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In this paper we present the multimessenger picture of the flat-spectrum radio quasar (FSRQ)
J1048+7143, a blazar showing gamma-ray quasi-periodic oscillations. We generate the adaptively
binned Fermi-LAT light curve of this source above 168 MeV and find three major 𝛾-ray flares,
such that each of the flares resolves into two subflares. By analyzing arcsec-scale and milliarcsec-
scale radio interferometric observations, we find signatures of the precession of a spine–sheath
structured jet. We analyze the 5 GHz total flux density curve of J1048+7143 taken with single-dish
radio telescopes, and find three complete radio flares that are also suggestive of jet precession. We
model the timing of gamma-ray flares as a signature of the spin-orbit precession in a supermassive
black hole binary and find that the binary could merge in the next 60–80 yrs.
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1. Introduction

Active galactic nuclei (AGN) are driven by supermassive black holes (SMBHs) in their center,
with up to billions of solar masses. Observations on AGN reveal such objects at distances corre-
sponding to only a few percent of the current age of the Universe [e.g. 12]. Since measurements on
high-energy 𝛾-rays [e.g. 11, 14] and cosmic rays [e.g. 28] have horizons and are scrambled, only
neutrinos could pinpoint those massive celestial particle accelerators. Observation of quasi-periodic
neutrino emission might be the only direct evidence if such distant AGN has a periodic nature, e.g.
due to precessing SMBH binaries (SMBBHs).

Detection of gravitational radiation of SMBBHs will be a new direct way to find merging
SMBHs, at present there are only indirect ways to find them. In a radio-loud AGN, a periodic jet
structure might indicate that the jet emitter black hole interacts gravitationally with another black
hole [e.g. 18]. Very long baseline interferometry (VLBI) provides a great tool to study AGN jets
on pc scales (e.g., [21]) and to find periodic jets [e.g. 7, 9, 18, and references therein].

In the interpretation of quasi-periodic oscillations due to jet precession induced by a SMBBH
system, [10] built a precession model to explain the recurrent neutrino emission in TXS 0506+056
observed by the Antarctic IceCube Neutrino Observatory [16, 17]. They connected for the first
time the possible neutrino and gravitational-wave signatures of such sources, demonstrating the
need for continued multi-messenger monitoring [29]. This precession model predicted a new
neutrino emission period that turned out to be consistent with the 18/09/2022 neutrino observation
by IceCube and relied on the jet precession first reported by [8] for this source. [5] showed that the
neutrino cadence of TXS 0506+056 is consistent with an SMBBH origin.

Quasi-periodic oscillations (QPOs) can be detected in optical, X-ray, radio bands and in a few
cases also in the 𝛾-ray regime [e.g. 30]. Recently, [34] generated the 5-day binned gamma-ray light
curve of 4FGL J1048.4+7143 and found a possible QPO with a period of 3.06 ± 0.43 yr at the
significance level of ∼ 3.6𝜎. J1048+7143 is a low-synchrotron-peaked flat-spectrum radio quasar
(FSRQ) at redshift 𝑧 = 1.15 [27], associated with the Fermi 𝛾-ray source 4FGL 1048.4+7143 [1, 3].
We generate and model the adaptively binned 𝛾-ray light curve of this source. We also analyze kpc-
and pc-scaled VLBI observations and single dish flux density curves. Expanding the precession
model of [10], in this paper we propose the multimessenger picture of J1048+7143 assuming that
the flaring activity of this source is due to the spin–orbit precession [13] of a SMBBH at its heart.

2. The 𝛾-ray light curve analysis of J1048+7143

We obtained archival data taken with the Large Area Telescope (LAT) instrument onboard the
Fermi Gamma-ray Space Telescope to generate the 𝛾-ray light curve of 4FGL J1048.4+7143. This
bright 𝛾-ray source (RAJ2000 = 162.1067◦, DECJ2000 = 71.7297◦ [4FGL, 1]) is associated with the
FSRQ 6C 104451+715930 (hereafter J1048+7143). We analyzed almost 14 years of Fermi-LAT
data (2008 Aug 4 – 2022 Mar 14) in the energy range 100 MeV − 800 GeV. We performed the
binned likelihood analysis of the data using the fermipy v1.0.1 and ScienceTools v2.0.8 packages
(see the description of the technical details in [20]). We applied an adaptive-binning algorithm [23]
to set the bin widths of the light curve to study the flaring activity of this blazar. We compute the

2



P
o
S
(
I
C
R
C
2
0
2
3
)
1
5
8
7

Multimessenger Picture of J1048+7143 Emma Kun

Figure 1: The 𝛾-ray flux curve of J1048+7143. The sum of the contributions of the exponential flares fitted
to the light curve is shown by a blue continuous line. Centroids of the three major flares (𝐸 > 168 MeV) are
marked by green horizontal and vertical dashed lines.

Table 1: Exponential fitting of the 𝛾-ray light curve of 4FGL J1048.4+7143. See the description of the
parameters in the text.

Parameter 𝐹1,1 𝐹1,2 𝐹2,1 𝐹2,2 𝐹3,1 𝐹3,2

𝑎 (×10−7 ph cm−2s−1) 1.87 ± 0.40 3.36 ± 0.64 2.60 ± 0.70 3.97 ± 0.60 4.01 ± 0.58 3.63 ± 0.62
𝑏 (MJD, days) 56378 ± 17 56710 ± 10 57578 ± 15 57801 ± 10 58760 ± 8 58957 ± 7

𝑐 (days) 109 ± 32 70 ± 17 75 ± 23 87 ± 17 72 ± 14 58 ± 13

light curve above 168 MeV to optimize the accumulation times and to avoid the accidental capture
of background photons.

We plot the photon flux of 4FGL J1048.4+7143 as function of time in Fig. 1. The source was
in a quiescent phase till about MJD 56000 and after that the source has shown three major flares
with subflare structure. We fitted the light curve with two-sided exponential functions in the form
of

𝐹𝑖, 𝑗 (𝑡) = 𝑎0 + 𝑎𝑖, 𝑗 × exp
[−|𝑡 − 𝑏𝑖, 𝑗 |

𝑐𝑖, 𝑗

]
, (1)

with 𝑡 being the time, the index 𝑖 running from 1 to 3 for the three main flares, 𝑗 is 1 or 2 for the
subflares of the 𝑖th main flares, 𝑎0 measuring the baseline, 𝑎𝑖, 𝑗 the height, 𝑏𝑖, 𝑗 the time location of
the peak, and 𝑐𝑖, 𝑗 the slope of the exponential function. The resulting fit parameters are shown in
Table 1 (𝜒2

red ≈ 11.2).
Employing the so-called centroid method, we determined the centers of the three major 𝛾-ray

flares as MJDs 56556 ± 69, 57720 ± 53, 58843 ± 44, and consequently the flare duration in days as
561 ± 81, 449 ± 89, 383 ± 57. The inferred flare durations are marked as gray areas in Fig. 1. The
elapsed time between the centers of corresponding major flares are 𝑃1→2 = 3.19± 0.24 yr (the time
interval between major flare one and two) and 𝑃2→3 = 3.07 ± 0.19 yr (the time interval between
major flare two and three).

3



P
o
S
(
I
C
R
C
2
0
2
3
)
1
5
8
7

Multimessenger Picture of J1048+7143 Emma Kun

Figure 2: Left: The jet of J1048+7143 as seen at 4.8-GHz with the VLA. The jet is oriented towards west
and it extends to ∼ 15 kpc projected distance (red arrow). Middle and right: Two examples of the 8.6-GHz
jet structure observed with the VLBI (observing dates 2001 Jul 7 and 2010 Mar 23, respectively). In the
mas-scale structure (8.361 pc/mas), there is an approximately eastern (turquoise arrow) and a southern jet
extension (green arrow), such that sometimes the eastern and sometimes the southern jet dominates.

3. Signatures of jet precession on the kpc- and pc-scale radio structure of
J1048+7143

We chose the Very Large Array (VLA) imaging experiment AG512 (PI: L. Greenhill) conducted
on 1997 Jan 12 to reveal the kpc-scale structure of J1048+7143. The data are available in the
U.S. National Radio Astronomy Observatory (NRAO) archive1. The FSRQ J1048+7143 was the
calibrator source for observing the water megamaser in NGC 3735 [15] at 4.8, 8.4, and 15 GHz
frequencies. We present the 4.8-GHz image of J1048+7143 in Fig. 2, left.

We employed archival (calibrated) 8.6-GHz visibility data obtained with the Very Long Base-
line Array (VLBA), sometimes augmented with other radio telescopes, to derive the structural
properties of the pc-scale jet of J1048+7143. The observations were carried out between 1994.61
and 2020.73, spanning more than 26 yr at 69 epochs2. See the details about the analysis of archival
VLA and VLBA observations in [20].

In the middle panel of Fig. 2 (observing date 2001 Jul 5), we see a jet pointing approximately
toward east and one pointing south. In the right panel of the same Fig. 2, at another epoch (2010
Mar 23), we see only a south-directed jet. This, also considering the large misalignment between
the arcsec- and mas-scale jets, suggests jet precession in the source.

We show archival 4.8-GHz single dish flux density curves of J1048+7143 in Fig. 3., obtained
with the Nanshan 26-m radio telescope [e.g. 22] and with the 600-m RATAN-600 radio telescope
[24]. After a quiescence phase, the single dish flux density curves reveal 2–3 major radio flares of
this blazar at 4.8 GHz, such that their peaks clearly coincide with the centroids of the major 𝛾-ray
flares.

4. Spin–orbit precession in J1048+7143

Spin-orbit precessing SMBH jets [e.g. 19] can be revealed by quasi-periodic flaring emissions.
We test for the (quasi-) periodic behavior of the three major flares (see in Fig. 1) for this scenario.

1https://data.nrao.edu/

2http://astrogeo.org/cgi-bin/imdb_get_source.csh?source=J1048%2B7143
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Figure 3: The RATAN-600 4.8-GHz (purple filled circles), Nanshan 4.8-GHz (orange triangles), OVRO
15-GHz single-dish radio flux density curves (blue empty diamonds), the 8.6-GHz integrated interferometric
flux density of J1048+7143 (black empty diamonds), and the 8.6-GHz flux density of the VLBI core (black
filled diamonds). We plot the time coordinate of centroids of the three major 𝛾-ray flares by down-pointing
black arrows.

We expand the jet precession model of [10], which determines the direction angle of dominant
spin, 𝜙 [changes from 0◦ to 360◦, see in 10] as a function of the remaining time until the binary
coalescence, Δ𝑇GW. This model is valid in the 2.5 post-Newtonian (PN)([13]). We modified the
model of [10] by allowing small mass ratios, 𝑞 = 𝑚2/𝑚1 < 1(𝑚1 + 𝑚2 = 𝑀), of the binary that
results in

𝜙(Δ𝑇GW , 𝑞) = −2 (4 + 3𝑞)
(1 + 𝑞)2

(
5 𝑐

32𝐺1/3𝑀1/3 · (1 + 𝑞)2

𝑞

)3/4
(Δ𝑇GW)1/4 + 𝜓 , (2)

where 𝐺 is the gravitational constant, 𝑀 is the total mass of the SMBBH, 𝑐 is the speed of light,
and 𝜓 is an integration constant, which defines the initial direction of the jet. We use the one-spin
formalism of [13] and assume the direction of the jet to be parallel with the dominant spin (see the
reasoning e.g. in [18]).

Thus, we can establish the connection between two consecutive flares as they reveal one
complete spin-orbit precession period (𝑃jet):

𝜙(Δ𝑇GW , 𝑞) = 𝜙(Δ𝑇GW − 𝑃jet , 𝑞) ± 𝜁 . (3)

During one precession period, the time remaining until the binary coalescence decreases fromΔ𝑇GW

to Δ𝑇GW − 𝑃jet, such that 𝜁 identifies as the half-opening angle of the jet. Employing Eqs. (2)-(3),
we determine the remaining merger time of the SMBBH. Possible values for the merger time as
function of the mass ratio 𝑞 are shown in the left side of Fig. 4. We constrain the range of possible
mass ratios to the typical mass ratio values of merging SMBBHs (𝑞 = 1/3–𝑞 = 1/30) [13], adopting
a total mass of 109.16±0.2 𝑀⊙ [26] at redshift 𝑧 = 1.15 [27]. The predicted time of the merger (as
seen from Earth) can be seen by green. Invalid mass ratios (𝑞 ≳ 1/4) based on the third major
𝛾-ray flare are highlighted by the red area. From this we conclude the binary could merge in the
next ∼ 60 to 80 yrs. Using our model we predict that fourth flare of J1048+7143 will occur before
the end of 2024, at the latest before summer 2025.

5
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Figure 4: Left: Time of the merger of the hypothetical SMBBH at the center of J1048+7143, as a function
of its mass ratio. Right: Gravitational wave signals from J1048+7143 assuming a SMBBH merger at its core.
The blue and orange lines show the expected characteristic strain with the mass ratio 𝑞 = 1/5 and 𝑞 = 1/30,
respectively. The black lines show the sensitivity curves from the detectors SKA, IPTA and EPTA [25]. The
red line shows the LISA sensitivity curve, while other colored lines indicate the gravitational wave frequency
emitted by a possible binary with (from left to right) 50 years (yellow), 10 years (magenta), 1 year (cyan),
and 30 days (purple).

5. Gravitational wave signal expected from J1048+7143

As we have shown, the 𝛾-ray signals from J1048+7143 are consistent with a SMBBH merger
at its core. Now we determine the gravitational wave (GW) signal expected from the source. We
model the expected characteristic strain ℎ𝑐 as [31]:

ℎ𝑐 =

√︂
2
3

1
𝑟 (𝑧)

1
𝜋2/3𝑐3/2

(𝐺M)5/6

(1 + 𝑧)1/2 𝑓 −1/6 , (4)

with the co-moving source distance 𝑟 (𝑧), the chirp mass M = (𝑚1𝑚2)3/5/(𝑚1 + 𝑚2)1/5 and
the observed GW frequency 𝑓 . The corresponding GW frequencies range from arbitrary small
frequencies to 𝑓ISCO, which describes the emitted GW frequency at the innermost stable circular
orbit [ISCO, see e.g. 33]. We plot the expected characteristic strain in the right side of Fig. 4 for the
limiting mass ratios 𝑞 = 1/5 (blue) and 𝑞 = 1/30 (orange). Setting the remaining time until the final
coalescence for 50, 10, 1 year and 30 days, we determined the frequencies of gravitational waves
emitted from this source [6, 33]. These GW frequencies are indicated with vertical dashes in the
colors (from left to right) yellow, magenta, cyan, and purple in the right side of Fig. 4. Sensitivity
curves from the European Pulsar Timing Array (EPTA), International Pulsar Timing Array (IPTA),
and Square Kilometer Array (SKA) are shown in black [25] in the same figure, while the LISA
sensitivity curve [2] is shown in red. Fig. 4 shows that neither the PTAs nor LISA can detect
J1048+7143 in gravitational waves.

The multiwavelength behavior of J1048+7143 is qualitatively compatible with a spine-sheath
jet periodically crossing a target close to our line of sight (e.g. clouds of the broad-line region),
where the outer layer, the sheath, consists of protons, electrons, positrons, while the inner jet, the
spine, contains only electrons and positrons. When the sheath meets the target we expect elevated
gamma-ray flux (gamma-ray subflares) and high-energy neutrinos, while from the spine crossing the
target we expect only elevated radio emission peaking between the gamma-ray subflares. Finally

6
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we note that constructing the multimessenger picture of active galaxies is key to understanding
the high-energy emission from these sources [4, 10] and to find possible candidates of periodic
high-energy neutrino emission.
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