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Abstract—The 6G vision predicts a massive increase in con-
nected devices and a greater use of local and distributed intelli-
gence. To support this shift, networks, particularly optical ones,
must become more dynamic and flexible. Introducing packet-
optical programmable devices will require redesigning control
and management functions to leverage artificial intelligence &
machine learning (AI/ML) capabilities. This paper explores how
network automation and programmability in the optical segment
are essential to meet 6G requirements, the latest developments,
and the key challenges ahead.

Index Terms—6G, Artificial Intelligence, Machine Learning,
Software-Defined Networking.

I. INTRODUCTION

As the fifth generation of mobile networks (5G) is being

deployed, the discussions regarding the sixth generation of mo-

bile networks (6G) intensify. The ITU Radiocommunication

Sector published the IMT-2030 Framework [1], defining the

usage scenarios envisioned for 6G and the key requirements

for the radio interface of 6G networks. According to the shared

vision, 6G networks will focus on three areas. Firstly, the

capabilities of the three main 5G scenarios will be expanded:

enhanced mobile broadband (eMBB), massive machine type

communication (mMTC), and ultra-reliable and low-latency

communication (URLLC). Secondly, three new usage sce-

narios are defined: integrated sensing, integrated compute &

AI/ML, and ubiquitous connectivity. Finally, 6G networks

will work towards meeting United Nations (UN) sustainable

development goals (SDGs).

Meanwhile, we expect optical networks to remain the key

transport technology moving from 5G to 6G. To achieve this

goal, in addition to also working towards the UN SDGs, optical

networks need to improve their automation and programma-

bility features with the help of AI/ML. This will enable

optical networks to support the data rates envisioned for 6G,

support low-latency services with even stricter requirements,

and provide the higher reliability and dynamicity needed by

6G mobile networks.

This paper aims to highlight the 6G usage scenarios and

services that can meet their targets with the help of optical

networks. To do so, we first analyze the 6G usage scenarios
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Fig. 1. 6G usage scenarios (adapted from [1]).

defined by IMT-2030 [1] and the requirements expected for

services taking advantage of 6G networks defined by 3GPP

[2]. Then, we discuss critical advances from optical networks

that can assist 6G networks in achieving the designated targets,

highlighting the contributions and challenges of applying

AI/ML in each case. To illustrate concrete results, we present a

performance assessment of two selected use cases showcasing

recent advancements in optical network automation and pro-

grammability. Finally, we discuss three open future challenges

identified as crucial for fully realizing the 6G vision.

II. 6G USE CASES AND REQUIREMENTS

Given the critical role that optical networks played in

realizing 5G [3], we expect that optical networks will also

be crucial for 6G [4]. In this direction, the optical network

community needs to closely monitor the requirements and

defined use cases and propose suitable solutions that meet

these requirements. This section provides an overview of the

recently defined use cases and requirements, focusing on those

that require optical network support.

Fig. 1 illustrates the six usage scenarios envisioned for 6G.

Three of the 5G scenarios, i.e., mMTC, eMBB, and URLLC,

are expected to be extended towards 6G as immersive commu-

nication, massive communication, and critical communication,

respectively. Three new usage scenarios are introduced in

6G, i.e., integrated sensing, integrated compute & AI, and

ubiquitous connectivity. All the usage scenarios just listed
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TABLE I
REQUIREMENT EVOLUTION FOR THE AIR INTERFACE FROM IMT-2020 TO

IMT-2030 RELEVANT FOR OPTICAL NETWORKS [1].

Requirement Unit IMT-2020 IMT-2030

Peak data rate Gbps 20 50-200
User data rate Mbps 100 300-500

Area traffic capacity Mbps/m2 10 30-50

Density devices/km2
10

6
10

8

Latency ms 1-4 0.1-1

Reliability - 10
−5

10
−7

Mobility km/h 500 1,000

guide the development of 6G and are used to define concrete

requirements for the upcoming research and standardization

efforts.

The IMT-2030 Framework [1] defines 15 capabilities for the

6G technology, 9 of which are enhancements of existing 5G

capabilities. Table I summarizes a selection of the enumerated

requirements for the air interface, compared to the targets

established for 5G. At the time of writing, 6G standardization

has not officially started yet, and the values provided in Table

I are initial estimates. In the following, we focus on the

requirements with concrete target values relevant to optical

networks.

A. Data Rate

The first four requirements mentioned in Table I will impact

the data rate requirements of the transport network segment,

which is usually supported by optical network infrastructure.

The peak data rate is the maximum achievable data rate per

device under ideal conditions. For 6G, the 50-200 Gbps range

is provided as an example. This means that compared to what

is expected from 5G (20 Gbps), in areas where these peak

data rates need to be supported, the transport segment should

expect an increased demand for capacity of 2.5 to 10 times.

The following three requirements pertain to more ubiq-

uitous scenarios. These requirements pose more significant

challenges for the optical network infrastructure, as they must

be met throughout the 6G deployment. The user data rate

refers to the value achievable ubiquitously, and rates of 300 to

500 Mbps are given as examples. The area traffic capacity is

expected to increase in the same magnitude as the user data

rate, i.e., three to five times compared to what was expected in

5G scenarios. Meanwhile, the density of devices is expected

to increase by up to two orders of magnitude. In summary,

ordinary 6G deployments may require from 60 (3 · 3 · 10)

to 2,500 (5 · 5 · 10
2) times higher data rates than current

5G deployments, considering the minimum and maximum

increase magnitude of user data rate, area traffic capacity, and

density, respectively.

B. Latency

The discussion of latency requires us to analyze three

different components. First, we must understand the main

contributors to the service end-to-end (E2E) latency. Second,

we analyze the latency requirements over the air interface,

E2E network latency

Wireless Transport Datacenter

Air Transport Switching Processing

User perceived response time

Fig. 2. Latency contributions to the end-to-end (E2E) perceived response
time.

mentioned in Table I. Finally, we can explore the service

requirements defined by 3GPP [2] and derive requirements

for the transport network.

Fig. 2 shows a simplified view of the network segments

and their contribution to the E2E latency. For simplicity,

we omit the details of a possible distributed radio access

network (RAN) deployment. We also assume that the transport

segment is implemented using optical networks. The latency

requirements mentioned in Table I refer to the air interface

latency. However, 3GPP establishes a maximum E2E latency

for several services in their service requirement definition.

Therefore, the transport network is left with a given latency

budget based on the maximum allowed latency for a given

application and the air interface latency. In our case, as shown

in Table I, the 6G air interface should impose a latency of 0.1

to 1 ms.

3GPP has initiated the definition of several services ex-

pected to take advantage of 6G [2]. One of the services is

immersive gaming, which requires an E2E latency of 5-20

ms for the compute flows. In this service, other flows for

game state and streaming can have more relaxed latency, i.e.,

50-100 ms and 200-300 ms, respectively. In the worst-case

scenario, the transport network would have a budget of 4 ms,

ignoring all the necessary electronic switching. This would

give a maximum distance between the antenna and the data

center of 8 km. Considering more favorable limits, the distance

could reach up to 38 km.

Another service where latency is critical is seamless im-

mersive reality in education. In this use case, split rendering

enables the rendering workload to be offloaded to the cloud.

However, this must be done with a maximum latency of 10 ms.

In this case, the maximum distance between the antenna and

the data center is 18 km. Considering the necessary electronic

switching involved, this distance can be even shorter.

C. Reliability

Regarding reliability, the IMT-2030 Framework [1] defines

the air interface as the one that needs to provide a reliability

performance between 10
−5 and 10

−7, representing up to two

orders of magnitude higher reliability than the 5G case. In turn,

3GPP defines the ubiquitous and resilient network use case

for 6G [2], which defines a reliability requirement between

10
−1 and 10

−4. This means that the transport and data center



segments combined have stringent reliability targets ranging

from 10
−1 to 10

−6.

D. Mobility

Finally, 6G is expected to support high-mobility scenarios,

going from 500 km/h in 5G to 1,000 km/h [1]. At these speeds,

users expect to have ubiquitous connectivity. For the wireless

segment, this requires seamless transfer between radio nodes,

which can belong to different technologies. For the transport

segment, the network needs to adapt much more quickly to

changing traffic patterns.

III. AI/ML-BASED OPTICAL NETWORK AUTOMATION

AND PROGRAMMABILITY FOR 6G: USE CASES

This section analyzes how new advances in optical network

automation and programmability can help achieve the 6G

targets. At the end of each section, we provide a contex-

tualized summary of AI/ML use cases and challenges. Due

to the strong interest of industry and academia in the topics

mentioned in this section and the vast literature produced, we

do not aim to make an exhaustive review of the literature.

We highlight only a few references that represent examples of

recent research efforts.

A. Coherent Multi-Band Multi-Core Optical Networks

As mentioned in Sec. II-A, 6G networks are expected to

support up to 2,500 times higher data rates than current

5G networks. These data rates are directly supported by the

transport network, which also needs to upgrade its capacity by

equal margins. Increasing the supported data rates in optical

networks can be achieved through several means, but none can

provide such increases independently.

One approach to increasing the data rate is introducing new

transmission techniques that improve the spectral efficiency

of optical networks. This can be achieved by introducing new

transceivers and more efficient modulation formats, such as

those using coherent transmission and probabilistic constel-

lation shaping [5]. However, this approach is not sufficient

to provide the needed capacity. Further improvement of the

capacity among nodes is necessary to achieve the required

data rates.

To this end, multi-band and multi-core optical networks

have long been investigated, but interest has intensified over

the past few years. In multi-band optical networks, the tradi-

tional C-band transmission is expanded to use other bands. In

multi-core optical networks, optical fibers are fabricated with

multiple cores, enabling the parallel transmission of multiple

signals through a single fiber cable. However, this scenario

poses several challenges.

One refers to the signal impairments that degrade the quality

of transmission (QoT) of optical signals. To make multi-

band and multi-core technologies viable, we must address the

detrimental effects of linear and non-linear interferences in

the former and cross-talk among fiber cores in the latter [6].

Moreover, provisioning connectivity services over these multi-

core, multi-band optical networks requires revisiting resource

assignment problems [7].

AI/ML-based automation is crucial in enabling optical net-

works to take full advantage of the mentioned technologies.

For instance, AI/ML models can be used to improve the

efficiency of probabilistic shaping transmission. Another ex-

ample is the QoT estimation in multi-band and multi-core,

which requires complex computations, and AI/ML models can

replace analytical models. Finally, the multiple resource di-

mensions in multi-band multi-core networks make the resource

assignment problems quite complex, and deep reinforcement

learning (DRL) methods can be used to improve resource

efficiency.

B. End-to-End Optical Channels Spanning Edge-to-Core

6G services will pose very stringent latency requirements,

as discussed in Sec. II-B. On the cloud computing side, this

will require densification in terms of the number of nodes

enhanced with computing capabilities. On the optical network

side, this will require careful consideration of the routes

adopted and reduced electronic switching allowed along the

connectivity path. Transparent optical channels from the base

station site to the data center nodes will be needed. This

means that transport networks, usually segmented between

access, metro, and core, will need to support more transparent

communication, reducing the impact of these segments on the

end-to-end network latency.

To realize this vision, new architectures must be devel-

oped, minimizing or removing hard borders between network

segments. Moreover, given the higher mobility goals of 6G

(discussed in Sec. II-D), transport networks need to be highly

reconfigurable and take advantage of multiple technologies [8].

AI/ML techniques are an essential enabler of these tech-

nologies due to the need to compute resource assignment

considering many parameters from all network segments and

technologies involved. Tasks such as traffic prediction can

help anticipate capacity needs. Estimating impairment for the

various technologies can be crucial for quickly assessing the

viability of a given resource assignment solution. Finally, DRL

can be used to learn efficient resource assignment solutions.

C. Distributed Decisions at Line Speed

The reliability requirements of 6G applications are strict,

leaving the transport network with a tiny margin, as discussed

in Sec. II-C. Traditionally, high reliability in optical networks

was achieved by providing backup resources that remained

idle until a failure was experienced. This leads to low re-

source efficiency and high cost. Network operators function

under constrained profit margins, necessitating cost-efficient

strategies for sustainable operations. This includes alternatives

to provide high reliability at low cost. This is challenging

to achieve using the current logically centralized network

control and automation architecture due to long round-trip

times between devices and the controller.

New algorithms that take decisions locally need to be

developed. These algorithms must run in a distributed fash-

ion, i.e., each instance has the autonomy to reconfigure its

local devices without the approval of a centralized controller.
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Fig. 3. Simulation results of the on-device re-routing decision: (a) Pre-forward error correction (FEC) bit error rate (BER); packets received/dropped at N1
with (b) proposed framework, (c) telemetry-based centralized decision; and (d) centralized-based hard failure detection (adapted from [9]).

Moreover, these algorithms must run at line speed to allow fast

and seamless reconfigurations. Programmable devices (e.g.,

pluggable transceivers) have been introduced, enabling the

deployment of algorithms that run at line speed. Several use

cases for programmable devices have been investigated, such

as failure recovery [9] and security [10].

In this context, AI/ML models can be essential to assist in

local decisions. The distributed decisions need to be quickly

computed based on an analysis of many variables. AI/ML

models are good in these scenarios where numerous variables

are considered. Moreover, AI/ML models can be trained to

work collaboratively, potentially preventing conflicting deci-

sions among network elements.

IV. SELECTED RESULTS

This section presents a few selected results related to the

use cases discussed in the previous section.

A. Distributed Decisions at Line Speed

In this use case, we explored how decisions made locally

and autonomously by a packet-optical programmable device

(i.e., a P4 switch) can enhance the failure recovery process by

reducing packet losses. The intuition is that a programmable

switch can autonomously use alternative channels to transmit

user data when it experiences a soft or hard failure. Firstly,

we implemented a proof-of-concept of an algorithm in a real-

world P4 Tofino switch. Then, we parameterized an NS-3 sim-

ulation to measure the impact of the on-device decision on the

packet losses. We assumed three scenarios. The first scenario

uses our proposed framework that decides on re-routing at

the device. The second scenario assumes a telemetry-based

centralized control and monitoring platform. The third scenario

assumes a centralized control platform with decisions based

on hard failures. In all scenarios, we assume a round-trip time

between the switching device and the controller of 1 second.

We refer the reader to [9] for a more complete description.

Fig. 3 shows the simulation results. Fig. 3(a) shows the

assumed failure scenario, where the pre-FEC BER increases

over time, characterizing a soft failure that evolves to a hard

failure once the BER violates the FEC limit. Fig. 3(b) shows

the packet loss over time for a scenario in which the re-routing

is only triggered after a centralized controller receives the link-

down notification. This notification occurs when transmission

is no longer possible between two nodes, i.e., a hard failure. It

is possible to observe severe packet losses during an extended

period.

Fig. 3(c) shows the results of the scenario where the

centralized controller receives telemetry periodically. In this

case, it is possible to detect the soft failure. However, we still

need to account for the time to receive the telemetry data and

send a re-routing command to the switching device.

Fig. 3(d) shows the results of the proposed framework. In

this case, the programmable device can analyze the telemetry

data locally. Once a soft failure is detected, the device has the

autonomy to temporarily switch the traffic to a different route,

reducing packet losses substantially. It is important to note

that we consider this a temporary solution for soft failures that

will develop into hard failures. The benefit is that it gives the

network enough time to compute a more permanent solution

to the failure while supporting user traffic.

B. AI/ML-as-a-Service

In this use case, we explore the ability of an AI/ML-

as-a-Service engine to automatically create, train, evaluate,

and deploy an AI/ML model based on a formal descrip-

tion, e.g., through a YAML-based descriptor. The framework

takes advantage of meta-learning approaches that the AI/ML

community has developed and automates the model lifecycle.

We applied the AI/ML-as-a-Service concept to showcase its

benefits to the QoT estimation task. Upon receiving the details

of an unestablished lightpath, the AI/ML model estimates the

generalized signal-to-noise ratio (GSNR) to be expected upon

establishment. We used the data openly available from [11]

comprising four different datasets characterized by different

network topologies and traffic characteristics. We refer the

reader to [12] for a more complete work description.

Fig. 4 shows the performance results of the proposed

AI/ML-as-a-Service framework with a manually tuned ANN

in terms of MAE and MSE. Regarding MAE, the model

created by our AI/ML-as-a-Service framework either matches

or outperforms the manually tuned ANN. Regarding MSE,
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the model created by the AI/ML-as-a-Service framework The

comparable performance means that AI/ML-as-a-Service can

potentially reduce or even eliminate human intervention from

building AI/ML models to support optical network automation

tasks.

V. FUTURE CHALLENGES

This section addresses three key challenges in AI/ML-based

automation and programmability that academia and industry

must overcome to advance optical networks to support the 6G

goals. The first two relate to the need to provide high-reliability

services supported by optical networks. This will require

synergies between network programmability (in the form of

on-device local decisions at line speed) and automation (in

the form of logically centralized orchestration). AI/ML models

will play a key role in both cases.

The first open challenge addresses the development of

distributed control algorithms. These algorithms must enable

the quick mitigation of anomalies or traffic bottlenecks without

the intervention of a central controller. More importantly, they

must do so while running locally, on-device, and at line speed.

Many decisions can be made locally, but re-routing due to

soft/hard failures and security-related tasks has demonstrated

the highest benefits in the literature. Academia and industry

have developed critical enablers for this. One example was

presented in the previous section, where preliminary results

of the benefits of on-device distributed decisions at line

speed were illustrated. However, only a single optical channel

was being monitored [9]. This is also true for many of the

works exploring on-device algorithms [10]. These distributed

algorithms need to be carefully designed to scale to network-

wide deployments. This requires developing design strategies

that can pre-compute alternative solutions for many foreseen

conditions to be mitigated. Moreover, due to these algo-

rithms’ distributed nature, conflict resolution schemes need to

be developed to ensure that the network remains consistent

even when distributed decisions are made. In this context,

AI/ML models must be considered for two tasks. First, the

efficiency of AI/ML models must be improved to provide

inference at line speed, e.g., through specialized hardware

(accelerators). This enables local decisions assisted by traf-

fic prediction, traffic classification, etc. AI/ML models can

also replace traditional heuristic algorithms completely. For

instance, DRL agents can be trained offline and deployed

locally to guide the on-device distributed decisions. Therefore,

developing (AI/ML-based) distributed control algorithms for

optical networks is crucial for these networks to meet the 6G

reliability and dynamicity requirements.

The second open challenge concerns the evolution of entities

involved in the centralized control of optical networks, such

as network controllers and orchestrators. In the context of

this section, these entities are called controllers for simplicity.

Controllers implement the so-called automation loops, respon-

sible for collecting and analyzing data and (re)configuring the

network accordingly. Note that as distributed control algo-

rithms are introduced, controllers will remain to provide func-

tionalities requiring coordination of many network elements.

However, the frequency/periodicity at which automation loops

run needs to be increased drastically to meet the 6G expecta-

tions for reliability and dynamicity. In practice, controllers will

need to collect, transfer, and analyze monitoring data much

more frequently. The efficient transport of monitoring data

has been investigated, with telemetry approaches addressing

several of the shortcomings [13]. Works in the literature

have also focused on reducing the amount of data needed to

detect soft or hard failures [14]. Finally, a few studies have

also analyzed how to process the received data in a scalable

fashion [15]. However, all these works assume monitoring

periods ranging from a few to several minutes. The periodicity

must increase to every few seconds or multiple times every

second. This will increase the monitoring overhead on optical

supervisory channels used to transport monitoring/telemetry

data and the computing and software used to process this data.

Therefore, developing efficient telemetry technology combined

with efficient and accurate AI/ML models for analyzing this

data is crucial for optical networks meeting 6G reliability and

dynamicity requirements.

Finally, a critical challenge is defining and autonomously

analyzing optical-network-focused key performance indicators

for AI/ML models. In the literature, several studies focused

on their explainability and interoperability. In particular, su-

pervised learning [16], unsupervised learning [17], and rein-

forcement learning [16] have been investigated. A few works

also focused on the issues of data imbalance [18] and its

impact on trained AI/ML models [19]. However, there are

still shortcomings in how AI/ML models are benchmarked.

Traditional metrics from the AI/ML community, such as

accuracy and MAE, cannot fully characterize models’ behavior

once deployed in the network. It is also essential to assess the



impact of inaccuracies on the overall network performance.

For instance, in the case of QoT estimation, evaluating the

spectral efficiency and request blocking performance is essen-

tial. Moreover, the representativeness of training sets needs

to be further analyzed. Therefore, developing a framework

that can perform a multi-faceted analysis of AI/ML models

towards assessing their trustworthiness in real-world scenarios

is crucial for fully exploiting AI/ML capabilities.

VI. CONCLUSION

In this paper, we analyzed the requirements defined by

the IMT-2030 Framework for 6G networks and the ongoing

definition of end-user service requirements by 3GPP. Then, we

discussed areas where optical networks, through programma-

bility and automation, can help meet the 6G requirements.

The AI/ML use cases and challenges were discussed for each

area. Two use cases with selected results were presented to

illustrate initiatives that address the discussed areas. Finally,

we introduced three open future challenges that can be used to

guide further research and development in the area of AI/ML-

based optical network programmability and automation.

ACKNOWLEDGMENTS

The authors thank the members of the ECO-eNET project

whose discussions inspired some of the ideas in this paper.

The authors would also like to acknowledge the contributions

of Filippo Cugini, Davide Scano, and Francesco Paolucci to

the results presented in Sec. IV-A, and Ashkan Panahi and

Nasser Mohammadiha contributions to the results presented

in Sec. IV-B.

REFERENCES

[1] ITU Radiocommunication Sector (ITU-R), “Recommendation ITU-R
M.2160-0: Framework and overall objectives of the future development
of IMT for 2030 and beyond,” Nov 2023.

[2] 3GPP, “22.x specification series,” Nov 2023. [Online]. Available:
https://www.3gpp.org/dynareport?code=22-series.htm
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