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Method development to improve estimates of embodied emissions in the Swedish built 

environment 
QIYU LIU 
Department of Space, Earth and Environment 

Chalmers University of Technology 

Abstract 

The building and construction sector accounts for approximately 20 percent of Sweden’s total 

greenhouse gas (GHG) emissions. To achieve Sweden’s climate goal of reaching net-zero 

greenhouse gas emissions by 2045, urgent action is thus needed to decarbonize the building 

and construction sector. Emissions from the building sector can be classified into two sources: 

1) operational emissions related to energy consumption, and 2) embodied emissions from the 

manufacturing and processing of building materials. The share of embodied emissions as a 

percentage of the total emissions is expected to increase as more efforts are put into energy 

efficiency measures and decarbonization of the energy supply. As a result, more attention is 

needed to reduce embodied emissions from the building and construction sector. 

However, embodied emissions in the built environment remain relatively understudied, 

especially at the national level. Embodied emissions from the built environment are most 

commonly studied using material stock and flow analysis. Material stock and flow analysis can 

be classified into top-down and bottom-up, and this study focuses on the latter. Top-down 

analysis typically relies on aggregated national or sectoral data, such as economic or material 

flow accounts, while bottom-up analysis is based on detailed data at the building or component 

level. Existing bottom-up studies primarily focus on small geographical scales, such as 

neighborhood and city levels, which limits the applicability of their findings national level 

policy making. The primary challenge in conducting national-level estimations of embodied 

emissions lies in the limited availability of inventory data. Moreover, maintenance and 

renovation activities are frequently overlooked in models of material flows within the built 

environment. 

This thesis addresses this gap by developing a framework to estimate embodied emissions from 

the built environment at the national level while having limited available data. The challenge 

of lack of available data is tackled by using machine learning (ML) models. Paper I estimates 

the material stock, flow, and embodied carbon from Swedish roads while predicting missing 

road widths data using a ML regression model. Paper II expands the scope to residential 

buildings by predicting construction years of buildings using a classification ML model and 

usable floor space of buildings using a regression ML model. Lastly, Paper III utilizes the 

building inventory dataset generated in Paper II to develop a material stock and flow model 

that introduces a new layered based approach to model renovation of buildings. 

The findings presented in the appended work show that ML models can be used to predict 

physical attributes of roads and buildings to a high level of accuracy. The contribution of this 

work is showing that urban form features that can be generated using solely the geometry of 

roads and buildings can reliably achieve high level of prediction accuracy. Thereby increasing 

the applicability of the approach. The results also indicate that road maintenance and building 

renovation account for the largest share of embodied emissions. As a consequence, additional 

policy measures are needed to limit the emissions from maintenance and renovation activities. 

Keywords: Material stock, Material flow analysis, Machine learning, Embodied emissions 
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1 Introduction 

The building and construction sector is responsible for 34% of global energy demand and 37% 

of energy and process related greenhouse gas (GHG) emissions in 2022 [1]. At the same time, 

the global demand for housing and infrastructure is increasing at a rapid rate to meet the 

demand of a growing population. The Organization for Economic Co-operation and 

Development (OECD) estimated that the global construction sector will more than double by 

2060, with its materials use reaching close to 84 gigatons (Gt) [2]. Therefore, decarbonizing 

the building and construction sector is essential for achieving the Paris Agreement targets and 

reaching net zero emissions [3]. In existing literature, a large amount of effort has been put into 

measures to reduce operational emissions from buildings from energy use [4]. However, as 

energy efficiency improves in buildings and energy supplies become more decarbonized, 

embodied GHG emissions from the manufacturing and processing of building materials are 

expected to become the largest source of emissions related to buildings [5]. In addition, road 

and rail infrastructures are responsible for approximately 0.5% - 1.9% of emissions globally in 

2021 [6]. Together this highlights the need for increased focus on how to reduce embodied 

emissions from the entire built environment. 

Embodied carbon emissions are directly related to the amount and type of materials used in the 

built environment, so understanding and estimating material flows and stocks is important for 

improving estimates of embodied carbon emissions [5]. Material stock models are essential to 

estimate where, and how much materials are accumulated, and are the basis to calculate 

material flows [7]. High spatial resolution material stock models can help policymakers make 

more targeted policy decisions, as there is high spatial heterogeneity in the built environment 

[8]. Material flow analysis results are used to provide insight into topics such as circularity and 

embodied emissions, and thus higher spatial resolution material stock and flow analysis 

(MSFA) models are needed to translate research into real world actions [7]. 

However, high-resolution, dynamic material flow analysis of the built environment are often 

constrained by the lack of data [7]. For buildings (the most studied stock), lack of data includes 

issues of missing data in the building inventory. Building inventory contains data such as 

dimensional information (e.g., floor space, volume) and archetype descriptors (e.g., 

construction year, structure type, building use) that are essential for calculating material stock 

and flows. Floor space data is used as the basis for calculating building stock and flows [9]. 

However, floor space data are often unavailable, and the available datasets are incomplete [10]. 
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The lack of data also pertains to other parts of the built environment, with transport 

infrastructures being relatively understudied compared to buildings [11]. Transport 

infrastructures are an essential part of the built environment and the demand for new housing 

dictates the need for more transport infrastructure, and therefore it is crucial to consider the 

embodied emissions from transport infrastructures with regards to decarbonization of the built 

environment [12]. 

Furthermore, previous studies have largely focused on the dynamic material flows from new 

construction activities from stock expansion and replenishment (see Paper III for a review). 

The existing literature neglects renovation material flows to maintain the function and/or 

aesthetics of the stock. The reason that renovation activities have not been studied as much is 

similarly due to the lack of data. For example, the missing data are the data on the dimensions 

of the stock, year of construction, and detailed material intensity (MI) to understand which part 

of the stock needs to be renovated. 

1.1  Aim and scope 

The overall aim of this thesis is to improve estimations of material flows and embodied 

emissions from the Swedish built environment with a goal of decarbonization, with a specific 

focus on addressing issues of data availability and on increasing the level of modeling 

granularity. The geographical boundary of the study is Sweden, and the part of the built 

environment studied are residential buildings and roads. 

The thesis addresses the following questions: 

• Can machine learning methods be used to impute missing inventory data at the national 

level using limited input data? (RQ1) 

• How to leverage higher-resolution stock models to improve estimations of 

maintenance/renovation activities and the associated material flows? (RQ2) 

• What are the potentials to reduce embodied emissions from both new construction and 

maintenance/renovation activities? (RQ3) 

 

1.2  Outline of the thesis 

The thesis consists of a summary and three appended papers. The summary synthesizes the key 

findings from the papers and contextualizes the results. The summary begins with an 

introductory chapter, followed by Chapter 2 that provides background on the research topic. 
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Chapter 3 describes the methodology used, Chapter 4 presents some selected results from the 

works, and Chapter 5 provides discussion around the work. Lastly, Chapter 6 discusses the 

conclusions and future work from this work. 

The first research question is addressed in Papers I and II, which both use machine learning 

methods to impute missing data in inventory datasets. In Paper I, a regression model is used 

to impute missing road width data. In Paper II, a regression model is used to impute missing 

residential building usable floor space data, and a classification model is used to estimate 

missing building construction years. 

The second research question is addressed in Papers I and III, which both develop high spatial 

resolution material stock and flow models. In Paper I, road material stock is developed based 

on GIS dataset and the renovation of the top layer of roads is modeled using dynamic MFA. 

Similarly, Paper III models the material stock of residential buildings with detailed material 

intensity based on building shearing layers, and a method to model renovations of different 

shearing layers using dynamic MFA is developed. 

The third research question is addressed in Papers I and III, which both estimate the embodied 

carbon from expansion and renovation activities of the material stocks. The inflow of material 

is multiplied by supply-chain scenario-based embodied emission factors from Karlsson et al. 

with a focus on Sweden [13]. The emission factors are developed to estimate the potential 

pathways for Sweden’ construction industry to reach net zero emissions. 
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2 Background 

This section provides some background information on the topics and methods that have been 

central to the work: Material stock modeling of the built environment (Section 2.1), Machine 

learning to impute missing inventory data (Section 2.2), Dynamic material flow analysis to 

model maintenance/renovation (Section 2.3), and Sweden as a case study (Section 2.4). 

2.1  Material stock modeling of the built environment 

Material stocks in buildings and infrastructures are a major source of lock-in that leads to path 

dependencies, and the stock determines the demand for raw materials and the outflows of waste 

and potentially recoverable resources. Therefore, the modeling of material stock is crucial to 

understand these dynamics and to better manage the built environment [14]. Higher spatial 

resolution of material stock and flow studies are needed to gain a deeper understanding of how 

to reduce embodied emissions, but the lack of quality data is a key limitation for conducting 

such studies [7]. This section underlines the importance of modeling the material stocks of 

roads and buildings and presents research and data gaps in existing literature. 

2.1.1 Data availability challenges 

Infrastructure construction, dominated by road construction, accounts for a significant share of 

the carbon footprint of the global construction sector. In 2013, Müller et al. [15] estimated the 

carbon footprint of the existing global infrastructure stock in 2008 as 122 (− 20/+ 15) GtCO2. 

More recently, Rousseau et al. [16] estimated embodied GHG emissions in the global road 

material stock to be 8.4 GtCO2-eq (lower estimate of 5.3 GtCO2-eq, and upper estimate of 12 

GtCO2-eq) if the roads are built anew using current material production methods. This large 

ranges in estimates demonstrates the large variance in existing estimates of material stock and 

embodied emissions of stocks, which is a result of lack of data. In addition, road construction 

and maintenance are expected to increase in the future, as a considerable share of the global 

population still lacks access to basic road infrastructure [6]. Therefore, material demands and 

the associated embodied emissions from road construction can be expected to rise as well. 

Despite this, the challenges involved in limiting material demand and GHG emissions 

associated with road construction have received less attention in the literature than have the 
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challenges linked to buildings [7]. This lack of attention can at least be partially explained by 

the general lack of road-related data. 

To counter such low data availability, the Global Roads Inventory Project (GRIP) has gathered 

and harmonized information related to road length and type of roads for 222 countries [14]. 

Rousseau et al. [5] have reported that in the GRIP dataset, more than 20% of the road length 

data is missing in many countries, while Central and South American and European countries 

have the lowest levels of missing data. Similarly, OpenStreetMap, which is another global-

level dataset describing roads, suffers from data incompleteness [15]. In Europe, many gaps 

exist in the official Eurostat statistics on transport infrastructure [16]. In addition, non-

government-owned roads, such as communal roads, have overall lower data quality and are 

sometimes not included in the national statistics [17]. The lack of data is a major challenge for 

the expansion of MSFA studies of transport infrastructures such as roads [12][13]. 

In general, MSFA  approaches adopted to develop building stock models are categorized 

between top-down or bottom-up [17], [18]. Top-down models do not take into account the 

differences between individual buildings. For building material stock models, the top-down 

approach uses aggregated data on material use (e.g., material trade, consumption statistics) and 

applies lifetime estimates to derive the quantities of material accumulated in the building stock 

and material outflows [19]. In contrast, the bottom-up approach models a building stock “piece 

by piece”, e.g., at the building level. This type of modeling is particularly important in 

decarbonization research because bottom-up approaches can be integrated with geospatial data 

in Geographic Information System (GIS), so as to gain a better understanding of the physical 

composition of the building stock [7]. Material stock models take into account those building 

characteristics that may impact their material content, such as age, use, and/or construction 

type. Regardless of their focus, modeling building stocks using a bottom-up approach requires 

substantial amounts of data [20] [7].  There are currently some international efforts into 

generating and collecting building inventory datasets, which includes varying degrees of 

completeness for the core attributes required for building stock modeling. 

The most useful and relevant attributes are building footprints, heights, floor space, building 

type, and construction year [21]. However, most national-level inventory datasets do not 

contain comprehensive information on these attributes. For example, a harmonized European 

building inventory dataset using governmental data and OpenStreetMap has shown that for 

building height, construction year, and building type, only 73%, 24%, and 46%, respectively, 



 

7 
 

of the data are available [21]. In Europe, only Spain, The Netherlands and France have national-

level databases that contain building footprints and attributes [21]. Two tools have been 

developed by the EU to collect building inventory data, each with its own limitations. The 

Copernicus Reference Data Access (CORDA) node only contains data from selected countries 

that do not include Sweden [22]. In contrast, the EU Building Stock Observatory provides data 

at the country level for all of the EU Member States, but only in an aggregated fashion [23]. 

The Microsoft Corporation has developed an open-source building footprint dataset that uses 

a combination of neural networks and aerial images, but building height coverage in the dataset 

is limited to US, Canada, Australia and countries in continental Europe but does not include 

Sweden [24]. This lack of data is a key obstacle to developing high-resolution building stock 

models.  

2.1.2 Key takeaways 

To summarize, data availability is a challenge for both the material stock and flow modeling of 

roads and residential buildings. An emerging approach to generating new data or impute 

missing data is machine learning.  

2.2  Machine learning to impute missing inventory data 

This section provides an overview of the current application of machine learning (ML) to 

generate or impute built environment inventory data and the associated challenges. Existing 

ML studies that predict an attribute of the built environment (e.g., age of building, or width of 

roads) are often focused on smaller geographical scales like cities and neighborhoods to 

leverage higher data availability at the expense of applicability (Paper I and II). The 

consequence of such an approach is that the developed model pipelines cannot be easily scaled 

up to larger geographical scales. This lack of scalability of ML approaches highlights the need 

to balance the aim for accuracy and the need for more generalizability. To achieve the goal of 

balancing accuracy and generalizability, this work develops machine learning models for both 

roads and buildings that achieve good accuracy without using scarce attributes as features. 

2.2.1 Machine learning model for road width prediction 

This subsection provides a background on the application of ML to predict road attributes. To 

understand how to develop ML models to predict road attributes, it is important to first 

understand existing works that utilize similar approaches. Several recent studies have applied 
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ML approaches to estimate the material stocks and flows of roads by predicting various types 

of road attributes [10], [32], [33]. Zhang et al. [33] employed a set of time series analysis-based 

ML models to project the historical material stock of Japanese roads from 2020 to 2050 under 

five different national shared socio-economic pathways. The aim of this study is to estimate 

future development of road stock at an aggregated level (prefecture) and thus do not use ML to 

predict specific road attributes. This strand of research that uses ML for forecasting of stock is 

not relevant for the aim of this study.      

Another strand of research aims to overcome these limitations by using ML models to predict 

the depth of road layers. Ebrahimi et al. [10] estimated and predicted the material stocks and 

flows of the Norwegian road network by predicting the depth of roads with a decision tree-

based ML algorithm. The strengths of this method are its abilities to incorporate the effect of 

traffic flows and to estimate the dissipative flows of materials. As the ML training process 

requires extensive data, the analyses were limited to national roads, for which all the input data 

were complete. Similarly, Wang et al. [30] estimated the material stocks and flows of road 

infrastructures in Belgium using a combination of ML models and the archetype-based 

approach. This work still requires road thickness data which is not widely available. These 

approaches can be seen as building upon and scaling up scarcely available data, but they do not 

address the lack of more fundamental attributes for the purpose of estimating material stocks. 

While the abovementioned approaches advance the estimation of material stock and flows of 

roads, they do not fully address the fundamental challenge of missing road attribute data. Even 

within a country, the quality and availability of the data on road attributes can be highly 

heterogeneous (see Wang et al. [30]), and this data heterogeneity impedes the implementation 

of bottom-up MSFA studies of roads at the national or international level. Furthermore, the 

material stocks and flows of non-government-owned roads are often underestimated due to 

incomplete data [17]. A key data-point for estimating the material stock and flows of roads is 

the road width, to which material stock of roads is highly sensitive [34].  

2.2.2 Machine learning model for building attributes prediction  

This subsection provides an overview for the application of ML to predict building attributes. 

For buildings, machine learning-based approaches have also emerged as a method to fill in the 

gaps in incomplete datasets so as to achieve higher spatial resolution and accuracy [25]. 

Machine learning represents algorithms that can learn from the attributes of an input dataset, 

to generate a prediction based on the learning process (for an introduction to ML, see [26]). In 
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the context of building stock modeling, ML approaches are often used to predict building 

attributes such as age or height to complete or enrich building inventory datasets. Existing work 

using ML approaches for building inventory development have been applied at various spatial 

scales. Most of the existing work was performed at the urban scale (neighborhood or city), with 

some studies carried out at the national scale [27] [9] [28]. 

The limited number of studies conducted on the national scale is due to the high data 

requirements of existing ML approaches, especially the heavy emphasis on height data (See 

Paper II). As demonstrated previously by Arehart et al. [9], ML models are capable of 

providing good predictions of usable floor space if height data is partially available. Arehart et 

al. [9] uses building height data for the US to train a ML model that predicts height of the North 

American building stock and then use the predicted height to calculate usable floor space of 

buildings. At the time of writing, this is the only study that uses ML to predict usable floor 

space and only doing so indirectly. 

As for building age, one noteworthy insight is that no previous studies predicted building age 

at the national level without the usage of building height data. Nachtigall et al. [28] predicted 

the age of residential buildings in the Netherlands, France, and Spain, using mainly urban form 

features with a mix of real height data and previously predicted height data from Milojevic-

Dupont et al. [27]. Urban form features are ML training features calculated using building 

footprints and surrounding roads and building blocks without the need for height data (See 

Paper II). The review on previous work indicates that urban form features are good input 

features to train ML models and thus could be used to balance the need for accuracy and 

scalability. However, existing literature does not explore the possibility of using only urban 

form features without height data to predict building attributes.  

2.2.3 Key takeaways 

To summarize, there is a large need for data for more detailed MSFA studies and ML is a proven 

methodology to generate or impute data, but most existing approaches lack generalizability due 

to the reliance on scarcely available data such as building height and road layer thickness. 

Therefore, there is a need to develop a methodological approach that can be used to impute or 

generate built environment attribute data at a large geographical scale using widely available 

data. 
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2.3  Dynamic material flow analysis to model renovation 

Dynamic material flow analysis (DMFA) of buildings quantifies the material flows from 

producing, operating, maintaining, and disposing of the stock [29]. Maintenance and 

renovation of buildings is necessary to maintain its function and aesthetics and to improve its 

energy efficiency, but existing modeling of maintenance/renovation in MSFA studies has been 

conducted with broad assumptions (see Paper III). The main imprecise assumption is that 

buildings are often modeled as a single product instead of a system of parts. This assumption 

overlooks and underestimates not only the material flows but also the associated impact such 

as embodied carbon emissions. 

2.3.1 Existing studies on renovation  

This subsection provides an overview of existing work on renovation of buildings. Similar to 

the literature on ML applications on built environment stock, studies that have modeled 

renovation of buildings have been focused on smaller geographical scales. In addition, very 

few studies have modeled both the material flows from renovation and the embodied carbon 

impacts. To the author’s knowledge, the only study that estimates both the material flows from 

all renovation activities and the embodied emissions are by Ohms et al. [30], this study limits 

the geographical scope to a university campus. The rationale for limiting the geographical 

scope is due to data availability. Göswein et al. [31] developed a building stock model for a 

neighborhood in Lisbon, Portugal, to investigate the embodied emissions of renovation 

activities focusing exclusively on insulation materials. At the national level, Berrill et al. 2021 

[32] developed a housing stock model with a focus on representing vacancy rates for each state 

in the USA. Subsequently, Berrill et al. 2022 [33] further developed the model to include 

renovation for only building envelopes. The material requirement for envelope renovation is 

assumed to be a percentage of material requirements for new construction. At the time of 

writing, no study has estimated the material flow of all renovation activities and its associated 

carbon emissions at a national level. This gap in literature can be partially explained by the 

challenge of modeling the dynamic interactions between the differing lifetimes of various 

‘parts’ of the building. 

2.3.2 Theorizing renovations with building shearing layers 

The challenge can be attributed to a commonality to most DMFA studies is that they treat a 

building as a single product and thus a single lifetime. Such assumption is in strong opposition 
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with the architectural concept of building shearing layer, that has become increasingly central 

in circular construction literature, and which states that “there isn't any such thing as a building. 

A building properly conceived is several layers of longevity of built components.” (Duffy, 

quoted in Brand, 1994) Indeed, the vast majority of buildings are not monolithic; rather, they 

are composed of multiple parts, each with their own lifetime [34]. Brand et al.  [34] theorized 

six shearing layers in a building, namely its site, structure, skin, space, services, and stuff (See 

fig.1).   

 

 

Figure 1. Illustration of the shearing layers for a building [34]. 

When it comes to material stock (MS) and DMFA modeling of the built environment, three of the six 

shearing layers are particularly relevant: the structure, the skin (i.e., the building envelope), and the 

space layer. The latter refers to the building elements that divide the space within the building 

and that are not part of the structure, such as partition walls, ceilings, or flooring. Each shearing 

layer has a specific lifetime, making their differentiation particularly critical when looking at 

renovation dynamics in a building stock. Indeed, buildings typically undergo multiple 

renovations over their lifetime, with each renovation focusing on a specific layer [34]. For 

example, renovation of the façade of a building (skin layer) does not always happen at the same 

time as changing the interior layout of a building (space layer). To accurately capture the 

complex dynamics of building renovation activities, it is therefore essential to model material 

stock and flow at a higher level of granularity, so the various longevities of shearing layers are 

represented. In other words, dividing a building into its shearing layers can make building 

DMFA models more representative of real-world conditions. 
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2.3.3 Key takeaways 

To summarize, the existing DMFA models of building renovations are coarse and use simplified 

assumptions. One such assumption is that most existing studies treat buildings as a single 

product with a single lifetime. This assumption of using a single lifetime fails to capture the 

dynamic interaction between different ‘parts’ of a building. By adopting the shearing layer 

concept to model the MS of buildings, different lifetimes can be assigned to different shearing 

layers in DMFA models. Therefore, there is a need to further develop existing DMFA models 

to be able to utilize the different lifetimes and capture interactions between different layers such 

renovation of the skin layer might not happen for a building if said building is too close to 

demolition.  

2.4  Sweden as a case study 

Sweden is chosen as a case study for its data availability. Indeed, Sweden is relevant due to its 

commitment to net zero emissions by the year 2045 [35]. Furthermore, the Swedish Transport 

Administration has committed to a goal of all state-owned infrastructure becoming climate 

neutral by 2040 [36]. For buildings, Sweden has committed to the EU’s renovation wave policy 

to increase renovation rates for the purpose of energy efficiency [37]. This commitment to 

reduce emissions from the built environment makes Sweden particularly relevant in the context 

of studying material stock and flow modeling of the built environment and how to reduce the 

embodied emissions. 

In addition, Sweden has relatively good data availability at the national level compared to other 

countries, but still incomplete. For roads, the Swedish Transport Administration has a 

comprehensive open-source dataset on state-owned roads with length data as well as other 

attributes such as archetypes [38]. This dataset however does not contain width data for all road 

segments, especially for municipally and privately owned roads (See Paper I). Widths are 

essential for estimating material stock of roads in a bottom-up approach, but in total 36% of 

road segments do not have width data. 

For buildings, the Swedish Land Survey (Lantmäteriet) collects a building registry dataset that 

contains building attributes, mainly for taxation purposes. The attributes in the building registry 

dataset that is useful for building stock modeling are usable floor space, construction year of 

building, and building type. The usable floor space and construction year data are, however, 

incomplete (See Paper III). For single-family (SF) buildings, 16% are missing construction 
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years, and 13.4% are missing usable floor space data. The missing data problem is even more 

severe for MF buildings, with 19.9% missing construction years, and 62.7% missing usable 

floor space data. Furthermore, this building registry does not contain height data, which means 

height cannot be used as a proxy to estimate usable floor space. 
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3 Method 

This section describes the main methods used to answer the research questions: Machine 

learning applications (Section 3.1), Dynamic material stock and flow analysis (Section 3.2), 

and Scenario analysis for embodied carbon emissions reduction (Section 3.3). 

3.1  Machine learning applications 

Machine learning or statistical learning represents algorithms that can learn from the attributes 

of an input dataset, to generate a prediction based on the learning process (for an introduction 

to ML, see Hastie et al. [26]). The two machine learning models used in this work are regression 

and classification models. Regression models are more suitable for prediction tasks with targets 

that are continuous variables such as widths of a road section (Paper I) or usable floor space 

of a building (Paper III). Classification models on the other hand are more suitable for 

prediction tasks with targets that are discrete variables such as construction year of buildings 

(Paper III).  This subsection aims to provide an overview of the ML workflow in this study. 

3.1.1 Dataset inspection and preprocessing 

The first step of any ML workflow is to inspect and preprocess the dataset. This step includes 

understanding the dataset, such as the statistical distribution, completeness of data, the potential 

existence of outliers, and the like. The goal of the preprocessing step is to gain an initial 

understanding of the data and to decide on questions such as what type of features might be 

needed, and whether regression or classification algorithms are more suitable. The 

preprocessing step could also include removing outliers if they exist or data stratification. 

One of the issues identified during the data inspection process pertained to class imbalance. A 

‘class’ in a classification problem is one of the possible categories or labels that an input data 

can be assigned to by the model. Class imbalance is a problem for classification models when 

the underlying data are skewed and certain classes are under-represented, making the ML 

model’s ability to predict minority classes less-effective [39]. In the building dataset, a 

significant class imbalance existed for construction years of buildings, more precisely between 

1960 and 1980. This observed imbalance of construction years can be attributed the Swedish 

‘Million Program’ in which more than 1 million buildings were built in a ten-year span (1965 

to 1974) [40].  
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3.1.2 Feature engineering 

The second step of the ML workflow after inspecting and preprocessing the dataset is feature 

engineering.  In ML, a feature serves as a numeric representation of a specific aspect of the raw 

data. Since ML models require an adequate number of features to capture and reflect effectively 

the underlying data's characteristics, feature engineering is essential, so it is the second step in 

the ML workflow [41]. This process involves extracting features from the raw data and 

converting them into formats that are suitable for utilization by the ML model [42]. 

As previously discussed in Section 2.2, existing ML models rely heavily on data with limited 

availability such as building height. To overcome this challenge, this work calculates and uses 

urban form features as the main input in the ML workflow. The advantage of urban form 

features is that these features can be calculated using only building footprints and road data. 

The quantitative analysis of urban morphology distinguishes between three key building 

elements: footprints, plots, and street-based blocks [43], as illustrated in Figure 3, where 

tessellations enclosed by streets are used as a proxy for building plots. Each element captures 

the unique attributes of the corresponding building, and the features are generated based on the 

elements.  

Building elements refer to the 2D geometry of the footprints of buildings, which contain useful 

information that can be used for predicting construction age [44] and floor space [9] through 

ML models. 

 

Figure 2. Illustration of the three elements of urban morphology using an area of Gothenburg (Sweden) as an 

example: (a) building footprints; (b) tessellations enclosed by streets, used as a proxy for building plots; and (c) 
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building blocks generated using tessellations. Note that no color coding is used here because the blocks include a 

variety of building uses. Source: Paper II. 

For the ML predictions of usable floor space and construction year of residential buildings, 16 

urban morphology features are generated and applied to the three elements of urban 

morphology for a total of 48 features. All features are calculated using the Momepy package 

developed in Python using a combination of the building’s GIS footprint data and road network 

GIS data [45]. The same set of features are used for both the classification and regression 

model. For the ML prediction of width of roads, 12 road network features are calculated using 

only road GIS data using Momepy. In addition, social economic features such as population 

and building features such as distance to the nearest buildings are used as features.  

3.1.3 Classification models training and validation 

The next step in the ML workflow after generating features is the model training and validation 

process. Classification models are used to predict building construction years (see Paper II). 

As previously discussed in Section 3.1.1, there is a significant class imbalance of construction 

years. Existing ML algorithms can mitigate some of the class imbalance problem, but not 

always in a satisfactory manner. Therefore, an additional step is required to counteract the class 

imbalance and maximize the ML model’s performance [46].  

There are multiple available techniques to tackle the class imbalance problem, and the under-

sampling technique is chosen due to the underlying distribution of the data (See Paper II). 

Therefore, the open-source Python package ‘Imbalanced-learn’ is used to test four under-

sampling techniques to identify which technique can produce the optimal prediction 

performance [47]. The first technique is the Random Under-Sampler (RUS), which randomly 

under-samples the majority classes without replacement. The second is the Near Miss (NM) 

method, which selects a subset of the majority classes samples that are closest to the minority 

classes samples [48]. The third is the One-sided Selection (OSS) technique, which initially 

finds the observations that are hard to classify and then removes noisy samples [49]. The fourth 

is the Neighborhood Cleaning Rule (NCR) method, which uses a combination of edited-

nearest-neighbor and a k-nearest-neighbor to remove noisy samples from the dataset [50]. 

Subsequently, we use the XGBoost algorithm for the classification task and train the model on 

the four different under-sampled datasets. XGBoost is chosen as it has been successfully 

applied to predict various attributes of the building stock with high levels of precision [28], 
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[51]. Therefore, we test the XGBoost algorithm with different resampling methods to address 

class imbalance issues in the dataset.  

To evaluate the result from the under-sampling techniques, a set of evaluation metrics are used. 

The metrics used in the study and their associated equations and descriptions are shown in 

Table 3 in Paper II. There is currently no clear consensus in literature on what are the most 

accurate evaluation metrics, so we use the most popular metrics. The best performing under-

sampling technique is then used to train the final classification model that predicts the 

construction year of buildings. 

3.1.4 Regression models training and validation 

The road width prediction problem in Paper I and the usable floor space prediction problem 

in Paper II are tackled with regression ML models. Since regression models do not face class 

imbalance problems, we compare the four most widely used algorithms to test which has the 

best performance instead. One of these is XGBoost [52], which is also used for the 

classification model. XGBoost is an ML algorithm that is a member of the family of gradient-

boosting techniques [55]. XGBoost is an ensemble learning method that combines the 

predictions of multiple individual decision trees, known as weaker learners, to create a strong 

final predictive model. In gradient boosting, new models are built sequentially by correcting 

the mistakes of the previous model. Each new model is trained to predict the residual errors of 

the ensemble of previous models.  

In addition to XGBoost, we test three ML algorithms that are more commonly used for 

regression problems. Random forest (RF) is an ensemble learning algorithm that builds a 

collection of decision trees and combines their predictions to create a more-accurate and robust 

model [53]. The RF algorithm is implemented using the scikit-learn package in Python [54]. 

LightGBM is another gradient-boosting decision tree algorithm developed by Microsoft that 

has higher training efficiency and lower memory usage [55]. CatBoost is yet another gradient-

boosting algorithm developed to offer more support for categorical features [56]. For both the 

regression and classification models, a five-fold cross-validation method is used to prevent the 

model from overfitting to the training data. Overfitting refers to an ML model that learns the 

training data too well, including the noise to the point that it performs poorly on test data. The 

hyper-parameters of the models are optimized using the Optuna Python package [57]. 
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To validate the results of the ML models, several evaluation metrics are used. The regression 

models use a set of more traditional evaluation metrics. The first metric is the Mean squared 

error (MSE) as the evaluation metric during the model training process. MSE measures the 

average squared differences between the predicted and actual values and is defined as: 

 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑦𝑖  − 𝑦̂𝑖)

𝑛

𝑖=1

2

 (1) 

 

where n is the total number of data-points, 𝑦𝑖 is the actual value of the 𝑖-th observation, and 𝑦̂𝑖 

is the predicted value of the 𝑖-th observation. 

Two additional evaluation metrics are used to compare the different ML algorithms for 

regressions: Mean absolute error (MAE), and R-squared score (R2). MAE measures the average 

absolute differences between the predicted and actual values, defined as: 

 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖  −  𝑦̂𝑖|

𝑛

𝑖=1
(2) 

 

where n is the total number of data-points, 𝑦𝑖 is the actual value of the 𝑖-th observation, and 𝑦̂𝑖 

is the predicted value of the 𝑖-th observation. MAE penalizes errors to a lesser degree than the 

MSE, but it is a more-intuitive evaluation metric.  

The R-squared score measures the proportion of the variance in the dependent variable that is 

predicted from the independent variables and is defined as: 

 

𝑅2 = 1 −  
 ∑ (𝑦𝑖  −  𝑦̂𝑖)

𝑛
𝑖=1

2
 

∑ (𝑦𝑖  −  𝑦̅)𝑛
𝑖=1

2
(3) 

 

where n is the total number of data-points, 𝑦𝑖 is the actual value of the 𝑖-th observation, 𝑦̂𝑖 is 

the predicted value of the 𝑖-th observation, and 𝑦̅ is the mean of the target variable.  
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Like the classification model training and validation process, the best performing regression 

algorithm is chosen and then used to predict the road width and usable floor space. 

3.2  Material stock and flow analysis 

This section provides an overview of the methods and equations used for the modeling of the 

material stocks and flows of the Swedish roads and residential buildings. Equations 4-6 are 

generalized for both roads and residential buildings, and specific equations can be found in the 

appended papers. 

3.2.1 Scope of study 

This subsection provides an overview of the scopes of the papers appended in this summary. 

Paper I, which focuses on roads, includes all paved roads and gravel roads, but excludes 

dedicated bike lanes and pedestrian walkways. The road layers included in the material 

intensities are surface course, binder course, base, sub-base embankment (as defined in Lanau 

et al. [58], see Fig (1)). We do not distinguish between above ground and underground in this 

study. The materials included in the MI are asphalt, steel, and aggregates. Concrete roads are 

excluded from the system boundary, as there are only 68 km of concrete roads in Sweden as of 

the year 2022 [63].  

For buildings studied in Paper III, the scope of study includes all single-family (SF) buildings 

and multi-family (MF) buildings. The SF buildings are assumed to be one structure type across 

12 age cohorts (each cohort is 10 years, from 1880 to 2000). The predominant structure type 

of SF buildings is assumed to be timber for all age cohorts. The MF buildings are assumed to 

include four structure types, and 13 age cohorts (each cohort is 10 years, from 1880 to 2010).  

The structure types include Wood multi-family (WMF) buildings, Wood-brick multi-family 

(WBMF) buildings, Brick multi-family (BMF) buildings, and Concrete multi-family (CMF) 

buildings. The data on building structure was retrieved from the study of (Bian et al, in prep) 

who used building morphological indicators to predict building structures of residential 

buildings in Gothenburg. Results showed high accuracy (more than 80%), and we use them in 

this study to be able to apply Swedish MIs (which follow a structure-use-age archetype) to the 

inventory. The material intensity includes 12 materials for both SF and MF buildings (See 

Paper III). Furthermore, the scope of the MI dataset for both SF and MF buildings includes 

the superstructure (above ground), substructure (underground), and foundation’s compact 

layers.  
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The geographical scope of both Paper I and Paper III is Sweden. The temporal scope of Paper 

I is from 2022 to 2045 while the temporal scope of Paper III is from 2025 to 2050. The DMFA 

in Paper I is conducted at the regional scale (Sweden divided into 6 regions based on different 

lifetime estimates) and the DMFA in Paper III is conducted at the municipal level (290 

municipalities in Sweden). Paper II is focused on method development and the geographical 

scope is Sweden. 

3.2.2 Building renovations 

The following two subsections provide an overview of the logic and assumptions behind the 

use of DMFA model to estimate material flows from building renovations and road 

maintenance. Both DMFA models are coded in Python using the Open Dynamic Material 

Systems Model (ODYM) [59]. 

We model the material flows from buildings using consecutive bottom-up stock-driven DMFA 

models and implemented in the following order: a stock-driven model that quantifies the future 

stock and outflows of usable floor space based on age cohorts. The outflow result from the first 

DMFA model is the amount of floor space demolished each year. To determine the inflows and 

outflows associated with the renovation activities, the future stock is used in another stock-

driven model using lifetimes specific to the skin layer to simulate the need for renovations.  

In the second DMFA model, renovation activities of buildings are modelled by assigning a 

specific lifetime to the skin and space layer of buildings. The surviving stock 𝑆𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑖,𝑐
(𝑡) (see 

Equation (5) below) from the first DMFA model is then used as the stock that will undergo 

renovation activities. In other words, the main logic behind the modeling of renovation 

activities is that only the surviving stock from each age-cohort is renovated. These two 

consecutive DMFA models are an adaptation of the convolution approach introduced in Sartori 

et al. [60]. This method is named the layered model due to the use of convolution of lifetime 

between the building shearing layers. In addition, we compare the results from the layered 

model with the stock-driven model that treats the building as a single object, which we call the 

monolithic model. In the monolithic model, instead of using the surviving stock to conduct a 

second consecutive DMFA model, parallel stock-driven models to the first DMFA model are 

conducted to represent renovation activities.  
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3.2.3 Road maintenance 

A key assumption behind the modeling of road maintenance in Paper I is that no roads are 

demolished in Sweden. Therefore, only one stock-driven DMFA is conducted to estimate the 

material flow from the maintenance of roads. In addition, it is assumed that only 50mm of 

asphalt is removed and repaved from maintenance according to expert opinion (from PEAB 

construction company that works with road maintenance in Sweden).  

3.2.4 General stock and flow modeling approach 

The first step is to calculate the in-use material stock, and the stock is calculated by multiplying 

the inventory with material intensity, as shown in Equation (4): 

 

𝑀𝑆𝑖(𝑡) = 𝑀𝐼𝑖(𝑡) ∗  𝐼𝑛𝑣𝑖(𝑡) (4) 

 

where 𝑀𝑆𝑖(𝑡) is the material stock of built environment type 𝑖 at time 𝑡 in tons, 𝑀𝐼𝑖(𝑡) is the 

material intensity of built environment type 𝑖 at time 𝑡 in tons, and 𝐼𝑛𝑣𝑖(𝑡) is the inventory of 

built environment type 𝑖 at time 𝑡. The inventory used in Paper I is road surface area in m2 

(length multiplied by width), with both existing and ML-predicted width data. The inventory 

used in Paper III is the usable floor space of buildings in m2. The inventory is the result of 

Paper II.   

The first step of the stock-driven DMFA model is to calculate the outflow from existing stock, 

as shown in equation (5): 

𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑖,𝑐(𝑡) =  ∑ 𝑖𝑛𝑓𝑙𝑜𝑤𝑖(𝜏) ∗ (1 − 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝐶 (𝑡 − 𝜏))

𝑡

𝜏=𝑡0

 (5) 

where 𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑖,𝑐(𝑡) is the outflows or demolition of stock type i from age-cohort c 

(construction year) at the end-of-life (EoL) at time t in tons, and 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙
𝑐
(𝑡 − 𝜏) is the 

survival function that represent the share of the inflow from age-cohort c remaining in the stock 

at time t. The survival table is constructed from an age-cohort dependent lifetime distribution. 

There is no consensus in literature on functional forms of lifetime distributions [61]. The 

Weibull distribution is chosen as it is the most commonly used and most available data exists 

[62].  
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The next step is to calculate the inflow of building type i at time t using the mass-balance 

principle, as shown in the following equations: 

𝑆𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑖,𝑐
(𝑡) =  ∑ (𝑖𝑛𝑓𝑙𝑜𝑤𝑖(𝜏) − 

𝑡

𝜏=𝑡0

𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑖,𝑐(𝜏)) 

𝑖𝑛𝑓𝑙𝑜𝑤𝑖(𝑡) =  𝑆𝑖(𝑡) −  𝑆𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑖,𝑐
(𝑡) (6) 

 

where 𝑆𝑖(𝑡) is the stock type i at time t in tons and 𝑆𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑖,𝑐
(𝑡) is remaining or surviving stock 

type i at time t  in tons after 𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑖,𝑐(𝑡) is removed. 

3.3  Embodied emissions 

The embodied emissions from the construction and maintenance of the built environment 

stocks are calculated using Equation (7): 

 

𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡
=   ∑ 𝑀𝑖𝑛𝑓𝑙𝑜𝑤𝑡𝑜𝑡𝑎𝑙𝑖,𝑡,𝑚

𝑖,𝑡,𝑚

∗  𝐸𝐹𝑚 (7) 

where 𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡 is the total embodied 𝐶𝑂2 emissions in year 𝑡 in tons, 

𝑀_𝑖𝑛𝑓𝑙𝑜𝑤 _𝑡𝑜𝑡𝑎𝑙𝑡,𝑚 is the total inflow of material 𝑚 from stock type 𝑖 at time 𝑡 in tons, and 

𝐸𝐹𝑚 is the emission factor for material m in tons/ton. The emission factors (EF) used here are 

based on estimates made by Karlsson et al. [68]. The emission factors (EFs) used in this study 

account only for life cycle stages A1–A31, thereby excluding emissions associated with later 

stages such as transportation to site and construction (A4–A5). 

 

 

 

 

 

 
1 Stage A1 refers to raw material extraction, Stage A2 refers to transport to manufacturing site, and stage A3 refers 

to manufacturing. 
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4 Selected results 

This section presents some selected results from the three appended papers. Selected results 

are shown in four main areas: ML imputation, material stock, material flows with a focus on 

renovation and maintenance, and embodied carbon emissions. 

4.1  Machine learning imputation 

The results of the regression ML models that predict road widths (Paper I) and residential 

building usable floor space (Paper II) are presented in Table 2.  

Table 2. Results of the evaluation metrics for each regression machine learning algorithm. For MAE, the 

lower the absolute value the better the performance, and for R2 the closer to 1 the better the results. 

 Road width prediction Building floor space prediction 

ML models MAE (m) R2 MAE (m2) R2 

XGBoost 0.567 0.784 28.74 0.789 

LightGBM 0.576 0.781 29.43 0.788 

CatBoost 0.669 0.728 31.19 0.781 

Random Forest 0.623 0.748 32.16 0.756 

MAE, Mean absolute error 

 

The best-performing model across both studies is XGBoost, achieving similar results. The 

hypothesis behind the similar R2 result is that a R2 value of close to 0.8 is the current upper 

bound of gradient-boosting ML algorithms without overfitting. The block-box nature of ML 

algorithms however means that it is currently not possible to pinpoint the exact reasons for the 

performances.  

The results of the classification ML model that predicts residential building age are shown in 

Table 3. The evaluation metrics used are Area Under the Precision-Recall Curve (AUPRC), 

Mean Area Under the Curve (MAUC), G-means, and Mean Mathews Correlation Coefficient 

(MMCC). The higher the score for each metric, the better the performance for the under-

sampling method.  

Table 3. Results of the evaluation metrics for each under-sampling method. For each of the evaluation metrics, 

a higher score (closer to 1) represents a better prediction performance. 
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Under-sampling 

method 

AUPRC MAUC G-mean MMCC 

RUS  0.631 0.783 0.532 0.243 

Near Miss 0.663 0.922 0.760 0.564 

OSS 0.671 0.912 0.777 0.571 

NCR 0.823 0.974 0.911 0.814 

AUPRC, Area Under the Precision-Recall Curve; MAUC, Mean Area Under the Curve; MMCC, Mean Mathews Correlation 

Coefficient; RUS, Random Under-sampler; OSS, One-sided Selection; NCR, Neighborhood Cleaning Rule. 

 

The results show that the choice of under-sampling method has a relatively potent impact on 

the performance level of the classification model. The difference between the MMCCs of the 

best-performing NCR under-sampling method and the worst-performing sampling method is 

70.1%. The reason for this disparity in performance level is likely due to the random nature of 

RUS in removing valuable and informative data points from the sample. Based on all the 

evaluation metrics, the NCR produces the best results. 

4.2  Material stock 

The results presented in this section are synthesized from Paper I and Paper III. The material 

stock of roads and residential buildings for each county in Sweden is shown in Figure 3. In 

total, the material stock accumulated in roads in Sweden amounts to 1,950 Mt and the material 

stock accumulated in residential buildings to 267 Mt. 
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Figure 3. Material stock accumulated in roads and residential buildings for each county in Sweden, the unit is 

million tons (106). 

The county with the highest accumulated absolute amount of total material stock accumulated 

in roads is Västra Götalands where Gothenburg, the second largest city in Sweden is located. 

The counties with the second and third largest amount of material stock accumulated are 

Västerbottens and Norrbottens, which are both counties in the far north of Sweden with vast 

geographical areas and thus the need for more roads. Stockholm as the largest city in Sweden 

does not have the most amount of absolute material stocks accumulated in roads due to the 

relatively small geographical area of the county.  
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The counties with the most material stock accumulated in buildings are Västra Götalands, 

Stockholm, and Skåne, where the three largest cities in Sweden (Gothenburg, Stockholm, and 

Malmö) are located. Västra Götalands county has 0.26 Mt more material stocks in residential 

buildings compared to Stockholm, which is due to the county of Västra Götalands 

encompassing a much larger rural area than the county of Stockholm.  

Due to the large geographical area and sparsely distributed population, absolute material stock 

does not show the full picture of the distribution and accumulation of material stock. Therefore, 

the material stock per square meter for each county in Sweden is shown in Figure 4. 

 

Figure 4. Material stock accumulated in roads and residential buildings for each county in Sweden, in t/m2. 
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Normalizing material stock by county area reveals more clearly that accumulation is primarily 

concentrated in population centers. Moreover, there is a clear North-South divide, where most 

of the Swedish population resides in the southern part of the country.  

4.3  Material flows 

The results presented in this section are also synthesized from Paper I and Paper III, with a 

focus on the results from the modeling of renovation activities from residential buildings. 

4.3.1 Material inflows and outflows 

The inflows and outflows for all materials in roads and selected materials in residential 

buildings are shown in Figure 5. 
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Figure 5. Material inflows and outflows from roads (top graphs) and residential buildings (bottom graphs) in 

Sweden from 2025 to 2050, in kt/year. 

The result shows that the inflows and outflows of materials from roads are strikingly similar. 

The reason is that the difference between inflows and outflows is the new construction of roads. 

In the scenario used in the analysis, the new construction of roads is significantly lower than 

the amount of road segments that require maintenance, hence the small difference in inflows 

and outflows. Furthermore, we assume that the MI for roads are the same regardless of the time 

of construction, which makes the inflow and outflow more homogenous. This assumption of 

using the same MI is a limitation and could be improved in future studies. 

The difference between material inflows and outflows of buildings is higher than the difference 

between inflows and outflows of roads. The material with the largest difference between inflow 

and outflow is concrete, which is due to the relatively low amount of demolition of residential 

buildings in Sweden. In addition, we assume that the sub-structure of buildings is not 

demolished. The outflow of timber and other wood-based products is expected to exceed the 

inflow, which means that there are high circularity potential for timber and other wood-based 

products. This higher circularity potential is primarily attributed to the prevalence of timber 

structures in buildings constructed before 1950, which are increasingly reaching the stages of 

renovation or eventual demolition. Furthermore, due to design optimizations, newly 

constructed buildings are expected to use less materials per square meter, leading to this 

difference in inflow and outflow for timber buildings.  

4.3.2 Comparison between the layered and monolithic model 

To better understand the results of the layered model for estimating renovation activities of 

residential buildings in Paper III, there is a need for comparison between the results of the 

layered model and the monolithic model. 
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Figure 6. Comparison of the estimated amount of floor space that requires renovation from the layered and 

monolithic model for the skin and space layers. Green represents the results of the layered model. Grey 

represents the difference between the monolith layered models: the value hit by the grey bar corresponds to the 

results of the monolith model. 

The comparison between the results from the monolithic model and layered model is shown in 

Figure 6. For both the skin and space layers, the monolithic model results in a higher estimation 

in terms of the amount of floor space that needs to be renovated. For the skin layer, the 

monolithic model yields an estimate that is, on average, 28% higher. For the space layer, the 

monolithic model yields an estimate that is, on average, 20% higher. This difference in 

estimation is a result from the monolithic model's assumption that the lifetimes of the skin and 

space layers are independent—an approach that leads to the renovation of building stocks 

nearing demolition. 

4.4  Embodied emissions 

The material flow results were used to estimate embodied emissions from maintenance and 

renovation activities. Those embodied emissions are the focus of this section, as they are 

deemed as the main findings of the study. They are shown in Figure 7.  
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Figure 7. Embodied emissions from renovation/maintenance activities and new construction for (a) residential 

buildings and (b) roads. The replacement represents the replenishment of demolished building stock. 

For both roads and residential buildings, maintenance and renovation activities are responsible 

for the largest share of embodied emissions. Since roads are almost never demolished and new 

construction is relatively limited, it is logical that maintenance of the top layer is the main 

contributor to embodied emissions. It should be noted that the embodied emission factors used 

for estimating the emissions from roads here have been updated compared to the values used 

in Paper I when it was published to incorporate updated estimates on emission factors. 

In the case of buildings, the new construction scenario is relatively ambitious, as it assumes 

that all projected population growth will be accommodated by constructing new buildings, 

maintaining the current average floor space per capita for each municipality. This implies that, 

in practice, the volume of new construction is unlikely to exceed the scenario’s assumptions, 

and therefore the proportion of embodied emissions attributable to new construction is also 

unlikely to be overestimated. Therefore, it can be safely assumed that renovation activities will 

be the largest contributor to embodied emissions from residential buildings. In addition, the 

renovation activities do not include deep energy efficiency renovations, which will be modeled 

in future work. The share of embodied emissions from renovations will be even higher if deep 

energy renovations are included, which requires more materials. 
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5 Conclusion and main findings 

This section synthesizes the main findings of the study by addressing the research questions 

and the implication of the results. In addition, the contribution of this work to the field of 

research is discussed. Furthermore, the insights from the synthesis of results from the three 

appended papers are discussed. Lastly, the policy implications of the research are presented.  

5.1  Main findings 

This subsection is structured to sequentially answer the research questions in the order listed 

above (RQ1-3) and discuss the contribution of this work to the field of research.  

5.1.1 Effectiveness of ML models 

The results from Paper I and Paper II show ML models can be effectively used to predict 

missing attributes in the road and residential building inventory datasets. This proposed 

workflow can be especially relevant for larger geographical scales such as the national level 

where data such as building height might be missing or incomplete. The two main findings of 

this work with regards to the effectiveness of ML to impute missing inventory data at the 

national level (RQ1) are: 1) Urban form data are effective features for training ML models, 2) 

Classification models perform well for construction year predictions, 3) Regression models 

perform well for predictions of continuous variables such as road width and building usable 

floor space. 

Due to the black-box nature of machine learning, it is not possible to conclude with certainty 

that any specific workflow will guarantee the best results. Therefore, the application of ML 

models to predict built environment attributes should be tested more on a case-by-case basis. 

The main learning from the process of training and testing three ML models as part of this work 

is that data inspection and preprocessing of data is very important. Questions such as the choice 

of using classification model or regression, and what type of preprocessing steps (resampling 

and/or outlier removal) are required depend heavily on the knowledge and understanding of 

the dataset. For example, ML models might not be effective if the proportion of missing data 

is too large. For some datasets and prediction targets, ML models might not be the most 

effective choice and normal regression models might be more appropriate.  

Furthermore, the choice of features also depends on understanding what data could be 

predictive for the prediction target. For example, urban form features can be effective at 
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predicting physical attributes of buildings and roads such as road width and building usable 

floor space but might not be effective at predicting targets that are more related to user behavior 

such as energy consumption. Another learning from the ML model training process is that for 

this specific building inventory dataset, socio-economic data are not predictive features. Socio-

economic data are not predictive and thus are not included in the final model so the unpredictive 

features do not add more noise to the model. In contrast, socio-economic data are predictive in 

Paper I for predicting road widths. Therefore, urban form data features should be tested on 

more datasets in the future to reach more generalized conclusions. 

At a conceptual level, this study contributes to the broader research field by demonstrating that 

ML is a viable approach for researchers conducting bottom-up modeling of material stocks in 

areas where detailed inventory data are lacking. In the context of road material stock modeling, 

to the author’s knowledge Paper I at the time of publication is the first work to demonstrate 

that urban form data can be effectively used to predict road widths. In the context of building 

material stock modeling, the main contribution of this work is to demonstrate that ML models 

can predict building attributes without height data. Height data of buildings are scarce (See 

Paper II for review), and this work demonstrates using urban form data are the main predictive 

features to bypass the use of height data. Urban form data have been demonstrated by Arehart 

et al. [9], and Nachtigall et al. [28] to be able to predict building height. To the author’s 

knowledge at the time of writing, Paper II is the first work to use urban form data as input to 

a ML model direct predict usable floor space. Furthermore, to the author’s knowledge at the 

time of writing Paper II is the first to use urban form data to predict construction years of 

buildings at the national level without using height data. It can be concluded based on the 

results from Paper II that ML models can be applied to more geographical areas where 

building heights are not available to enable more bottom-up material stock models.  

5.1.2 How to improve DMFA modeling of renovation 

This subsection focuses on the improvement of existing DMFA models to model renovation of 

buildings (Paper III). The research gap identified in DMFA modeling of renovation is that 

existing studies generally treat buildings as a single object with a single lifetime instead of a 

system of products with different lifetimes, which does not capture the reality that buildings 

have different ‘parts’ with different lifetimes. This work implements shearing-layers-based MI 

data when calculating material stock to better reflect reality. Furthermore, a workflow of two 

consecutive stock-driven DMFA models is developed to capture the interdependence of 
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different layers of a building. The main finding is that the monolithic model estimates total 

material flows from renovations to be approximately 20% higher than those estimated by the 

layered model. Since the layered model is introduced to bring the model closer to reality, the 

higher estimation from the monolithic model points to an overestimation of renovation 

activities.  

While the layered model represents a step towards more accurately describing real world 

conditions accurately estimating material flows from renovation activities remains a significant 

challenge. This study assumes that buildings undergo renovation cycles that follow a normal 

distribution from the construction year of the building. This assumption is necessitated by the 

absence of reliable data on the timing of past renovation activities. Moreover, building 

renovations are not solely determined by physical lifespan but are also influenced by factors 

such as aesthetic preferences, economic considerations, and policy incentives. This 

shortcoming could be tackled by soft-linking the layered model to a model that can capture 

behaviors such as an Agent-based model (ABM) [63] . Furthermore, the appropriate lifetime 

parameters for modeling the renovation of the skin and space layers within a DMFA model 

remain an open research question. The built-environment stock and flow modeling community 

would benefit from more systematic studies on the lifetime of skin and space layers. 

The main contribution of this work to the broader research field is to propose and demonstrate 

how shearing-layer-based MI can be leveraged to improve DMFA modeling of building 

renovations. To the author’s knowledge, at the time of writing, this work is the first DMFA 

study to model renovations of buildings at the national level. This work represents a step 

forward to developing a modeling framework to conduct accurate bottom-up modeling of 

material flows from buildings at a large geographical scale. A further takeaway is that more 

work should be done to collect shearing-layer-based MI data to enable similar analysis in other 

geographical regions. The finding that the monolithic model may overestimate material flows 

from renovation activities warrants further investigation to determine whether this conclusion 

holds at broader spatial or temporal scales.  

5.1.3 Embodied emissions from the Swedish built environment 

The main finding from the embodied emissions calculation according to the embodied 

emissions scenarios is that neither the residential buildings nor the roads can reach net zero 

embodied emissions by the year 2045 absent additional mitigation measures. The results 

suggest that supply-side decarbonization within industry alone is insufficient to achieve net-
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zero emissions targets, highlighting the need for complementary demand-side measures. From 

the perspective of the construction industry, measures such as design optimization—such as 

reducing concrete use—and enhancing material circularity through increased reuse of 

components and materials can play a critical role in supporting decarbonization efforts. 

Another set of potential measures that can support the decarbonization efforts are better 

utilization of the existing building stock. Such measures can include, for example converting 

under-utilized or unused offices or other non-residential buildings into apartments, adding an 

additional floor to existing apartments, and urban densification by building more new 

apartments in existing neighborhoods.  Implementing these measures to improve building stock 

utilization will require supportive policies and potential regulatory changes to enable and 

incentivize such practices. Furthermore, greater attention could be given to measures that 

reduce the absolute demand for new housing, through so-called sufficiency policies. A key 

challenge associated with sufficiency policies is their potentially low level of social acceptance, 

which can hinder their implementation and effectiveness.  

The estimation of embodied emissions in this study is subject to several limitations. The first 

limitation is that as previously mentioned, the emission factors only cover life cycle stages A1-

A3. The exclusion of life cycle stages A4–A5 implies that the embodied emissions estimates 

presented here do not capture the full emissions profile of the construction sector supply 

chain—an important stakeholder and actor in broader decarbonization efforts. The embodied 

emissions from life cycle stages A4-A5 will be included in further studies to address this 

limitation. Another limitation of the estimation of embodied emissions is that all construction 

materials are assumed to be produced domestically. This assumption primarily impacts 

globally traded materials, such as steel, while its effect on locally produced materials like 

cement and concrete is less significant. In future studies, the uncertainties associated with these 

assumptions could be quantified through an uncertainty analysis. Finally, timber and other 

wood-based products are not treated as carbon-negative in this study (but climate neutral), 

which could be included in future studies. 

The primary contribution of this study to the broader research field is the development and 

demonstration of a bottom-up workflow for estimating embodied emissions in the built 

environment, considering limited inventory data. To the best of the author’s knowledge, this 

work is the first to provide an estimate of embodied emissions from Swedish residential 

buildings, including renovation activities. The workflow developed in this study can be adapted 
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and modified for use in other geographical regions with limited inventory data, thereby 

contributing to global decarbonization efforts. 

5.2  Insights from the synthesis of the appended papers 

The first additional insight is from the spatially-material stock comparisons shown in Figure 3 

and Figure 4, which highlights the differences between road and residential buildings in-use 

material stocks. In absolute terms, the total in-use material stock of roads is about 7 times 

higher than the in-use material stock of residential buildings. However, most of the material 

stocks from roads are aggregates in the base and sub-base layers, which leads to the insight that 

compares embodied emissions from roads and residential buildings shown in Figure 6. Despite 

the higher absolute material stock in roads, the embodied emissions from residential buildings 

are higher than roads. Furthermore, the share of embodied emissions from maintenance and 

renovation activities are higher than new construction for both roads and residential buildings. 

The finding that renovation and maintenance activities make up the largest share of embodied 

emissions for roads and especially residential buildings is the key finding of this work, and the 

policy implications of this finding are discussed below (Section 5.3). 

The comparison of the machine learning models employed in Paper I and Paper II also yields 

additional insights. A key take-away is that urban form data are useful as features to predict 

both road and residential building attributes. Furthermore, for both the prediction of road width 

and building usable floor space, XGBoost is the best performing ML algorithm. Therefore, 

XGBoost should be considered in future work when training ML regression models.   

5.3  Policy implications 

This subsection provides discussions around the policy implications from this work. The main 

policy implication related to the overall findings in this work is that more attention needs to be 

paid to renovation and maintenance activities in the future with regards to reducing embodied 

emissions. The Swedish National Board of Housing, Building and Planning (Boverket) has 

proposed to the Swedish government to accelerate the introduction of limit values for climate 

impact from buildings to reduce emissions from buildings [64]. The Boverket highlights that 

embodied carbon emissions from renovations are a major share of the overall emissions but 

also indicates that there is currently limited amount of studies on the building stock level. The 

work in Paper III fills in this gap and provides support and confirmation that indeed embodied 

emissions from renovations, and more specifically not just from energy efficiency renovations 
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should be considered in limit values. The discourse on embodied emissions from renovations 

often focus on materials related to energy efficiency renovations such as windows and 

insulation materials [64]. However, the results from Paper III demonstrate that other materials 

from skin and space layer renovations such as steel, gypsum and plaster should be emphasized 

as well in future implementation of limit values in Sweden.  

On a macro level, the results from this work highlight that there is a need for more 

comprehensive data collection from government agencies to support modeling of the built 

environment. The lack of complete bottom-up data on buildings and roads can be remedied 

using ML predictions, but ML models inevitably introduce uncertainties and errors in the 

prediction process. Therefore, a key takeaway message from this work is that data on physical 

dimensions of the built environment such as building footprint, usable floor space and height 

should be collected and made available by government agencies for research purposes and 

other analysis.  
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6 Future work 

This section concludes this summary by summarizing the main findings of this work and 

providing an outlook for the future work. 

6.1  Future work 

As previously stated, the overall aim of this thesis is to improve estimations of material flows 

and embodied emissions from the Swedish built environment with a goal of decarbonization. 

However, the scope of this study is currently limited to roads and residential buildings, omitting 

several other components of the built environment. Therefore, the scope can be expanded in 

future studies to include more components of the built environment [7]. For transport 

infrastructures, the scope can be expanded to include railways, sidewalks, cycling paths, 

bridges and tunnels, and subways and tram ways. Furthermore, other infrastructures such as 

energy infrastructures (e.g., power grid and power generation technology) and supply and 

disposal infrastructures (e.g., pipelines and cables) could be included as well. For power 

generation technologies, Savvidou et al. [65] and Savvidou et al. (in preparation) already 

estimate material flows and embodied emissions from the construction and maintenance 

activities from wind turbines and PV panels in Sweden. These works can be expanded to cover 

all parts of the energy infrastructures. The main challenge in expanding the scope is to obtain 

inventory as well as MI data for the abovementioned infrastructures.  

Furthermore, the exclusion of non-residential buildings represents a significant gap in the scope 

of this study. Non-residential buildings remain a significant challenge to model due to the lack 

of bottom-up inventory data. In addition, non-residential buildings are more heterogenous 

when it comes to their design and construction that require more material intensity data 

collection. The lack of inventory data could be tackled using the ML models developed in this 

work, but the limiting factor is that to the author’s knowledge, there is currently no training 

dataset available for non-residential buildings. The building inventory data set used in this work 

does contain non-residential buildings, but none of the non-residential building entries contain 

usable floor space data. The ML models developed in this work require usable floor space for 

training and thus would not be possible to extend to non-residential buildings directly barring 

the release of new data. 

Another approach to tackle the non-residential building inventory challenge could be using the 

recently published open-access building height datasets derived from remote sensing and ML 
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methods such as for example World Settlement Footprint 3D [66] and 3D-GloBFP [67]. A more 

systematic review of the literature on building height prediction can be carried out to determine 

the viability of using these datasets for the Swedish non-residential buildings. By incorporating 

non-residential buildings, a much clearer picture of the total embodied emissions from the 

Swedish construction sector can be derived. 

The aim of this work is partially derived from the fact that there is currently no estimation of 

embodied emissions from the entire construction sector and its supply chain in Sweden. While 

detailed bottom-up modeling could provide more accurate estimates, such modeling is also 

time and resources intensive. Therefore, top-down approaches such as input-output analysis or 

inflow-driven DMFA could be used to model the remaining parts of the built environment. 

These top-down models can then be combined with the existing bottom-up models to estimate 

embodied emissions from the entire Swedish built environment. The combined model can thus 

be used to test emission reduction scenarios and inform policy making on the national level.  

An alternative future work could be improving the model from Paper III to include more 

scenarios of future demand for housing. In the current study, only a business-as-usual scenario 

is investigated. One potential direction is to investigate sufficiency policies or scenarios that 

include measures such as increasing sharing of space, conversion of offices into residential 

buildings or from a more theoretical perspective of how a reduction in floor space per capita 

could reduce future embodied emissions. Sufficiency as a concept has recently received 

increased attention as supply-side emission reduction measures are not enough to reach net 

zero emissions as shown in this work. A potential direction to investigate sufficiency of the 

built environment stock while utilizing the results from this work is to adapt the consumption 

model developed by Pauliuk 2024 [68]. The consumption model uses the Lorenz curve concept 

to calculate levels of acceptable consumption while allowing some degree of overconsumption. 

As stated in the discussion of Pauliuk 2024 (Section 4.4), spatially explicit floor space data 

such as the one from Paper II could be matched with high resolution census data on grid cells 

to be ranked for Lorenz curves. The results from such work could then be used to inform future 

new construction scenarios and assess the possibilities for demand-side measures to reduce 

embodied emissions. 

Another demand-side measure that has not been fully explored in this work is the circularity 

potential. A potential future work direction is to utilize the spatially explicit material stock and 

flow model to assess the circularity potential for each municipality in Sweden. A spatially 
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explicit analysis could highlight potential mismatches between inflows and outflows or inform 

locations of potential circularity hubs. 

Finally, the building stock model can be further expanded and soft-linked with other models 

such as an agent-based model to analyze behaviors such as renovation decisions or potential 

for sufficiency measures. By incorporating behavioral factors into the model, the model and 

the results can be one step closer to reality. Regardless of the direction of future work, the 

overall aim of the work remains unchanged: to analyze and understand how to reduce the 

embodied carbon emissions from the Swedish built environment. 

 

  



 

42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 
 

References 

[1] UNEP, “2023 Global Status Report for Buildings and Construction: Beyond foundations - 

Mainstreaming sustainable solutions to cut emissions from the buildings sector,” 2024. doi: 

10.59117/20.500.11822/45095. 

[2] OECD, Global Material Resources Outlook to 2060: Economic Drivers and Environmental 

Consequences. OECD, 2019. [Online]. Available: https://www.oecd-

ilibrary.org/environment/global-material-resources-outlook-to-2060_9789264307452-en 

[3] C. Camarasa et al., “A global comparison of building decarbonization scenarios by 2050 

towards 1.5–2 °C targets,” Nat. Commun., vol. 13, no. 1, pp. 1–11, 2022, doi: 10.1038/s41467-

022-29890-5. 

[4] H. L. Lou and S. H. Hsieh, “Towards Zero: A Review on Strategies in Achieving Net-Zero-

Energy and Net-Zero-Carbon Buildings,” Sustain. , vol. 16, no. 11, 2024, doi: 

10.3390/su16114735. 

[5] M. Röck et al., “Embodied GHG emissions of buildings – The hidden challenge for effective 

climate change mitigation,” Appl. Energy, vol. 258, p. 114107, 2020, doi: 

10.1016/j.apenergy.2019.114107. 

[6] D. Wiedenhofer et al., “Mapping and modelling global mobility infrastructure stocks, material 

flows and their embodied greenhouse gas emissions,” J. Clean. Prod., vol. 434, no. February 

2023, 2024, doi: 10.1016/j.jclepro.2023.139742. 

[7] M. Lanau et al., “Taking Stock of Built Environment Stock Studies: Progress and Prospects,” 

Environ. Sci. Technol., vol. 53, no. 15, pp. 8499–8515, 2019, doi: 10.1021/acs.est.8b06652. 

[8] Q. Li, S. R. B. Gummidi, M. Lanau, B. Yu, and G. Liu, “Spatiotemporally Explicit Mapping of 

Built Environment Stocks Reveals Two Centuries of Urban Development in a Fairytale City, 

Odense, Denmark,” Environ. Sci. Technol., vol. 56, no. 22, pp. 16369–16381, 2022, doi: 

10.1021/acs.est.2c04781. 

[9] J. H. Arehart, F. Pomponi, B. D’Amico, and W. V Srubar, “A New Estimate of Building Floor 

Space in North America,” Environ. Sci. Technol., vol. 55, no. 8, pp. 5161–5170, 2021, doi: 

10.1021/acs.est.0c05081. 

[10] C. Wang, M. Ferrando, F. Causone, X. Jin, X. Zhou, and X. Shi, “Data acquisition for urban 

building energy modeling: A review,” Build. Environ., vol. 217, no. April, p. 109056, 2022, 

doi: 10.1016/j.buildenv.2022.109056. 

[11] Q. Liu, J. Rootzén, and F. Johnsson, “Development of a machine learning model to improve 



 

44 
 

estimates of material stock and embodied emissions of roads,” Clean. Environ. Syst., vol. 14, 

no. June, 2024, doi: 10.1016/j.cesys.2024.100211. 

[12] K. H. Rankin and S. Saxe, “A Future Growth Model for Building More Housing and 

Infrastructure with Less Embodied Greenhouse Gas,” Environ. Sci. Technol., vol. 58, no. 25, 

pp. 10979–10990, 2024, doi: 10.1021/acs.est.4c02070. 

[13] I. Karlsson, J. Rootzén, A. Toktarova, M. Odenberger, F. Johnsson, and L. Göransson, 

“Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain 

Analysis Including Primary Production of Steel and Cement,” p. 40, 2020. 

[14] C. Fu, Y. Zhang, T. Deng, and I. Daigo, “The Evolution of Material Stock Research: From 

Exploring to Rising to Hot Studies,” J. Ind. Ecol., p. jiec.13195, 2021, doi: 

10.1111/jiec.13195. 

[15] D. B. Müller et al., “Carbon emissions of infrastructure development,” Environ. Sci. Technol., 

vol. 47, no. 20, pp. 11739–11746, 2013, doi: 10.1021/es402618m. 

[16] L. S. A. Rousseau, B. Kloostra, H. AzariJafari, S. Saxe, J. Gregory, and E. G. Hertwich, 

“Material Stock and Embodied Greenhouse Gas Emissions of Global and Urban Road 

Pavement,” Environ. Sci. Technol., vol. 56, no. 24, pp. 18050–18059, 2022, doi: 

10.1021/acs.est.2c05255. 

[17] M. Kavgic, A. Mavrogianni, D. Mumovic, A. Summerfield, Z. Stevanovic, and M. Djurovic-

Petrovic, “A review of bottom-up building stock models for energy consumption in the 

residential sector,” Build. Environ., vol. 45, no. 7, pp. 1683–1697, 2010, doi: 

10.1016/j.buildenv.2010.01.021. 

[18] H. Tanikawa, T. Fishman, K. Okuoka, and K. Sugimoto, “The Weight of Society Over Time 

and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945-

2010: The Construction Material Stock of Japan,” J. Ind. Ecol., vol. 19, no. 5, pp. 778–791, 

2015, doi: 10.1111/jiec.12284. 

[19] E. Müller, L. M. Hilty, R. Widmer, M. Schluep, and M. Faulstich, “Modeling Metal Stocks 

and Flows: A Review of Dynamic Material Flow Analysis Methods,” Environ. Sci. Technol., 

vol. 48, no. 4, pp. 2102–2113, 2014, doi: 10.1021/es403506a. 

[20] D. Kong, A. Cheshmehzangi, Z. Zhang, S. P. Ardakani, and T. Gu, Urban building energy 

modeling (UBEM): a systematic review of challenges and opportunities, vol. 16, no. 6. 

Springer Netherlands, 2023. doi: 10.1007/s12053-023-10147-z. 

[21] N. Milojevic-Dupon et al., “OPEN EUBUCCO v0.1: European building Data Descriptor stock 



 

45 
 

characteristics in a common and open database for 200+ million individual buildings,” 2023. 

[22] European Environment Agency, “CORDA,” 2023. 

https://corda.eea.europa.eu/_layouts/15/CustomLoginPageFBA/CustomLogin.aspx?ReturnUrl

=%2F_layouts%2F15%2FAuthenticate.aspx%3FSource%3D%252Fsitepages%252Fhome%25

2Easpx&Source=%2Fsitepages%2Fhome.aspx 

[23] European Comission, “EU Building Stock Observatory,” 2023. https://ec.europa.eu/energy/eu-

buildings-database_en 

[24] Microsoft, “GlobalMLBuildingFootprints,” 2023. 

https://github.com/microsoft/GlobalMLBuildingFootprints 

[25] N. Milojevic-Dupont and F. Creutzig, “Machine learning for geographically differentiated 

climate change mitigation in urban areas,” Sustain. Cities Soc., vol. 64, no. October 2020, p. 

102526, 2021, doi: 10.1016/j.scs.2020.102526. 

[26] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical 

learning: data mining, inference, and prediction, vol. 2. Springer, 2009. 

[27] N. Milojevic-Dupont et al., “Learning from urban form to predict building heights,” PLoS 

One, vol. 15, no. 12, p. e0242010, 2020, doi: 10.1371/journal.pone.0242010. 

[28] F. Nachtigall, N. Milojevic-Dupont, F. Wagner, and F. Creutzig, “Predicting building age from 

urban form at large scale,” Comput. Environ. Urban Syst., vol. 105, no. May, p. 102010, 2023, 

doi: 10.1016/j.compenvurbsys.2023.102010. 

[29] D. B. Müller, “Stock dynamics for forecasting material flows—Case study for housing in The 

Netherlands,” Ecol. Econ., vol. 59, no. 1, pp. 142–156, 2006, doi: 

10.1016/j.ecolecon.2005.09.025. 

[30] P. K. Ohms, L. H. Horup, S. R. B. Gummidi, M. Ryberg, A. Laurent, and G. Liu, “Temporally 

dynamic environmental impact assessment of a building stock: Coupling MFA and LCA,” 

Resour. Conserv. Recycl., vol. 202, no. March 2023, p. 107340, 2024, doi: 

10.1016/j.resconrec.2023.107340. 

[31] V. Göswein, J. D. Silvestre, C. Sousa Monteiro, G. Habert, F. Freire, and F. Pittau, “Influence 

of material choice, renovation rate, and electricity grid to achieve a Paris Agreement-

compatible building stock: A Portuguese case study,” Build. Environ., vol. 195, p. 107773, 

2021, doi: 10.1016/j.buildenv.2021.107773. 

[32] P. Berrill and E. G. Hertwich, “Material Flows and GHG Emissions from Housing Stock 

Evolution in US Counties, 2020–60,” Build. Cities, vol. 2, no. 1, pp. 599–617, 2021, doi: 



 

46 
 

10.5334/bc.126. 

[33] P. Berrill, E. J. H. Wilson, J. L. Reyna, A. D. Fontanini, and E. G. Hertwich, “Decarbonization 

pathways for the residential sector in the United States,” Nat. Clim. Chang., vol. 12, no. 8, pp. 

712–718, 2022, doi: 10.1038/s41558-022-01429-y. 

[34] S. Brand, How buildings learn: What happens after they’re built. Penguin, 1995. 

[35] J. Persson, “Sweden’s long-term strategy for reducing greenhouse gas emissions,” p. 87, 2020. 

[36] Trafikverket, “Requirements for Reducing Greenhouse Gas Emissons,” p. 2. 

[37] Ministry of Infrastructure, “Sweden’s Third National Strategy for Energy Efficient Renovation 

,” no. May, pp. 5–78, 2020, [Online]. Available: 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&v

ed=2ahUKEwiis9iuu5r8AhWCQvEDHXfjDOcQFnoECA4QAQ&url=https%3A%2F%2Fener

gy.ec.europa.eu%2Fdocument%2Fdownload%2Facc3e1f5-f0ef-457c-a4e7-

f41ec7198deb_en%3Ffilename%3Dse_2020_ltrs_o 

[38] Trafikverket, “Lastkajen – Sveriges väg- och järnvägsdata,” Trafikverket, 2022. 

https://www.trafikverket.se/tjanster/data-kartor-och-geodatatjanster/hamta-var-oppna-

data/lastkajen---sveriges-vag--och-jarnvagsdata/ 

[39] N. Japkowicz, “Learning from imbalanced data sets: a comparison of various strategies,” AAAI 

Work. Learn. from Imbalanced Data Sets, pp. 0–5, 2000. 

[40] Boverket, “Miljonprogrammet,” 2024. 

https://www.boverket.se/sv/samhallsplanering/stadsutveckling/miljonprogrammet/ 

[41] G. Dong and H. Liu, Feature engineering for machine learning and data analytics. CRC press, 

2018. 

[42] A. Zheng and A. Casari, Feature engineering for machine learning: principles and techniques 

for data scientists. “ O’Reilly Media, Inc.,” 2018. 

[43] M. Berghauser Pont et al., “The spatial distribution and frequency of street, plot and building 

types across five European cities,” Environ. Plan. B Urban Anal. City Sci., vol. 46, no. 7, pp. 

1226–1242, 2019, doi: 10.1177/2399808319857450. 

[44] J. F. Rosser, D. S. Boyd, G. Long, S. Zakhary, Y. Mao, and D. Robinson, “Predicting 

residential building age from map data,” Comput. Environ. Urban Syst., vol. 73, pp. 56–67, 

2019, doi: 10.1016/j.compenvurbsys.2018.08.004. 

[45] M. Fleischmann, “momepy: Urban Morphology Measuring Toolkit,” J. Open Source Softw., 



 

47 
 

vol. 4, no. 43, p. 1807, 2019, doi: 10.21105/joss.01807. 

[46] P. Zhang, Y. Jia, and Y. Shang, “Research and application of XGBoost in imbalanced data,” 

Int. J. Distrib. Sens. Networks, vol. 18, no. 6, 2022, doi: 10.1177/15501329221106935. 

[47] G. LemaÃŽtre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python toolbox to tackle 

the curse of imbalanced datasets in machine learning,” J. Mach. Learn. Res., vol. 18, no. 17, 

pp. 1–5, 2017. 

[48] I. Mani and I. Zhang, “kNN approach to unbalanced data distributions: a case study involving 

information extraction,” in Proceedings of workshop on learning from imbalanced datasets, 

ICML, 2003, pp. 1–7. 

[49] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets: one-sided 

selection,” in Icml, Citeseer, 1997, p. 179. 

[50] J. Laurikkala, “Improving identification of difficult small classes by balancing class 

distribution,” in Artificial Intelligence in Medicine: 8th Conference on Artificial Intelligence in 

Medicine in Europe, AIME 2001 Cascais, Portugal, July 1–4, 2001, Proceedings 8, Springer, 

2001, pp. 63–66. 

[51] N. Milojevic-Dupont et al., “Learning from urban form to predict building heights,” PLoS 

One, vol. 15, no. 12 December, pp. 1–22, 2020, doi: 10.1371/journal.pone.0242010. 

[52] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 

ACM, 2016, pp. 785–794. doi: 10.1145/2939672.2939785. 

[53] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001. 

[54] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, 

pp. 2825–2830, 2011. 

[55] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision tree,” Adv. Neural Inf. 

Process. Syst., vol. 2017-Decem, no. Nips, pp. 3147–3155, 2017. 

[56] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: Unbiased 

boosting with categorical features,” Adv. Neural Inf. Process. Syst., vol. 2018-Decem, no. 

Section 4, pp. 6638–6648, 2018. 

[57] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-generation 

Hyperparameter Optimization Framework,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. 

Data Min., pp. 2623–2631, 2019, doi: 10.1145/3292500.3330701. 



 

48 
 

[58] M. Lanau and G. Liu, “Developing an Urban Resource Cadaster for Circular Economy: A 

Case of Odense, Denmark,” Environ. Sci. Technol., vol. 54, no. 7, pp. 4675–4685, 2020, doi: 

10.1021/acs.est.9b07749. 

[59] S. Pauliuk and N. Heeren, “ODYM—An open software framework for studying dynamic 

material systems: Principles, implementation, and data structures,” J. Ind. Ecol., vol. 24, no. 3, 

pp. 446–458, 2020, doi: 10.1111/jiec.12952. 

[60] I. Sartori, N. H. Sandberg, and H. Brattebø, “Dynamic building stock modelling: General 

algorithm and exemplification for Norway,” Energy Build., vol. 132, pp. 13–25, 2016, doi: 

10.1016/j.enbuild.2016.05.098. 

[61] X. Zhong et al., “Global greenhouse gas emissions from residential and commercial building 

materials and mitigation strategies to 2060,” Nat. Commun., vol. 12, no. 1, p. 6126, 2021, doi: 

10.1038/s41467-021-26212-z. 

[62] S. Deetman, S. Marinova, E. van der Voet, D. P. van Vuuren, O. Edelenbosch, and R. 

Heijungs, “Modelling global material stocks and flows for residential and service sector 

buildings towards 2050,” J. Clean. Prod., vol. 245, p. 118658, 2020, doi: 

10.1016/j.jclepro.2019.118658. 

[63] L. Niamir, A. Mastrucci, and B. van Ruijven, “Energizing building renovation: Unraveling the 

dynamic interplay of building stock evolution, individual behaviour, and social norms,” 

Energy Res. Soc. Sci., vol. 110, no. July 2023, p. 103445, 2024, doi: 

10.1016/j.erss.2024.103445. 

[64] Boverket., Limit values for climate impact from buildings and an expanded climate 

declaration. 2023. [Online]. Available: https://www.boverket.se/globalassets/engelska/limit-

values-for-climate-impact-from-buildings-and-an-expanded-climate-declaration.pdf 

[65] G. Savvidou and F. Johnsson, “Material Requirements, Circularity Potential and Embodied 

Emissions Associated with Wind Energy,” Sustain. Prod. Consum., vol. 40, no. July, pp. 471–

487, 2023, doi: 10.1016/j.spc.2023.07.012. 

[66] T. Esch et al., “World Settlement Footprint 3D - A first three-dimensional survey of the global 

building stock,” Remote Sens. Environ., vol. 270, no. January, p. 112877, 2022, doi: 

10.1016/j.rse.2021.112877. 

[67] Y. Che et al., “3D-GloBFP : the first global three-dimensional building footprint dataset,” 

Earth Syst. Sci. Data, vol. 11319912, no. June, pp. 1–28, 2024. 

[68] S. Pauliuk, “Decent living standards, prosperity, and excessive consumption in the Lorenz 



 

49 
 

curve,” Ecol. Econ., vol. 220, no. January, p. 108161, 2024, doi: 

10.1016/j.ecolecon.2024.108161. 

 


