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1. Introduction

Wehrl-type inequalities are of fundamental interest in Mathematical Physics [26]. 
First Lieb proved a Wehrl-type Lp-inequality for the Heisenberg group in 1978 [16], and 
many years later in 2014 Lieb and Solovej proved a Werhl-type inequality for the group 
SU(2) [17]. Afterwards, they formulated and proved Wehrl-type inequalities for some 
representations of the group SU(n) [19] and Kulikov proved a Wehrl-type inequality 
for the discrete series representations of SU(1, 1) [15] (see also Frank’s paper [8] for a 
unified approach). The Lp-inequalities were later generalized by Zhang for even integers 
p of the holomorphic discrete series of Hermitian Lie groups [29]. See also [8,24]. In 
order to prove the Wehrl inequality for SU(2), Lieb and Solovej studied the trace of the 
functional calculus of certain quantum channels and proved it converges to an integral of 
matrix coefficients. Later, they showed a similar limit holds for certain quantum channels 
of SU(1, 1) [18]. This was generalized by Zhang [29] for the scalar holomorphic discrete 
series for Hermitian Lie groups.

The quantum channels studied by Lieb and Solovej are defined using the leading com-
ponent in the tensor product representations in SU(2) [17]. In my previous paper [10] 
I studied a new family of quantum channels by considering all the irreducible compo-
nents of the tensor product decomposition and I calculated the limit of the trace of the 
functional calculus of these SU(2)-equivariant quantum channels. Similar results were 
proven independently in [3] where, among other things, this limit was obtained in terms 
of generalized Husimi functions. In those papers SU(2)-equivariant quantum channels 
were considered for operators on finite-dimensional spaces. In the current paper, we will 
consider SU(1, 1)-equivariant channels. A natural candidate to define these channels on 
is the holomorphic discrete series, as they have L2-matrix coefficients. We briefly explain 
our construction below.

Let Hμ be the holomorphic discrete series representations with lowest weight μ and 
consider the tensor product decomposition of two irreducible representations of SU(1, 1)
[23]

Hμ ⊗Hν
∼ = 

∞ ⊕
k=0 

Hμ+ν+2k. (1)

Earlier [18,29] the quantum channel

T ν
μ : B(Hμ) → B(Hμ+ν)

defined by considering the leading component

T ν
μ (A) = P (A⊗ Iν)P ∗ ∈ B(Hμ+ν),

was already considered. Here Iν is the identity operator on Hν and
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P : Hμ ⊗Hν → Hμ+ν

is an intertwining partial isometry. It was proved that for any integer n

lim 
ν→∞

1 
ν

Tr(T ν
μ (u⊗ u∗)n) =

∫
SU(1,1)

|〈g · u, u0〉|2ndg.

Here u0 ∈ Hμ is the function constantly equal to one. In this paper we introduce gen-
eral quantum channels, defined by projecting onto the irreducible k component of our 
decomposition (1). We define

T ν
μ,k(A) = Pk(A⊗ Iν)P ∗

k .

We prove this map is trace-preserving up to a constant and completely positive and 
study the limit formula of the trace of the functional calculus. It will turn out that the 
Berezin transform and the Toeplitz operators will be useful to study the limit. Then we 
introduce generalized Husimi functions Hk

μ and the operator Eμ,k, and we obtain the 
following Theorem.

Theorem 1.1. Let ψ ∈ C1([0, 1]), ψ(0) = 0 and A ∈ B(Hμ) positive and of trace one. 
Then

lim 
ν→∞

1 
ν

Tr(ψ(T ν
μ,k(A))) =

∫
D

ψ(Hk
μ(A)(z))dι(z).

Furthermore, let f ∈ L1(D) such that R∗
μ(f) is positive and of trace one. Then

lim 
ν→∞

1 
ν

Tr(ψ(T ν
μ,k(R∗

μ(f)))) =
∫
D

ψ(Eμ,k(f)(z))dι(z).

Here (μ + 1)R∗
μ(f) is the Toeplitz operator of f on Hμ. Note that the condition that 

ψ ∈ C1([0, 1]) and ψ(0) = 0 ensures our operator is trace-class. Here we use the notation

Eμ,k(f) := (μ)k
k! 

k∑
j=0 

(−1)j
(
k

j

)
Bμ+j(f),

where Bμ+j is the Berezin transform from Definition 3.5 and the generalized Husimi 
function Hk

μ is from Definition 4.10.
We use the following strategy. First we calculate

Rν+μ−2kT ν
μ,k(R∗

μ(f)),

where Rν is from Definition 3.1. We then notice that
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T ν
μ,kR

∗
μ = R∗

μ+ν−2kB
−1
μ+ν−2kRμ+ν−2kT ν

μ,kR
∗
μ,

and that we can calculate

lim 
ν→∞

1 
ν

Tr(((ν − 1)R∗
ν(f))2n) =

∫
D

f(z)2ndι(z),

for any integer n using the spectral theory of the Berezin transform Bν. Then we prove

lim 
ν→∞

||(νBν)−1Bν0(f) −Bν0(f)||2 = 0

and obtain Theorem 1.1 for ψ(x) = x2n for any n. We extend our result to odd integers 
n by writing ψ(x) = xn as a converging sum of polynomials of even integers. Finally we 
use denseness of polynomials in C([0, 1]) to prove Theorem 1.1 in full generality.

We note that the Berezin transform has been studied extensively as it is closely related 
to quantization on Kähler manifolds in Geometry and Mathematical Physics [1,5,25]. 
Some of our results about Berezin transforms might be obtained from these results, but 
we prove more precise results using representations of SU(1, 1).

The paper is organized as follows. In Section 2 we introduce the discrete series rep-
resentations of SU(1, 1) as reproducing kernel Hilbert spaces and recall some relevant 
known results. In Section 3 we define and analyze the Toeplitz calculus, the covariant 
symbol and the Berezin transform, all of which are SU(1, 1)-invariant. We also go through 
the Plancherel theory for the symmetric space D = SU(1, 1)/U(1) and analyze our op-
erators in that context. In Section 4 we define our quantum channels and prove some of 
their basic properties. In Section 5 we study trace formulas for the functional calculus. 
In Section 6 we analyze the inverse of the Berezin transform. Finally, in Section 7 we 
prove Theorem 1.1, the main theorem.

Acknowledgments

I want to thank Genkai Zhang for inspiring discussions and useful suggestions for 
handling the Berezin transform. I also want to thank the anonymous referee for carefully 
reading the manuscript and for some expert suggestions.

2. Definitions and preliminaries

Let SU(1, 1) = {
(
a b
b a

)
| a, b ∈ C and |a|2 − |b|2 = 1} and D = {z ∈ C | |z| < 1}

the open unit disk.

Definition 2.1. For ν > 1 we let

Hν := {f : D → C analytic |
∫
D

|f(z)|2(1 − |z|2)ν dz 
π(1 − |z|2)2 < ∞}.
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This is a Hilbert space with norm

||f ||2ν := (ν − 1)
∫
D

|f(z)|2(1 − |z|2)ν dz 
π(1 − |z|2)2 .

Note that the norm is normalized such that ||1||ν = 1. For convenience we write

dιν(z) := (1 − |z|2)ν (ν − 1)dz 
π(1 − |z|2)2 ,

and

dι(z) := dz 
π(1 − |z|2)2 .

This space will give rise to a representation of SU(1, 1) when ν is an integer and a 
projective representation otherwise (as in the complex case we have to make a choice of 
root when ν is not an integer). For an integer ν > 1 this will be the discrete series of 

SU(1, 1), as described in [14, chapter 2]. If g =
(
a b
b a

)
, the action is

(g · f)(z) = (−bz + a)−νf( az − b

−bz + a
)

and gives a unitary representation of SU(1, 1). In what follows we let ν > 1 be an integer. 
We now make a remark on the space D.

Remark 2.2. Note that SU(1, 1) acts on the symmetric space SU(1, 1)/U(1) by left 
multiplication. This space is isomorphic to D when the action on D is given by g · z =
az−b
−bz+a for g−1 =

(
a b
b a

)
. Then we see that U(1) is exactly the subgroup fixing 0, and 

SU(1, 1) is transitive as it is transitive on the unit ball. Thus D ∼ = SU(1, 1)/U(1). We 
note that there is a SU(1, 1)-invariant metric on D making it a Riemannian symmetric 
space, see [12, chapter VI, Theorem 1.1].

We calculate the norm of the monomials in our space.

Lemma 2.3. In the space Hν

||zj ||2ν = j! 
(ν)j

.

Furthermore, the functions zj and zk are orthogonal when j 	= k.

Proof. Direct computation. �
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Note that Hν is a space of holomorphic functions, so the span of {
√

(ν)i
i! z

i}∞i=0 is dense 
and we conclude that it is an orthonormal basis for the Hilbert space Hν . Writing

(1 − xy)−ν =
∞ ∑
i=0 

(ν)i
i! (xy)i,

it directly follows that Hν is a reproducing kernel space with kernel Kν(x, y) = (1 −
xy)−ν .

We now study the tensor product of the representations. If we see the tensor product 
as holomorphic functions on the product of two disks, which are integrable, then we have 
the decomposition [23]

Hμ ⊗Hν =
∞ ⊕
k=0 

Hμ+ν+2k. (2)

Thus there exists a projection

Pk : Hμ ⊗Hν → Hμ+ν+2k.

These projections have been studied previously and it was found that they have the 
following form [20,21,27].

Proposition 2.4. The map Pk : Hμ ⊗Hν → Hμ+ν+2k is given by

Pk(F )(ζ) = Cμ,ν,k

k∑
j=0 

(−1)j
(
k

j

)
1 

(μ)j(ν)k−j
∂j
z∂

k−j
w F |z=w=ζ

= Cμ,ν,k

∫
D2

F (z, w)( z

1 − ζz
− w

1 − ζw
)k(1 − ζz)−μ(1 − ζw)−ν ·

dιμ(z)dιν(w).

Furthermore, the injective isometry P ∗
k is given by

P ∗
k (f)(z, w)

= Cμ,ν,k

∫
D

(1 − zζ)−μ−k(1 − wζ)−ν−kf(ζ)(z − w)kdιμ+ν+2k(ζ)

= Cμ,ν,k

∫
D

(1 − zζ)−μ(1 − wζ)−νf(ζ)( z

1 − zζ
− w

1 − wζ
)kdιμ+ν+2k(ζ).

Proof. Follows from [20,21] and calculations like in [10]. �
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We want to deduce the value of the constant Cμ,ν,k. First we recall the following 
summation formula [4, Corollary 2.2.3].

Lemma 2.5. For n a non-negative integer and b, c integers such that |c| ≥ n we have that

2F1(−n, b, c, 1) = (c− b)n
(c)n

Now we deduce the value of the constant Cμ,ν,k.

Proposition 2.6. We have

C−2
μ,ν,k = k!(μ + ν + k − 1)k

(μ)k(ν)k
.

Proof. We know that

PkP
∗
k : Hμ+ν+2k → Hμ+ν+2k

is the identity. We now note that

P ∗
k (1)(z, w) = Cμ,ν,k

∫
D

(1 − zζ)−μ−k(1 − wζ)−ν−k(z − w)kdιμ+ν+2k(ζ)

= Cμ,ν,k(z − w)k.

Thus we see

1 = 〈1, 1〉μ+ν+2k = 〈PkP
∗
k (1), 1〉μ+ν+2k = 〈P ∗

k (1), P ∗
k (1)〉Hμ⊗Hν

= C2
μ,ν,k||(z − w)k||2Hμ⊗Hν

.

We calculate

C−2
μ,ν,k = ||(z − w)k||2Hμ⊗Hν

=
k∑

j=0 

(
k

j

)2

||zjwk−j ||2Hμ⊗Hν

=
k∑

j=0 

(
k

j

)2
j!(k − j)! 
(μ)j(ν)k−j

= k!
k∑

j=0 

(
k

j

)
1 

(μ)j(ν)k−j

= k! 
(ν)k

k∑
j=0 

(−1)j (−k)j
j! 

(−1)j(−ν − k + 1)j
(μ)j

= k! 
(ν)k 2F1(−k,−ν − k + 1, μ; 1)

= k!(μ + ν + k − 1)k
(μ)k(ν)k

. �
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3. The Toeplitz operator, covariant symbol and Berezin transform

We define some other SU(1, 1)-invariant operators on the representation spaces. We 
first observe that to each operator B(Hν) we can associate a kernel A(x, y) such that 
(x �→ A(x, y)) ∈ Hν , (y �→ A(x, y)) ∈ Hν and

A(f)(x) =
∫
D

A(x, y)f(y)dιν(z).

Explicitly

A(x, y) = A∗(Kν
x)(y) = A(Kν

y )(x).

The operator uniquely defines the kernel, so we can identify the operator with its kernel. 
Now we define Rν , commonly called the covariant symbol [1,6,28].

Definition 3.1. The covariant symbol map Rν ,

Rν : B(Hν) → C∞(D)

is given by Rν(A)(z) = A(z, z)(1 − |z|2)ν .

We prove some facts for this map.

Proposition 3.2. The maps

Rν : Sp(Hν) → Lp(D, dι)

for 1 ≤ p < ∞ and the map

Rν : B(Hν) → L∞(D, dι)

are well-defined, continuous with respect to the natural norm, and injective.

Proof. Let A ∈ B(Hν) with kernel A(x, y). We note that the function (x, y) �→ A(x, y) is 
holomorphic in the first coordinate and antiholomorphic in the second. Hence we recover 
A(x, y) by deriving Rν(A)(z) = A(z, z)(1− |z|2)ν w.r.t. ∂

∂z and ∂
∂z . Now let A ∈ S1(Hν)

and A ≥ 0. Then for any z ∈ D

A(z, z) = A(Kν
z )(z) = 〈A(Kν

z ),Kν
z 〉 ≥ 0,

and thus we get
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∫
D

|Rν(A)(z)|dι(z) =
∫
D

|A(z, z)(1 − |z|2)ν |dι(z)

= 1 
ν − 1

∫
D

A(z, z)dιν(z) = 1 
ν − 1Tr(A),

so Rν(A) ∈ L1(D). Now if A ∈ S1(Hν) then A = A1 + iA2 with A1 and A2 self-adjoint, 
and writing each self-adjoint operator as Aj = A+

j − A−
j , where A±

j are positive, we 
obtain ∫

D

|Rν(A)(z)|dι(z) ≤ 2 
ν − 1 ||A||1.

This proves the fact for S1(Hν).
Now let A ∈ B(Hν). First we note that for any z ∈ D

|A(z, z)| = |〈A(Kν
z ),Kν

z 〉ν | ≤ ||A(Kν
z )||ν ||Kν

z ||ν ≤ ||A|| · ||Kν
z ||2ν ,

implying

|A(z, z)(1 − |z|2)ν | ≤ ||A||.

This proves the claim for B(Hν).
The claim for general Sp(Hν) follows by interpolation, using Theorem 2.2.4, Theorem 

2.2.6 and Theorem 2.2.7 in [30]. �
In particular

Rν : S2(Hν) → L2(D, dι)

is continuous. Note that S2(Hν) = Hν ⊗Hν by considering the kernels of the operators, 
and it is a Hilbert space. We prove a lemma.

Lemma 3.3. We have

R∗
ν(f) = 1 

ν − 1Tf ,

where Tf is the Toeplitz operator on Hν, and R∗
ν has kernel

R∗
ν(f)(x, y) =

∫
D

Kν(x, z)f(z)Kν(z, y)
Kν(z, z) dι(z).

Proof. The Toeplitz operator is defined by Tf = PHν
MfPHν

, where Mf is multiplication 
by f in L2(D, dι) and PHν

is projection onto the space Hν . We note that the map
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f �→ (x �→
∫
D

(ν + 1)K
ν(x, z)f(z)
Kν(z, z) dι(z))

is the projection onto Hν , so the Toeplitz operator Tf has kernel

Tf (x, y) =
∫
D

Kν(x, z)f(z)Kν(z, y)dιν(z).

Now for A ∈ S2(Hν) and f ∈ L2(D, dι)

∫
D2

A(y, x)R∗
ν(f)(y, x)dιν(x)dιν(y) = 〈A,R∗

ν(f)〉2 = 〈Rν(A), f〉L2(D,dι)

=
∫
D

A(z, z)(1 − |z|2)νf(z)dι(z) = 1 
ν − 1

∫
D

A(z, z)f(z)dιν(z)

= 1 
ν − 1

∫
D3

A(y, x)Kν(x, z)f(z)Kν(z, y)dιν(z)dιν(x)dιν(y)

=
∫
D3

A(y, x)K
ν(x, z)f(z)Kν(z, y)

Kν(z, z) dιν(y)dιν(x)dι(z),

implying that indeed

R∗
ν(f)(x, y) =

∫
D

Kν(x, z)f(z)Kν(z, y)
Kν(z, z) dι(z). �

Remark 3.4. We remark that R∗
ν : Lp(D, dι) → Sp(Hν) can be defined by the same 

formula for p > 1 by using the adjoint of Rν in the sense of Banach spaces. The proof is 
the same.

Now we define the Berezin transform.

Definition 3.5. The Berezin transform is defined as

Bν = RνR
∗
ν : L2(D, dι) → L2(D, dι).

We calculate this more explicitly. We see that

Bν(f)(z) = RνR
∗
ν(f)(z) = (1 − |z|2)νR∗

ν(f)(z, z)

= (1 − |z|2)ν
ν − 1 

∫
D

Kν(z, x)f(x)Kν(x, z)dιν(x)
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=
∫
D

(1 − |z|2)ν(1 − |x|2)ν
(1 − zx)ν(1 − xz)ν f(x)dι(x).

Note that

Bν(f)(0) =
∫
D

(1 − |x|2)νf(x)dι(x).

The open disk D is a homogeneous space for SU(1, 1), so SU(1, 1) acts transitively, as in 
Remark 2.2, and the maps Rν , R∗

ν and thus also Bν are SU(1, 1)-invariant, which means 
that Bν(f)(g · 0) = Bν(g−1f)(0). Thus it is usually enough to prove a statement in the 
point 0.

It follows immediately that Bν(f) is continuous for f ∈ Cc(D). We also note that we 
can define Bν : L1(D, dι) → L1(D, dι), by evaluating

∫
D

|Bν(f)(z)|dι(z) ≤
∫
D

∫
D

|K
ν(z, x)Kν(x, z)

Kν(z, z)Kν(x, x)f(x)|dι(z)dι(x)

= (ν − 1)−1
∫
D

〈Kx,Kx〉|f(x)| dι(x) 
Kν(x, x) = (ν − 1)−1||f ||1.

We can also define Bν : L∞(D, dι) → L∞(D, dι), as

|Bν(f)(z)| = |
∫
D

Kν(z, x)Kν(x, z)
Kν(z, z)Kν(x, x)f(x)dι(x)|

≤ ||f ||∞
∫
D

Kν(z, x)Kν(x, z)
Kν(z, z)Kν(x, x)dι(x) = (ν − 1)−1||f ||∞

This means that in fact, Bν : Lp(D, dι) → Lp(D, dι) is defined and continuous for any 
1 ≤ p ≤ ∞ by interpolation using Theorem 2.2.4, Theorem 2.2.6 and Remark 2.2.5 in 
[30]. We gather some more facts about the Berezin transform.

Lemma 3.6. For f ∈ C(D)∩L1(D, dι) the function (ν−1)Bν(f) converges to f pointwise, 
and if f ∈ L1(D, dι) then for any ν ≥ 2

∫
D

(ν − 1)Bν(f)(z)dι(z) =
∫
D

f(z)dι(z),

and

Tr(R∗
ν(f)) =

∫
D

f(z)dι(z).
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Proof. If f ∈ C(D) ∩ L1(D, dι) and x ∈ D such that x = g · 0 for g ∈ SU(1, 1), then

RνR
∗
ν(f)(x) = RνR

∗
ν(f)(g · 0) = RνR

∗
ν(g−1f)(0),

so it suffices to prove (ν − 1)Bν(f)(0) converges to f(0). If we choose δ > 0 such that 
|f(z) − f(0)| < ε for |z| < δ we get

|(ν − 1)Bν(f)(0) − f(0)|

= (ν − 1)|
∫
D

Kν(0, z)f(z)Kν(z, 0)(1 − |z|2)νdι(z) − f(0)|

≤ (ν − 1)
∫
Bδ

|f(z) − f(0)|(1 − |z|2)νdι(z)

+ (ν − 1)
∫

D\Bδ

|f(z) − f(0)|(1 − |z|2)νdι(z)

≤ ε +
∫

D\Bδ

(ν − 1)|f(z) − f(0)|(1 − |z|2)νdι(z).

For z ∈ D\Bδ we see

lim 
ν→∞

(ν − 1)|f(z) − f(0)|(1 − |z|2)ν = 0.

We see for z ∈ D\Bδ that (ν − 1)(1 − |z|2)ν ≤ (ν − 1)(1 − δ2)ν , which is bounded by 
some C > 0 independent of ν. Also, we notice that there is some ν0 such that for ν ≥ ν0

1 − |z|2 ≤ 1 − δ2 ≤ ν − 1
ν

.

It follows that for any ν ≥ ν0 and z ∈ D\Bδ

(ν − 1)(1 − |z|2)ν ≤ (ν0 − 1)(1 − |z|2)ν0 .

Hence for z ∈ D\Bδ and ν ≥ ν0

(ν − 1)|f(z) − f(0)|(1 − |z|2)ν ≤ C|f(z)| + |f(0)|(ν0 − 1)(1 − |z|2)ν0 ,

and so by Lebesgue’s dominated convergence theorem

lim 
ν→∞

∫
D\Bδ

(ν − 1)|f(z) − f(0)|(1 − |z|2)νdι(z) = 0.

It follows that
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lim 
ν→∞

Bν(f)(0) = f(0).

Now we prove the second part. We calculate

Tr(R∗
ν(f)) =

∫
D

(ν − 1)Bν(f)(z)dι(z)

=
∫
D2

Kν(z, x)Kν(x, z)
Kν(x, x) f(x)dιν(z)dι(x) =

∫
D

f(x)dι(x). �

We also need some theory on L2(D, dι). Most of the following has been taken from 
the introductory chapter of [13].

Definition 3.7. For b ∈ S1 = ∂D, λ ∈ C and z ∈ D let

eλ,b(z) =
(

1 − |z|2
|z − b|2

)−iλ+1
2 

.

Using this we define the following, which is some kind of Fourier transform. For 
functions f on the open disk D, λ ∈ C and b ∈ D we let

f̃(λ, b) =
∫
D

f(z)eλ,b(z)dz

whenever this is well-defined. Note that it is always well-defined when f ∈ Cc(D). We 
also recall that a holomorphic function ψ is of uniform exponential type R if for each 
N ∈ Z+

sup 
λ∈C

e−R|Im(λ)|(1 + |λ|2)N |ψ(λ)| < ∞.

We now have the following Plancherel theorem and inversion theorem [13, Introduc-
tion, Theorem 4.2]).

Proposition 3.8. For functions f ∈ C∞
c (D) we have

f(z) = 1 
2π2

∫
R 

∫
S1

f̃(−λ, b)eλ,b(z)|c(λ)|−2dbdλ.

Furthermore, the map f �→ f̃ is a bijection of C∞
c (D) onto the space of holomorphic 

functions ψ(λ, b) of uniform exponential type satisfying
∫
S1

e−λ,b(z)ψ(λ, b)db =
∫
S1

eλ,b(z)ψ(−λ, b)db.
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This map extends to an isometry of L2(D, dι) onto L2(R+×S1, |c(λ)|−2dbdλ), i.e. we 
have

∫
D

|f(z)|2dι(z) = 1 
2π2

∫
R 

∫
S1

|f̃(λ, b)|2|c(λ)|−2dbdλ.

Here c is the Harish-Chandra c-function, given by

c(λ) = π− 1
2

Γ(1
2 iλ) 

Γ(1
2 (iλ + 1))

.

Furthermore for λ ∈ R,

|c(λ)|−2 = πλ

2 
tanh(πλ2 

).

From now on we will assume λ ∈ R, as this is what we need for Proposition 3.8. Now 
we study the Bν . From [25, Lemma 3.37] we get the following.

Proposition 3.9. We have

(ν − 1)Bν(eλ,b) = bν(λ)eλ,b,

where

bν(λ) =
Γ(iλ + ν − 1

2 )Γ(−iλ + ν − 1
2 )

Γ(ν)Γ(ν − 1) =
|Γ(iλ + ν − 1

2)|2
Γ(ν)Γ(ν − 1) .

We want to study bν(λ) further. We note that

|Γ(iλ + ν − 1
2)|2 = π

cosh(πλ)

ν−1∏
k=1 

((k − 1
2)2 + λ2).

We prove a lemma.

Lemma 3.10. For any λ ∈ R

lim 
ν→∞

bν(λ) = 1.

Furthermore, |λ1| ≤ |λ2| implies

bν(λ2) ≤ bν(λ1),

and thus bν(λ) is uniformly bounded in ν and λ.
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Proof. We use Γ(x+α) ∼ Γ(z)xα as x is going to infinity and find from Proposition 3.9
that

lim 
ν→∞

bν(λ) = lim 
ν→∞

|Γ(iλ + ν − 1
2 )|2

Γ(ν)Γ(ν − 1) = lim 
ν→∞

|Γ(ν)νiλ− 1
2 Γ(ν)νiλ− 1

2 |
Γ(ν)Γ(ν)ν−1 = 1.

Then we see that

bν(λ) =
Γ(iλ + ν − 1

2 )Γ(−iλ + ν − 1
2 )

Γ(ν)Γ(ν − 1) =
π

cosh(πλ)
∏ν−1

k=1((k − 1
2 )2 + λ2)

Γ(ν)Γ(ν − 1) 

=
π

cosh(πλ)
∏ν−1

k=1((k − 1
2)2 + λ2)∏ν−1

k=1(k − 1
2)2

∏ν−1
k=1(k − 1

2)2

Γ(ν)Γ(ν − 1) 

= π

cosh(πλ)

ν−1∏
k=1 

(1 + (πλ)2

(k − 1
2 )2π2 )

∏ν−1
k=1(k − 1

2 )2

Γ(ν)Γ(ν − 1) .

Now we note

cosh(x) =
∞ ∏
k=1

(1 + x2

(k − 1
2 )2π2 ).

This immediately implies that |λ1| ≤ |λ2| gives bν(λ2) ≤ bν(λ1). �
We see that for any λ ∈ R

bν(λ) ≤ bν(0) =
Γ(ν − 1

2 )2

Γ(ν)Γ(ν − 1) ≤ 1,

where the last inequality is by the log-convexity of the Gamma function. Thus also the 
norm of (ν − 1)Bν is bounded by 1. We make this a corollary; a similar result with this 
constant was obtained in [29, Proposition 3.1].

Corollary 3.11. The map

Bν : L2(D, dι) → L2(D, dι)

has the property ||Bν || ≤ bν(0)2 = ( Γ(ν− 1
2 )2

Γ(ν)Γ(ν−1))
2 ≤ 1.

Proof. First we remark that for any f ∈ L2(D)

˜︂Bν(f)(λ, b) = bν(λ)f̃(λ, b).

Applying the Plancherel theorem, Proposition 3.8, we get
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||Bν(f)||2 = 1 
2π2

∫
R 

∫
S1

|bν(λ)f̃(λ, b)|2|c(λ)|−2dbdλ

≤ bν(0)2 1 
2π2

∫
R 

∫
S1

|f̃(λ, b)|2|c(λ)|−2dbdλ = bν(0)2||f ||2. �

We prove a bound for (ν − 1)Rν .

Proposition 3.12. For any ν > 1 we have

1 
ν − 1 ||(ν − 1)R∗

ν(f)||22 ≤ ||f ||22.

Proof. We see that

1 
ν − 1 ||(ν − 1)R∗

ν(f)||22 = 〈(ν − 1)R∗
ν(f), R∗

ν(f)〉2

= 〈(ν − 1)Bν−1(f), f〉 ≤ ||f ||22.

This gives the result. �
4. Quantum channels

In this section we define the quantum channels we will study. Usually quantum chan-
nels are defined for finite-dimensional spaces [22], and are then defined to be completely 
positive trace-preserving maps (CPTP). In the infinite-dimensional case, less has been 
done. In [9] channels are defined as completely positive unital weak-∗ continuous maps 
between C∗-algebras. The maps T ν

μ,k we define in Definition 4.1 are clearly unital, and 
we prove they are completely positive and trace-preserving up to a constant in Proposi-
tion 4.4, like the channels in [10]. We prove they are weak-∗ continuous in Proposition 4.5. 
In fact, for a compact group equivariant quantum channels on irreducible representations 
which are trace-preserving have to be unital up to a constant, and vice versa. Hence we 
call the T ν

μ,k quantum channels.

Definition 4.1. Associated to the Decomposition (2) we define

T ν
μ,k : B(Hμ) → B(Hμ+ν+2k)

by T ν
μ,k(A) = Pk(A⊗ Iν)P ∗

k . Here Iν is the identity operator on Hν .

We claim this map sends trace-class operators to trace-class operators and is trace-
preserving up to a constant. We first need some theory, and normalize the Haar measure 
on SU(1, 1) such that
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∫
SU(1,1)

f(g)dg =
∫
D

ḟ(z)dι(z),

where we remember that D = SU(1, 1)/U(1) and define ḟ(z) = ḟ(gU(1)) =∫
U(1) f(gk)dk. Here dk is normalized. Now we need the following version of Schur’s 

lemma. It is true for general discrete series representations [11] and our result could be 
obtained by general theory, but for completeness we give an elementary proof using our 
normalization of the Haar measure.

Proposition 4.2. The representations Hν have square integrable matrix coefficients and 
for v1, v2, w1, w2 ∈ Hν

∫
SU(1,1)

〈g · v1, w1〉ν〈g · v2, w2〉νdg = 1 
ν − 1 〈v1, v2〉ν〈w1, w2〉ν .

Proof. By [14, Proposition 9.6] there is some constant C such that
∫

SU(1,1)

〈g · v1, w1〉ν〈g · v2, w2〉νdg = C〈v1, v2〉ν〈w1, w2〉ν .

We calculate C by evaluating at v1 = v2 = w1 = w2 = 1. We see that g · 1(z) =

(−bz + a)−ν for g =
(
a b
b a

)
. Hence

〈g · 1, 1〉ν =
∫
D

(−bz + a)−νdιν(z) = a−ν〈K b
a
, 1〉ν = a−ν ,

and ∫
SU(1,1)

〈g · 1, 1〉ν〈g · 1, 1〉νdg =
∫

SU(1,1)

|a|−2νdg.

This is right-invariant under K = U(1) = {
(
eiθ 0
0 e−iθ

)
| θ ∈ R}, and we get an integral 

over D ∼ = SU(1, 1)/U(1). Here g is identified with

z := g · 0 = − b

a
∈ D,

and |z|2 = |b|2
|a|2 = |a|2−1

|a|2 , implying that |a|2 = 1 
1−|z|2 . Hence

C =
∫

SU(1,1)

|a|−2νdg =
∫
D

(1 − |z|2)νdι(z) = 1 
ν − 1 . �
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We want to say something about the trace of T ν
μ,k(A). First we need a lemma, restating 

Schur’s lemma for L2-matrix coefficients and trace-class operators.

Lemma 4.3. A positive operator A ∈ B(Hν) is trace-class if and only if the integral ∫
SU(1,1)〈gAg−1v, v〉νdg < ∞ for all v ∈ Hν . In that case

∫
SU(1,1)

gAg−1dg = Tr(A)
ν − 1 

Iν .

Proof. First we prove the left to right implication. We assume A = x⊗ x∗, then we see 
that the integral 

∫
SU(1,1) gAg−1dg converges and

∫
SU(1,1)

〈gAg−1v, w〉νdg =
∫

SU(1,1)

〈g · x,w〉ν〈g · x, v〉νdg

= 1 
ν − 1 ||x||

2
ν〈w, v〉ν ,

implying that
∫

SU(1,1)

gAg−1dg = 〈x, x〉ν
ν − 1 

Iν = Tr(A)
ν − 1 

Iν .

This gives 
∫
SU(1,1)〈gAg−1v, v〉νdg = Tr(A)

ν−1 〈v, v〉ν < ∞. The case for A a positive trace-
class operator follows by the spectral decomposition.

Now assume A is positive but not trace-class. Let {ei}∞i=1 be an orthonormal basis for 
Hν and

An =
n ∑

i=1 
〈Aei, ei〉νei ⊗ e∗i .

Then we see that A ≥ An and thus also gAg−1 ≥ gAng
−1 for all g ∈ SU(1, 1). Note that 

An is trace-class. Then
∫

SU(1,1)

〈gAg−1v, v〉νdg ≥
∫

SU(1,1)

〈gAng
−1v, v〉νdg

= Tr(An)
ν − 1 

〈v, v〉ν = 〈v, v〉 
ν − 1

n ∑
i=1 

〈Aei, ei〉ν ,

so the integral 
∫
SU(1,1)〈gAg−1v, v〉νdg diverges. We have proven our statement. �

We prove that T ν
μ,k is trace preserving up to a constant.
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Proposition 4.4. The map T ν
μ,k is completely positive and A ∈ S1(Hμ) implies T ν

μ,k(A) ∈
S1(Hμ+ν+2k). In that case

Tr(T ν
μ,k(A)) = μ + ν + 2k − 1

μ− 1 
Tr(A).

Proof. It is obvious that the map T ν
μ,k is completely positive, as it is the composition of 

the ∗-homomorphism A �→ A⊗ I and A �→ PkAP ∗
k . Now let A ∈ S1(Hμ) be a trace-class 

operator. Assume A is positive, then so is T ν
μ,k(A). By Lemma 4.3 we see that

∫
SU(1,1)

gAg−1dg = Tr(A)
μ− 1 

Iμ.

Thus
∫

SU(1,1)

gT ν
μ,k(A)g−1dg =

∫
SU(1,1)

gPk(A⊗ Iν)P ∗
k g

−1dg

= Pk

∫
SU(1,1)

g(A⊗ Iν)g−1dgP ∗
k = Tr(A)

μ− 1 
Iμ+ν+2k.

We can now deduce by Lemma 4.3 that T ν
μ,k(A) is trace-class, and that its trace must 

be

Tr(T ν
μ,k(A)) = μ + ν + 2k − 1

μ− 1 
Tr(A).

For general A, we write A as a linear combination of positive operators, which will again 
be trace-class, and use linearity of T ν

μ,k and the trace. �
We prove some more properties of this operator.

Proposition 4.5. The map T ν
μ,k is unital, weak-∗ continuous, and it sends compact oper-

ators to compact operators. As an operator

T ν
μ,k : B(Hμ) → B(Hμ+ν+2k),

we have ||T ν
μ,k|| = 1. Moreover, as an operator

T ν
μ,k : Sp(Hμ) → Sp(Hμ+ν+2k)

we have ||T ν
μ,k||p→p ≤ (2μ+ν+2k−1

μ−1 )
1 
p .
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Proof. T ν
μ,k is obviously unital. We see it is weak-∗ continuous realizing ρ ∈ S1(Hμ+ν+2k)

implies

Tr(T ν
μ,k(A)ρ) = Tr(A⊗ Iν(P ∗

k ρPk))

together with the fact that

A �→ A⊗ Iν

is weak-∗ continuous. We also see

||T ν
μ,k(A)|| = ||Pk(A⊗ I)P ∗

k || ≤ ||Pk|| · ||A⊗ I|| · ||P ∗
k || ≤ ||A||.

||T ν
μ,k|| = 1 follows by letting A = Iμ.
Now let A ∈ B(Hμ+ν+2k) be a compact operator and {An}n a sequence of finite rank 

operators converging to A. Then each An is necessarily trace-class and by Proposition 4.4
we see that T ν

μ,k(An) is trace-class. This implies T ν
μ,k(An) is compact and that T ν

μ,k(A)
is compact as the limit of a sequence of compact operators.

We now prove a bound on ||T ν
μ,k||1→1. Writing A ∈ S1(Hμ) as A = A1 + iA2, where 

both A1 and A2 are self-adjoint, we get

||A||1 ≤ ||A1||1 + ||A2||1,

and

||A1||1 = ||A + A∗

2 
||1 ≤ ||A||1,

and similarly for A2. Hence we see, using the decomposition of A1 and A2 in positive 
and negative parts

||T ν
μ,k(A)||1 ≤ ||T ν

μ,k(A1)||1 + ||T ν
μ,k(A2)||1

= μ + ν + 2k − 1
μ− 1 

(||A1||1 + ||A2||1)

≤ 2μ + ν + 2k − 1
μ− 1 

||A||1.

The bound for ||T ν
μ,k||p→p follows by interpolation using Theorem 2.2.4, Remark 2.2.5 

and Theorem 2.2.7 in [30]. �
We now want to calculate the kernel of T ν

μ,k(A), as we eventually want to find the 
functional calculus of T ν

μ,k(A) for any A ∈ S2(Hμ).
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Lemma 4.6. Let A(z, w) be the integral kernel of an operator A ∈ B(Hμ). Then

T ν
μ,k(A)(x, y) = C2

μ,ν,k

∫
D3

A(z, u)(1 − uy)−μ−k(1 − wy)−ν−k

(u− w)k(z − w)k(1 − xz)−μ−k(1 − xw)−ν−kdιμ(z)dιν(w)dιμ(u).

Proof. This is a direct calculation.

T ν
μ,k(A)(x, y) = T ν

μ,k(A)(Kμ+ν+2k
y )(x) = Pk(A⊗ I)P ∗

k (Kμ+ν+2k
y )(x)

= Cμ,ν,k

∫
D2

(A⊗ I)P ∗
k (Kμ+ν+2k

y )(z, w)(z − w)k(1 − xz)−μ−k

(1 − xw)−ν−kdιμ(z)dιν(w)

= Cμ,ν,k

∫
D3

A(z, u)P ∗
k (Kμ+ν+2k

y )(u,w)(z − w)k(1 − xz)−μ−k

(1 − xw)−ν−kdιμ(z)dιν(w)dιμ(u)

= C2
μ,ν,k

∫
D4

A(z, u)Kμ+ν+2k
y (ζ)(1 − uζ)−μ−k(1 − wζ)−ν−k(u− w)k

(z − w)k(1 − xz)−μ−k(1 − xw)−ν−kdιμ+ν+2k(ζ)dιμ(z)dιν(w)dιμ(u)

= C2
μ,ν,k

∫
D3

A(z, u)(1 − uy)−μ−k(1 − wy)−ν−k(u− w)k

(z − w)k(1 − xz)−μ−k(1 − xw)−ν−kdιμ(z)dιν(w)dιμ(u). �
We compute the covariant symbol of T ν

μ,k on the Toeplitz operator R∗
μ(f).

Proposition 4.7. We have

Rμ+ν+2kT ν
μ,kR

∗
μ(f) = C2

μ,ν,k

k∑
j=0 

(−1)j
(
k

j

)
(ν + k − j)k

(ν)k
Bμ+j(f),

where Bμ+j is the Berezin transform of Definition 3.5.

Proof. Note that by SU(1, 1)-invariance we only need to prove that

Rμ+ν+2kT ν
μ,kR

∗
μ(f)(0)

= C2
μ,ν,k

k∑
j=0 

(−1)j
(
k

j

)
(ν + k − j)k

(ν)k
Bμ+j(f)(0).
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First we calculate T ν
μ,k(R∗

μ(f))(x, y). By Lemma 4.6

T ν
μ,k(R∗

μ(f))(x, y) = C2
μ,ν,k

∫
D3

R∗
μ(f)(z, u)(1 − uy)−μ−k

(1 − wy)−ν−k(u− w)k(z − w)k(1 − xz)−μ−k(1 − xw)−ν−kdιμ(z)dιν(w)dιμ(u)

=
C2

μ,ν,k

μ− 1 

∫
D4

Kμ(z, v)f(v)Kμ(v, u)(1 − uy)−μ−k(1 − wy)−ν−k

(u− w)k(z − w)k(1 − xz)−μ−k(1 − xw)−ν−kdιμ(z)dιν(w)dιμ(u)dιμ(v)

=
C2

μ,ν,k

μ− 1 

∫
D2

f(v)(1 − vy)−μ−k(1 − wy)−ν−k(v − w)k

(v − w)k(1 − xv)−μ−k(1 − xw)−ν−kdιν(w)dιμ(v).

It follows that

Rμ+ν+2kT ν
μ,kR

∗
μ(f)(0) =

C2
μ,ν,k

μ− 1 

∫
D2

f(v)|v − w|2kdιν(w)dιμ(v)

=
C2

μ,ν,k

μ− 1 

k∑
i=0 

(
k

i 

)2
i! 

(ν)i

∫
D

f(v)|v|2(k−i)dιμ(v)

= C2
μ,ν,k

k∑
i=0 

(
k

i 

)2
i! 

(ν)i

∫
D

f(v)|v|2(k−i)(1 − |v|2)μdι(v).

We expand this as

Rμ+ν+2kT ν
μ,kR

∗
μ(f)(0)

= C2
μ,ν,k

k∑
i=0 

(
k

i 

)2
i! 

(ν)i

∫
D

f(v)|v|2(k−i)(1 − |v|2)μdι(v)

= C2
μ,ν,k

k∑
i=0 

(
k

i 

)2
i! 

(ν)i

∫
D

f(v)(1 − (1 − |v|2))k−i(1 − |v|2)μdι(v)

= C2
μ,ν,k

k∑
i=0 

k−i ∑
j=0 

(−1)j
(
k

i 

)2
i! 

(ν)i

(
k − i

j

)∫
D

f(v)(1 − |v|2)μ+jdι(v)

= C2
μ,ν,k

k∑
i=0 

k−i ∑
j=0 

(−1)j
(
k

i 

)2
i! 

(ν)i

(
k − i

j

)
Bμ+j(f)(0)
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= C2
μ,ν,k

k∑
j=0 

(−1)j(
k−j ∑
i=0 

(
k

i 

)2
i! 

(ν)i

(
k − i

j

)
)Bμ+j(f)(0).

Using Gauss’s summation theorem we evaluate the coefficient of Bμ+j(f)(0) as

k−j ∑
i=0 

(
k

i 

)2
i! 

(ν)i

(
k − i

j

)
= (−1)j

j! 

k−j ∑
i=j 

((−k)i)2(−k + i)j
(ν)ii! 

= (−1)j

j! 

k−j ∑
i=0 

(−k)i+j(−k)i
(ν)ii! 

= (−k)j(−1)j

j! 

k−j ∑
i=0 

(−k)i(−k + j)i
(ν)ii! 

=
(
k

j

)
2F1(−k,−k + j; ν, 1) =

(
k

j

)
(ν + k − j)k

(ν)k
.

Hence

Rμ+ν+2kT ν
μ,kR

∗
μ(f)(0)

= C2
μ,ν,k

k∑
j=0 

(−1)i(
k−j ∑
i=0 

(
k

i 

)2
i! 

(ν)i

(
k − i

j

)
)Bμ+j(f)(0)

= C2
μ,ν,k

k∑
j=0 

(−1)j
(
k

j

)
(ν + k − j)k

(ν)k
Bμ+j(f)(0).

This completes the proof. �
We collect some information.

Proposition 4.8. We have

Rμ+ν+2kT ν
μ,kR

∗
μ = (μ)k(ν)k

k!(μ + ν + k + 1)k

k∑
j=0 

(−1)j
(
k

j

)
(ν + k − j)k

(ν)k
Bμ+j

and

lim 
ν→∞

||Rμ+ν+2kT ν
μ,kR

∗
μ − (μ)k

k! 

k∑
j=0 

(−1)j
(
k

j

)
Bμ+j ||p = 0

for any 1 ≤ p ≤ ∞.

Proof. The first line follows directly from Proposition 4.7 and Proposition 2.6 saying

C−2
μ,ν,k = k!(μ + ν + k − 1)k

(μ)k(ν)k
.
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This implies that

lim 
ν→∞

C−2
μ,ν,k = k! 

(μ)k
.

We also observe that

lim 
ν→∞

(−1)j
(
k

j

)
(ν + k − j)k

(ν)k
= (−1)j

(
k

j

)
.

The second part follows. �
We define the following notation for convenience.

Definition 4.9. 

Eν
μ,k := Rμ+ν+2kT ν

μ,kR
∗
μ,

and

Eμ,k := (μ)k
k! 

k∑
j=0 

(−1)j
(
k

j

)
Bμ+j .

Note that by Proposition 4.8

lim 
ν→∞

||Eν
μ,k − Eμ,k||p = 0

for any 1 ≤ p ≤ ∞. We discuss another way of expressing our limit, which was done in 
[3] for the group SU(2) and its associated SU(2)-equivariant quantum channels. In that 
paper Aschieri, Ruba and Solovej defined a generalized Husimi function. We define such 
a function for SU(1, 1).

Definition 4.10. For A ∈ B(Hν) we can define a generalized Husimi function Hi
ν(A) : D →

C by

Hi
ν(A)(g · 0) := (ν)i

i! 〈Ag · zi, g · zi〉ν .

Note that his is well-defined and SU(1, 1)-invariant, i.e.

g ·Hi
ν(A) = Hi

ν(gAg−1)

for g ∈ SU(1, 1). Note also that the ( (ν)i
i! ) 1

2 zi are normalized eigenvectors for the Lie 

algebra element H =
(

1 0
0 −1

)
∈ su(1, 1) with eigenvalues ν + 2i. We prove a lemma.
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Lemma 4.11. The maps

Hi
ν : B(Hν) → L∞(D, dι)

and

Hi
ν : Sp(Hν) → Lp(D, dι)

are well-defined and continuous.

Proof. Note that for A ∈ B(Hν) and g ∈ SU(1, 1)

|Hi
ν(A)(g · 0)| ≤ ||A||,

which gives the first part. We now concentrate on the case p = 1. Let A ∈ S1(Hν) and 
A ≥ 0. Then Hi

ν(A)(g · 0) ≥ 0 for every g and
∫
D

Hi
ν(A)(z)dι(z) =

∫
SU(1,1)

Hi
ν(A)(g · 0)dg = 1 

ν − 1Tr(A)

by Lemma 4.3, so Hi
ν(A) ∈ L1(D, dι). The claim then follows by writing each A ∈ S1(Hν)

as a sum of positive operators. The claim for general p follows by interpolation using 
Theorem 2.2.4, Remark 2.2.5, Theorem 2.2.6 and Theorem 2.2.7 in [30]. �

We discuss another way of expressing Eμ,k(f).

Proposition 4.12. For any f ∈ L1(D, dι)

Eμ,k(f) = Hk
μ(R∗

μ(f)).

Proof. Note that in the proof of Proposition 4.7

Eν
μ,k(f)(0) = C2

μ,ν,k

k∑
i=0 

(
k

i 

)2
i! 

(ν)i

∫
D

f(v)|v|2(k−i)(1 − |v|2)μdι(v).

Using Lemma 3.3

Hi
μ(R∗

μ(f))(0) = (μ)i
i! 〈R

∗
μ(f)zi, zi〉μ

= (μ)i
i! 

∫
D3

Kμ(x, y)f(y)Kμ(y, z)(1 − |y|2)μxizidιμ(x)dιμ(z)dι(y)

= (μ)i
i! 

∫
D

f(y)|y|2i(1 − |y|2)μdι(y).
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Hence

Eν
μ,k(f)(0) = C2

μ,ν,k

k∑
i=0 

(
k

i 

)2
i!(k − i)! 
(ν)i(μ)k−i

Hk−i
μ (R∗

μ(f))(0),

and thus

Eμ,k(f)(0) = lim 
ν→∞

Eν
μ,k(f)(0) = (μ)k

k! 
k! 

(μ)k
Hk

μ(R∗
μ(f))(0) = Hk

μ(R∗
μ(f))(0),

where the limit can be taken in any Lp-norm. We conclude that

Eμ,k(f) = Hk
μ(R∗

μ(f)),

by SU(1, 1)-invariance. �
Note that we want to describe the functional calculus of

T ν
μ,k(R∗

μ(f)) = R−1
μ+ν+2kE

ν
μ,k(f) = R∗

μ+ν+2k(R∗
μ+ν+2k)−1R−1

μ+ν+2kE
ν
μ,k(f)

= R∗
μ+ν+2k(Bμ+ν+2k)−1Eν

μ,k(f).

Now this expression is only symbolic. Note that in Proposition 6.4 we prove that for 
f ∈ L2(D, dι) the function Eν

μ,k(f) lies in the domain of B−1
μ+ν+2k, and it follows that 

indeed

T ν
μ,k(R∗

μ(f)) = R∗
μ+ν+2k(Bμ+ν+2k)−1Eν

μ,k(f) ∈ S2(Hμ+ν+2k),

a well-defined quantity. This is also equal to

T((μ+ν+2k−1)Bμ+ν+2k)−1Eν
μ,k(f)

where Tf is the Toeplitz operator of f of Lemma 3.3. As (μ + ν + 2k)Bμ+ν+2k goes to 
the identity strongly, the natural guess would be that

lim 
ν→∞

1 
ν

Tr(T ν
μ,k(R∗

μ(f))n) =
∫
D

(Eμ,k(f))ndι(z).

We make this rigorous in the next section.

5. Trace formulas

We start with an elementary lemma.
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Lemma 5.1. For any integer n ≥ 1 the integral

In(ν) := (ν − 1)n
∫
Dn

∣∣∣∣ (1 − |z1|2)ν . . . (1 − |zn|2)ν
(1 − z1z2)ν . . . (1 − zn−1zn)ν

∣∣∣∣ dι(z1) . . . dι(zn)

is bounded in ν. More precisely, for ν ≥ 4 we have In(ν) ≤ 3n.

Proof. For n = 1 the integral simplifies to

(ν − 1)
∫
D

(1 − |z1|2)νdι(z1) =
∫
D

dιν(z1) = 1.

Now first we assume ν ≥ 4 and write ν = 2κ for some κ ∈ R. Then the integral is

In(ν) =
∫
Dn

∣∣∣∣ 1 
(1 − z1z2) . . . (1 − zn−1zn)

∣∣∣∣
2κ

dιν(z1) . . . dιν(zn)

= ||
∑

i1,...,in−1

(κ)i1
i1! 

. . .
(κ)in−1

in−1! 
zi11 zi1+i2

2 . . . z
in−1
n−1 ||2H

⊗
n−1

ν

=
∑

i1,...,in−1

( (κ)i1
i1! 

. . .
(κ)in−1

in−1! 
)2 i1! 

(2κ)i1
(i1 + i2)! 
(2κ)i1+i2

. . .
(in−2 + in−1)!
(2κ)in−2+in−1

in−1! 
(2κ)in−1

.

Now we need the following inequality

3 j! 
(κ)j

≥ 2κ− 1
κ− 1 

j! 
(κ)j

=
∞ ∑
i=0 

(κ)i
i! 

(i + j)! 
(2κ)i+j

. (3)

We prove this. The inequality is obvious, for the equality we get

2κ− 1
κ− 1 

j! 
(κ)j

= 2κ− 1
κ− 1 

||zj ||2κ = 2κ− 1
κ− 1 

∫
D

|z|2jdικ(z)

= (2κ− 1)
∫
D

|z|2j(1 − |z|2)κdι(z) = (2κ− 1)
∫
D

|z|2j(1 − |z|2)2κ
(1 − |z|2)κ dι(z)

=
∫
D

∞ ∑
i=0 

(κ)i
i! |z|

2(i+j)dι2κ(z) =
∞ ∑
i=0 

(κ)i
i! ||z

i+j ||2κ =
∞ ∑
i=0 

(κ)i
i! 

(i + j)! 
(2κ)i+j

.

Then for our sum

∑
i1,...,in−1

( (κ)i1
i1! 

. . .
(κ)in
in! )2 i1! 

(2κ)i1
(i1 + i2)! 
(2κ)i1+i2

. . .
(in−2 + in−1)!
(2κ)in−2+in−1

in−1! 
(2κ)in−1
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we get that by inequality (3) the part summing over i1 is

∞ ∑
i1=0

( (κ)i1
i1! 

)2 i1! 
(2κ)i1

(i1 + i2)! 
(2κ)i1+i2

≤
∞ ∑

i1=0

(κ)i1
i1! 

i1! 
(2κ)i1

∞ ∑
i1=0

(κ)i1
i1! 

(i1 + i2)! 
(2κ)i1+i2

≤ 9 0! 
(κ)0

i2! 
(κ)i2

= 9 i2! 
(κ)i2

.

Thus for our sum we get

∑
i1,...,in−1

( (κ)i1
i1! 

. . .
(κ)in−1

in−1! 
)2 i1! 

(2κ)i1
(i1 + i2)! 
(2κ)i1+i2

. . .
(in−2 + in−1)!
(2κ)in−2+in−1

in−1! 
(2κ)in−1

≤ 9
∑

i2,...,in−1

(κ)i2
i2! 

( (κ)i3
i3! 

. . .
(κ)in−1

in−1! 
)2 (i2 + i3)! 

(2κ)i2+i3

. . .
(in−2 + in−1)!
(2κ)in−2+in−1

in−1! 
(2κ)in−1

.

Repeatedly applying Inequality (3) this is smaller than

3n−1
∞ ∑

in−1=0

(κ)in−1

in−1! 
in−1! 

(2κ)in−1

≤ 3n 0! 
(κ)0

= 3n.

We have now proven our result, i.e. given a bound independent of ν. �
We now prove the following lemma.

Lemma 5.2. For any n ≥ 1 and f ∈ Cc(D)

lim 
ν→∞

1 
ν − 1Tr(((ν − 1)R∗

ν(f))n) =
∫
D

f(z)ndι(z).

Proof. We note

R∗
ν(f)n(x, y)

=
∫
Dn

Kν(x, x1)Kν(x1, x2) . . .Kν(xn, y)f(x1) . . . f(xn)
Kν(x1, x1) . . .Kν(xn, xn) dι(x1) . . . dι(xn).

Next we see that

1 
ν − 1Tr(((ν − 1)R∗

ν(f))n) = (ν − 1)n
∫
D

Rν(R∗
ν(f)n)(z)dι(z)

= (ν − 1)n
∫

Dn+1

Kν(z, x1) . . .Kν(xn, z)f(x1) . . . f(xn)
Kν(z, z)Kν(x1, x1) . . .Kν(xn, xn) dι(x1) . . . ι(xn)dι(z)
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= (ν − 1)n−1
∫

Dn+1

Kν(z, x1) . . .Kν(xn, z)f(x1) . . . f(xn)
Kν(x1, x1) . . .Kν(xn, xn) 

dιν(z)dι(x1) . . . dι(xn)

= (ν − 1)n−1
∫
Dn

Kν(x1, x2) . . .Kν(xn, x1)f(x1) . . . f(xn)
Kν(x1, x1) . . .Kν(xn, xn) dι(x1) . . . dι(xn)

= (ν − 1)n−1
∫
D

f(x1)
∫

Dn−1

Kν(x1, x2) . . .Kν(xn, x1)f(x2) . . . f(xn)
Kν(x1, x1) . . .Kν(xn, xn) 

dι(x2) . . . ι(xn)dι(x1)

Now we study

(ν − 1)n−1
∫

Dn−1

Kν(x1, x2) . . .Kν(xn, x1)f(x2) . . . f(xn)
Kν(x1, x1) . . .Kν(xn, xn) dι(x2) . . . ι(xn), (4)

which is equal to (ν − 1)n−1Rν(R∗
ν(f)n−1)(x1). We will prove

lim 
ν→∞

(ν − 1)n−1Rν(R∗
ν(f)n−1)(x1) = f(x1)n−1 (5)

for any x1 ∈ D. Now the function f is compactly supported and

(ν − 1)n−1Rν(R∗
ν(f)n−1)

is continuous by Definition 3.1 and bounded independent of ν by Proposition 3.2 and 
Lemma 3.3, so Equation (5) implies

lim 
ν→∞

1 
ν

Tr(((ν − 1)R∗
ν(f))n) =

∫
D

f(z)ndι(z).

We now prove pointwise convergence of Equation (4) where we replace n − 1 by n for 
the sake of convenience. Note that for z = g · 0 ∈ D

Rν(R∗
ν(f)n)(z) = (g−1Rν(R∗

ν(f)n))(0) = Rν(R∗
ν(g−1f)n)(0).

We conclude it is enough to prove convergence in the point 0. Observe

(ν − 1)nRν(R∗
ν(f)n)(0)

= (ν − 1)n
∫
Dn

Kν(0, z1)Kν(z1, z2) . . .Kν(zn, 0)(1 − |z1|2)ν . . . (1 − |zn|2)ν ·

f(z1) . . . f(zn)dι(z1) . . . dι(zn)
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= (ν − 1)n
∫
Dn

(1 − |z1|2)ν . . . (1 − |zn|2)ν
(1 − z1z2)ν . . . (1 − zn−1zn)ν f(z1) . . . f(zn)dι(z1) . . . dι(zn).

Now we choose (0, . . . , 0) ∈ U ⊆ Dn open such that for (x1, . . . , xn) ∈ U

|f(x1) . . . f(xn) − f(0)n| < ε.

Using Lemma 5.1 it follows that

|(ν − 1)nRν(R∗
ν(f)n)(0) − f(0)n|

= (ν − 1)n|
∫
Dn

(1 − |z1|2)ν . . . (1 − |zn|2)ν
(1 − z1z2)ν . . . (1 − zn−1zn)ν (f(z1) . . . f(zn) − f(0)n)

dι(z1) . . . dι(zn)|

≤ (ν − 1)n
∫
U

∣∣∣∣ (1 − |z1|2)ν . . . (1 − |zn|2)ν
(1 − z1z2)ν . . . (1 − zn−1zn)ν (f(z1) . . . f(zn) − f(0)n)

∣∣∣∣
dι(z1) . . . dι(zn)

+ (ν − 1)n
∫

Dn\U

∣∣∣∣ (1 − |z1|2)ν . . . (1 − |zn|2)ν
(1 − z1z2)ν . . . (1 − zn−1zn)ν (f(z1) . . . f(zn) − f(0)n)

∣∣∣∣

dι(z1) . . . dι(zn)

≤ ε32n

+ (ν − 1)n
∫

Dn\U

∣∣∣∣ (1 − |z1|2)ν . . . (1 − |zn|2)ν
(1 − z1z2)ν . . . (1 − zn−1zn)ν (f(z1) . . . f(zn) − f(0)n)

∣∣∣∣

dι(z1) . . . dι(zn).

Observe that |1 − xy|2 ≥ (1 − |x|2)(1 − |y|2) with equality if and only if x = y, so for 
(z1, . . . zn) ∈ Dn\U

| (1 − |z1|2) . . . (1 − |zn|2) 
(1 − z1z2) . . . (1 − zn−1zn) | ≤

√
1 − |z1|2

√
1 − |zn|2 < r < 1

for some r ∈ R. Thus Lebesgue’s dominated convergence theorem implies

lim 
ν→∞

(ν − 1)n
∫

Dn\U

| (1 − |z1|2)ν . . . (1 − |zn|2)ν
(1 − z1z2)ν . . . (1 − zn−1zn)ν (f(z1) . . . f(zn) − f(0)n)|

dι(z1) . . . dι(zn) = 0.

It follows that for any x1 ∈ D
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lim 
ν→∞

Rν(R∗
ν(f)n)(x1) = f(x1)n,

which proves the lemma. �
We prove another lemma.

Lemma 5.3. For f ∈ L2(D, dι) bounded we have

lim 
ν→∞

1 
ν − 1Tr(((ν − 1)R∗

ν(f))2n) =
∫
D

f(z)2ndι(z)

for n ≥ 1.

Proof. Let f ∈ L2(D, dι) be bounded. Then f ∈ Lp(D, dι) for any p > 2, implying that
∫
D

f(z)2ndι(z)

is well-defined. We claim that there is a sequence {fk}k of compactly supported functions 
such that

lim 
k→∞

||f − fk||2 = 0

and ||fk||∞ ≤ ||f ||∞ for all k. The way to see this is the following. Let us denote 
f |A = χAf , where χA is the indicator function. Let k be an integer, then we have a finite 
measure set Ek ⊆ D such that

||f |Ek
− f ||2 ≤ 1 

k
.

Then by Lusin’s theorem [7, Theorem 7.10] there exists a function fk ∈ Cc(D) such that 
||fk||∞ ≤ ||f |Ek

||∞ ≤ ||f ||∞ and

μ({f |Ek
	= fk}) ≤

1 
k2 .

Thus ||f − fk||2 ≤ (1 + 2||f ||∞) 1 
k , which proves this claim.

Now we write Tf for (ν − 1)R∗
ν(f) and we get by Proposition 3.12

1 √
ν − 1

||Tf − Tfk ||2 ≤ ||f − fk||2,

and thus

lim 
ν→∞

1 √
ν − 1

||Tf − Tfk ||2 = 0.
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Now we prove by induction for any integer n

lim 
k→∞

1 √
ν − 1

||Tn
f − Tn

fk
||2 = 0,

with rate of convergence independent of ν, for any n ∈ N. The case n = 1 is clear, now 
let n > 0.

1 √
ν − 1

||Tn+1
f − Tn+1

fk
||

≤ 1 √
ν − 1

(||Tf (Tn
f − Tn

fk
)||2 + ||(Tf − Tfk)Tn

fk
||2)

≤ 1 √
ν − 1

||Tf || · ||Tn
f − Tn

fk
||2 + 1 √

ν − 1
||Tf − Tfk ||2 · ||Tn

fk
||

≤ 1 √
ν − 1

||f ||∞||Tn
f − Tn

fk
||2 + 1 √

ν − 1
||Tf − Tfk ||2 · ||fk||n∞

≤ 1 √
ν − 1

||f ||∞||Tn
f − Tn

fk
||2 + 1 √

ν − 1
||Tf − Tfk ||2||f ||n∞,

where we have used that ||Tf || = ||PMfP || ≤ ||f ||∞. Thus indeed for all n ∈ N

lim 
k→∞

1 √
ν − 1

||Tn
f − Tn

fk
||2 = 0,

and the rate of convergence is independent of ν. Thus by explicit realization of the Hilbert 
Schmidt norm

lim 
k→∞

1 
ν − 1Tr(((ν − 1)R∗

ν(fk))2n) − 1 
ν − 1Tr(((ν − 1)R∗

ν(f))2n)

= lim 
k→∞

1 
ν − 1 〈((ν − 1)R∗

ν(fk))n, ((ν − 1)R∗
ν(fk)∗)n〉S2(Hμ)

− 1 
ν − 1 〈((ν − 1)R∗

ν(f))n, ((ν − 1)R∗
ν(f)∗)n〉S2(Hμ) = 0,

for any ν. Furthermore, for any p > 2

lim 
k→∞

||f − fk||p = 0.

Thus

| 1 
ν − 1Tr(((ν − 1)R∗

ν(f))2n) −
∫
D

f(z)2ndι(z)|

≤ | 1 
ν − 1Tr(((ν − 1)R∗

ν(f))2n) − 1 
ν − 1Tr(((ν − 1)R∗

ν(fk))2n)|
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+ | 1 
ν − 1Tr(((ν − 1)R∗

ν(fk))2n) −
∫
D

fk(z)2ndι(z)|

+ |
∫
D

fk(z)2ndι(z) −
∫
D

f(z)2ndι(z)|.

We can choose k first to bound

| 1 
ν − 1Tr(((ν − 1)R∗

ν(f))2n) − 1 
ν − 1Tr(((ν − 1)R∗

ν(fk))2n)|

and

|
∫
D

fk(z)2ndι(z) −
∫
D

f(z)2ndι(z)|

independently of ν, and then choose N so that

| 1 
ν − 1Tr(((ν − 1)R∗

ν(fk))2n) −
∫
D

fk(z)2ndι(z)|

becomes arbitrarily small for ν ≥ N by Lemma 5.2. This proves our lemma. �
We recall that

T ν
μ,k(R∗

μ(f)) = R∗
μ+ν+2k(Bμ+ν+2k)−1Eν

μ,k(f),

so we also need to study

(Bμ+ν+2k)−1Eν
μ,k(f).

We do this in the next section.

6. Inverse Berezin transform

Our goal in this section is to prove the following.

Proposition 6.1. We have

lim 
ν→∞

||((μ + ν + 2k − 1)Bμ+ν+2k)−1Eν
μ,k(f) − Eμ,k(f)||2 = 0.

We recall the expansions of Eν
μ,k and Eμ,k in terms of Berezin transforms in Proposi-

tion 4.8 and Definition 4.9. Then Proposition 6.1 follows from the following proposition.
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Proposition 6.2. For ν0 fixed and f ∈ L2(D, dι), we have convergence

lim 
ν→∞

||((ν − 1)Bν)−1Bν0(f) −Bν0(f)||2 = 0.

To prove this we need some bounds on the eigenvalues of B−1
ν Bν0 . We recall the 

definition of bν from Proposition 3.9.

Lemma 6.3. Let ν ≥ ν0 integers. The term b−1
ν (λ)bν0(λ) is uniformly bounded in ν and 

λ ∈ R.

Proof. We calculate

|bν(λ)−1bν0(λ)| = | Γ(ν)Γ(ν − 1) 
Γ(ν0)Γ(ν0 − 1)

ν−1 ∏
k=ν0

((k − 1
2)2 + λ2)−1|

≤ | Γ(ν)Γ(ν − 1) 
Γ(ν0)Γ(ν0 − 1)

ν−1 ∏
k=ν0

(k − 1
2)−2| = |

∏ν0−1
k=1 (k − 1

2 )2

Γ(ν0)Γ(ν0 − 1) 
Γ(ν)Γ(ν − 1)
πΓ(ν − 1

2 )2
|.

This is bounded uniformly in ν, as

lim 
ν→∞

Γ(ν)Γ(ν − 1)
πΓ(ν − 1

2)2
= 1 

π
. �

Now we prove that B−1
μ+ν+2kE

ν
μ,k(f) is well-defined.

Proposition 6.4. For ν0 ≤ ν, Bν0(L2(D, dι)) is in the domain of ((ν − 1)Bν)−1.

Proof. Let f ∈ L2(D, dι). Then by Proposition 3.8

f̃ ∈ L2(R+, |c(λ)|−2dλ).

Now we see by Lemma 6.3 that b−1
ν (λ)bν0(λ) is bounded, hence b−1

ν bν0 f̃ is in the space 
L2(R+ × S1, |c(λ)|−2dλ) and by the Plancherel theorem, Proposition 3.8, we can define 
F ∈ L2(D, dι) such that F∼ = b−1

ν bν0 f̃ . Applying (ν − 1)Bν we see

(ν − 1)Bν(F ) = (ν0 − 1)Bν0(f).

Hence Bν0(L2(D, dι)) is in the domain of ((ν − 1)Bν)−1. �
Next we prove Proposition 6.2, which makes sense now.

Proof. We study

lim 
ν→∞

||((ν − 1)Bν)−1Bν0(f) −Bν0(f)||2.
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We notice that for f ∈ L2(D, dι)

(ν − 1)Bν(f)∼(λ, b) = bν(λ)f̃(λ, b),

and for ν ≥ ν0

((ν − 1)Bν)−1Bν0(f)∼(λ, b) = b−1
ν (λ)bν0

ν0 − 1 
(λ)f̃(λ, b).

Thus we see by the Plancherel formula in Proposition 3.8

||((ν − 1)Bν)−1Bν0(f) −Bν0(f)||22

= 1 
2π2

∫
R 

∫
S1

|f̃(λ, b)|2
∣∣∣∣bν(λ)−1bν0(λ) − bν0(λ)

ν0 − 1 

∣∣∣∣
2

|c(λ)|−2dbdλ.

If B ∈ R>0 and ε > 0, then by Lemma 3.10 there exists an N such that if |λ| < B and 
ν ≥ N , then

|bν(λ) − 1| < ε.

Now we more specifically look at the term

|bν(λ)−1bν0(λ) − bν0(λ)|.

We want to use this to bound the term

||((ν − 1)Bν)−1Bν0(f) −Bν0(f)||22

= 1 
2π2

∫
R 

∫
S1

|f̃(λ, b)|2|bν(λ)−1bν0(λ) − bν0(λ)|2|c(λ)|−2dbdλ.

We first note that by Lemma 6.3
∣∣∣ bν(λ)−1bν0 (λ)−bν0 (λ)

ν0−1 

∣∣∣ is uniformly bounded in ν and λ, 
say by R > 0. Next we note that by the Plancherel formula in Proposition 3.8

1 
2π2

∫
R 

∫
S1

|f̃(λ, b)|2|c(λ)|−2dbdλ = ||f̃ ||22 = ||f ||22 < ∞.

Now let ε > 0. Choose B > 0 such that

1 
2π2

∫
R\[−B,B]

∫
S1

|f̃(λ, b)|2|c(λ)|−2dbdλ <
ε 
R2 .

Now choose N such that for ν ≥ N and |λ| ≤ B
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∣∣∣∣bν(λ)−1bν0(λ) − bν0(λ)
ν0 − 1 

∣∣∣∣
2

< ε.

Then for ν ≥ N

||((ν − 1)Bν)−1Bν0(f) −Bν0(f)||22

= 1 
2π2

∫
R 

∫
S1

|f̃(λ, b)|2
∣∣∣∣bν(λ)−1bν0(λ) − bν0(λ)

ν0 − 1 

∣∣∣∣
2

|c(λ)|−2dbdλ

= 1 
2π2

∫
[−B,B]

∫
S1

|f̃(λ, b)|2
∣∣∣∣bν(λ)−1bν0(λ) − bν0(λ)

ν0 − 1 

∣∣∣∣
2

|c(λ)|−2dbdλ

+ 1 
2π2

∫
R\[−B,B]

∫
S1

|f̃(λ, b)|2
∣∣∣∣bν(λ)−1bν0(λ) − bν0(λ)

ν0 − 1 

∣∣∣∣
2

2|c(λ)|−2dbdλ

≤ ε 
2π2

∫
[−B,B]

∫
S1

|f̃(λ, b)|2|c(λ)|−2dbdλ

+ R2

2π2

∫
R\[−B,B]

∫
S1

|f̃(λ, b)|2|c(λ)|−2dbdλ ≤ ε||f ||22 + ε 
2π2 .

This completes the proof. �
7. Trace calculation

Now we want to draw conclusions about the limit of the trace of the functional calculus

Tr(T ν
μ,k(Rμ(f))n) = Tr((R∗

μ+ν+2k(Bμ+ν+2k)−1Eν
μ,k(f))n).

We know that for f ∈ L2(D, dι)

lim 
ν→∞

||((μ + ν + 2k − 1)Bμ+ν+2k)−1Eν
μ,k(f) −Eμ,k(f)||2 = 0

by Proposition 6.1. We need an additional bound.

Lemma 7.1. For f ∈ C∞
c (D) and ν0 fixed ((ν − 1)Bν)−1(ν0 − 1)Bν0(f) ∈ L∞(D, dι) and 

there is some R > 0 such that

||((ν − 1)Bν)−1(ν0 − 1)Bν0(f)||∞ ≤ R

for all ν ≥ ν0.



R. van Haastrecht / Journal of Functional Analysis 289 (2025) 111036 37

Proof. First we let

φn,λ(z) =
∫
S1

eλ,b(z)bndb.

We see

|φn,λ(z)| ≤
∫
S1

e0,b(z)dk = φ0(z) ≤ 1,

so this is bounded. Note φ0 is the Harish-Chandra Ξ-function. Using Fourier expansion 
on the circle we write

f̃(λ, b) =
∞ ∑

n=−∞
f̃(λ, n)bn

for λ ∈ R and b ∈ S1. Thus we see by Proposition 3.8

f(z) =
∫
R 

∫
S1

f̃(−λ, b)eλ,b(z)|c(λ)|−2dbdλ

=
∫
R 

∫
S1

∞ ∑
n=−∞

f̃(−λ, n)bneλ,b(z)|c(λ)|−2dbdλ

=
∫
R 

∞ ∑
n=−∞

∫
S1

f̃(−λ, n)bneλ,b(z)|c(λ)|−2dbdλ

=
∫
R 

∞ ∑
n=−∞

f̃(−λ, n)φn,λ(g)dμ(λ).

Note that if

g̃(z, eis) := d2

dt2
|t=sf̃(λ, eit)

then for the Fourier transform

g̃(λ, n) = −n2f̃(λ, n).

Now we define

F (μ, b) =
∫
R 

f̃(λ, b)eiμλdλ.

Then by the Euclidean Paley-Wiener Theorem this is compactly supported and
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f̃(λ, b) =
∫
R 

F (μ, b)e−iμλdμ.

Thus G(μ, eis) = d2

dt2 |t=sF (μ, eit) is still compactly supported and

g̃(λ, b) =
∫
R 

G(μ, b)e−iμλdμ

has the property

(−iλ)ng̃(λ, b) =
∫
R 

( dn

dμn
|μ=νG(μ, b))e−iμλdν.

This implies that for each n ∈ N there is some constant Cn such that for all μ ∈ R and 
b ∈ S1

|λng̃(λ, b)| ≤ Cn,

so for each N ∈ N

|g̃(λ, n)| = |
∫
S1

g̃(λ, b)b−ndk| ≤
∫
S1

C(1 + |λ|)−Ndk = C ′
N (1 + |λ|)−N ,

for some new constant C ′
N . This implies

|f̃(λ, n)| ≤ C ′
N

1 
n2 (1 + |λ|)−N .

Using Lemma 6.3 we obtain

|
∫
R 

∫
S1

bν(λ)−1bν0(λ)f̃(λ, b)eλ,b(z)|c(λ)|−2dbdλ|

= |
∫
R 

∞ ∑
n=−∞

bν(λ)−1bν0(λ)f̃(λ, n)φn,λ(z)|c(λ)|−2dλ|

≤
∫
R 

∞ ∑
n=−∞

|bν(λ)−1bν0(λ)f̃(λ, n)φn,λ(z)|c(λ)|−2|dλ

≤ R

∫
R 

∞ ∑
n=−∞

C ′
N

1 
n2 (1 + |λ|)−N |c(λ)|−2dλ < B,

for some constants R, B. Together with the fact that for some function h ∈ L2(D, dι)
such that h̃ ∈ L1(R+ × S1, |c(λ)|−2dbdλ) ∩ L2(R+ × S1, |c(λ)|−2dbdλ) we have
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h(z) =
∫
R 

∫
S1

h̃(−λ, b)eλ,b(z)|c(λ)|−2dbdλ

almost everywhere, this proves our lemma. �
Now we can prove the following for even integers.

Lemma 7.2. Let f ∈ L2(D, dι) ∩ L∞(D, dι) and {fν}ν a sequence such that

lim 
ν→∞

||f − fν ||2 = 0

and there is some B such that for all ν

||fν ||∞ ≤ B.

Then for any integer n

lim 
ν→∞

1 
ν

Tr(((ν − 1)R∗
ν(fν))2n) =

∫
D

f(z)2ndι(z).

Proof. Using the notation from Lemma 3.3 we claim

lim 
ν→∞

1 √
ν
||Tn

fν − Tn
f ||2 = 0.

We prove this by induction. The case n = 0 is trivial and the case n = 1 follows from 
Proposition 3.12. For the induction step we see

1 √
ν
||Tn+1

fν
− Tn+1

f ||2

≤ 1 √
ν
||(Tfν − Tf )Tn

fν ||2 + 1 √
ν
||Tf (Tn

fν − Tn
f )||2

≤ 1 √
ν
||Tfν − Tf ||2||Tn

fν || +
1 √
ν
||Tf || · ||Tn

fν − Tn
f ||2

≤ Bn

√
ν
||Tfν − Tf ||2 + 1 √

ν
||f ||∞ · ||Tn

fν − Tn
f ||2.

This proves our claim. This also implies that

lim 
ν→∞

1 
ν

Tr(T 2n
fν − T 2n

f ) = 0

for any integer n, using properties of the Hilbert-Schmidt norm. Furthermore by 
Lemma 5.3
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lim 
ν→∞

1 
ν

Tr(T 2n
f ) =

∫
D

f(z)2ndι(z),

and the result follows writing

lim 
ν→∞

|1 
ν

Tr(((ν − 1)R∗
ν(fν))2n) −

∫
D

f(z)2ndι(z)|

≤ lim 
ν→∞

|1 
ν

Tr(((ν − 1)R∗
ν(fν))2n) − Tr(((ν − 1)R∗

ν(f))2n)|

+ lim 
ν→∞

|Tr(((ν − 1)R∗
ν(f))2n) −

∫
D

f(z)2ndι(z)| = 0 �

We get the following theorem.

Theorem 7.3. For any f ∈ C∞
c (D) and integer n

lim 
ν→∞

1 
ν

Tr(T ν
μ,k(R∗

μ(f))2n) =
∫
D

Eμ,k(f)2ndι(z).

Proof. We let

gν := ((μ + ν + 2k − 1)Bμ+ν+2k)−1Eν
μ,k(f).

By Proposition 4.8, its proof and Lemma 7.1 there is some constant R such that if ν is 
big

||((μ + ν + 2k − 1)Bμ+ν+2k)−1Eν
μ,k(f)||∞ < R.

Furthermore, by Proposition 6.1

lim 
ν→∞

||gν −Eμ,k(f)||2 = 0,

and Eμ,k(f) ∈ L2(D, dι) ∩ L∞(D, dι) by Definition 3.5 and the discussion following it. 
Hence we can use Lemma 7.2, which proves our theorem. �

We get a corollary.

Corollary 7.4. Recalling Proposition 4.12, for any A ∈ S1(Hμ) and integer n we get

lim 
ν→∞

1 
ν

Tr(T ν
μ,k(A)2n) =

∫
D

Hk
μ(A)(z)2ndι(z).
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Proof. We remark that R∗
μ(L1(D, dι)), and thus R∗

μ(C∞
c (D)), are dense in S1(Hμ) in 

the || · ||1-norm. This can be seen as Rμ is injective on B(Hμ) = S1(Hμ)∗. Now let 
A ∈ S1(Hμ) and {Al}l be a sequence in R∗

μ(C∞
c (D)) such that

lim 
l→∞

||A−Al||1 = 0.

We claim this implies

lim 
l→∞

1 
ν

Tr(T ν
μ,k(A)n − T ν

μ,k(Al)n) = 0,

with rate of convergence not depending on ν. We prove a stronger claim, namely

lim 
l→∞

1 
ν
||T ν

μ,k(A)n − T ν
μ,k(Al)n||1 = 0,

with rate of convergence bounded by Rn||A − Al||1 for some constant Rn dependent 
on n. We prove this by induction. The case n = 0 is trivial and n = 1 is clear from 
Proposition 4.5. We do the induction step

1 
ν
||T ν

μ,k(A)n+1 − T ν
μ,k(Al)n+1||1

= 1 
ν
||T ν

μ,k(A)(T ν
μ,k(A)n − T ν

μ,k(Al)n)||1

+ 1 
ν
||(T ν

μ,k(A) − T ν
μ,k(Al))T ν

μ,k(Al)n||1

≤ 1 
ν
||T ν

μ,k(A)n − T ν
μ,k(Al)n||1||T ν

μ,k(A)||

+ 1 
ν
||T ν

μ,k(A) − T ν
μ,k(Al)||1||T ν

μ,k(Al)||n

≤ (Rn||A|| + R1||Al||n)||A−Al||1.

Furthermore, by Lemma 4.11

lim 
l→∞

||Hk
μ(A) −Hk

μ(Al)||∞ = 0

and

lim 
l→∞

||Hk
μ(A) −Hk

μ(Al)||1 = 0,

and thus for any integer n

lim 
l→∞

∫
D

Hk
μ(A)2ndι(z) −

∫
D

Hk
μ(Al)2ndι(z) = 0.
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Writing

|1 
ν

Tr(T ν
μ,k(A)2n) −

∫
D

Hk
μ(A)2ndι(z)|

≤ |1 
ν

Tr(T ν
μ,k(A)2n) − 1 

ν
Tr(T ν

μ,k(Al)2n)|

+ |1 
ν

Tr(T ν
μ,k(Al)2n) −

∫
D

Hk
μ(Al)2ndι(z)|

+ |
∫
D

Hk
μ(Al)2ndι(z) −

∫
D

Hk
μ(A)2ndι(z)|

we prove our statement. �
We want to prove Theorem 7.3 for n a half-integer. We first make an elementary 

observation. There exists a Taylor expansion

√
1 − x =

∞ ∑
i=0 

(−1
2 )i
i! xi,

where this equality holds for x ∈ [−1, 1]. In particular the series 
∑∞

i=0
(− 1

2 )i
i! is absolutely 

convergent as

|
(−1

2 )i
i! | = |

Γ(−1
2 + i) 

Γ(−1
2)Γ(i + 1)

| ≤ C| 1 
Γ(−1

2 )
· Γ(i)i− 1

2

iΓ(i) | = C| 1 

Γ(1
2 )i 3

2
|

for some constant C. By Abel’s theorem

∞ ∑
i=0 

(−1
2 )i
i! =

√
1 − 1 = 0,

so

1 = −
∞ ∑
i=1 

(−1
2 )i
i! =

∞ ∑
i=1 

(1
2 )i−1

2(i!) .

Hence for x ∈ [0, 1]

x =
√

1 − (1 − x2) =
∞ ∑
i=0 

(−1
2 )i
i! (1 − x2)i =

∞ ∑
i=1 

(1
2 )i−1

2(i!) (1 − (1 − x2)i). (6)

We prove a lemma.
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Lemma 7.5. For any ν, integer n, and A ∈ S1(Hμ) such that A ≥ 0 and Tr(A) = 1

1 
ν

Tr(T ν
μ,k(A)n) =

∞ ∑
i=1 

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2n)i).

Proof. By Lemma 4.4 the operator T ν
μ,k(A) is positive and trace-class, so

T ν
μ,k(A) =

∑
j

λj(ν)ej(ν) ⊗ ej(ν)∗,

where the ej(ν) are the orthonormal eigenvectors for the eigenvalues λj(ν) ≥ 0. Also 
||A|| ≤ ||A||1 ≤ 1, so by Proposition 4.5

||T ν
μ,k(A)|| ≤ 1

and 0 ≤ λj(ν) ≤ 1 for all j. Thus

1 
ν

Tr(T ν
μ,k(A)n) = 1 

ν

∑
j

λj(ν)n = 1 
ν

∑
j

∞ ∑
i=1 

(1
2 )i−1

2(i!) (1 − (1 − λj(ν)2n)i)

=
∞ ∑
i=1 

(1
2 )i−1

2(i!) 
1 
ν

∑
j

(1 − (1 − λj(ν)2n)i)

=
∞ ∑
i=1 

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2n)i). �

We now prove a theorem.

Theorem 7.6. Let A ∈ S1(Hμ) such that A ≥ 0 and Tr(A) = 1. Then

lim 
ν→∞

1 
ν

Tr(T ν
μ,k(A)n) =

∫
D

Hk
μ(A)(z)ndι(z)

for any integer n. Furthermore, for f ∈ L1(D, dι) such that R∗
μ(f) ≥ 0 and Tr(R∗

μ(f)) =
1 we get

lim 
ν→∞

1 
ν

Tr(T ν
μ,k(R∗

μ(f))n) =
∫
D

Eμ,k(f)(z)ndι(z)

for any integer n.

Proof. Note that for any z ∈ D we have 0 ≤ Hk
μ(A)(z) ≤ 1. By Equation (6)

Hk
μ(A)n =

∞ ∑
i=1 

(1
2 )i−1

2(i!) (1 − (1 −Hk
μ(A)2n)i), (7)
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implying

∫
D

Hk
μ(A)(z)ndι(z) =

∞ ∑
i=1 

(1
2 )i−1

2(i!) 

∫
D

(1 − (1 −Hk
μ(A)(z)2n)i)dι(z). (8)

This is finite for n = 1 by Lemma 4.3, so by the boundedness of Hk
μ(A) it is finite 

for all n. Now note that by Proposition 4.4, Lemma 7.5 for n = 1, Equation (7), and 
Corollary 7.4

lim 
ν→∞

∞ ∑
i=1 

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2)i) = lim 

ν→∞
1 
ν

Tr(T ν
μ,k(A))

= lim 
ν→∞

μ + ν + 2k − 1
ν(μ− 1) Tr(A) =

∫
D

Hk
μ(A)(z)dι(z)

=
∞ ∑
i=1 

(1
2 )i−1

2(i!) 

∫
D

1 − (1 −Hk
μ(A)2)idι(z)

=
∞ ∑
i=1 

(1
2 )i−1

2(i!) lim 
ν→∞

1 
ν

Tr(1 − (1 − T ν
μ,k(A)2)i).

This implies that for any integer I

∞ ∑
i=I+1

lim 
ν→∞

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2)i)

= lim 
ν→∞

∞ ∑
i=I+1

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2)i).

This means that for ε > 0 we can choose I such that

∞ ∑
i=I+1

(1
2 )i−1

2(i!) lim 
ν→∞

1 
ν

Tr(1 − (1 − T ν
μ,k(A)2)i) < ε

and

∞ ∑
i=I+1

(1
2 )i−1

2(i!) 

∫
D

1 − (1 −Hk
μ(A)(z)2)idι(z) < ε,

and N0 such that ν ≥ N0 implies

∞ ∑
i=I+1

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2)i) < 2ε.
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Note that all the terms in these sums are positive. Now the inequality

0 ≤ 1 − (1 − x2n)i ≤ 1 − (1 − x2)i

for 0 ≤ x ≤ 1 implies for any n

∞ ∑
i=I+1

(1
2)i−1

2(i!) 

∫
D

1 − (1 −Hk
μ(A)(z)2n)idι(z) < ε,

and for any n and ν ≥ N0

∞ ∑
i=I+1

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2n)i) < 2ε.

Now we choose N ≥ N0 such that for ν ≥ N

|
I∑

i=1 

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2n)i)

−
I∑

i=1 

(1
2)i−1

2(i!) 

∫
D

(1 − (1 −Hk
μ(A)(z)2n)i)dι(z)| < ε,

which is possible by Proposition 7.4. Now by Lemma 7.5 and Equation (8), for ν ≥ N

we get

|1 
ν

Tr(T ν
μ,k(A)n) −

∫
D

Hk
μ(A)(z)ndι(z)|

≤ |1 
ν

Tr(T ν
μ,k(A)n −

I∑
i=1 

(1
2)i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2n)i)|

+ |
I∑

i=1 

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2n)i)

−
I∑

i=1 

(1
2 )i−1

2(i!) 

∫
D

(1 − (1 −Hk
μ(A)(z)2n)i)dι(z)|

+ |
I∑

i=1 

(1
2 )i−1

2(i!) 

∫
D

(1 − (1 −Hk
μ(A)(z)2n)i)dι(z) −

∫
D

Hk
μ(A)(z)ndι(z)|

≤ |
∞ ∑

i=I+1

(1
2 )i−1

2(i!) 
1 
ν

Tr(1 − (1 − T ν
μ,k(A)2n)i)|
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+ ε + |
∞ ∑

i=I+1

(1
2 )i−1

2(i!) 

∫
D

(1 − (1 −Hk
μ(A)(z)2n)i)dι(z)| < 4ε.

This proves our theorem as the second part follows directly from the first. �
We now calculate the limit of the functional calculus for any ψ ∈ C([0, 1]). However, 

ψ(T ν
μ,k(A)) will not always be a trace-class operator for any function; a trivial example is 

ψ = 1 which will result in the identity operator. We show for which functions we might 
expect ψ(T ν

μ,k(A)) is trace-class, and some examples for which it is not.

Lemma 7.7. For ψ ∈ C([0, 1]) ∩O(x) := {f ∈ C([0, 1]) | ∃c∈R |f(x)| ≤ c|x|} the operator 
ψ(T ν

μ,k(A)) is trace-class for a positive trace-class operator A. If ψ(x) = xp where p < 1, 
there is some A ∈ S1(Hμ) such that ψ(T ν

μ,0(A)) is no longer trace-class.

Proof. Let A be trace-class and ψ ∈ C([0, 1]) ∩ O(x), then T ν
μ,k(A) also is by Proposi-

tion 4.4. Thus

T ν
μ,k(A) =

∞ ∑
i=1 

λi(ei ⊗ e∗i )

for some orthonormal basis {ei}i and 
∑∞

i=1 |λi| < ∞. Then

Tr(ψ(T ν
μ,k(A)) =

∞ ∑
i=1 

ψ(λi) ≤
∞ ∑
i=1 

c|λi| < ∞.

Now let p < 1. We prove there is some A ≥ 0 such that A ∈ S1(Hμ) but T ν
μ,0(A)p is 

not in S1(Hμ). We define the series {λi}i positive and decreasing such that 
∑∞

i=1 λi is 
(absolutely) convergent, but 

∑∞
i=1 λ

p
i diverges. Define

A =
∞ ∑
i=1 

λi(ei ⊗ e∗i )

for the orthonormal basis {ei = ( (μ)i
i! ) 1

2 zi}i of Hμ. Then all the operators T ν
μ,0(ei⊗e∗i ) are 

simultaneously diagonalizable with eigenvectors {zn}n, where furthermore the eigenvalue 
of zn is 0 whenever i > n. Hence the operator T ν

μ,0(A) is diagonalizable with eigenvectors 
{zn}n and

〈T ν
μ,0(A)(zn), zn〉 =

n ∑
i=0 

λi〈T ν
μ,0(ei ⊗ e∗i )zn, zn〉

≥ λn

n ∑
i=0 

〈T ν
μ,0(ei ⊗ e∗i )zn, zn〉 = λn

∞ ∑
i=0 

〈P0((ei ⊗ e∗i ) ⊗ Iν)P ∗
0 z

n, zn〉

= λn〈zn, zn〉.
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Thus for the trace

Tr(T ν
μ,k(A)p) ≥

∞ ∑
i=0 

λp
i = ∞. �

We now find the functional calculus. We consider the functional calculus on C([0, 1]).

Theorem 7.8. For ψ ∈ C1([0, 1]), ψ(0) = 0 and A ∈ S1(Hμ) such that A ≥ 0 and 
Tr(A) = 1

lim 
ν→∞

1 
ν

Tr(ψ(T ν
μ,k(A))) =

∫
D

ψ(Hk
μ(A)(z))dι(z).

Furthermore, if f ∈ L1(D, dι) such that R∗
μ(f) ≥ 0 and Tr(R∗

μ(f)) =
∫
D f(z)dι(z) = 1

lim 
ν→∞

1 
ν

Tr(ψ(T ν
μ,k(R∗

μ(f)))) =
∫
D

ψ(Eμ,k(f)(z))dι(z).

Proof. First we note that T ν
μ,k(A) has eigenvalues bounded by 1, so the functional calcu-

lus ψ(T ν
μ,k(A)) is well-defined. Also note that ψ(Hk

μ(A)(z)) is always well-defined. Now 

we note that x �→ ψ(x)
x is in C([0, 1]), if we define it to be

lim 
x→0+

ψ(x)
x 

= ψ′(0)
1 

= ψ′(0)

at 0. Hence it is the limit of a sequence of polynomials {Pn}n. We define Qn(x) = xPn(x)
and see |ψ(x)

x − Pn(x)| < εn implies

|ψ(x) −Qn(x)| < εnx.

Now we note that if {λi}i are the eigenvalues of T ν
μ,k(A) then

1 
ν
|Tr(ψ(T ν

μ,k(A))) − Tr(Qn(T ν
μ,k(A)))|

≤ 1 
ν

∞ ∑
i=1 

|ψ(λi) −Qn(λi)| ≤
εn
ν

∞ ∑
i=1 

λi = εn
ν

Tr(T ν
μ,k(A))

= εn
μ + ν + 2k − 1

ν(μ− 1) .

Also using Lemma 4.3
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|
∫
D

ψ(Hk
μ(A)(z))dι(z) −

∫
D

Qn(Hk
μ(A)(z))dι(z)|

≤
∫
D

|ψ(Hk
μ(A)(z)) −Qn(Hk

μ(A)(z))|dι(z)

≤
∫
D

εnH
k
μ(A)(z)dι(z) = εn

μ− 1 .

Finally, by Theorem 7.6 for each n

lim 
ν→∞

1 
ν

Tr(Qn(T ν
μ,k(A))) =

∫
D

Qn(Hk
μ(A)(z))dι(z).

Now if ε > 0, we can first choose εn such that for any ν

εn
μ + ν + 2k − 1

ν(μ− 1) < ε,

and εn
μ−1 < ε, and then we can choose N big such that for ν ≥ N

|1 
ν

Tr(Qn(T ν
μ,k(A))) −

∫
D

Qn(Hk
μ(A)(z))dι(z)| < ε.

It follows that for ν ≥ N

|1 
ν

Tr(ψ(T ν
μ,k(A))) −

∫
D

ψ(Hk
μ(A)(z))dι(z)|

≤ |1 
ν

Tr(ψ(T ν
μ,k(A))) − 1 

ν
Tr(Qn(T ν

μ,k(A)))|

+ |1 
ν

Tr(Qn(T ν
μ,k(A))) −

∫
D

Qn(Hk
μ(A)(z))dι(z)|

+ |
∫
D

Qn(Hk
μ(A)(z))dι(z) −

∫
D

ψ(Hk
μ(A)(z))dι(z)| < 3ε

for ν ≥ N , and we obtain the first part of the theorem. The second part follows from 
the first. �

We note that implicit in the proof is that ψ ∈ C1([0, 1]) and ψ(x) = 0 implies ψ ∈
O(x).

There are several natural questions related to this result. One of these is the question 
of majorization. It is proved by Lieb and Solovej [17] that for the SU(2)-equivariant 
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quantum channels corresponding to the highest weight, the operator T ν
μ,0(A), where 

A ≥ 0 and Tr(A) = 1, is majorized for a projection onto the highest weight vector. 
This was later generalized to some representations of SU(n) [19]. For the SU(1, 1) case, 
I believe a similar property holds considering the lowest weight component. Kulikov’s 
result [15] can be formulated as this being true in the limit, and computer simulations 
suggest majorization occurs, but I have not been able to prove this.

There are also more questions about the classification of equivariant maps and the 
limit in different Banach spaces [3]. The SU(2)-invariant channels have the structure 
of a simplex [2], and Aschieri, Ruba and Solovej concluded that the limit of the trace 
of the functional calculus of extremal channels can be written as extremal points of 
SU(2)-equivariant POVMs. We wonder if a similar result holds for SU(1, 1)-equivariant 
channels. Furthermore, in [3] limits and inequalities in different Banach spaces were con-
sidered regarding the difference of the Toeplitz operators ||TfTg−Tfg||, and bounds were 
proved for expansions. The bounds were dependent on the derivative(s) of the functions. 
Explicit bounds were also given for the convergence. Perhaps similar statements can be 
obtained for SU(1, 1).

It also seems that this limiting procedure of equivariant channels can be put in a more 
general context of holomorphic discrete series representations of Hermitian Lie groups 
[21,29]. Genkai Zhang and I are planning to study this in a future publication. These 
quantum channels might even be studied in the frame of general Toeplitz-quantization 
[1,6].
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