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Effective mass transport properties of porous materials, such as permeability, are heavily influenced by their
three-dimensional microstructure. There are numerous models developed for the prediction of permeability
from microstructural characteristics, ranging from straightforward analytical relationships to high-performing
machine learning models based on neural networks. There is an inherent tradeoff between predictive performance
and interpretability; analytical models do not provide the best predictive performance but are relatively simple
to understand. Neural networks, on the other hand, provide better predictive performance but are harder to
interpret. In this paper, we investigate a multitude of models on the performance-versus-interpretability spectrum.
Specifically, we use a dataset of 90 000 microstructures developed elsewhere and consider the prediction of
permeability using the microstructural descriptors porosity, specific surface area, and geodesic tortuosity. At
the respective ends of the spectrum, we study analytical, power-law-type models and fully connected neural
networks. In between, we study neural networks that are either separable, monotonic, or both separable and
monotonic. Establishing monotonic relationships is particularly interesting considering the potential for solving
the inverse microstructure design problem using gradient-based methods. In addition, we study versions of these
models that are consistent and inconsistent in terms of physical dimension.

DOI: 10.1103/PhysRevE.111.045509

I. INTRODUCTION

Understanding how the three-dimensional (3D) mi-
crostructural geometry influences the effective properties of
a material is crucial for property prediction and ultimately for
materials design and optimization [1]. For the case of mass
transport properties in random porous materials, there are
numerous analytical structure-property relationships derived
from physical and geometrical assumptions. One of the most
classical examples is the well-known Kozeny-Carman equa-
tion for permeability [2,3]. The space of possible 3D porous
microstructures is enormous and beyond the reach of both be-
ing accurately described by the simplest physical models and
being explored experimentally. However, for several years, it
has been computationally feasible to explore the microstruc-
tural space in silico: by no means exhaustively, but extensively
to the point where general structure-property relationships can
be pursued using a more data-driven type of approach.
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Computational exploration of the microstructural space re-
quires mathematical models for virtual microstructures, based
on, e.g., mathematical morphology and stochastic geometry
[4,5]. There are plenty of mathematical models for real mi-
crostructures, including for lithium-ion batteries [6–8], solid
oxide fuel cells [9,10], gas diffusion electrodes [11], fiber
structures [12,13], polymeric coatings [14], mesoporous silica
[15], open-cell foams [16], and granular structures [17,18]. In
addition to "conventional" mathematical methods, generative
AI approaches have also been used to generate microstruc-
tures lately [19,20].

There are numerous microstructural descriptors that have
proven useful for mass transport property prediction. The
most straightforward ones are porosity and specific surface
area, but there are others such as pore size distribu-
tions, geodesic tortuosity [14,21], constrictivity [22], and
two-point and three-point correlation functions [23,24]. Sim-
ple microstructural descriptors have been used to establish
physics-based relationships for effective mass transport prop-
erties [25]. As a natural, more data-driven extension to the
physics-based models, different nonlinear regression and ma-
chine learning approaches including random forests, artificial
neural networks (ANNs), and convolutional neural networks
(CNNs) have been trained on large datasets [26–31]. Of par-
ticular interest for this paper is Prifling et al. [32], where a
dataset of 90 000 microstructures was used to develop pre-
diction models for both permeability and effective diffusivity
using conventional nonlinear regression, ANNs, and CNNs.
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In all these and other approaches, there is an inherent trade-
off between predictive performance and interpretability. This
tradeoff applies to prediction models as such; further, it also
applies to microstructural descriptors, where some have more
intuitive meaning than others.

A disadvantage of neural networks is they can produce
physically implausible predictions. For example, the output
can be a nonmonotonic function of the input(s). In contrast, it
is very natural that mass transport properties depend on each
microstructural descriptor in a monotonic (increasing or de-
creasing) fashion. There are numerous approaches to attaining
monotonicity in neural networks, including architectures that
are monotonic by construction (by, e.g., imposing constraints
on the weights) or monotonic by regularization (by, e.g., mod-
ifying the loss function) [33–43]. On top of providing a more
physically plausible prediction model, monotonicity can make
the model generalize better (including extrapolation) and may
require less data. Further, if the model is used as a surrogate
model, i.e., a computationally efficient replacement for the ac-
tual simulation, in combination with gradient-based methods
to solve inverse microstructure design problems, violations of
monotonocity may become problematic.

In this paper, we investigate a multitude of models on the
performance versus interpretability spectrum. At the respec-
tive ends of the spectrum, we study analytical, power-law type
models and fully connected neural networks. In between, we
study different flavors of these models that are constrained in
one of several ways: they are either monotonic, separable, or
both monotonic and separable, and further they are dimen-
sionally consistent or inconsistent. Monotonicity (i.e., if the
prediction is increasing or decreasing as a function of each
individual microstructural descriptor) is attained by construc-
tion, following the approach of Runje and Shankaranarayana
[43]. Separability (i.e., the prediction is expressed as a product
of functions, each depending on only one microstructural
descriptor) is also attained by construction, explicitly rep-
resenting the different parts as individual functions learned
by neural networks. Separability does not necessarily make
the model more physically plausible, but is, on the other
hand, more interpretable. In addition, we study versions of
the different models that are dimensionally consistent and
inconsistent (i.e., the physical units of the predicted quan-
tity and the prediction models match or do not match). We
use parts of the dataset created by Prifling et al. [32] and
investigate the special case of predicting permeability using
the microstructural descriptors porosity, specific surface area,
and geodesic tortuosity. We emphasize that this is merely an
example, and the principle is valid for other sets of microstruc-
tural descriptors, and for other properties, mass transport or
otherwise. All investigated models provide good to excellent
prediction results, but there are indeed tradeoffs: the more
constrained the model, the less expressive it is, and this has
both advantages and disadvantages.

II. RESULTS AND DISCUSSION

A. Dataset

We use a dataset created by Prifling et al. [32], consisting
of all the microstructures and simulated permeabilities as well

as a subset of the microstructural descriptors. We refer to
that earlier work for more details, but brief descriptions are
provided below.

1. Microstructures

The set of microstructures is generated from nine different
stochastic geometry models. For each model class, 10 000
microstructures with size 1923 voxels are generated. The
porosity is approximately uniformly distributed in [0.3, 0.95],
and the length scales are approximately equally distributed
in all model classes. The microstructures are periodic in all
directions. The microstructure models are denoted as (i) fiber
systems, (ii) channel systems, (iii) spatial stochastic graphs,
(iv) Gaussian random fields, (v) spinodal decompositions,
(vi) hard ellipsoids, (vii) smoothed hard ellipsoids, (viii) soft
ellipsoids, and (ix) smoothed soft ellipsoids. Examples from
the microstructure models are provided in Fig. 1.

2. Microstructural descriptors

Three microstructural descriptors are used in this paper:
porosity, specific surface area, and geodesic tortuosity. First,
the porosity ε (0 � ε � 1) is the volume fraction of the pore
space, and hence dimensionless. Second, the specific surface
area s (s � 0) is the (interfacial) surface area (between the
pore space and the solid) per unit volume, with physical
dimension length−1 (here, in units of voxel−1). It can be ap-
proximated by estimating local contributions in all 2 × 2 × 2
voxel configurations, computed according to Schladitz et al.
[44]. Third, the geodesic tortuosity τ (τ � 1), is a dimen-
sionless measure of the average length of paths through the
pore space relative to the size of the microstructure in the
transport direction, computed according to Neumann et al.
[45]. Even though the structures are statistically isotropic,
there are random variations between the directions which
are to some extent accounted for by including the geodesic
tortuosity. The periodicity of the microstructures is taken into
account in the computations. It should be noted that geodesic
tortuosity for a real microstructure cannot be computed with-
out access to complete 3D geometric information, making
the descriptor dependent on high-quality imaging and image
segmentation for real-world applications. The porosity is on
average computed in <1 ms, the specific surface area is on
average computed in approximately 0.3 s, and the tortuosity
is on average computed in approximately 2 s.

3. Permeability

The (fluid) permeability is computed through solving the
Navier-Stokes equations for pressure-driven flow for the
steady state. The fluid flow is simulated using the lattice
Boltzmann method with no-slip, bounce-back boundary con-
ditions [46,47]. The flow is driven by a constant pressure
difference across the structure in the transport direction [48].
After convergence to the steady state, the permeability κ (with
dimension length2) is extracted from Darcy’s law:

ū = −κ�p

μd
, (1)

where ū is the average velocity, �p is the applied pressure
difference across the structure, μ is the dynamic viscosity of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Microstructures from the nine model classes, showing examples of (a) fiber systems, (b) channel systems, (c) spatial stochastic
graphs, (d) Gaussian random fields, (e) spinodal decompositions, (f) hard ellipsoids, (g) smoothed hard ellipsoids, (h) soft ellipsoids, and (i)
smoothed soft ellipsoids.

the fluid, and d is the size of the microstructure in the transport
direction. Given that the Reynolds number is sufficiently small
(Re <0.01), the permeability κ is independent of both the
fluid (viscosity) and the pressure difference. Therefore, it is
determined only by the microstructure. The permeability is
on average computed in approximately 100 s.

B. Prediction models

1. Analytical models

Our point of departure is a particular Kozeny-Carman type
of equation, where the permeability is modeled as a function
of porosity ε, specific surface area s, and tortuosity τ :

κ = cεcε scsτ cτ . (2)

Note that this model is separable because it is the product
of functions that depend on only ε, only s, and only τ . A
physically plausible constraint is that the permeability should

increase monotonically with increasing ε (more space for the
fluid) and decrease monotonically with increasing s (more
frictional forces between the fluid and the surface) or in-
creasing τ (longer transport paths). This will be satisfied if
cε > 0, cs < 0, and cτ < 0 (and c > 0). Further, the model
is dimensionally consistent if and only if cs = −2 (because
the dimension of κ is length2 and the dimension of s is
length−1).

We consider both the dimensionally consistent and incon-
sistent cases of the model, as summarized in Table I.

2. Neural networks

A conventional, fully connected (dense) ANN is an
arbitrarily complex nonlinear mapping implemented as a com-
position of linear and nonlinear operations. The building
blocks are fully connected (dense) layers consisting of some
nodes. In each node, a weighted sum of the outputs from
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TABLE I. Summary of the two analytical prediction models, covering dimensionally consistent and inconsistent cases.

Model Type Separable Monotone Dimensionally consistent Equation

1 Analytical Yes Yes No κ = cεcε scsτ cτ

2 Analytical Yes Yes Yes κ = cεcε s−2τ cτ

the nodes in the previous layer is computed, and a nonlinear
activation function σ is applied to produce an output. As a
model for permeability, the ANN produces a mapping f ,

κ = f (ε, s, τ ), (3)

that depends on, e.g., the number of layers, the number of
nodes in each layer, the activation function σ , the training
procedure, and the data. In this setting, we use the exponential
linear unit (ELU) activation function [49]:

σ (x) =
{

ex − 1, x < 0
x, x � 0 . (4)

Generally, a fully connected ANN is neither monotonic nor
separable with respect to any of the inputs.

We also consider ANNs that are, by construction, either
monotonic, separable, or both, inspired by Eq. (2). First, we
consider the setting

κ = fε(ε) fs(s) fτ (τ ), (5)

The network architectures are illustrated in Fig. 2. Where fε,
fs, and fτ are separate fully connected ANNs. This construc-
tion provides separability by definition. Second, we use the
approach of Runje and Shankaranarayana [43] as described
below to obtain monotonicity by construction. A simple
method to obtain monotonicity is to constrain the weights to
be only non-negative or nonpositive, combined with a mono-
tonic activation function [33]. However, such ANNs can, on
the one hand, be difficult to train with bounded activation
functions and, on the other hand, only represent convex map-
pings if the activation function is convex, such as rectified
linear unit (ReLU) or ELU [41]. The solution in Runje and
Shankaranarayana [43] is to constrain the sign of the weights
and use a set of three monotonic activation functions derived
from one original activation function σ1 by defining

σ2(x) = −σ1(−x) (6)

and

σ3(x) =
{
σ1(x + 1) − σ1(1), x < 0
σ2(x − 1) + σ1(1), x � 0 . (7)

FIG. 2. Schematic illustration of the two network topologies
used in this paper, either the separated topology (a) or the nonsep-
arable, standard, ANN topology (b).

If σ1 is convex and lower bounded, σ2 is concave and up-
per bounded, and σ3 is both lower and upper bounded (and
sigmoidal, i.e., neither convex nor concave). Further, if σ1 is
monotonic, the same holds for σ2 and σ3. As our σ1, we use the
ELU activation function in Eq. (4). Then, the other activation
functions become

σ2(x) =
{

x, x < 0
1 − e−x, x � 0 (8)

and

σ3(x) =
⎧⎨
⎩

ex+1 − 2, x < −1
x, −1 � x < 1
2 − e−x+1, x � 1

. (9)

The activation functions are illustrated in Fig. 3. By splitting
the nodes of each layer into three subsets, with each subset
using one of the three activation functions, the ANN can
represent functions that are both locally convex and locally
concave. After constraining the weights appropriately, the de-
sired monotonicity is obtained. The monotonic counterparts
to the mappings above are denoted f M (ε, s, τ ), f M

ε (ε), f M
s (s),

and f M
τ (τ ) (monotonically increasing for ε, and monotoni-

cally decreasing for s and τ ).
It should be noted that the approach of Runje and

Shankaranarayana [43] puts some restrictions on the origi-
nal activation function σ1. First, it should be lower or upper
bounded, but not lower and upper bounded, which excludes
sigmoidal functions such as logistic and tanh activations.
Second, it should be monotonic, which excludes Swish and
Gaussian error linear unit activations. Third, we addition-
ally choose to use the smooth ELU activation over, e.g.,
ReLU because we are modeling a differentiable and smooth
relationship.

Further, we consider dimensionally consistent models,
meaning that we remove the contribution of the specific

FIG. 3. Illustration of the activation functions used to ensure
monotonicity.
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TABLE II. Summary of the eight neural network models, covering monotonic, separable, and both monotonic and separable neural
networks, in both dimensionally consistent and inconsistent versions.

Model Type Separable Monotone Dimensionally consistent Equation

3 ANN No No No κ = f (ε, s, τ )
4 ANN No Yes No κ = f M (ε, s, τ )
5 ANN Yes No No κ = fε (ε) fs(s) fτ (τ )
6 ANN Yes Yes No κ = f M

ε (ε) f M
s (s) f M

τ (τ )
7 ANN No No Yes κ = f (ε, τ )s−2

8 ANN No Yes Yes κ = f M (ε, τ )s−2

9 ANN Yes No Yes κ = fε (ε) fτ (τ )s−2

10 ANN Yes Yes Yes κ = f M
ε (ε) f M

τ (τ )s−2

surface area s from the ANNs and predict log(κs2) by ANNs
that use only ε and τ as inputs. Here, and in the following, log
indicates the natural logarithm. The specific surface area s is
moved back to the right-hand side after training.

We consider monotonic, separable, and both monotonic
and separable neural networks, in both the dimensionally con-
sistent and inconsistent cases, as summarized in Table II.

3. Fitting and training

The data are split into training (70%, 63 000), validation
(15%, 13 500), and test (15%, 13 500) data to include an equal
number of samples from each model. The dataset sizes and the
split are identical to Prifling et al. [32].

All models are optimized with respect to mean squared
error (MSE) loss in logarithmic scale:

MSE = 1

N

N∑
n=1

(log κ̂n − log κn)2, (10)

where κn are the target values and κ̂n are the predicted val-
ues. The rationale for using a logarithmic scale loss in this
manner is that it penalizes prediction errors independent of
scale; specifically, if the prediction error is expressed as a
multiplicative factor, κ̂ = ακ , then

log κ̂ − log κ = log (ακ ) − log κ = log α (11)

which is independent of κ . Hence, the loss function penalizes
relative (multiplicative) errors, which is crucial because the κ

values cover several orders of magnitude. It should be noted
that performing predictions in logarithmic scale and trans-
forming the outputs back to linear scale prevents nonphysical
negative predictions of κ . In the case of the ANNs, the original
functions that are learned can be understood as composite
mappings involving both scale transformations and predic-
tions. In contrast, we use the more intuitive mean absolute
percentage error (MAPE) loss in linear scale,

MAPE=100 × 1

N

N∑
n=1

∣∣∣∣ κ̂n − κn

κn

∣∣∣∣%, (12)

for final assessment of prediction performance.
For the analytical equations, we use standard nonlinear

least squares fitting. For example, to fit model 1, we minimize

N∑
n=1

(log c + cε log εn + cs log sn + cτ log τn − log κn)2, (13)

evaluated over the training set. The fitting is implemented in
MATLAB (Mathworks, MA, US).

In all network architectures (models 3–10), we use four
hidden layers, each with 18 nodes. A hyperparameter search
on the dimensionally inconsistent monotone separated model
led to each of the three subnetworks having four layers, each
with six nodes. Thus, the total number of nodes in each
layer in the total network is 18. To facilitate comparison, the
same number of nodes and layers was chosen for all other
models. Separability and nonseparability thus only influence
the weight sparsity of the network, and not the total number
of nodes.

The input data are normalized to improve training perfor-
mance [50]. Xavier uniform initialization is used to initialize
the weights [51]. The biases are initialized as zero. To train the
model, stochastic gradient descent with momentum was used
[52,53]. The batch size, learning rate scheme, and value of the
momentum were chosen as in Prifling et al. [32], i.e., a batch
size of 128, momentum of 0.9, and a learning rate scheme
with a stepwise increasing and then stepwise decreasing
learning rate.

All ANN models except model 4 and 8 were implemented
in PYTORCH 2.0.1 [54]. Model 4 and 8 were implemented in
TENSORFLOW 2.11 [55] using code from Runje and Shankara-
narayana [43].

4. Prediction results

Prediction results of all models are shown in Table III,
including MSE and MAPE for the training, validation, and test
sets. Note that the usual trend of the test error being larger than
the validation error being larger than training error does not
always hold; for the analytical models, this might be taken as
an indication of underfitting. We use the test data MAPE as the
basis for evaluating performance, which is why these values
are bold in Table III. First, we note the best model is the full
and dimensionally inconsistent ANN and that the analytical
models are, unsurprisingly, outperformed by all ANN models.

In Figs. 4–6 the predicted log κ are plotted against the true
data. It is clear in Fig. 4 that the analytical model fails to
accurately predict κ , indicated by the bent shape of the point
cloud. Further, for all ANN models except model 3, the scatter
plots in Figs. 5 and 6 all have clear structures for low values of
κ . This indicates that all models except model 3, the full ANN,
fail to capture some dependence between the microstructural
descriptors and κ .
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FIG. 4. Prediction of permeability of the analytical models (models 1 and 2) on the test data set.

Regarding interpretability, there are several aspects to con-
sider. First, we note that the dimensionally consistent models
always give larger losses than their dimensionally inconsistent
counterparts. This is not a surprise given that the degrees of
freedom are reduced by dimensionality constraints, making
the ANN less expressive.

Secondly, enforcing monotonicity, but not separability
(e.g., model 4), does not seem to lead to a considerable de-
crease in performance. Using autodifferentiation to compute

TABLE III. Results for all prediction models, including MSE and
MAPE for the training, validation, and test sets. Note that MSE is
evaluated in logarithmic scale and MAPE in linear scale. The bold
values indicate the test data MAPE, which are used as the basis for
evaluating performance.

Model Loss Training Validation Test

1 MSE 0.0635 0.0667 0.0653
MAPE (%) 25.1214 24.1486 20.1083

2 MSE 0.0679 0.0718 0.0702
MAPE (%) 27.3467 26.3429 21.3367

3 MSE 0.0248 0.0322 0.0324
MAPE (%) 10.6111 14.7955 11.3386

4 MSE 0.0327 0.0328 0.0341
MAPE (%) 14.6172 16.8317 13.2692

5 MSE 0.03373 0.03687 0.03512
MAPE (%) 18.7880 18.1096 13.5888

6 MSE 0.0349 0.0379 0.0362
MAPE (%) 18.9864 13.4779 13.8764

7 MSE 0.0310 0.0404 0.0365
MAPE(%) 12.4945 18.3617 13.1494

8 MSE 0.03551 0.0388 0.0371
MAPE (%) 19.0884 18.8436 14.0196

9 MSE 0.0339 0.0372 0.0355
MAPE (%) 19.1678 18.2421 13.6384

10 MSE 0.0361 0.0393 0.0374
MAPE (%) 19.9276 18.8896 14.1969

partial derivatives, we confirm that the monotone networks
indeed are monotone. On the other hand, the nonmonotone
networks are not fully monotone. They learn, however, to
behave essentially as monotone functions, but with small
amplitude oscillations. Therefore, the practical purpose of
introducing monotonicity would be to have monotonicity
guarantees in our setting rather than substantially changing
the behavior.

Finally, in the dimensionally inconsistent case, introducing
sparsity is what causes the most substantial decrease in per-
formance. It is not inconceivable that this is due to the sparse
network not being able to capture complex and higher order
dependencies between the input microstructural descriptors
and the output. The execution time for a single permeability
prediction varies from model to model but is � 1 ms.

5. Comment on generalizability

We emphasize that the three microstructural descriptors
and the single mass transport property studied herein are
only examples of a general principle. Also, even for the
rather low-dimensional problem at hand, we have not cov-
ered every possible partially separable model. Specifically,
comparing the models κ = f (ε, s) f (τ ), κ = f (ε, τ ) f (s), and
κ = f (ε) f (s, τ ) could provide insights into dependencies be-
tween different microstructural descriptors. Of course it would
be possible to consider a larger number of microstructural
descriptors, but doing so would lead to a combinatorial ex-
plosion in the number of models to be considered. Given
that porosity, specific surface area, and (geodesic) tortuosity
are probably the three most common descriptors, we have
explored separability, monotonicity, and dimensional consis-
tency using those.

It is also possible to accommodate other functional forms.
For example, considering Eq. (13) in this work, and Eq. (16) in
Prifling et al. [32], a prediction involving a fourth descriptor β

called constrictivity (a measure of the "tightness" of the pore
space; we refer to Prifling et al. [32] for details) can be done
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FIG. 5. Prediction of permeability of the dimensionally inconsistent models (models 3 to 6) on the test data set.

in more than one way, either including β as a separate factor
or as an exponent for ε, i.e.,

κ = fε(ε) fβ (β ) fτ (τ ) fs(s) (14)

or

κ = fε(ε) fβ (β ) fτ (τ ) fs(s). (15)

Finally, relationships for predicting other properties (mass
transport and others), such as effective diffusivity covered
in Prifling et al. [32], can be studied using the same
methodologies.

III. CONCLUSION

In this paper, we investigate a range of analytical and
neural-network-based models for predicting permeability in
porous materials using the microstructural descriptors poros-
ity, specific surface area, and geodesic tortuosity. These mod-
els cover a spectrum in terms of the tradeoff between, on the

one hand, performance and, on the other hand, interpretability
and physical plausibility. This tradeoff is explored along three
"axes" by constraining the models in different ways by impos-
ing monotonicity, separability, and dimensional consistency.
Compared to simulating permeability using the lattice Boltz-
mann method, the entire workflow of computing descriptors
and predicting permeability using analytical or neural network
models provides a speedup in the order of a factor of 50.
Whether this is a meaningful improvement depends on the
purpose. It is worth pointing out that the primary goal of
this paper is not to improve prediction speed but rather to
investigate prediction performance for different models.

Not surprisingly, all neural networks perform better than
the analytical models. Furthermore, the fully connected and
unconstrained neural network gives the highest predictive per-
formance.

Imposing separability is performed by representing the
output as the product of fully connected subnetworks, and
this has a major impact on performance. This suggests that
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FIG. 6. Prediction of permeability of the dimensionally consistent models (models 7 to 10) on the test data set.

separability imposes a strong prior on the structure of the
neural network. This can be understood as forcing numerous
weights of the corresponding fully connected network to be
zero, reducing the number of degrees of freedom. Further,
that separability has a major impact on predictive perfor-
mance indicates that "classical" analytical structure-property
relationships are too simplified; indeed, the "real" relationship
is likely nonseparable, with a complex dependence structure
between the microstructural descriptors.

Imposing dimensional consistency in this case is the same
as imposing a partial separability with respect to one of the
descriptors (specific surface area). The notable impact of im-
posing separability hence explains the impact of imposing
dimensional consistency as well. Indeed, the relative change
in performance of imposing dimensional consistency is largest
for the fully connected monotonic and nonmonotonic neural
networks, which to begin with are the most flexible and ex-
pressive models with no separability constraints.

Imposing monotonicity has, by comparison, a minor im-
pact on performance. This does not suggest that monotonicity
is irrelevant. In contrast, it does generally impose a strong
prior on a neural network. Further, if the model is used as a
surrogate model in combination with gradient-based methods
to solve inverse microstructure design problems, violations of
monotonocity may become problematic. In this case, how-
ever, the data strongly support monotonicity anyway, so the
impact becomes smaller. Most likely, monotonicity would
have a larger impact on performance for a much smaller
dataset, but would on the other hand also reduce the need
for data.

In conclusion, the results provide insight into some
possible tradeoffs in terms of prediction performance ver-
sus interpretability, and the intended use of the model
(i.e., straightforward prediction model, differentiable sur-
rogate model, or study of the information content of the
descriptors and the ability of the prediction model to store that
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information) ultimately has to determine the suitable choice of
tradeoff.

Interesting future work would include investigating all
cases of partial separability, i.e., all combinations of separable
and nonseparable parts of the neural networks, and investigat-
ing robustness, generalization performance, and dataset size
requirements for the different models by training on much
smaller datasets. Because of the increased variability for much
smaller datasets, however, that study would likely have to
be quite extensive and performed for numerous random sub-
sets of the data and for different random seeds of the neural
networks.
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