on the
preliminary findings of Study I and the learnings
from the ND Study.

Key insights. The findings of the study found the
driving context, including road types, traffic
conditions, weather, time of day, and trip types, is
fundamental for understanding the capabilities and
limitations of DASs regardless of automation
level. Personal conditions like tiredness, stress,
and monotony of driving also play a role. Un-
derstanding the vehicle’s capabilities and limita-
tions is crucial. The perceived capabilities
influence how capable drivers believe the systems
are and their willingness to use them, which is
context dependent. Preconceptions and previous
experiences with similar systems significantly
impact acceptance and usage. Feedback on

automation status is relevant but can sometimes
misguide drivers if their perceptions of system
performance contradict the feedback. Trust in DAS
is closely linked to the driving context and learning
experience, with varying levels of trust depending
on the situation.

Study III. The aim of this study was to gather in-
sights into first-time users’ perception and un-
derstanding of a vehicle that offers several levels of
automation, specifically Level 2 and Level 4.

This was achieved by gathering insights from
an empirical road study conducted in the San
Francisco Bay Area, California, United States, in
June 2019, with 20 participants: 11 females and
9males ranging in age from 22 to 62 years (Mean =
42, SD = 14). During the study, participants en-
countered two different driving modes (levels of
automation) in a Wizard-of-Oz2 (WOz) vehicle: a
Level 2 partial automation system and a Level
4 high automation system (SAE International,
2021). The setup facilitated the elicitation of in-
sights by means of observation during the driving
sessions, collection of think-aloud data, as well as
in-depth semi-structured interviews before and
after the driving sessions.

Key insights. This study revealed the driving con-
text, including road types, traffic conditions,
weather, time of day, and trip types, is essential for
understanding when to use DASs. Personal con-
ditions like monotony, tiredness, and stress also
play a role. Understanding the vehicle’s abilities is
crucial, as drivers’ perceptions of system perfor-
mance influence how capable they believe the
systems are. Less human involvement leads to
higher perceived capability and trust in the sys-
tem’s situational and predictive abilities. Trust is
closely linked to the learning experience and is
affected by how systems handle different driving
situations. Previous experiences with similar
systems serve as benchmarks for understanding
new systems. Preconceptions, influenced by me-
dia, social circles, and legislation, affect the
willingness to use unknown systems. Information
about the vehicle’s capabilities and intentions is
received through multiple sensory channels.

Study IV. The aim of this study was to analyse the
dynamics of human–machine interaction in a
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vehicle that incorporated several levels of auto-
mation, specifically Level 2 and Level 3. This was
accomplished by implementing an empirical road
study conducted in Gothenburg, Sweden, in
September 2022, with 16 participants (7 female
and 9 male), ranging in age from 23 to 70 years old
(M = 44, SD = 13.48). During the study, partici-
pants encountered two different modes (levels of
automation) in a Wizard-of-Oz (WOz) vehicle: a
Level 2 partial automation system and a Level
3 high automation system (SAE International,
2021). Furthermore, the study utilised an A/B
UI test in order to compare the influence of dif-
ferent UI elements on the driver’s understanding
and interaction with each of the systems. Data was
collected through recordings of participants’ be-
haviour and think-aloud comments. Additionally,
in-depth semi-structured interviews were con-
ducted after the driving sessions to further enhance
the insights gathered. The results were then con-
trasted and compared, with the end goal of gaining
insights into the factors that influence drivers’
perception of a vehicle offering several levels of
automation.

Key insights. The study found that the driving
context, particularly road types and traffic condi-
tions, is essential for understanding when to use
DASs. The vehicle’s abilities are crucial for
drivers’ perceptions of system performance in-
fluence their views on the system’s capabilities and
limitations. Less human involvement leads to
higher perceived capability and trust in the sys-
tem’s situational and predictive abilities. Trust is
closely linked to the learning experience and is
calibrated by observing system performance and
information received from the vehicle. Previous
experiences with similar systems shape expecta-
tions and interactions with DAS. Many drivers
struggled to understand the purpose of the two
automation levels/driving modes, seeing them-
selves as always responsible for supervision and
monitoring. Preconceptions, influenced by media,
social circles, and legislation, affect the willing-
ness to use DASs. Legislative status and social
discourse on automated vehicle technologies can
inspire distrust in the vehicle’s capabilities.

The following sections describe the process of
how the results from all four empirical studies
(Studies I–IV) were analysed during the cross-

study analysis using a framework analysis ap-
proach, and synthesising the collected knowledge
was turned into a model.

Cross-study analysis

The empirical studies were followed by a cross-
study analysis that synthesised the results of the
four empirical studies into a summary of the
process by which the driver’s perception influ-
ences their understanding of DAS. The cross-study
analysis primarily depends on the driver’s verbal
accounts and observed behaviours while using a
driving automation system, as well as their de-
scriptions of the systems and their usage gathered
during the conducted interviews.

The “Framework Approach” (Ritchie &
Spencer, 2002) was utilised to approach the
large and complex dataset. The framework ap-
proach, also referred to as framework analysis, is
an inherently comparative form of thematic
analysis that uses an organised structure of in-
ductively and deductively derived themes
(i.e., thematic framework) to conduct cross-study
analyses by combining data description and ab-
straction (Ritchie & Spencer, 2002; Spencer et al.,
2014). These methods facilitate the identification
of similarities and differences in qualitative data
prior to focusing on the relationships between the
various data components and attempting to draw
descriptive and/or explanatory conclusions. The
defining characteristic of framework analysis is
that it follows explicit steps to generate a structured
output in a matrix or table (cases, codes, and
summarised data), which is then used to system-
atically reduce the data (Ritchie & Spencer, 2002).

The data analysis was divided into five stages in
accordance with the framework methodology:

1. Data Familiarisation: Immersion into the
collected data and becoming familiar with the
raw information. The purpose of this step was
to gain a deeper understanding of the data’s
contents and context.

2. Framework Identification: Identifying an ap-
propriate analytical framework. A first step in
the framework identification was the mapping
of data into concept maps, allowing to organise
the data. The purpose of this step was to es-
tablish a structured approach for categorising
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and understanding the large amount of col-
lected data and its nuances.

3. Indexing: Systematic coding and labelling of
segments in the data set. The codes represent
themes, which were later categorised into
different aspects and factors, enabling to
identify recurring patterns across all the four
studies and data types, allowing to triangulate
the data.

4. Charting: In this step, the indexed data was
condensed into matrixes, summarising and
facilitating an overview of the identified cat-
egories, which aided in the identification of
relationships and hierarchies.

5. Mapping and Interpretation: Finally, the ma-
trixes were analysed deeper, and its contents
compared in order to identify overarching
themes with regard to the driver’s perception
or understanding. The purpose of this step was
to interpret and synthesise the data into tables,
organised by the different categories and
typologies.

The final stage was conducted iteratively and
yielded a combination of key learnings that sum-
marise the factors describing the driver’s perception
and the aspects comprising the driver’s understanding
of DASs. In addition, the structured approach gen-
erated typologies and enabled the mapping of con-
nections between and within the identified aspects.

This ultimately led to the development of a model
illustrating the process of how perception shapes
understanding, including the identified factors of
perception, and aspects of understanding associated
with DASs. This model developed through an iter-
ative process, and by conducting a workshop with
colleagues who are experts in the area of automation
and cognition and scrutinising the iterated ideas in
discussions and thought experiments.

The result was a unified descriptive model,
incorporating all identified factors, describing how
user’s perception shapes, through a top-down and
bottom-up process, the understanding of a DAS.

Findings

The findings from the cross-study analysis re-
vealed that, irrespective of the degree of auto-
mation, users of DAS understand the systems by
reference to three distinct components: the

Context, the Vehicle, and the Driver. Further, the
findings present 11 recurring characteristics that
constitute the driver’s understanding of an auto-
mated driving system. The various aspects and
connected sub-aspects have been found to col-
lectively form the elements that contribute to a
driver’s understanding, or mental model, of a
DAS. Moreover, a total of six factors that exert an
influence on the driver’s perception were found,
ultimately impacting and shaping the driver’s
understanding. These factors were further cat-
egorised as perceptual sets and sensory informa-
tion, which subsequently modify and/or impact the
driver’s mental representation of the DAS. The
reported findings are subject to drivers’ percep-
tions of DAS and their assumptions about it, and
may therefore not correspond with the actual ca-
pabilities or specifications of the vehicle and its
ODDs. Thus, the following sections will detail the
components of the driver’s perception and un-
derstanding of DASs, illustrating how perception
shapes understanding by presenting a unified de-
scriptive model that delineates the various inter-
acting aspects of understanding and factors of
perception.

The driver’s understanding

The findings indicate that regardless of the level of
automation, drivers of such systems discussed
driving modes by reference to three distinct ele-
ments: the Context, the Vehicle, and the Driver. In
addition, the thematic analysis identified 11 re-
curring aspects: Driving Context, Personal Con-
dition, Vehicle Operations, Comfort, Safety,
Abilities, Limitations, Driver Tasks, Attentional
Demand, Engagement in Other Tasks, and Au-
thority. According to the findings, the identified
aspects, along with their sub-aspects, constitute the
driver’s knowledge of a DAS. The proposed
classification suggests that the driver’s under-
standing consists of a layered structure in which
the different elements (Context, Vehicle, and
Driver) interact.

Context. On the highest level of the structure is the
Context, which describes when and where the
DAS can be used, including aspects traffic con-
ditions and road types, but also the driver’s per-
sonal constitution. In order to make sense of the
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automation’s availability, the driver’s under-
standing is guided by the question “When can I use
the system?” and will typically be answered by, for
example, “Since we didn’t use it in city traffic or so, I
can’t speak about it, but it works on bigger roads and
[…] free-flowing traffic” (P08, IV), or when refer-
ring to their personal condition: “[…]if I drive early
in the morning, so maybe not fully alert or there is
some…you have a meeting you have to fall into or I
mean if they are like, you know that there are dis-
tractions around you, then I put in the pilot assist
functionality as sort of an extra safety” (P02, II).
Descriptions of each aspect in the Context layer and
its associated sub-aspects are presented in Table 2.

Vehicle. The next layer of the structure is represented
by theVehicle or theDAS. The driver’s understanding
here is guided by the underlying question “What does
the vehicle do?” or “What is the vehicle capable of?”
and represents the vehicle operations like performing
the driving task to different degrees, the comfort and
safety it provides, the limitations of the system, as well
as any underlying abilities that the driver assumes the
vehicle has, such as situational awareness. It is

important to distinguish that capabilities such as sit-
uational awareness do not constitute the vehicle’s
factual ability to perceive its environment through
video or camera sensors but reflect the driver’s belief
that the vehicle has awareness about its surroundings.
Typical impressions that drivers have when describing
vehicle operations and abilities are, for example,“[…]
it does all the functions for acceleration, deceleration
and including steering” (P05, III) or “[…] it would
actually notice the car and slow down” (P04, IV).
When talking about comfort, statements like the
following were identified: “It’s relaxing, because I
don’t need to take care of certain rather annoying
parts, like keeping a safe distance to the car in front of
me, and so on. It definitely helps, it takes away cer-
tain…maybe no responsibility, but a certain burden”
(P12, II). Table 3 provides descriptions of each aspect
in the Vehicle layer and its associated sub-aspects.

Driver. The last layer of the structure represents the
Driver and their responsibilities, thus the under-
lying guiding question is “What can/should I do?”
or “What should I do?”. This layer represents
aspects that the driver associates with their

Table 2. Context. Description of Aspects and Sub-Aspects.

Element Aspect Sub-aspect Description
Identified in
study

Context:
When can I use
the system?

Driving Context:
Different driving situations
when the driver can use
the system

Traffic
conditions

The traffic conditions needed for the
system to be operational, for example,
density or speed of traffic

I, II, III, IV

Road types The road types that the system can
operate on, for example, freeways or
urban streets

Weather
conditions

The weather conditions under which the
system is operational, for example,
sunny, dry, snow, rain, and slippery
surface

Time of day Time of day the system is operational, for
example, daylight and night-time

Trip type Trip types on which the system is used, for
example, long or short trip, commute
to work, leisure activities, travelling

Personal Condition:
The driver’s physical or
mental state at a given
time

Tired The physical andmental shape the driver is
in, for example, tired, less attentive,
bored, or in a state of stress

I, II, III
Bored
Stressed
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responsibilities during driving, for example, who is
in charge of the driving task and which ones, how
much attention they need to pay to the driving as
well as more fundamental questions regarding the
interaction with the displays and controls. Typi-
cally, statements regarding the interaction with the
displays and controls included “[…] you put it in
self-driving mode with these buttons, and you see
the blue line” (P01, III), describing the steps they
take in the interaction and feedback they receive.
Further, aspects regarding their involvement in the
driving task are described as follows in the case of
partial automation: “I don’t release the steering

wheel fully. I still have my hand there, so I still
drive the car” (P03, II), where who has the au-
thority over the driving task is described as “[…]
it’s kind of ambiguous to me exactly how much
responsibility it’s going to take” (P17, III). De-
tailed descriptions of each aspect in the Driver
layer and its associated sub-aspects are presented
in Table 4.

The driver’s perception

The cross-study analysis of the data from the four
studies (I–IV) identified six factors that influence

Table 3. Vehicle. Description of Aspects and Sub-Aspects.

Element Aspect Sub-aspect Description
Identified in
study

Vehicle:What
does the
vehicle do?

Vehicle Operations:
The parts of the driving
task the vehicle
performs

Maintaining the
speed

Driving tasks performed by the
systems, for example, accelerate,
brake, or steer

II, III, IV

Keeping a safe
distance from
other road users

Keeping within the
lane

Comfort:
The ways in which the
vehicle supports the
driver

Physical and mental
relief

The operations the vehicle
performs that support the driver,
for example, relaxation and
stress relief

II, III, IV

Stress relief

Safety:
The ways in which the
vehicle contributes to a
safer driving experience

Extra set of eyes The enhanced safety the vehicle
offers, for example, seeing when I
am distracted and less aggressive
driving by following the traffic
flow

II, III, IV
Smoother driving

style

Abilities:
The underlying capabilities
the driver assumes that
the vehicle has

Situational
awareness

The perceived capabilities of the
vehicle to perform the driving
task, for example, understanding
traffic situations and seeing other
road users

II, III, IV

Predictive
capabilities

The ability to predict traffic
development and the actions of
other road users, for example,
other road users might pull in/
out in front of the vehicle

Environment
awareness

Reading traffic and road signs, lanes

Limitations:
The activities a vehicle is
not able to perform

The functional limitations of the
system, for example, not being
able to switch lanes, drive in city
traffic, or read traffic signs

II, III, IV
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how drivers perceive driving automation during
usage. The six factors are Preconceptions, Previ-
ous Experiences, Perceived Safety, Trust, Vehicle
Behaviour, and Information Sources, which have
been further split into different aspects. These
factors together with their respective aspects de-
scribe how a driver perceives driving automation
in the moment of use, but also aspects influencing
the driver’s perception prior to use, which in turn
influences their understanding and therefore usage
strategies. The driver develops from this a mental
representation of the system, describing when it
can be used, what tasks it will take over, and what
responsibilities the driver has when engaging with
the system. The identified factors have been cat-
egorised further into two groups: Perceptual Sets
and Sensory Information.

Perceptual sets. Preconceptions, Previous Experi-
ences, Perceived Safety, and Trust belong to the
category of top-down processing factors, that is,
Perceptual Sets (Allport, 1955), as they comprise
contextual information. In the case of a driver
interacting with an automated driving system, the
driver’s perception will be influenced by

preconceived notions, previous interactions with
other DAS (not exclusive to a specific level of
automation), perceived safety, and trust in the
system’s capabilities. Thus, the driver’s perception
of the system is influenced by what they expect to
perceive.

Preconceptions. Preconceived ideas or assumptions
that are present before the use of a DAS are or-
ganised under Preconceptions. This factor influ-
ences the driver’s understanding significantly, as it
typically harbours the driver’s ideas about the
system and their anticipations of it, be they current
ones or those concerning its unrealised potential.

This includes the driver’s notion of the system’s
purpose and their relationship to it: “It does some
driving for you, […] makes sure you don’t get a
ticket and go above speed limit. This is more as-
sisting you” (P07, III), as well as anticipations
about the system and the benefits of using it. This
can include anticipated usefulness and/or expected
gains prior to experiencing the system, as de-
scribed by one participant: “I think every car
should have it. If you could install it in an older car
that doesn’t have the system, that would be

Table 4. Driver. Description of Aspects and Sub-Aspects.

Element Aspect Sub-aspect Description
Identified in
study

Driver:
What can/
should I
do?

Driver Tasks:
The tasks the driver can or
needs to perform

Interaction with
displays and
controls

The interaction needed from the
driver to operate the system, for
example, how to activate the
system or manipulate the interface

II, III, IV

Operation of
vehicle

What the driver needs to do to
operate the vehicle, for example,
accelerate, brake, and steer

Attentional Demand:
The amount of attention the
driver must pay to the
driving activities

Supervise the
system

The attention needed from the driver
for different driving modes, and
the information required from the
vehicle

II, III, IV

Take-over ready
No attention

Engagement with other
Tasks:

What the driver can do when
not driving

Relaxation The possibility to engage with other
tasks than driving, for example,
reading, movies, emails, and
chatting with passengers

II, III, IV
Productivity
Socialising

Authority:
The power and responsibility
over the driving task

Responsibility The allocation of control and
awareness of driving modes, that
is, who is in charge of the driving
task, for example, shared control
or vehicle taking over control

II, III, IV
Control
Mode awareness
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something for traffic security, for safety. Because I
do think it will help you to drive smoother, keep you
a little bit more comfortable” (P11, IV). Expec-
tations will influence how drivers interact with the
system; however, these expectations cannot al-
ways be met, which consequently led to one
participant not using the system: “I had higher
expectations than I could receive from the system,
so to say. But on the other hand, I also knew about

it, kind of. But I still wanted to test it. I just thought
‘OK, I will not use it’” (P08, II). Table 5 describes
the aspects categorised under Preconceptions in
detail.

Previous experiences. Previous experiences include
the driver’s experienced situations and learning
process with the current system, but also those
involving previously encountered DAS. This

Table 5. Perceptual Sets (Top-Down Processing Factors): Preconceptions.

Factor Aspect Sub-aspect Description
Identified
in study

Preconceptions:
Mental representation of
the vehicle’s
capabilities, based on
expectations

Purpose of the System:
The extent to which the

system is supposed to
support the driver with
executing the driving
task

Assisting the driver,
collaboration

The driver’s understanding
of how the system is
supposed to assist them,
for example, by assisting
or taking over parts of
the driving task

II, III, IV

Take over the
driving task

Capabilities:
The capabilities the

drivers expect the
system to be able to
execute

Situational
awareness

The impression that the
system is capable of
executing complex
driving tasks, for
example, seeing other
road users, acting on
cut-ins, predicting the
behaviour of other road
users, and reading traffic
signs and lights

II, III, IV

Predictive
capabilities

Environmental
awareness, for
example, reading
traffic signs

Anticipation:
Excitement and

aspirations about an
event or interaction, for
example, capabilities
and future development

Social Technology development
and future values are
discussed within social
circles and also based on
media information or
information from
regulatory authorities,
as well as the impact of
sudden AD-related
accidents in the media
and/or hopes for
development

II, III, IV
Technology

Anticipated
Usefulness:

The benefits the driver
expects to gain from
using the system

Driving support The ability of the vehicle to
take over parts or all of
the driving task, thereby
increasing safety and the
possibility to perform
secondary tasks, and
relieving the driver of
stress and the effect on
their personal condition

II, III, IV
Enhanced safety
Free time
Stress relief
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factor also incorporates knowledge obtained
through social discourse, for example, topics de-
bated in the news and on social media, marketing
campaigns, or discussions in social circles.

Their experience of usage with any automated
system will influence the driver’s usage of the
currently experienced DAS, and this experience is
used as a means to understand encountered sys-
tems, like a participant comparing the system in
their personal car to their experience of the Level
2 system in Study III: “The adaptive cruise control
was very, very different from regular cruise con-
trol, a little bit more…it’s a more complicated
version of cruise control” (P15, III). Besides
comparison to other experiences, the learning
experience and the way the driver learned to use
the system have also been shown to make a dif-
ference to learners � from drivers trying on their
own to drivers who learned under supervision: “I
had a colleague who knew a lot. So, it was learning
by doing with some support” (P08, II). This en-
abled the driver to feel confident in using the
system. Further, discussions in the media and

social circles influence how drivers perceive and
talk about the systems, even if they have no prior
experience with them. These information sources
tend to inform the drivers in a way that might
misinform them. For example, a participant in
Study IV believed they knew details about a
system which was, in fact, a prototype built solely
for the study: “I’m really interested to drive the
second system in the city because I’ve read about
it, and I think works good even in the city” (P02,
IV). Further details for each aspect are found in
Table 6.

Perceived safety. The factor Perceived Safety in-
corporates a range of aspects describing the
driver’s subjective assessment of how safe it is to
use the system. Aspects like the system’s perfor-
mance and its consistent and predictable behaviour
influence whether the driver assesses the system to
be safe, but also their awareness of the system’s
technological and legislative situation influences
the driver’s perception, and their willingness to
risk usage.

Table 6. Perceptual Sets (Top-Down Processing Factors): Previous Experiences.

Factor Aspect Sub-aspect Description
Identified
in study

Previous
Experiences:

Experienced situations
and learning
processes and their
influence on the
mental model

Experience of Usage:
The skill or knowledge
gained from the use of
prior systems or the
current one, resulting in
the overall experience

Prior usage of
similar
systems

Driver’s comparison to a
system they have used
before, and key events that
influence the driver’s
perception of the system

II, III, IV

Positive and/or
negative
experiences

Learning Experience:
How the driver learned to
use the system

Trial and error The ways that drivers learn
about or use the system, for
example, by reading
manuals or tutorials, or
through supervision and
guidance

II, III, IV
Reading the
manual

Under
supervision/
guided
learning

Social Discourse:
Everything said or written in
society about the topic

Media Written, verbal, or other
representative
communication about
automated vehicles in the
media, or social circles, for
example, marketing
campaigns, news reports,
and discussions with other
people

III, IV
Social circles
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In many cases, participants’ awareness of the
legislative status influenced their perception of
who would be liable when driving with a fully
automated system, which in turn influenced their
perception of safety and the usefulness of the
system: “I need to stay focused. I think it’s a false
sense of security. And when it comes to if it be-
comes a court case and I run over someone and the
car was steering, there have been many such cases.
Then, of course, it’s my car. I’ve chosen to buy it
with that system, and I chose to activate it. […] So,
I don’t see this system as helpful or yeah, legally
speaking” (P06, IV). Further, the impression of the
system being intelligent and able to execute tasks
without human intervention seemed to be asso-
ciated with the safety perception, as in this ex-
ample, where the driver stated that the car had

“[…] good predictive capacity on how to engage
with other vehicles” (P03, III). Generally, it
seemed that the smarter the system appeared to the
driver, the higher the perceived safety was. A
detailed description of Perceived Safety and its
assigned aspects can be seen in Table 7.

Trust. Under Trust, aspects that describe trust at
different levels of abstraction are found. On a basic
level, a driver’s appreciation of a brand will in-
fluence whether, even before engaging with it, the
driver will trust the system. Although, drivers will
also choose when to trust the system and to what
extent.

Hence, while a brand’s reputation can help
drivers overcome initial hesitations about trying
DAS, “I trust the car. […] I mean, I know [brand]

Table 7. Perceptual Sets (Top-Down Processing Factors): Perceived Safety.

Factor Aspect Sub-aspect Description
Identified
in study

Perceived Safety:
The subjective risk
assessment the
driver makes of the
vehicle’s behaviour
and capabilities

Awareness:
The awareness a driver has about
the technology, the years
before it was approved by the
authorities, and its current
status

Awareness of
technology

Knowledge about the
system, its capabilities,
and limitations, as well
as historical knowledge
about its development
and current level of
safety and the
standpoint of the
authorities

II, III, IV

Awareness of
legislative
status

System Performance:
The execution of system
functionality and how the driver
perceives the vehicle’s reliability

Predictability The possibility for the
driver to successfully
foresee the result of an
interaction with or
action of the system,
and consistent system
behaviour, leading to
the driver perceiving
the vehicle as reliable

II, III, IV
Consistency
Transparency

Anthropomorphism:
Humanisation of vehicles by
drivers through ascribing
human characteristics to the
system and empathising

Intelligence The technological
capabilities to act on
behalf of humans
without direct human
intervention and
control. Agency to
execute tasks, and
perception of the
vehicle being intelligent
enough to execute
complex tasks

II, III, IV
Autonomy
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is very good like it’s a very reliable car. So, yeah, it
has a very strong reputation” (P13, III), the
context of use will guide users to build trust in the
system in different situations. For example, par-
ticipants make distinctions between traffic and
weather conditions when deciding in which situ-
ations to trust the system: “Uh, the clearer the road
is, the better the road is, the less traffic it is, the
more you can trust the system. But, as soon as you
get something in front of you, something where you
need to pass a car or whatever it is, the less you
can trust the system” (P4, II). These assessments
help drivers to calibrate their trust level and
therefore, hopefully, not over-trust and misuse the
systems, like a participant who did not see any
limitations for the use of the system: “As long as
you trust the car, I think you can use it almost
anywhere” (P09, IV), which could potentially end
fatally. A detailed list of all factors and connected
aspects of Trust can be found in Table 8.

Sensory information. The factors Vehicle Behaviour
and Information Sources are classified as bottom-up
processing factors because they pertain to sensory
data in terms of environmental stimuli and occur in
real-time. The vehicle’s behaviour is perceived in
real-time via several sensory channels such as visual,
auditory, and haptic feedback. This means that the
driver considers the vehicle’s driving behaviour as

information from the vehicle to the driver, which will
inform their evaluation of the vehicle’s capabilities,
for example, in terms of comfort, reliability, and even
the vehicle’s ability to communicate.

Vehicle Behaviour. The driver’s understanding of the
vehicle’s capabilities and their inclination to trust it
are closely related to the vehicle’s driving style and
behaviour. If the vehicle’s driving style is not in
accordance with the expectations of the driver, it can
lead to negative experiences, as was the case for one
participant who was bothered by the vehicle’s
placement in the lane when driving through curves:
“I think I feel a bit unsafe when I’m in a curve. I don’t
know if it can handle this curve or not” (P01, II).
However, the driving style can also be perceived as
considerate and aware by the drivers, for example, in
a case of merging traffic: “I think the system was
much, much better because when a car came out on
the highway, it saw the car […] it was slowing the
speed to let them pass and it also took notice of this
car behind me, because it wasn’t braking it just
slowed down and made it so smooth. It was like a
school example. It was a very good experience”
(P05, IV). This shows that the vehicle’s driving style
influences the driver’s perception of its capabilities
but can also foster positive experiences and en-
courage use. A further description of the included
aspects is found in Table 9.

Table 8. Perceptual Sets (Top-Down Processing Factors): Trust.

Factor Aspect Sub-aspect Description
Identified
in study

Trust:
The trust the driver
has in the
vehicle’s
capabilities

Level of Trust:
The amount of trust the driver
has in the system

No trust Trust calibration towards the
system, ranging from no trust,
resulting in disuse, and over-
trust, resulting in misuse

II, III, IV
Appropriate
trust

Over-trust

Situational Trust:
The contexts in which the
driver trusts the system’s
capabilities. Distinctions
between situations when the
driver trusts the vehicle

Driving
context

The driving contexts that the
driver deems the system
capable of handling, for
example, traffic conditions,
and the physical or mental
state in which the driver is
comfortable using the system

II, III, IV

Personal
condition

Brand Perception:
The culmination of all a
customer’s thoughts and
feelings about the brand, and
its products and services

The sum of the driver’s
experiences and anticipations
expectations about what a
brand represents

III, IV
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Information sources. The factor Information Sources
concerns all input that the driver perceives through
their senses. This includes multimodal feedback
stemming from visual, auditory, and tactile sources,
but also kinaesthetic aspects like the perceived
motion of the vehicle.

For example, the driver deduces information
about the car’s actions through what they per-
ceive from its acceleration and braking behav-
iour: “I can feel it braking, I can see that it is
going faster and slowing down when it needs to”
(P02, III). However, traditional sources of in-
formation such as in-vehicle displays and au-
ditory interfaces are still a primary source of
information with regard to understanding a
system’s status, “When I’m in my car, I can
choose the distance, and then if there’s a car in
front of me, it even displays that car. […] Green
kind of tells me that everything is fine. And then I
have the acoustic signal and the hand symbol.
And I think there it is even… that I should put my
hands on the steering wheel” (P11, II), or what
they as a driver are supposed to do. “It was super
clear because it was both saying that the system is
ready and the text. Two things that make you un-
derstand, all right, it’s ready” (P09, IV). Especially
in the case of the Information Sources, all aspects
work in a multi-source fashion when it comes to
helping the driver understand the system’s behaviour
and capabilities, and it is not possible to consider
them in isolation. Table 10 provides detailed infor-
mation about the factor and its specific content.

The process of how perception
shapes understanding

The results of the cross-study analysis suggest
interdependencies between the driver’s under-
standing and their perception of the driving au-
tomation in their vehicle. This process is presented
as a descriptive model of how perception shapes
the understanding of a DAS (Figure 1). In the
context of the presented work, the term “percep-
tion” refers to the cognitive process by which
individuals assess and interpret information they
receive from their surroundings; and the term
“understanding” refers to the capacity to construct
a mental representation or mental model that fa-
cilitates the interaction with a DAS.

The illustrated process cycle in Figure 1 can be
characterised as continuous – a feedback loop that
integrates the information received through a top-
down and bottom-up process of information as
well as a feedback loop updating the driver’s
mental representation of the DAS.

The process can be conceptually divided into
three distinct parts: (i) the mental representation,
(ii) the perception during engagement with a DAS,
and (iii) the dynamic process through which
perception shapes understanding.

Mental model. This element of the process entails
the driver’s understanding of the system’s char-
acteristics and interaction strategies. It consists of
all the aspects and components that comprise the

Table 9. Sensory Information (Bottom-Up Processing Factors): Vehicle Behaviour.

Factor Aspect Sub-aspect Description
Identified
in study

Vehicle Behaviour:
How the driver
perceives the
vehicle’s actions and
driving performance

Driving Style:
Judgement expressed by
the driver on a scale
ranged from aggressive
to cautious, for example,
“drives like me,”
aggressive, defensive, etc.

Longitudinal
movement

The vehicle’s ability to
communicate with the
driver through its
behaviour, capabilities,
efficiency, and
consideration for other
road users through
performance factors like
acceleration, frequency of
speed shifts, lateral
placement, and frequency
of change in distance to
objects

II, III, IV

Placement in lane
Distance to
objects

Consideration of
driving context
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driver’s understanding and can be considered the
starting point for all interactions. This part of the
model represents a static image of the driver’s
mental representation of the driving automation.
This image remains unchanged unless new in-
formation is received about the system.

Perception during use. This block is a mirror of the
driver’s mental representation of the system. This
part of the model demonstrates how the interaction
is affected by the perceptual sets (top-down pro-
cessing of information) and sensory information
(bottom-up processing of information) they re-
ceive while driving, operating the vehicle in real-
time, and during interaction with a DAS, or when
the driver is presented with information about a
DAS (e.g., reading about it or talking to someone
about a DAS). Here, the driver’s existing

knowledge and received information about the
DAS is synthesised into a mental representation
during use, enabling the driver to assess an in-
teraction or plan and execute an action.

Shaping understanding. This part of the process is a
feedback loop that connects the driver’s perception
of the system during use with their mental rep-
resentation of the system. The perception of the
system during use is continuously evaluated and
the results of that interaction and evaluation have
the capacity to change the driver’s mental repre-
sentation based on what they perceive while using
the DAS. This can lead to the reinforcement of
existing knowledge about a DAS, or when en-
countering new information, the evaluation of such
information and subsequent revision of the driver’s
understanding of the DAS.

Table 10. Sensory Information (Bottom-Up Processing Factors): Information Sources.

Factor Aspect Sub-aspect Description
Identified
in study

Information Sources:
The information sources the
driver uses to make sense
of the vehicle operations
and their own
responsibilities

Visual System:
The information perceived
through the eyes,
including elements such
as colour, light,
proximity, patterns,
similarity, and so on

Graphical
elements

Visual feedback that the
driver receives from the
vehicle, for example,
from displays in the form
of text, icons, and
graphics, but also
information drawn from
the environment outside
the car

II, III, IV

Text
Environment

Auditory System:
The loudness, frequency,
and meaning of auditory
information

Non-speech
sound

Auditory feedback that the
driver receives from the
vehicle, such as warning
sounds (ping or beep) or
verbal instructions

Speech sound

Tactile System:
The input of messages about
pressure, vibration,
texture, and temperature
through the skin

Steering
wheel

Haptic feedback that the
driver receives through
their tactile sensory
system, like vibrations
through the seat or
steering wheel, and tug of
the seat belt

Seat
Seat belt

Kinaesthetic System:
The feeling of motion, like
position, force, and
movement

Seat The information the driver
infers from the vehicle’s
motion, such as
acceleration and
deceleration or braking
behaviour

Vehicle
motion
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Furthermore, the results from the cross-study
analysis suggest that the driver’s understanding of
a DAS is structured in layers (Context, Vehicle,
Driver) that are in continuous interaction (illus-
trated by the arrows in the model). This means that,
for example, the driver’s understanding of when
they can use the system, and what the vehicle does,
will affect their assessment of what they are
supposed to do. Likewise, if the driver believes
they are allowed to let go of control over the
driving task, this will influence their expectations
of what the vehicle will do. Each aspect contributes
to the overall understanding of how the system
operates and how it affects the driver’s role. Thus,
when a driver is asked to explain how the DAS in
their vehicle functions, they will recall the
knowledge organised in their mental representa-
tion. Similarly, in the moment of using the system,
the driver will ask themselves: “When can I use the
system?”, “What does the vehicle do?”, and “What
do I do (now)?”. During use however, their mental
representation of the DAS is accessed and facili-
tates their interaction with the encountered system.
As long as the system works as expected by the
driver, their mental representation will be con-
firmed by what is perceived during use. However,

should the driver encounter a new scenario, this
may prompt them to reassess their assumptions
about the system and update their mental repre-
sentation and all the connected aspects.

Discussion

The aim of the presented research was to inves-
tigate the factors that impact the driver’s percep-
tion and consequent understanding of driving
automation systems. The works contribution lies in
the identification of the aspects that shape the
driver’s understanding of DAS, as well as the
factors that influence the driver’s perception of
such systems. Additionally, the work integrates the
discovered aspects constituting understanding, and
factors influencing perception, into a unified
conceptual model that describes the process by
which the driver’s understanding of a DAS is
shaped by their perception.

The present work represents the first attempt to
thoroughly investigate and develop a model elu-
cidating the process shaping the driver’s under-
standing of DASs through their perception of the
DAS. Consequently, by providing a comprehen-
sive and unified overview, this work addresses a

Figure 1. Perception’s role in mental model development. Descriptive model of the process of how the driver’s
perception shapes their understanding of driving automation systems.
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gap in the existing literature: the lack of a holistic
understanding of how the driver’s perception in-
fluences their mental model of DAS. Several key
aspects set the proposed model (Figure 1) apart.

In contrast to prior studies undertaken in the
field of driving automation, the present model and
its associated aspects and factors presented in this
work provide a holistic examination of variables
pertinent to the driver’s interaction with DAS.
Furthermore, the present model is firmly grounded
in empirical evidence derived from drivers in real-
world driving environments. In order to enhance
the model’s robustness, data from four distinct
empirical studies (Studies I–IV) was triangulated
through a structured analysis approach. Further,
the conducted studies utilised multiple methodo-
logical approaches (e.g., surveys, in-depth inter-
views, and field observations) capturing a wide
array of driver behaviours and impressions, from
first-time drivers and long-term drivers, over
prolonged periods. As a result, these studies
provided valuable insights into how the driver’s
understanding of DAS is shaped through their
perception. Through the triangulation of various
data points, a comprehensive list of aspects
shaping the driver’s understanding and factors
influencing their perception was identified, al-
lowing for a nuanced approach to the driver’s
interaction with DAS. Finally, the variables that
were identified were systematically classified,
enabling the author to analyse patterns and rela-
tionships. The comprehensive categorisation pre-
sented illuminates the intricate interplay between
several variables, providing useful insights into the
perception and understanding of DAS by drivers –
which is independent of the categorisation into
levels of automation.

The proposed model is notable for its attention
to the driver’s perception and consequent under-
standing of DASs, as it thoroughly addresses the
criticisms put forward by other researchers. These
criticisms revolve around the lack of varied and
empirical methodologies and data triangulation, as
well as the neglect of a wider range of factors and
their interrelation (cf. deWinter et al., 2021; Frison
et al., 2020; Heikoop et al., 2015; Stanton &
Young, 2000), in the attempt to identify a holis-
tic driver-centric perspective.

However, ever since the introduction of auto-
mation, it has been widely discussed in the research

community that humans are not cut out for super-
vising automated systems (cf. Bainbridge, 1983;
Sheridan, 1995). Different work has shown that
drivers become bored, fatigued, and unalert (Körber
et al., 2015), and lose track of what the automation is
doing, or even what the surrounding circumstances
are (de Winter et al., 2014; Louw & Merat, 2017).
Further, theymay not understandwhat their tasks and
responsibilities are, or even simply forget which
driving mode the automation is engaged in
(Novakazi et al., 2021; Wilson et al., 2020).

Therefore, the successful implementation of
DASs relies on effective cooperation between the
driver and the vehicle. This requires designers to
view them as a joint cognitive system, wherein both
must work in cooperation to guarantee a safe and
enjoyable driving experience, and thus they must
take a more human-centric approach to the design of
DASs. Hence, designers must take into account that
the driver’s perception extends beyond the system’s
functionalities and their own tasks. And while the
HMI can play an important role in communicating
crucial information about needed actions from the
driver (Banks et al., 2018; Carsten&Martens, 2018),
the driver’s understanding of the DAS is not just
impacted during its utilisation or solely by the HMI.
Rather, their knowledge is shaped by various factors
and influenced by variables that extend outside the
realm of user interface design. This implies that
designers’ understanding of the system, including its
limitations, capabilities, and feedback, may not align
with the driver’s perception, rendering the use of
technology-centred taxonomies problematic as they
do not account for a comprehensive view of the
complex interaction between the driver and the ve-
hicle. Until now, no other work has attempted to
provide such a holistic understanding of driver in-
teraction with DAS, comprehensively listing, de-
scribing, and showing the interrelationships between
the diverse aspects that influence driver’s perception
and its role for mental model development.

The here presented model is based on broad and
deep empirical evidence describing the driver’s
perception and consequent understanding of DAS,
and addresses one of the most important needs of
designers and developers of such systems – un-
derstanding and applying the driver’s perspective.
Designers can apply the specified questions: When
can I use the systems?, 2. What does the vehicle
do?, and 3. What do/should I do? and ask
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themselves questions that drivers will ask when
interacting with the systems while working on
design solutions. In addition, the model defines
which factors influence the driver’s perception of
the system, its capabilities and limitations, and,
consequently, how they understand its utilisation.
The stated questions are further supported by the
comprehensive set of factors influencing driver’s
perception and constituting their understanding,
which enable designers to address driver’s re-
quirements in a structured way.

This approach recognises that variables such as
the driver’s experience, emotions, and context
influence their perception and behaviour. By in-
tegrating these variables into the design method-
ology, a human-centric and effective interface can
be developed that more closely corresponds to the
requirements and expectations of the driver. Thus,
the model can be used as a design aid to include the
relevant aspects that drivers identify during their
interaction with a DAS, as well as the factors
affecting them.

In summary, the model highlights that the
driver’s perspective on driving automation differs
fundamentally from the technological perspective
that currently guides the design and development
of these systems. In order to improve the user
experience, we must reframe our perspective in
order to design products that align with the driver’s
mental models and facilitate their development of a
sufficient understanding of the DAS.

Perception’s role in understanding
interactions with DAS

To provide further clarification of how the driver’s
perception influences their understanding of a
DAS, a hypothetical scenario will be introduced,
exemplifying how the different aspects shaping the
driver’s understanding and factors influencing
their perception are affected through the use of a
DAS and their encounters with different driving
situations.

If a person has a system in their personal car that
supports the dynamic driving task (DDT) by (i)
keeping the vehicle at a set speed, (ii) at a set
distance from other moving vehicles, as well as
(iii) taking over the steering, as long as there are
(iv) visible lane markings, the driver would make

sense of the automated system’s use by searching
for answers to the aforementioned questions that
correspond to the aspects of each layer in their
understanding. They would do this in order to
make sense of the information received from the
vehicle or to understand the interaction required.

In this scenario, a driver is travelling to work
from a residential location, passing through
countryside and some highway segments into an
urbanised area. When they are driving, they will
wonder “When can I use the system?”. In this
instance, that would be on well-established roads
with good lane markings (Driving Context). The
driver might not use the system in the suburbs, but
they may attempt to use it in the countryside and on
the highway. However, the driver could also de-
duce the wrong specifics, leading them to create a
faulty understanding of the DAS and its capabil-
ities and limitations. Considering the same system
has certain inherent technical limitations, such as
the system performance being unstable when
driving on roads with high curvature (Limitations),
as are often experienced in the countryside. If the
driver further assumes that all that is needed are
clear lane markings, they might assume that they
can use the DAS on any type of road, while the
manufacturer has primarily intended it to be used
on highways, where road infrastructure is more
controlled and streamlined. This could lead to a
situation where the driver experiences the DAS as
acting in an unstable way, and may even leave the
road, impacting what the driver assumes the
benefits of using the system are (Comfort and
Safety).

Next, they will ask the question “What does the
vehicle do?”. The answer is that it maintains the
predetermined speed and distance from other
moving vehicles, as well as assisting with the
steering (Vehicle Operations). Finally, when uti-
lising the system, they might ask “What do I do
(now)?” which, depending on the level of the
steering assistance, may imply that the driver does
not need to steer or control the speed (Driver
Tasks), but must supervise the system (Authority).
In such cases, the driver must remain attentive and
ready to take over control of the vehicle, if nec-
essary (Attentional Demand), assuming that the
vehicle automation has another inherent limitation.
While the DAS is able to detect and keep a safe
distance to other moving objects, it is not able to do
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this with objects that are stationary (Limitations).
If the driver does not understand this important
limitation (which is often only mentioned in a
manual), they might wrongly assume that the
vehicle will come to a halt when approaching a red
light, and that it does not need their intervention.
However, since the system is not capable of
processing that an object is stationary, it would
require the driver in those moments to act by
braking and resuming full control over the driving
task (Driver Tasks and Authority). Otherwise, this
situation could well result in a crash.

This demonstrates that the answers to these
questions are reflected through the different as-
pects and are interrelated with and inform each
other. In this way, a comprehensive understanding
of the automation while in use is created by the
driver. However, the driver’s understanding and
consequent use of such systems might not always
be the one the designers and developers of such
systems intended, which can be explained by in-
troducing the driver’s perception into the interplay.
For example, the driver’s preconceptions about a
DAS could influence their perception and under-
standing while using the DAS in a way that might
obscure the intended use of the system. In the case
of our hypothetical system, the driver does not
need to steer but still has to pay attention and
supervise the system.

To illustrate, the system performs the driving
task to a very high degree of satisfaction according
to the driver’s perception (System Performance).
This might lead the driver to perceive the system as
more capable than it is and assume that they do not
need to pay attention (Purpose of the System).
Their willingness to relinquish control and even
take up other activities would indicate a high Level
of Trust. While previous experiences can influence
the driver’s expectations as to what the systems are
capable of, also other sources like news articles or
a chat among friends (Social Discourse) can in-
fluence their expectations and consequent use of
these systems. These expectations can sometimes
be misinformed and lead to negative experiences
and unexpected interactions (Learning Experi-
ence). For example, the driver might use the DAS
in a way that the designers did not intend. These
experiences can result in confusion about what the
system is doing, which can cause frustration and
mistrust, leading the driver to reject the systems

(Perceived Safety) – or in the worst case to fatal
incidents.

To illustrate further, the hypothetical system is
able to keep a set speed and safe distance to other
road users. While the technical specification in itself
only describes the task the vehicle takes over, the
vehicle’s behaviour when the driver is using the
systems will influence the driver’s judgement about
its performance. For example, if a system keeps a set
distance to other road users and the driver perceives
it to accelerate and decelerate too fast in relation to
the other vehicles, it may be judged as too ag-
gressive in its Driving Style and thus uncomfortable
to use. Other communication from the system to the
driver falls under Information Sources that are
perceived through the in-vehicle user interface(s).
This can include visual, auditory, and haptic cues
and feedback. For instance, the system might run
into limitations and not be able to steer for the driver
any longer. It might then send a take-over request
(TOR) through a visual and auditory prompt in the
in-vehicle interfaces, for example, displays and
speakers. If the driver does not act on the prompt, the
vehicle might send a warning by intensifying the
signal and adding vibration in the seat, in order to
get the driver’s attention. All these are ways that the
driver can receive information about what the ve-
hicle is doing or what is expected of the driver, and
this in turn, will influence their perception of the
system’s capabilities and limitations.

Implications for the design of
driving automation

Finding an adequate framework that explains the
problem area and guides design solutions is a
significant challenge for designers, especially in
the context of driving automation. In order to
enhance system design and the user experience, it
is crucial that designers have tools to support their
design decisions when developing solutions for
DAS. The absence of such support or frameworks
can result in solutions that are not understood by
users or do not serve their needs. The model
presented here seeks to support designers by
providing the necessary insights, adding to the
existing taxonomies and reshaping the way we
communicate the capabilities and limitations of
technical systems to drivers.
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The process depicted in the model (Figure 1) il-
lustrates that the driver’s perception and understanding
of DAS are influenced by various factors. For ex-
ample, the driver’s preconceptions about the purpose
and capabilities of the system can shape their per-
ception and understanding during usage. Additionally,
more abstract ideas, such as previous experiences and
social discourse, play a significant role in shaping the
driver’s expectations and subsequent use of such
systems. This has important implications for the de-
sign of DAS. Although the levels of automation may
be well-defined within the industry, the drivers of
vehicles with such capabilities lack an understanding
of the associated expectations of them as drivers and
their responsibilities (cf. McDonald et al., 2018;
Novakazi et al., 2021; Wilson et al., 2020). However,
the inherent intricacies underlying the allocation of
responsibility for the driving task at all times, and the
limitations of vehicles offering such capabilities fall
under the expertise of professionals. Another chal-
lenge that drivers face is that, while the taxonomies
provide general guidance on technical specifications
surrounding the vehicle’s capabilities for each level,
the implementation of these systems is not stand-
ardised, and manufacturers provide different solutions
with different feedback and interaction strategies. This
has also been shown through an online survey con-
ducted by Kim et al. (2024b), highlighting the dis-
crepancies between driver’s expectations and the
actual logic of mode transitions in commercial vehi-
cles. Further, a widely recognised paradox in the realm
of automation pertains to the phenomenonwherein the
increasing proficiency of a system in being automated
leads to a decrease in the motivation for the human
operator to sustain their attention, especially with in-
creased vehicle performance (Strauch, 2017).

The challenge stands: An integrated automation,
when built into a system, operates without direct user
control. This lack of control can lead to users being
unaware of the presence of automated functions or the
current status of the system. The presence of con-
cealed operations in built-in automation runs the risk
of elicit frustration among human operators, may lead
to a lack of awareness about the inherent system states
(Endsley, 2016), and in certain instances, may even
result in hazardous situations. Thiswas exemplified in
the case of the Boeing 737 MAX incident, wherein a
malfunctioning sensor initiated a sequence of events
that led to a state of perplexity and ultimately cul-
minated in a tragic accident (AAIB, 2022).

The airline industry, where most of this research
has gathered its findings, has tried to address the
aforementioned challenges since the 1970s and
introduced additional training, educating pilots
about the changes to their role when flying with an
automation (Kanki et al., 2010; Sarter & Woods,
1997), as well as educating them about the tech-
nical and functional aspects of the automation
system (Casner, 2013). Through these efforts, the
airline industry has managed to provide pilots with
a more complete understanding of the systems and
significantly reduced the number of such events
(Casner & Hutchins, 2019).

Consequently, the introduction of automated
technologies into personal vehicles appears to
reintroduce similar challenges. However, one
significant obstacle is the fact that the general
population possesses a lesser understanding of
driving automation, and its many levels compared
to proficient operators, such as pilots, and training
possibilities for DAS are lacking (Merriman et al.,
2021). In addition, the various automation tax-
onomies and different approaches proposed over
the years often serve a specific domain, and
sometimes one domain applies different taxon-
omies (Vagia et al., 2016). For instance, the tax-
onomies created by Parasuraman et al. (2000) and
Endsley and Kaber (1999) were based on the
knowledge gathered in the aviation sector but were
considered a basis for the introduction of auto-
mation into the automotive sector. However, there
is a disparity between the levels provided in each
of the automation descriptions, showing that a
unification of approaches is not an easy task, and
different stakeholders regard different aspects as
suitable for their respective approaches and do-
mains. This and therefore the usefulness of LoA in
their status quo for the design of technical systems
has often been criticised (c.f., Kaber, 2017;
Wickens, 2018).

Unsurprisingly, the introduction of levels of au-
tomation into vehicles presents a new, but similar, set
of challenges for designers, developers, and regu-
lators of such systems. Therefore, it is crucial for
designers to consider the influence of the driver’s
perception on their understanding of the DAS
when designing the system’s functionalities and
capabilities. Clear communication and education
about the system’s purpose and limitations can help
align the driver’s understanding with the intended
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use of the system and possibly bridge the gaps be-
tween different manufacturers’ solutions by taking
the driver’s perspective. As illustrated by the hy-
pothetical scenario, while there are factors that de-
signers and developers can and must consider during
the design of a DAS, there is a range of factors that
one cannot directly influence but nonetheless has to
account for. These external factors include unpre-
dictable weather conditions, road infrastructure, and
the behaviours of other road users, as well as in-
formation that is not published by the manufacturers
themselves. Despite not being directly controllable,
designers and developers must anticipate that these
variables will influence the driver’s interaction with
the system – often not in the intended ways. Hence,
for designers and developers of such systems, it is
imperative to comprehend the impact of these factors
on the driver’s perception in order to develop DAS
that are in line with the users’ mental models and
facilitate safe and effective interactions.

In conclusion, the model illustrates the cognitive
process by which perception influences the driver’s
understanding and subsequent interaction with
driving automation, throughwhich themodel aims to
support a holistic perspective on the driver’s un-
derstanding and subsequently on the design of DAS.

Reflections and limitations

The facilitation of empirical research is of utmost
importance in order to gain a comprehensive un-
derstanding of complex phenomena (Dawadi et al.,
2021). Further, recognising the end-users of DAS
as valuable sources of information, innovation,
and adaptability while striving to create and en-
hance DASs is a choice that is critical to the
success of the designed solution (Beggiato et al.,
2015; Buckley et al., 2018), and thus should be
seen as the focus of attention. Numerous research
endeavours pertaining to the assessment of DASs
primarily rely on simulator studies. While these
studies provide valuable insights into the uti-
lisation of such systems (Jamson & Jamson, 2010),
their limited realism undermines the ecological
validation of the results. Consequently, these
findings fail to provide genuine insights into the
user’s strategies and perception of the driving
automation, as the presence of a safety net in
simulated environments obscures the true experi-
ences and challenges encountered during real-

world driving scenarios (Blaauw, 1982; Godley
et al., 2002; Fisher et al., 2011).

Thus, the decision to analyse the here presented
four studies, relying on empirical data that the author
has collected themselves, enabled an examination of
the driver’s utilisation, perception, and understanding
of driving automation technologies, hence providing
valuable insights. The integration of quantitative and
qualitative data yielded a new perspective of the
subject matter compared to relying just on one
method, as the different approaches typically possess
distinct characteristics and explore different facets of
the same issue. Subsequently, this prompted a more
comprehensive examination employing a hybrid
approach of quantitative and qualitative methodol-
ogies by utilising observational techniques paired
with in-depth interviews and triangulating the
qualitative data with quantitative data points. This
was done to acquire a broader and deeper under-
standing of the driver’s perception and consequent
understanding of DAS.

Although the data were coded and analysed by a
single researcher, the framework approach employed
offers a rigorous and transparent process that mitigates
potential biases through its detailed documentation
and structured approach. This framework, while re-
lying on the expertise of the individual conducting the
analysis, provides a clear audit trail and enhances the
replicability of the research. Furthermore, the inter-
pretations were reviewed with colleagues during
discussions and workshops through several iterations
to enhance the validity of the findings. Critically, the
consistency of identified patterns across multiple
studies and analyses within this research project, in-
cluding the triangulation of multiple data sources,
further strengthens the validity of the interpretations, as
similar themes and trends emerged independently.

While the four empirical studies that were
analysed and presented here offered significant
empirical insights, they also highlight the need for
further exploration of the process of how per-
ceptions shape understanding. Future research
incorporating additional data collection and anal-
ysis could identify and integrate further aspects,
leading to a more refined and robust model. It is
likely that additional, unobserved factors play a
role in shaping drivers understanding and that
aspects that constitute their understanding have not
been observed. Future research could broaden the
scope to identify and incorporate any additional
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aspects of understanding and factors influencing
the driver’s perception into the model.

Conclusions

This research investigated the influence of driver
perception on mental model formation for DASs,
addressing critical gaps in the literature. Specifically,
this work makes four key contributions: (i) it iden-
tified a comprehensive set of factors influencing both
driver perception of DASs and the resulting mental
models; (ii) it developed a unified conceptual model
explaining how perception shapes understanding;
(iii) it directly addresses criticisms of the LoA
framework by incorporating the driver’s perspective,
using empirical data from end-users; and (iv) it
grounds its findings in rigorous empirical research
and data triangulation, moving beyond the limita-
tions of literature reviews and simulations.

The resulting model provides a holistic under-
standing of driver interaction with DASs, highlighting
the need for designers to adopt driver-centric design
perceptive. This perspective ensures that the system
conforms to the driver’s mental model, rather than the
development of design solutions that are influenced by
technical classifications. Such considerations are crucial
for the safe and effective integration of DAS into
vehicles, as it supports driver’s development of an
appropriatementalmodel and adequate interactionwith
such systems that does not deviate from intended use.

Future research should prioritise the translation
of this theoretical framework into practical design
guidelines for practitioners in the industry. By
embracing a human-centric methodology, emerg-
ing design solutions of DAS can more accurately
mirror the mental models of drivers, hence en-
hancing safety and inherently intuitive interactions
with these complex systems.
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Notes

1. ND study typically refers to a study in which data
collection is not constrained by a strict experimental
design (Fridman et al., 2019). This enables data
collection in a natural driving context and under a
variety of driving conditions, in real-world driving
situations, and over prolonged periods of time.

2. Wizard-of-Oz: The WOz technique, as described by
Kelley (1984), entails the use of a human who as-
sumes the role of a machine, all while keeping the
participant unaware of this fact. In the application
domain of driving automation, a WOz vehicle en-
ables the simulation of different automation levels
and conceptual user interfaces, thus enabling testing
in early development phases.
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