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 A B S T R A C T

Accurate anomaly detection and localization in sheet metal glue line applications are crucial for quality 
assurance in automotive manufacturing. Most current vision-based inspection systems that rely on geometric 
deviations from a predefined shape often suffer from high false-positive rates, leading to unnecessary 
interventions and operational inefficiencies. This research investigates the potential of unsupervised deep 
learning models to significantly reduce false positives in the analysis of sheet metal glue line images, even 
with limited datasets. We conducted a comparative evaluation of 17 unsupervised deep learning models 
covering different categories with 28 backbones on datasets of approximately 300 industrial glue line images 
per part from a Swedish vehicle manufacturer. A data synthesis method was applied to balance the glue line 
dataset, further enhancing the reliability of the models. To address the challenge of limited training data 
and improve model generalization, we incorporated data augmentation techniques and performed robustness 
experiments to ensure applicability to real-world industrial conditions. Our findings demonstrate that deep 
learning approaches can effectively detect and localize anomalies, significantly reducing false positives and 
gluing machine downtimes compared to the existing system. Moreover, we proposed a multi-criteria decision-
making based approach for model selection, enabling decision-makers to achieve optimal trade-offs between 
accuracy and inference time, thus improving operational efficiency. These advancements highlight that even 
with limited training data, unsupervised deep learning models can enhance anomaly detection reliability, 
streamline the automotive production process, and reduce unnecessary resource expenditures.
1. Introduction

Glued joints are widely used in the automotive industry as they offer 
several advantages over traditional methods. For instance, adhesives 
can join different material types and do not influence the material prop-
erties as traditional methods such as riveting or welding do (Maláková 
et al., 2019). Adhesives need to be dispensed on the material before 
joining, for which robots are frequently employed (Prezas et al., 2022). 
However, inconsistencies in adhesive application may occur during 
this process, posing challenges for quality control. This is particularly 
critical in automotive manufacturing, where robust geometry assur-
ance processes are essential for maintaining smooth and uninterrupted 
production and cost efficiency (Söderberg et al., 2016).

Traditional quality assurance methods such as manual inspection 
can be laborious and susceptible to human errors. There are also 
researchers or industries that use image detection methods such as 
OpenCV (Bradski, 2000) for image detection. However, these require 
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a large amount of various types of image data, and in practice, there is 
often a lack of images representing anomalies or defects. In such cases, 
traditional vision-based systems that rely on the detection of deviations 
from a predefined geometry do not perform well. In this regard, data-
driven methods such as deep learning-based image anomaly detection 
are promising approaches to automatically supervise quality. Anomaly 
detection has already been widely applied in many industries ranging 
from automotive to lace production (Zipfel et al., 2023; Jiang et al., 
2019; Tang et al., 2020; Lu et al., 2022). In this domain, the advent of 
deep learning has enabled a general increase in performance compared 
to traditional image processing approaches (Pang et al., 2021; Luo 
et al., 2022; Liu et al., 2024b).

Sheet metal glue line defects in the automotive context often man-
ifest as wavelike irregularities along the adhesive line. These defects 
can appear as inconsistent thickness, gaps, or uneven dispersion, which 
can compromise the joint’s structural integrity. Images capturing these 
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glue line defects are typically gray-scale, with variations in intensity 
highlighting the anomalies. These characteristics pose challenges for 
detection and segmentation, as the subtle differences can be easily 
missed by traditional approaches.

Deep learning based anomaly detection algorithms can be trained 
in a supervised , semi-supervised or unsupervised fashion (Pang et al., 
2021; Liu et al., 2024b). As with many Artificial Intelligence (AI) use 
cases, data collection and annotation is a problem as it can be costly and 
time consuming. This problem can be mitigated or avoided using semi-
supervised or unsupervised methods (Pang et al., 2021). In this regard, 
this study analyses a specific industrial case from an unsupervised 
perspective.

The primary objective of this research is to investigate the use of 
unsupervised deep learning models to reduce the incidence of false 
positives in the automated inspection system for detecting small and 
large anomalies in images captured by industrial cameras. Specifically, 
this study aims to compare various unsupervised deep learning models 
to identify the most effective methods for anomaly detection and 
segmentation in an industrial context.

This study aims to address the following research questions:

• Which unsupervised deep learning models provide the optimal 
accuracy and efficiency in detecting and segmenting anomalies 
in glue-line images from industrial cameras?

• How can the lack of defect class datasets in industry be addressed 
to improve model performance and reliability?

This research aims to address the current gap by offering a detailed 
comparison of unsupervised deep learning models, helping manufac-
turers choose the most suitable techniques to improve the accuracy, 
reliability and efficiency of their inspection processes. By reducing false 
positives with unsupervised deep learning techniques, this study seeks 
to pave the way for increased accuracy and operational efficiency in 
anomaly detection, then help the glue line system to avoid frequent 
downtime, inspection by maintenance workers and greatly improve 
overall equipment effectiveness of the whole process system.

The paper is organized into several sections: following this introduc-
tion, we review the relevant literature and categorize the unsupervised 
deep learning models, then describe the methodology and experimental 
2 
setup, and present the results of the comparative analysis, discuss the 
implications of the findings, and conclude with recommendations for 
future research and implementation.

2. Related work

In manufacturing, maintaining high-quality standards is essential to 
ensure product reliability and customer satisfaction, making anomaly 
detection techniques crucial.

2.1. Anomaly detection in manufacturing

Industrial anomaly detection is widely applied across various in-
dustrial data problems, including image anomaly detection and IoT 
time series anomalies. Anomaly detection in IoT focuses on identifying 
irregularities in time series data to prevent equipment failures and 
optimize maintenance such as for instance the work of Weihan (2020) 
or Jeong et al. (2022). However, in this section we concentrates on 
image anomaly detection. The goal of image anomaly detection is 
to detect defects on the appearance of various types of industrial 
products (Luo et al., 2022). Some of these defects are small and difficult 
to detect, but they can be harmful for functionality of the product.

In the manufacturing industry, defects tend to appear in small 
regions of the image with low significance, and in turn, industrial defect 
detection focuses more on detecting anomalous pixels in the image (Luo 
et al., 2022). We reviewed and compared selected works that evaluated 
models on industrial image datasets. Table  1 compares the datasets 
used, application domains, models employed, and training mechanisms, 
highlighting advancements in industrial surface inspection methodolo-
gies. It shows that image anomaly detection and quality check are 
widely applied in various domains.

The MVTec dataset (Bergmann et al., 2021) is a popular benchmark 
dataset in the industrial domain; however, people are also applying 
their own dataset to test their models’ accuracy. For example, the 
study by Haselmann et al. (2018) employed decorated plastic parts on 
their Convolutional Neural Networks (CNN) approach, and Jiang et al. 
(2019) applied semi-supervised training techniques using GAN and 
You Only Look Once (YOLO) v3 models on their cigarette production 
dataset. Staar et al. (2019) and Tayeh et al. (2020) used unsupervised 
training with custom datasets and the MVTec AD dataset, respectively. 
They both employ Triplet Networks and CNNs, which demonstrates the 
versatility of these models in various industrial applications.

This comparison highlights the importance of selecting appropriate 
datasets and training mechanisms tailored to specific industrial needs. 
It also illustrates the ongoing trend of leveraging advanced neural net-
work architectures to improve the accuracy and reliability of anomaly 
detection systems in manufacturing.

2.2. Deep learning based image anomaly detection

Deep learning methods for image anomaly detection can be trained 
in supervised, semi-supervised, weakly-supervised and unsupervised. 
Supervised learning requires labeled datasets, semi-supervised learning 
combines a small amount of labeled data with a large amount of 
unlabeled data, and unsupervised learning identifies patterns in en-
tirely unlabeled data, making these methods versatile and adaptable 
to various industrial scenarios.

2.2.1. Supervised deep learning method
Supervised deep learning methods have a wide and mature ap-

plication to industrial vision tasks, and are often used for industrial 
defect detection when the defect types are known and have suffi-
cient labeled samples, or to solve the problem of classifying defect 
types. Li et al. (2018) improved YOLO network and made it all con-
volutional to provide an end-to-end solution for surface defects detec-
tion of steel strip. Chen and Tsai (2021) developed a defect detector 



S. Chen et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110740 
Table 1
Comparison of approaches for anomaly detection in industrial surface inspection.
 Reference Dataset Domain Models Used Training  
 Zipfel et al. (2023) VIN labels Automotive GANomaly, PaDiM, 

Patchcore
Unsupervised  

 Jiang et al. (2019) Cigarette production 
dataset

Industrial production GAN, YOLOv3 Semi-supervised 

 Haselmann et al. (2018) Decorated plastic parts Manufacturing CNN Unsupervised  
 Staar et al. (2019) DAGM dataset Automotive & Medical Triplet Networks, CNN Unsupervised  
 Lu et al. (2022) Lace video Lace production RNN Unsupervised  
 Posilović et al. (2022) Ultrasonic non-destructive 

testing dataset
Mechanical GANomaly, PaDiM, 

DifferNet
Unsupervised  

 Tang et al. (2020) Mobile phone screen 
glass/wood surface

Manufacturing DAGAN Unsupervised  
 

on the basis of YOLOv3 and used densely connected convolutional 
networks (DenseNet) to inspect the chips of surface-mounted device 
light-emitting diodes (SMD LED). Božič et al. (2021) proposed a deep 
learning architecture for surface-defect detection that reduces the need 
for detailed annotations by utilizing a range of supervision levels, from 
weak image-level labels to full pixel-level annotations, resulting in 
effective defect segmentation and classification. And to cope with the 
problems of texture offset and partial visual confusion, Zeng et al. 
(2021) proposed Reference-based Defect Detection Network, which 
introduces template references and contextual references to solve the 
problems respectively. Qiu et al. (2019) proposed a three stages su-
pervised deep learning method, which uses a lightweight fully convo-
lutional network for pixel-wise defect prediction, detection to correct 
improper segmentation, and matting to refine defect contours using 
a guided filter. To balance efficiency and accuracy, the method re-
places standard convolution, pooling, and deconvolution layers with 
depthwise & pointwise, strided depthwise, and upsample depthwise 
convolution layers, respectively. However, supervised deep learning 
methods often face the problem of not having sufficient and balanced 
labeling-containing datasets, and the cost of labeling is relatively high, 
and the problem cannot be completely solved even by using data 
augmentation (Luo et al., 2022).

2.2.2. Semi-supervised and weakly-supervised deep learning method
To address the challenge of limited defective samples and un-

balanced data, semi-supervised deep learning methods leverage both 
labeled and unlabeled data to enhance anomaly detection performance. 
By combining the strengths of supervised learning with the abun-
dance of unlabeled data, these models can achieve high accuracy with 
fewer labeled examples, making them particularly effective in scenar-
ios where acquiring labeled data is costly or time-consuming. Chu 
and Kitani (2020) proposed a novel semi-supervised learning algo-
rithm for anomaly detection and segmentation that uses an anomaly 
classifier based on the loss profile of data processed through an au-
toencoder. Class activation map guided UNet used sufficient normal 
training images and limited annotated anomalous images to train a 
defect segmentation model with a feedback refinement mechanism (Lin 
et al., 2020).

Weakly-supervised image anomaly detection methods leverage small
amounts of annotated abnormal data to enhance detection perfor-
mance, providing valuable guidance even when abnormal samples are 
limited compared to normal ones. Methods like DevNet (Zhou et al., 
2022) and approaches using Logit Inducing Loss (LIS) and Abnormality 
Capturing Module (ACM) demonstrate that even with coarse-grained 
annotations, models can achieve fine-grained detection results, compa-
rable to fully supervised models (Wan et al., 2022). Methods for neural 
network interpretability are also applied in weakly supervised settings. 
These approaches typically train classification models using image-level 
annotations and then use techniques like Class Activation Mapping 
(CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM) to 
3 
Fig. 1. Categorization of unsupervised deep learning models for image anomaly 
detection.

identify the regions in the feature maps that contribute the most to the 
classification result (Zhou et al., 2016; Selvaraju et al., 2017), thereby 
achieving defect localization. By focusing on these key regions, the 
models can effectively pinpoint anomalies even with limited annotated 
data, enhancing the overall performance of anomaly detection tasks in 
scenarios where fine-grained annotations are scarce.

2.2.3. Unsupervised deep learning method
Unsupervised deep learning methods require only easily accessi-

ble normal samples for model training, eliminating the need for real 
defective samples. This approach not only addresses the limitation 
of supervised deep learning methods in identifying unknown defects 
but also offers a stronger representation of image features compared 
to traditional methods. The core idea behind these methods is to 
construct a ‘‘template’’ that closely resembles the sample being tested. 
By comparing this template to the sample, defects can be detected and 
localized based on pixel or feature differences. Depending on the com-
parison dimensions, unsupervised deep learning methods are generally 
categorized into feature-embedding based and reconstruction-based 
approaches as shown at Fig.  1 (Liu et al., 2024b). We will discuss the 
state of the art unsupervised models and compare some of them in our 
study and dataset.
Feature embedding based methods. Feature embedding based models 
aim to learn compact and informative representations of normal data. 
These models transform input images into a lower-dimensional feature 
space, capturing essential characteristics while discarding redundant 
information. Anomalies are identified by measuring deviations from 
these learned embeddings (Liu et al., 2024b). By focusing on feature 
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Fig. 2. Student-teacher network.

embeddings, these models leverage powerful deep learning techniques 
to detect subtle discrepancies that signify defects.

Deep One-class classification methods use deep neural networks 
to extract high-quality features from normal images, ensuring these 
features are compactly distributed in the feature space. This compact 
distribution allows for the construction of precise boundaries to dis-
tinguish normal features from anomalies. Deep support vector data 
description (Deep SVDD) is an important method in one-class classifica-
tion, and it trains a neural network to map normal sample features into 
the hypersphere to distinguish whether the test sample is abnormal or 
not (Ruff et al., 2018). Different researchers have continuously based 
and optimized SVDD methods to enhance the effectiveness of image 
anomaly detection and localization, such as PatchSVDD (Yi and Yoon, 
2020), Fully Convolutional Data Description (FCDD) (Liznerski et al., 
2020), etc.

Student–teacher networks employ a dual-network system where a 
student network learns to replicate the feature representations of a 
pre-trained teacher network. The network structure is shown at Fig.  2. 
The difference between the two networks helps in identifying anoma-
lies. Bergmann et al. (2020) firstly applied this network into anomaly 
detection. The representational power of a large pre-trained network 
is transferred to a lightweight teacher network through knowledge 
distillation. Then, multiple randomly initialized student networks are 
trained on standard datasets to ensure they represent normal samples 
similarly to the teacher network. This method relies on regression er-
rors in defect representation between the student and teacher networks, 
as well as high uncertainty in defect representation among multiple 
student networks, to achieve pixel-level defect segmentation. Wang 
et al. (2021) used a pre-trained image classification model as a teacher 
to distill knowledge into a single student network, which learns the 
distribution of anomaly-free images while preserving key cues. By 
integrating a multi-scale feature matching strategy, the student network 
can detect anomalies of various scales, with the difference between the 
feature pyramids of the two networks serving as a scoring function 
for anomaly probability. While using similar architectures to build 
the student and teacher models hinders the diversity of anomalous 
representations, Deng and Li (2022) proposed a novel teacher–student 
model and an effective reverse distillation paradigm where the student 
restores the teacher’s multi-scale representations from its one-class 
embedding to tackle this problem.

Distribution map models aim to model the probability distribution 
of the features of normal samples, thus eliminating the need to build 
a large library of normal samples. After capturing the underlying 
distribution of normal data, anomalies are detected by identifying data 
points that deviate from that distribution (Liu et al., 2024b). Rippel 
et al. (2021) first extracted multi-scale features of normal samples using 
a pre-trained network and modeled each feature map as a multivariate 
Gaussian distribution separately, and they applied the Mahalanobis 
distance as the anomaly score. Normalizing Flows (NF)-based methods 
now are dominant (Liu et al., 2024b), where NF is a technique for 
constructing complex distributions by transforming probability densi-
ties through a series of invertible mappings (Rezende and Mohamed, 
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2015). DifferNet first applied NF-based models to increase the flex-
ibility (Rudolph et al., 2021). CFlow-AD enhances the conditional 
NF framework by introducing positional encoding, thereby improving 
anomaly detection performance and thoroughly analyzing the ratio-
nale behind the multivariate Gaussian assumption in earlier mod-
els (Gudovskiy et al., 2022). CSFlow incorporates cross-convolutional 
blocks within the NF, leveraging contextual information from multi-
scale feature mappings to increase the accuracy of anomaly detec-
tion (Rudolph et al., 2022). Meanwhile, FastFlow alternates between 
large and small convolutional kernels to effectively model both global 
and local distributions (Yu et al., 2021).

Memory bank approach maintains a repository of normal feature 
representations. The primary idea is to store features of normal data 
during training, which can then be used during inference to compare 
and detect anomalies. Spatially-Adaptive Denormalization (SPADE) 
uses a pre-trained CNN model to extract the feature vectors of the train-
ing set to construct a database of normal samples, and then uses the 
K-Nearest neighbors method to obtain anomaly segmentation results 
using a multi-resolution feature pyramid matching method (Cohen and 
Hoshen, 2020). PaDiM uses a pretrained CNN for patch embedding and 
employed multivariate Gaussian distributions to obtain a probabilistic 
representation of the normal class (Defard et al., 2021). It leverages 
correlations between different semantic levels of the CNN to improve 
anomaly localization. PatchCore uses a maximally representative mem-
ory bank of nominal patch-features, and it can detect minute defects 
that might be missed by other methods by storing and comparing 
patch-level features (Roth et al., 2022).
Reconstruction based methods. The core idea of reconstruction-based 
methods is to train a model using normal samples to learn the distribu-
tion characteristics of normal data. Anomalies are then detected based 
on the reconstruction error (Luo et al., 2022). It is assumed that normal 
data can be reconstructed accurately, while abnormal data will have a 
larger reconstruction error due to its deviation from the normal data 
distribution. Therefore, by analyzing the difference between the input 
image and the reconstructed image, anomalies can be effectively iden-
tified. This method includes autoencoder (AE), variational autoencoder 
(VAE), Generative Adversarial Network (GAN), transformer, diffusion, 
etc.

AE consists of two main parts: an encoder and a decoder. The 
encoder compresses the input image data into a lower-dimensional 
latent space, capturing the essential features of the input. The decoder 
then attempts to reconstruct the original data from this compact rep-
resentation. Defect localization can then be achieved based on the 
reconstruction error between the input image and the reconstructed im-
age. While in VAE, a variant of AE, it maps the input to a distribution, 
typically a Gaussian distribution, instead of mapping the input image 
data to a single point in the latent space (Kingma et al., 2019). The 
framework of AE and VAE is shown at Fig.  3.

In order to solve the blurring phenomenon of AE in reconstructed 
images, Discriminative Feature Refinement (DFR) improves the quality 
of reconstructed images by choosing to implement the multi-scale 
fusion of information in the hidden space (Yang et al., 2020), while an-
other method simulates the blurring effect of AE by introducing a styl-
ized distillation branch, which stylizes the input image and reduces the 
misdetection of the normal pixel points when calculating reconstruction 
errors (Chung et al., 2020). DRAEM combines both reconstructive and 
discriminative approaches by learning a joint representation of an 
anomalous image and its anomaly-free reconstruction, while simultane-
ously establishing a decision boundary between normal and anomalous 
examples without the need for additional post-processing (Zavrtanik 
et al., 2021). DSR, based on a quantized feature space representation 
with dual decoders, avoids the need for image-level anomaly synthesis 
by generating anomalies at the feature level through sampling the 
learned quantized feature space, allowing for controlled generation of 
near-in-distribution anomalies (Zavrtanik et al., 2022).
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Fig. 3. Framework of AE and VAE.
VAE can construct structured latent space manifolds that are more 
controllable than AE, and thus the main common features of normal 
samples can be learned from the perspective of latent space distribu-
tion (Luo et al., 2022). To cope with the difficulty of obtaining clear 
and consistent reconstructed images due to random sampling, Dehaene 
et al. (2020) used the idea of iterative approximation, while FAVAE 
models the feature distributions extracted by the pre-trained model to 
enhance the generalization of the model (Dehaene and Eline, 2020), 
and in another approach, VQ-VAE is used as a reconstruction model to 
obtain the discrete latent space of the normal samples and to estimate 
the discrete latent space of the probabilistic model. In the detection 
phase, the autoregressive model will determine the portion of the input 
latent space that deviates from the normal distribution. The deviant 
code is then resampled and decoded from the normal distribution to 
obtain a restored image that is closest to the anomalous input (Wang 
et al., 2020).

GAN has a powerful ability to model distributions and generate 
high-quality images. A GAN consists of two components: a generator 
(G) that creates images and a discriminator (D) that evaluates their 
realism (Creswell et al., 2018). The adversarial training mechanism 
between the generator and discriminator is key to producing clear 
images, as the generator improves by trying to fool the discrimina-
tor, which in turn becomes better at distinguishing real images from 
generated ones. There are different models that have used GAN for 
image anomaly detection, such as AnoGAN which uses the idea of 
iterative optimization, although the model inference time is long and 
the practicality is poor (Schlegl et al., 2017). While f-AnoGAN adds 
additional encoders to extract image features and uses a multi-stage 
training approach to guide the generator to produce the best matching 
image (Schlegl et al., 2019). OCR-GAN proposes a frequency decoupling 
module to separate the input image into different frequency compo-
nents, modeling reconstruction as parallel omni-frequency restorations. 
Additionally, it introduces a channel selection module that enhances 
frequency interaction among different encoders by adaptively selecting 
channels (Liang et al., 2023).

Transformers leverage self-attention mechanisms to capture long-
range dependencies in data, making them highly effective for anomaly 
detection (Han et al., 2022). By modeling complex relationships within 
the data, transformers can accurately reconstruct normal patterns and 
identify anomalies based on deviations from these patterns. Mishra 
et al. (2021) presented a transformer-based image anomaly detection 
and localization network that combines reconstruction and patch em-
bedding, using a Gaussian mixture density network to localize anoma-
lies. A masked Swin Transformer Unet (MSTUnet) is proposed for 
anomaly detection, using the Swin Transformer’s global learning abil-
ity to inpaint masked areas created by an anomaly simulation and 
mask strategy, followed by a convolution-based Unet for end-to-end 
detection (Jiang et al., 2022).

Diffusion models are deep generative models based on two stages: 
a forward diffusion stage and a reverse diffusion stage. In the forward 
diffusion stage, the input data is gradually perturbed over several steps 
by adding Gaussian noise, while in the reverse stage, a model learns 
to recover the original input data by gradually reversing the diffusion 
process (Croitoru et al., 2023). For anomaly detection, these models 
5 
leverage their ability to produce high-quality and diverse normal data 
patterns, identifying anomalies based on deviations from these pat-
terns during the reverse diffusion process, despite their computational 
burdens due to the high number of steps involved. There are three 
generic diffusion modeling frameworks which are denoising diffusion 
probabilistic models, noise conditioned score networks, and stochas-
tic differential equations (Croitoru et al., 2023). Denoising Diffusion 
Probability Models (DDPM) perform well on anomaly detection bench-
marks, but are computationally expensive (Sasaki et al., 2021). By 
simplifying DDPM for anomaly detection, Livernoche et al. (2023) 
proposed Diffusion Time Estimation (DTE), which estimates the dis-
tribution over diffusion time for a given input and uses the mode or 
mean as the anomaly score. Also in medical imaging anomaly detection, 
diffusion model has a wide range of applications. Iqbal et al. (2023) 
used masked-DDPM which introduces masking-based regularization, 
specifically Masked Image Modeling (MIM) and Masked Frequency 
Modeling (MFM), to enhance the generation task of diffusion models 
for brain medical applications.

Many of the current state-of-the-art methods are also use a blend of 
methods, rather than being limited to using only one approach. Masked 
Multi-scale Reconstruction (MMR) integrates both feature embedding 
and reconstruction-based methods (Zhang et al., 2023). Functioning 
as a student-teacher network, the frozen pre-trained encoder serves as 
the teacher while the student network learns from it. By employing 
a masked AE strategy, MMR enhances the model’s ability to under-
stand spatial dependencies and causality in normal samples, preventing 
information leakage from visible to masked parts of the image.

2.3. Data augmentation and synthesis

Since there is often a lack of defective samples with precision 
labeling in industry today, which is not enough to support the train-
ing of neural networks, data augmentation and synthesis are often 
required to improve model performance. Rippel et al. (2020) addressed 
lack of large amounts of annotated training data by leveraging the 
consistency of defect appearance across fabrics to transfer knowledge 
about anomalies from one fabric to another. While Defect-GAN ap-
proach can automated generate realistic and diverse defect samples 
for training inspection network (Zhang et al., 2021). It uses a com-
positional layer-based architecture to generate and restore defects on 
normal surface images, offering realistic defect generation with flexible 
control over their location, category, and appearance. Liu et al. (2024a) 
proposed SyNet, a novel unsupervised learning method based on noisy 
anomaly synthesis for medical image anomaly detection and Tayeh 
et al. (2020) used random erasing techniques to synthesize defective 
training samples by introducing artificial defects into non-defective 
samples.

Cutpaste is commonly used for data augmentation by cutting an 
image patch and pasting it at a random location on a larger im-
age (Li et al., 2021). Building on this, Natural Synthetic Anomalies 
(NSA) integrates Poisson image editing to create more naturally appear-
ing sub-image irregularities (Schlüter et al., 2021). Similarly, AnoSeg 
enhances the diversity of synthetic defects by applying data augmen-
tations like random rotation, positional disruption, and color dithering 
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Fig. 4. A schematic of the industrial process depicting the cycle based vision control.
before cropping, and it incorporates coordinate channels representing 
pixel positional information into AnoSeg’s inputs to account for the 
positional relationships within the image (Song et al., 2021).

3. Methodology

3.1. Use case background

This research was conducted in collaboration with a prominent 
Nordic automobile manufacturer known for its extensive global pro-
duction footprint, with facilities spread across various international 
locations. The study specifically focused on one of the manufacturer’s 
key production plants in Sweden. At this plant, the maintenance depart-
ment faced a critical challenge: verifying glue lines against stringent 
industry standards. Ensuring the quality of glue lines is important, as 
any deviation from the established standards could significantly impact 
the vehicle assembly line and compromise the overall manufacturing 
process.

Historically, the quality control process for glue lines at this promi-
nent Swedish automobile manufacturer relied on an automated system 
utilizing industrial-grade cameras. Specifically, the SICK Pim60 Vision 
robot (illustrated in Fig.  4), mounted above the production line at a 
fixed height and angle to capture optimal views of the glue lines (SICK 
AG, 2024), captured images at set intervals (details on the cycle interval 
are omitted for confidentiality). Ten images were captured for each 
control point, and the system analyzed them using embedded optical 
techniques. This analysis produced a binary output (‘‘OK’’ or ‘‘NOT 
OK’’) for each image, indicating whether the glue line met quality 
standards. Despite this automation, the approach still required manual 
review to ensure the accuracy and reliability of defect detection.

During the company’s operations, a high rate of false detections has 
been noted when inspecting glue lines. Data shows that about majority 
of glue lines meet the required standards, yet they are still flagged as 
defective by the imaging system. This misclassification is mostly due 
to external factors, especially inconsistent lighting conditions during 
image capture. These false detections have several consequences. When 
the automated system identifies a supposed defect, it can trigger a shut-
down, requiring manual checks. Maintenance staff must then verify the 
glue lines and restart the equipment, which reduces productivity and 
increases the workload. Given that true instances of non-compliance 
are rare, this highlights the gap between what the system detects and 
the actual quality of the glue lines.

3.2. Dataset

To conduct our research and assist the company in addressing the 
aforementioned issues, we collaborated with the maintenance depart-
ment to collect glue lines’ image data and form a dataset. This dataset 
consists of multiple sets of grayscale images of different sections of 
glue lines, systematically captured by stationary industrial cameras. 
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The dataset includes 20 distinct components, each containing approxi-
mately 300 images, with a resolution of 480 pixels high by 640 pixels 
wide. These images, consisting of a single channel, contain no color 
data and emphasize contrast variations important for the analysis, and 
show segments of glue lines across various machinery, providing a 
representative cross-section of the production line’s conditions.

To provide visual context for the following analyses, Fig.  5 shows 
some sample images from this collection. In the image, the glue line 
appears in the middle, adjacent to various sheet metal structures of 
the car. The glue line is not particularly prominent in the image. 
Displayed sequentially from left to right are representative images from 
one part: a standard glue line indicative of proper application and 
a glue line meeting the required standards but erroneously classified 
as defective. The glue lines with errors not detected by the system 
constitute a very small sample and are not shown here. Additionally, 
due to confidentiality reasons, the real fault images and the percentage 
of faulty images are not disclosed. The majority of this paper will focus 
on the most representative section (Part 1), which presents a moderate 
level of difficulty but reflects the majority of cases.

Due to the imbalanced dataset exhibiting a high false-positive rate 
and a low false-negative rate, we employed a data augmentation strat-
egy to improve the training set. Along with consulting industry profes-
sionals, we used relevant image editing software, GIMP, to modify spe-
cific regions within acceptable glue line images. These edited regions 
were altered to closely resemble true industrial defects, effectively 
generating synthetic false images to supplement the training set.

We selected a representative industrial image and divided the de-
picted glue line into five distinct segments, labeled A through E (see 
Fig.  6). The primary glue line is segmented into four distinct areas, each 
with unique characteristics affecting their inspection:

• Area A is situated in the middle of the left side of the image and 
features a darker background underneath, which can influence 
detection accuracy.

• Area B, located centrally within the image, is very close to the 
parts below it, creating potential challenges in distinguishing the 
glue line from adjacent components.

• Area C is near a small hole above it and influenced by a similarly 
long sheet metal below it, complicating accurate detection.

• Area D, near the right side of the image, is also affected by the 
sheet metal below it and the proximity to the edge of the image, 
complicating segmentation.

• Area E, in the upper right corner, has a curvature where the 
glue line detaches from the main glue line, making it the most 
error-prone during inspection.

By categorizing the glue line into specific areas, we tailored the 
inspection process to address the unique challenges presented by each 
region, thereby improving the overall accuracy and reliability of defect 
detection. To augment our dataset with a comprehensive range of false 
cases, we employed GIMP’s Warp transform tool (GIMPDoc, 2020) to 
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Fig. 5. Examples of glue line images for part1.
Fig. 6. Glue line segments A to E for part1.

simulate realistic glue application errors within each image segment 
(A through E). These simulations replicate potential defects caused by 
instability or jitter during the robotic application process, ranging from 
subtle localized distortions to extensive application anomalies.

In Fig.  7, we present examples of both normal and anomalous glue 
line segments, with the anomalies explicitly marked by red circles 
for improved clarity. The first example illustrates a localized distor-
tion within Segment A, where the anomaly is clearly annotated. The 
corresponding binary mask image further delineates the anomalous 
region, enabling precise pixel-wise comparison. Similarly, the second 
example demonstrates a small localized distortion within Segment A, 
marked with a red circle, and its corresponding binary mask image. 
These annotated and masked images enhance the interpretability of 
the data, ensuring that both large and small anomalies are effectively 
represented.

3.3. Selection of anomaly detection models

Given the unknown and irregular nature of our industrial image 
defects, the high cost of manual annotation, the stringent requirements 
for detection accuracy and speed, and the imbalance in our sampled 
dataset, we adopt unsupervised deep learning approaches to determine 
whether samples contain defects and to localize them. While Zipfel 
et al. (2023) compared three unsupervised deep learning anomaly 
detection models (PatchCore, Skip-GANomaly, and PaDiM) for vehicle 
identification numbers (VIN labels), our work extends these efforts by 
including a broader range of models and backbones, as listed in Table 
2. This approach enables us to encompass a wider spectrum of main-
stream detection methods in unsupervised deep learning, including 
both feature embedding-based and reconstruction-based techniques. 
Because diffusion-based reconstruction approaches are predominantly 
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applied to medical images rather than manufacturing scenarios, and 
because transformer-based models generally require substantial train-
ing data which is often unavailable in industrial defect detection (Luo 
et al., 2022), we exclude these models. To keep our experiments and 
evaluations consistent, we primarily use models from the Anomalib 
library (Akcay et al., 2022), supplemented by additional representative 
models not included in Anomalib (e.g., SimpleNet, MMR). Table  2 
presents each model’s trainable parameters and the original datasets 
used in their respective publications. Their accuracy on the public 
image anomaly dataset MVTec AD is provided in Table  A.7. The overall 
framework of our methods is shown in Fig.  8, where we compare and 
evaluate these state-of-the-art unsupervised models on our sheet metal 
glue line image dataset.

3.4. Experimental setup

We executed a series of experiments applying selected models on 
our glue line dataset. For baseline comparisons, we employed deep 
feature kernel density estimation. The hyperparameters for selected 
models for comparison are shown in Table  B.8. Initially, we adopted 
the default hyperparameters as provided by their respective imple-
mentations, as these are generally optimized for a broad range of 
scenarios. To ensure suitability for our specific dataset and objectives, 
we conducted preliminary evaluations to verify their effectiveness. This 
approach allowed us to maintain consistency and reliability across 
comparisons while focusing on the broader objectives of the study. 
To ensure experimental fairness and consistency, we integrated all 
implementations within a shared environment. Our computational en-
vironment consisted of Python (version 3.10.13) as the programming 
language, PyTorch (version 1.13.1) as the deep learning framework, 
a Linux system with CPU: i9-13900K, RAM: 128 GB, GPU: RTX4090 
(24 GB VRAM), and CUDA (version 11.6) for GPU acceleration.

3.5. Robustness experiment

We conducted an additional experiment utilizing a data augmenta-
tion strategy during model training to assess and compare the model’s 
robustness in our plant environment. This approach aims to improve 
model generalization by exposing it to a wider range of variations, 
thereby promoting the learning of robust feature representations ap-
plicable to unseen data. By simulating diverse scenarios, data augmen-
tation also enhances the model’s ability to handle potential real-world 
image imperfections and helped prevent over-fitting by increasing the 
diversity of the training dataset. Additionally, our experiments sought 
to address common issues such as camera shake and other potential 
artifacts caused by the motion performance of the vision robot. This 
experiment provided valuable insights into the model’s performance 
and robustness under augmented conditions.
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Fig. 7. Examples of normal and anomalous glue line segments, with corresponding mask images. Anomalies are marked by red circles and further segmented in binary mask 
images for precise evaluation of defect localization.
Fig. 8. Framework of our methods, including training and robustness experiments.
Fig. 9. Examples of data augmentation for part1.
Informed by expert interviews and common photographic chal-
lenges in industrial robotics, we selected the following data augmenta-
tion modes: Defocus, simulating potential blurring due to focus errors; 
Random Brightness Contrast, addressing variations in lighting condi-
tions; and ISO Noise, emulating image noise artifacts that may arise 
from camera sensor limitations (AlbumentationsAI, 2024). Table  3 
details the specific parameter settings for each technique. Examples of 
applying this data augmentation are shown in Fig.  9, which illustrate 
the application of each data augmentation individually and the use of 
all data augmentations at the same time.

3.6. Evaluation metrics

In this research, we evaluated the performance of our deep learn-
ing models for glue line anomaly detection using a combination of 
image-level and pixel-level metrics.
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3.6.1. Image-level metrics
Image-level AUROC (Area under the receiver operating character-

istic curve): The AUROC metric provides an aggregate measure of a 
model’s ability to discriminate between normal and anomalous glue 
line images. It is calculated across all possible classification thresholds, 
representing the trade-off between the true positive rate (TPR) and false 
positive rate (FPR). These are defined as:

TPR (also known as recall): The proportion of actual anomalies 
(positive samples) that are correctly identified by the model:

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

where TP represents true positives and FN represents false negatives.
FPR: The proportion of normal images (negative samples) that are 

incorrectly identified as anomalous:

𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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Table 2
Comparison of anomaly detection models.
 Sub-category Model Name Backbone Model 

Parameters
Datasets  

 

Feature 
Embedding based

Student–Teacher 
Networks

Efficient_AD. (Batzner 
et al., 2024)

EfficientAd 8.1M Trainable MVTec AD, VisA (Kagawade 
and Angadi, 2021)

 

 stfpm. (Wang et al., 
2021)

ResNet18 2.8M Trainable MVTec AD  

 Reverse_Distillation. 
(Deng and Li, 2022)

ResNet18 18.7M Trainable MVTec AD, MNIST, Cifar10, 
F-MNIST (Xiao et al., 2017)

 

 MMR. (Zhang et al., 
2023)

WideRes-
Net50

MVTec AD, AeBAD (Zhang 
et al., 2023)

 

 

Distribution Map

CFlow. (Gudovskiy 
et al., 2022)

WideRes-
Net50

81.6M Trainable; 
154M 
Non-trainable

MVTec AD, STC (Liu et al., 
2018)

 

 CSFlow. (Rudolph 
et al., 2022)

EfficientNet-
B5

275M Trainable; 
17.5M 
Non-trainable

MVTec AD, MTC (Huang 
et al., 2020)

 

 
FastFlow. (Yu et al., 2021)

ResNet18 5.6M Trainable; 
4.2M Trainable MVTec AD, Cifar10, 

BTAD (Ma et al., 2023)

 

 WideRes-
Net50

78.0M Trainable; 
46.9M 
Non-Trainable

 

 Cait 31.9M Trainable; 
365M 
Non-Trainable

 

 Deit 7.1M Trainable; 
111M 
Non-Trainable

 

 DFM. (Ahuja et al., 
2019)

ResNet50 2.8M Trainable MNIST (Xiao et al., 2017), 
Cifar10(Alex, 2009)

 

 

Memory Bank

PatchCore. (Roth et al., 
2022)

WideRes-
Net50

24.9M Trainable MVTec AD, STC, MTC  

 PaDiM. (Defard et al., 2021) ResNet18 2.8M Trainable MVTec AD, STC  
 WideRes-

Net50
24.9M Trainable  

 CFA. (Lee et al., 2022) ResNet18 3.2 M Trainable MVTec AD (Bergmann et al., 202  WideRes-
Net50

31.3 M Trainable  

 SimpleNet. (Liu et al., 
2023)

WideRes-
Net50

MVTec AD, Cifar10  

 OCC
UFlow. (Tailanian et al., 2022)

mCaiT 12.2M Trainable; 
409M 
Non-Trainable

MVTecAD, STC, BT 
(Mishra et al., 2021), 
MRI (Buda et al., 2019)

 

 ResNet18 4.3M Trainable; 
3.6M 
Non-Trainable

 

 WideRes-
Net50

34.8M Trainable; 
37.4M 
Non-Trainable

 

 
Reconstruction 
Based

AutoEncoder DRAEM. (Zavrtanik 
et al., 2021)

97.4M Trainable DTD (Cimpoi et al., 2014)  

 DSR. (Zavrtanik et al., 
2022)

36.3M Trainable; 
4.0M 
Non-Trainable

MVTec AD, KSDD2 (Božič 
et al., 2021)

 

 GAN GANomaly. (Akcay 
et al., 2019)a

GAN 188M Trainable MNIST, Cifar10, UBA (Rogers 
et al., 2017), FFOB (UK Home 
Office Centre for Applied 
Science and Technology 
(CAST), 2016)

 

a Indicates image level, otherwise are pixel level.
where FP represents false positives and TN represents true negatives.
The AUROC summarizes the model’s performance over various 

decision thresholds by plotting TPR against FPR and measuring the area 
under this curve:

𝐴𝑈𝑅𝑂𝐶 = ∫

1

0
𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))𝑑𝑥

A model with perfect discrimination will have an AUROC of 1, while a 
random classifier will have an AUROC of 0.5.
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Image-level F1 score: The F1 score balances precision (the pro-
portion of true positives out of predicted positives) and recall (the 
proportion of true positives correctly identified). It is particularly useful 
when the dataset exhibits class imbalance, as is often the case with 
anomaly detection. Precision is the proportion of images predicted as 
anomalous that are actually anomalous while recall is shown as TPR.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃
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Table 3
Parameter settings for data augmentation.
 Mode Parameters  
 Defocus p = 0.5, radius = [3, 10], alias_blur = [0.1, 0.5]  
 RandomBrightness-
Contrast

p = 0.5, brightness_limit = [−0.2, 0.2], 
contrast_limit = [−0.2, 0.2], brightness_by_max = True

 

 ISO Noise p = 0.5, color_shift = [0.01, 0.05], intensity = [0.1, 
0.5]

 

Then F1 score is calculated as:
𝐹1 = 2 ⋅

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

3.6.2. Pixel-level metrics
Pixel-level AUROC: Similar to the image-level AUROC, this met-

ric assesses a model’s discrimination ability at the individual pixel 
level. It is particularly relevant for tasks involving localization, such as 
pinpointing the exact areas within a glue line that exhibit anomalies.

Pixel-level F1 score: The pixel-level F1 score provides a granular 
evaluation of how well the model correctly identifies anomalous pixels. 
This metric is valuable when precise localization of defects is crucial.

3.6.3. Image-level vs. Pixel-level evaluation
Image-level metrics provide a global assessment of whether an im-

age contains an anomaly or not (classification focus). Pixel-level metrics 
offer a more detailed analysis, pinpointing the specific regions within 
an image that are considered anomalous (segmentation focus). By using 
both image-level and pixel-level metrics, we gain a comprehensive 
understanding of our models’ ability to both detect and localize glue 
line defects.

4. Results

This section presents the results of our experiments. To ensure 
the reliability of our findings, we conducted experiments using five 
different random seeds for each model configuration.

4.1. Performance

4.1.1. Run time performance
The average training time, inference time, and throughput per 

second for part1 are presented in Table  4. DSR has the longest train-
ing time at approximately 2.5 h, whereas dfkde requires only 2.4 s, 
making it the fastest among the models. It is evident that feature-
embedding based methods generally require less training time com-
pared to reconstruction-based models. Efficient AD exhibits a higher 
training time due to its use of the AE method. Among feature-embedding
based models, those from the memory bank category are relatively 
quick, with training times of about 1 min. Models utilizing the ResNet18
backbone train faster than those with WideResNet50. This is primar-
ily because ResNet18 has fewer layers and parameters, resulting in 
lower computational complexity and faster processing. Additionally, 
ResNet18’s smaller memory footprint allows for more efficient batch 
processing. In contrast, WideResNet50, with its increased depth and 
width, demands more computation and memory, leading to longer 
training times. However, an exception is observed with Uflow, where 
the training times for ResNet18 and WideResNet50 backbones are quite 
similar. When the backbone is changed to mcait, the training time 
increases by about 14 times compared to ResNet18.

Inference time, a critical factor for productivity and efficiency, is 
analyzed in Fig.  10. Lower inference times are preferred, while higher 
throughput – measuring the number of images processed per second 
– is advantageous. The models’ inference times per image range from 
91.29 ms to 302.41 ms, with less variation compared to training times. 
10 
Throughput depends on batch size, which is typically set to 32 for 
most models. While inference speeds between feature-embedding and 
reconstruction-based methods are similar, variations occur due to batch 
size and backbone architecture. Notably, WideResNet50 and ResNet18 
backbones exhibit comparable inference times within the same models.

The inference time and throughput of the models evaluated in this 
work are well-suited for real-time detection requirements on industrial 
production lines. For example, even the slowest model achieves a 
throughput exceeding 3 images per second, which meets the general 
demands of industrial scenarios. These performance metrics ensure 
efficient and timely detection capabilities, making the models practical 
for real-world deployment in production lines.

4.1.2. Predictive performance
For model performance, we report the mean and standard deviation 

across these runs, providing a comprehensive assessment of model 
performance. Evaluation focuses on both image-level (image AUROC, 
image F1 score) and pixel-level (pixel AUROC, pixel F1 score) metrics to 
capture both the detection and localization capabilities of the models. 
The overall performance for each model is shown at Table  5. In the 
table, the best performance for different performance is shown in bold. 
The false positive reduction rate can be presented from the image level 
AUROC.

Regarding image level AUROC, the best performer is STFPM, which 
achieved an AUROC of 0.985. While the false positive rate of Part 1 
from the company remains confidential, the accuracy of the optimal 
model significantly surpasses that of the company’s current solution. 
Furthermore, STFPM successfully resolved all false positive images in 
Part 1. This indicates that STFPM excels in distinguishing between 
normal and anomalous images, showcasing exceptional reliability and 
accuracy. Among the top four models, namely STFPM, SimpleNet, 
FastFlow and Efficient_AD, SimpleNet emerges as the most stable model 
due to its low variance, which indicates consistent performance across 
different runs. The models with the worst performance are the DFM and 
baseline model DFKDE. An AUROC lower than 0.5 indicates poor per-
formance, essentially worse than random guessing. Therefore, DFKDE 
and DFM are considered highly ineffective for anomaly detection tasks 
due to their extremely low AUROC values, which highlight their inabil-
ity to distinguish between normal and anomalous images effectively. 
The segmentation image that shown in Fig.  11 for DFM illustrates DFM 
has a rougher split area compared to stfpm.

The performance comparison of different backbones with the same 
model reveals insightful patterns. For instance, the CFA model shows 
a significant improvement when using the WideResNet50 backbone 
compared to ResNet18. Similarly, PaDiM with ResNet18 achieves an 
AUROC of 0.901, while with WideResNet50, it improves to 0.962, 
indicating a clear enhancement with the more complex backbone. 
FastFlow exhibits variability depending on the backbone used, with 
WideResNet50 showing the best performance, followed by deit and 
cait. These comparisons suggest that models generally perform better 
with the WideResNet50 backbone compared to ResNet18, while the 
training time is longer, indicating that a more complex backbone ar-
chitecture tends to enhance the model’s anomaly detection capabilities. 
However, the choice of backbone can significantly impact performance, 
and should therefore be selected based on the specific requirements of 
the application.

However, for image level F1 score, all the models perform well and 
all the values are higher than 0.9. Even for those models that do not 
have good performance in image AUROC, DFKDE and DFM, the image 
F1 scores are 0.943. This exceptional performance suggests that the 
models achieve a strong balance between precision and recall, meaning 
they are adept at correctly identifying anomalies while minimizing false 
positives and false negatives.

Only models specifically designed for segmentation exhibit pixel-
level values. It is noteworthy that all the models achieve high pixel-
level AUROC scores, with the lowest values observed in CSFlow and 
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Table 4
Runtime comparison of models.
 Category Model BackBone Train(min) Inference(ms) Throughput(fps) 
 dfkde ResNet18 0.04 91.29 10.95  
 WideResNet50 0.06 93.22 10.73  
 Student-Teacher Efficient AD 50.99 173.07 5.78  
 STFPM ResNet18 0.97 193.22 5.18  
 WideResNet50 3.13 195.41 5.12  
 Reverse Distill. WideResNet50 7.57 199.25 5.02  
 ResNet18 2.53 194.05 5.15  
 MMR WideResNet50 6.83 253.57 3.94  
 Distribution Map CFlow-AD WideResNet50 13.85 281.38 3.55  
 CSFlow EfficientNet-B5 6.78 302.41 3.31  
 FastFlow ResNet18 0.51 194.80 5.13  
 WideResNet50 1.37 194.37 5.14  
 cait 4.36 281.95 3.55  
 deit 0.86 210.99 4.74  
 DFM ResNet50 0.06 192.12 5.21  
 ResNet18 0.05 186.21 5.37  
 Memory Bank PatchCore WideResNet50 1.57 198.18 5.05  
 PaDiM ResNet18 0.13 214.10 4.67  
 WideResNet50 0.39 192.60 5.19  
 CFA ResNet18 0.30 256.61 3.90  
 WideResNet50 0.90 261.64 3.82  
 SimpleNet WideResNet50 0.85 225.00 4.44  
 OCC Uflow mcait 37.77 292.11 3.42  
 ResNet18 2.62 212.06 4.72  
 WideResNet50 2.61 213.84 4.68  
 AE DRAEM 16.93 216.40 4.62  
 DSR 151.11 222.26 4.50  
 GAN GANomaly 1.08 96.17 10.40  
Fig. 10. Inference time and throughput comparison.
Efficient-AD, which are 0.955 and 0.954, respectively. These high 
pixel-level AUROC indicate that the models are proficient at localizing 
anomalies on a granular level, which is essential for applications re-
quiring precise detection of defects within an image. The consistently 
high scores across different models suggest that the algorithms are well-
tuned for detailed anomaly detection tasks. Notably, models such as 
MMR, stfpm, Reverse_Distillation, and PatchCore exhibit near-perfect 
pixel-level AUROC values, highlighting their reliability in accurately 
identifying anomalies at a fine-grained level. This performance trend 
11 
underscores the effectiveness of these models in practical scenarios 
where pinpoint accuracy is crucial.

For the pixel-level F1 score, we observe varying performance across 
the different models. The best-performing models are stfpm and DSR, 
with pixel-level F1 scores of 0.696 and 0.683. While these scores are 
higher than 0.5, indicating some capability in identifying and segment-
ing anomalies at a fine-grained level, they are not exceptionally high. 
This suggests that even the best models have room for improvement 
in achieving precise pixel-level anomaly detection. Overall, the pixel-
level F1 scores are generally lower than the image-level F1 scores across 
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Table 5
Prediction performance metrics on part1 for various unsupervised DL models and corresponding backbones.
 Model Backbone Image AUROC Image F1 Score Pixel AUROC Pixel F1 Score  
 CFA ResNet18 0.810 ± 0.015 0.950 ± 0.007 0.984 ± 0.001 0.453 ± 0.020  
 WideResNet50 0.889 ± 0.026 0.960 ± 0.008 0.993 ± 0.000 0.544 ± 0.002  
 CFlow-AD WideResNet50 0.871 ± 0.042 0.950 ± 0.007 0.993 ± 0.000 0.539 ± 0.008  
 CSFlow EfficientNet-B5 0.822 ± 0.015 0.943 ± 0.000 0.955 ± 0.002 0.224 ± 0.006  
 DFKDE ResNet18 0.130 ± 0.000 0.943 ± 0.000  
 WideResNet50 0.120 ± 0.000 0.943 ± 0.000  
 DFM ResNet50 0.320 ± 0.000 0.943 ± 0.000 0.986 ± 0.000 0.342 ± 0.000  
 ResNet18 0.280 ± 0.000 0.943 ± 0.000 0.983 ± 0.000 0.316 ± 0.000  
 DRAEM 0.934 ± 0.037 0.970 ± 0.016 0.982 ± 0.006 0.635 ± 0.079  
 DSR 0.968 ± 0.026 0.966 ± 0.016 0.971 ± 0.016 0.683 ± 0.051  
 Efficient_AD 0.981 ± 0.007 0.978 ± 0.004 0.954 ± 0.000 0.674 ± 0.004  
 
FastFlow

ResNet18 0.935 ± 0.022 0.967 ± 0.008 0.994 ± 0.001 0.560 ± 0.028  
 WideResNet50 0.982 ± 0.010 0.982 ± 0.004 0.997 ± 0.000 0.638 ± 0.009  
 cait 0.837 ± 0.040 0.969 ± 0.008 0.996 ± 0.000 0.662 ± 0.014  
 deit 0.948 ± 0.024 0.977 ± 0.011 0.992 ± 0.002 0.597 ± 0.033  
 GANomaly 0.737 ± 0.251 0.948 ± 0.007  
 MMR WideResNet50 0.980 ± 0.004 0.997 ± 0.002 0.997 ± 0.000 0.597 ± 0.012  
 PaDiM ResNet18 0.901 ± 0.040 0.969 ± 0.004 0.997 ± 0.000 0.660 ± 0.013  
 WideResNet50 0.962 ± 0.012 0.973 ± 0.008 0.997 ± 0.000 0.614 ± 0.012  
 PatchCore WideResNet50 0.944 ± 0.006 0.975 ± 0.005 0.996 ± 0.000 0.571 ± 0.002  
 Reverse_Distill. WideResNet50 0.943 ± 0.036 0.969 ± 0.008 0.998 ± 0.000 0.662 ± 0.016  
 ResNet18 0.871 ± 0.026 0.965 ± 0.005 0.997 ± 0.000 0.656 ± 0.006  
 SimpleNet WideResNet50 0.983 ± 0.000 0.969 ± 0.011 0.967 ± 0.000 0.538 ± 0.006  
 stfpm ResNet18 0.985 ± 0.009 0.982 ± 0.011 0.997 ± 0.000 0.673 ± 0.008  
 WideResNet50 0.981 ± 0.004 0.976 ± 0.005 0.998 ± 0.000 0.696 ± 0.003 
 
UFlow

mcait 0.951 ± 0.010 0.986 ± 0.006 0.996 ± 0.000 0.578 ± 0.015  
 ResNet18 0.935 ± 0.019 0.967 ± 0.005 0.993 ± 0.000 0.538 ± 0.030  
 WideResNet50 0.941 ± 0.033 0.967 ± 0.011 0.993 ± 0.001 0.475 ± 0.039  
*No pixel level result for DFKDE and GANomaly because they only do classification.
all models. This disparity highlights the increased challenge of precise 
anomaly localization at the pixel level compared to broader image-
level anomaly detection. While models exhibit high performance in 
identifying anomalies at the image level, achieving the same precision 
and recall at the pixel level is more demanding, as evidenced by the 
lower F1 scores. This trend imply the complexity and higher granularity 
required for effective pixel-level anomaly segmentation.

4.1.3. Segmentation performance
The representative example segmentation results for part1 anoma-

lies are shown at Fig.  11. In this figure, we present eight images that 
illustrate the results of image anomaly segmentation. The selection and 
sequence of these images are based on the Image AUROC performance 
metrics. Specifically, the first four images represent the models with 
the top four performances, while the last four images represent the 
models with the lowest performances. To ensure consistency and ease 
of comparison, all models shown are from Anomalib, as they follow the 
same format. The regions depicted in the images are A, C, D, and E. 
Region B, although analyzed, is not included because its characteristics 
are quite similar to Region A. The first four images correspond to the 
top-performing models in regions A, C, D, and E, respectively, while 
the last four images correspond to the worst-performing models, also 
in regions A, C, D, and E, respectively, and include their segmentation 
results.

As shwon in Fig.  11, there is a clear relationship between model 
performance and segmentation precision. A more accurate model yields 
finer segmentation, which more precisely isolates the regions of glue 
line anomalies. For instance, in Region A, the area segmented by STFPM 
is significantly smaller and more accurately represents the actual defor-
mation compared to DFM. While the pixel level performance of these 
two models is quite similar.
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4.2. Robustness

Robustness is essential for anomaly detection models, particularly 
when deployed in environments with varying data quality. In this 
study, robustness was evaluated by analyzing the impact of data aug-
mentation on key metrics such as Image AUROC. The complete set of 
results are presented in Table  C.9 and these are summarized in Fig.  12.

Models like DFKDE show strong robustness, with both ResNet18 and 
WideResNet50 architectures improving in performance after augmen-
tation. This indicates that DFKDE is well-suited to handle noisy and 
distorted data. On the other hand, models like PaDiM experienced no-
ticeable decreases in Image AUROC, especially with the WideResNet50 
architecture, suggesting a higher sensitivity to data variability.

Other models, such as DFM, showed slight improvements, while 
PatchCore, which had previously demonstrated strong robustness, ex-
hibited a more noticeable decline in performance under the new aug-
mentations. These findings underscore the varying levels of robustness 
across different models and architectures, highlighting the need to 
carefully select models that can maintain performance under diverse 
data conditions.

The image level F1 score differences highlight that most models 
retain a decent balance between precision and recall even after data 
augmentation. While some models like FastFlow show a more notice-
able drop, the overall impact remains relatively modest, suggesting that 
these models are fairly robust in maintaining detection accuracy under 
varying data conditions.

The pixel level AUROC plot demonstrates how various anomaly 
detection models respond to pixel-level classification challenges after 
data augmentation. Generally, most models showed a decline in pixel 
AUROC, indicating that data augmentation complicates the task of dis-
tinguishing between normal and anomalous pixels. Models like DRAEM 
and DSR experienced significant drops in performance, reflecting their 
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Fig. 11. Segmentation result for part1, from the top to bottom: stfpm, DSR, fastflow, Efficient_Ad, DFM, CFA, CSFlow, CFlow-AD.
struggle with pixel-wise accuracy under these altered conditions. In 
contrast, models such as PatchCore showed a more moderate decline, 
suggesting relatively better resilience at the pixel level. These results 
highlight that while data robustness experiment tends to reduce pixel-
level AUROC across models, some architectures are better suited to 
maintain their ability to accurately detect anomalies at finer, pixel-level 
granularity.

The pixel level F1 score plot indicates that most anomaly detection 
models experienced a decline in precision and recall balance at the 
pixel level after data robustness experiment, with models like DRAEM 
and DSR showing the most significant decreases. Despite the general 
downward trend, some models like PatchCore managed to limit the 
impact, suggesting a degree of resilience in maintaining pixel-level 
detection accuracy.

5. Discussion

We compared 17 different models with 28 backbones on our glue 
line image datasets, focusing on moderately challenging areas (part 1). 
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Although the selected models have been extensively evaluated on pub-
lic benchmarking datasets like MVTec AD, it remains crucial to assess 
their performance on our industrial datasets. Some models may perform 
exceptionally well on public datasets but have yet to be deployed in 
real industrial manufacturing environments, where conditions can be 
significantly different.

5.1. Multi criteria decision making

Selecting the optimal model for our use case is challenging due to 
the wide range of performance metrics available, making it a multi-
criteria decision-making (MCDM) problem. Among these metrics, in-
ference time, classification accuracy, and segmentation accuracy are 
prioritized, as they directly align with the manufacturer’s require-
ments. To address the inherent trade-offs in these criteria, we use
knee solutions, where the models offer balanced performance across 
metrics without a strong preference for any specific criterion. Such knee 
solutions are considered ‘‘no preference’’ options in MCDM literature, 
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Fig. 12. Results of robustness performance study.
Fig. 13. Model inference time vs performance.
providing a compromise that meets all major requirements without 
overly emphasizing one metric over others. Fig.  13 illustrates the rela-
tionship between model inference time and overall performance, with 
models in the lower-right corner – closer to knee points –representing 
our top preferences. Note that the 𝑥-axis scale differs between plots, 
and not all x-axes start at zero.

Based on the model performance depicted in the graphs, our top 
choice is Efficient_AD, which consistently appears in the lower right 
corner of both the image-level and inference-time plots. This highlights 
its strong categorization capabilities combined with high operational 
efficiency. While Efficient_AD appears in the bottom left corner of the 
pixel AUROC plot, this placement is due to the scale of the 𝑋-axis; 
its actual segmentation performance is well-demonstrated by the pixel 
F1 Score plot. Our second choice is STFPM, which performs effectively 
with both backbones and is similarly located in the lower right corner 
of each plot, indicating its fast execution while maintaining accuracy.

To focus on model’s performance metrics, we also compare the 
image level performance versus pixel level performance at Fig.  14. 
The upper-right corner represents the optimal performance model. 
The presence of STFPM and MMR in the upper right corner of both 
graphs indicates that the MMR model is a viable option if operational 
efficiency is not a primary concern.
14 
Fig. 14. Image vs. pixel performance.



S. Chen et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110740 
Fig. 15. Representative images for part16.
From Table  2, we can see that models based on student-teacher 
networks from feature-embedding based approach, such as STFPM, 
Efficient_AD, and MMR, generally perform better. Notably, both Effi-
cient_AD and MMR also incorporate the autoencoder method which is 
reconstruction based, enhancing their performance in defect detection 
and localization.

5.2. Application to other components

For glue line detection in other components, certain representative 
sets of components require special attention. For instance, in part16, 
the significant variations in lightness and darkness make it challenging 
to accurately localize defects during image detection. The false positive 
rate for this part is really high, which is 5 times comparing to part1. 
This variability also complicates the use of unsupervised deep learning 
methods. The representative images are shown at Fig.  15. From left to 
right images are normal image, image that is overexposed but pass the 
machine’s inspection, and image that is misdetected. In this part, we 
will only apply the models that perform well for our previous part.

The results for part16 are shown at Table  6 and the results for 
other representative parts are shown in Appendix  D. As shown in the 
table, the performance of individual models varies significantly for 
parts with pronounced variations in brightness. When considering the 
models’ ability to differentiate between defects, only a few perform 
well. Notably, the Fastflow model with the cait backbone achieves 
the highest image-level AUROC of 0.927. The Uflow model with the 
WideResNet50 backbone also distinguishes defects effectively, with an 
AUROC of 0.884. However, many of the remaining models have image-
level AUROCs below 0.5, and some are even lower than 0.15, such 
as the DRAEM and DSR model. This suggests that the DRAEM and 
DSR models are more sensitive to variations in brightness than the 
other models. For pixel level AUROC, the performance is better than 
image level. The significant difference between pixel and image-level 
performance could indicate that while the models are sensitive to small, 
localized anomalies, these anomalies may not be pronounced enough 
to influence the classification of the entire image. This could result 
in missed detections at the image level, potentially leading to lower 
overall performance in applications where image-level classification 
is critical. The F1 score at the image level remains relatively stable, 
hovering around 0.83. In contrast, the F1 scores at the pixel level for 
individual models are less impressive, with none exceeding 0.5.

The performance of models across different regions, including both 
well-performing and underperforming ones, is shown in Fig.  16. The 
top-performing models are Fastflow, Uflow, Reverse_Distill, and Patch-
Core, which accurately localize areas of glue line distortion. Their 
segmentation results are precise, effectively pinpointing the deformed 
regions.

In contrast, the underperforming models are DRAEM, CFA, CSFlow, 
and Efficient_AD. These models appear to be sensitive to brightness 
variations, which significantly impacts their classification performance, 
often falling below 0.5. The segmentation results are also subopti-
mal. For instance, DRAEM mistakenly segments many of the light 
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and shadow changes on the parts as defective areas. The CFA model 
misidentifies variations at the ends of the glue lines as defects, while the 
CSFlow model’s segmentation tends to be more random and inconsis-
tent. Although Efficient_AD performs reasonably well in segmentation, 
it only captures a small portion of the glue line deformation, failing 
to cover the full extent of the defect, which shows that this model is 
sensitive to brightness.

5.3. Contribution and limitation

The main contribution of this study is the comprehensive compar-
ison of a wide variety of existing anomaly detection models applied 
to a real industrial use case involving multiple scenarios. Unlike most 
empirical studies in the literature that rely on benchmark anomaly 
detection image datasets, which often fail to capture the variability 
of real-world industrial conditions (Wilmet et al., 2021; Cui et al., 
2023), this study uniquely evaluates models on a dataset derived from a 
production environment. A thorough comparison of existing models on 
images from actual manufacturing settings has not been comprehen-
sively addressed in previous research. Our evaluation spans multiple 
dimensions, including image-level accuracy, pixel-level accuracy, train-
ing and inference times, and the robustness of models to variations in 
image quality.

Additionally, this study introduces a MCDM-based approach for 
model selection, enabling decision-makers to achieve optimal trade-
offs between accuracy and inference time. This dual contribution – 
comprehensive evaluation and actionable model selection framework – 
addresses key challenges in deploying image anomaly detection systems 
in industrial contexts.

In this work, we assessed models from two major categories:
reconstruction-based and feature-embedding-based approaches. Specif-
ically, our analysis focused on temporal performance, segmentation 
precision, and robustness in industrial environments. These evaluations 
directly address RQ1, identifying models that deliver optimal accuracy 
and efficiency for detecting and segmenting anomalies in glue-line 
images.

Among the models evaluated, Efficient_AD and STFPM demon-
strated superior segmentation precision, accuracy and efficiency, par-
ticularly in localizing small and subtle anomalies, which is critical 
in minimizing false positives. While Fastflow is robust and performs 
very well on most difficult component that has extreme brightness 
contrast, part16. By reducing the rate of false positives, we were 
able to significantly enhance the overall reliability of the automated 
inspection system. This finding aligns with our primary objective of 
improving anomaly detection accuracy and operational efficiency. The 
reduction of false positives not only decreases unnecessary maintenance 
checks and system downtimes, but also boosts the overall equipment 
effectiveness (OEE) of the glue system, a key performance indicator in 
industrial settings.

To address RQ2, we addressed the challenge of limited defect class 
datasets in industrial applications by incorporating data augmentation 
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Table 6
Prediction performance metrics on part16 for various unsupervised DL models and corresponding backbones.
 Model Backbone Image AUROC Image F1 Score Pixel AUROC Pixel F1 Score  
 CFA ResNet18 0.165 ± 0.003 0.828 ± 0.000 0.715 ± 0.009 0.015 ± 0.002  
 WideResNet50 0.128 ± 0.021 0.828 ± 0.000 0.790 ± 0.004 0.040 ± 0.008  
 CFlow WideResNet50 0.576 ± 0.054 0.828 ± 0.000 0.966 ± 0.006 0.350 ± 0.050  
 CSFlow EfficientNet-B5 0.148 ± 0.001 0.842 ± 0.000 0.491 ± 0.000 0.008 ± 0.000  
 DFM ResNet50 0.313 ± 0.000 0.828 ± 0.000 0.929 ± 0.000 0.050 ± 0.000  
 DRAEM 0.093 ± 0.079 0.830 ± 0.006 0.877 ± 0.019 0.040 ± 0.010  
 DSR 0.143 ± 0.064 0.821 ± 0.015 0.661 ± 0.072 0.017 ± 0.005  
 Efficient_AD 0.296 ± 0.037 0.842 ± 0.000 0.848 ± 0.003 0.105 ± 0.006  
 FastFlow ResNet18 0.352 ± 0.072 0.828 ± 0.000 0.810 ± 0.048 0.065 ± 0.049  
 WideResNet50 0.822 ± 0.085 0.878 ± 0.031 0.983 ± 0.006 0.443 ± 0.027  
 cait 0.927 ± 0.061 0.941 ± 0.019 0.977 ± 0.004 0.492 ± 0.031 
 deit 0.832 ± 0.047 0.890 ± 0.035 0.965 ± 0.003 0.381 ± 0.026  
 GANomaly 0.791 ± 0.100 0.899 ± 0.074  
 PaDiM ResNet18 0.258 ± 0.039 0.828 ± 0.000 0.928 ± 0.008 0.148 ± 0.022  
 WideResNet50 0.485 ± 0.082 0.830 ± 0.006 0.961 ± 0.003 0.177 ± 0.033  
 PatchCore WideResNet50 0.601 ± 0.009 0.842 ± 0.000 0.975 ± 0.000 0.227 ± 0.003  
 Reverse_Distill. ResNet18 0.218 ± 0.023 0.828 ± 0.000 0.946 ± 0.003 0.101 ± 0.009  
 WideResNet50 0.630 ± 0.029 0.833 ± 0.013 0.984 ± 0.001 0.320 ± 0.020  
 stfpm ResNet18 0.508 ± 0.156 0.833 ± 0.008 0.660 ± 0.133 0.017 ± 0.012  
 WideResNet50 0.288 ± 0.288 0.833 ± 0.013 0.577 ± 0.038 0.010 ± 0.001  
 Uflow mcait 0.632 ± 0.113 0.848 ± 0.031 0.968 ± 0.018 0.223 ± 0.069  
 ResNet18 0.381 ± 0.061 0.828 ± 0.000 0.913 ± 0.025 0.086 ± 0.013  
 WideResNet50 0.884 ± 0.028 0.896 ± 0.009 0.986 ± 0.001 0.302 ± 0.010  
Fig. 16. Segmentation and heatmap for part16.
16 
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Fig. D.17. Segmentation result for part16, from the top to bottom: Uflow, Fastflow, Reverse_Dis.,Cflow, DFM, CFA, CSFlow, DRAEM.
and synthetic data generation techniques. These methods enriched 
the diversity of training data, improving model generalization to un-
seen anomalies. Such strategies are especially valuable in unsupervised 
settings, where labeled data is scarce or expensive to acquire. Addi-
tionally, our data augmentation experiments ensured that the models’ 
robustness extended beyond mere accuracy metrics, proving their prac-
tical applicability. These findings underscore the effectiveness of data 
augmentation in mitigating dataset imbalances, providing a viable so-
lution for enhancing model performance despite limited defect-specific 
datasets.

This comparative study provides a roadmap for selecting the most 
suitable unsupervised deep learning model tailored to specific indus-
trial needs. It also demonstrates a clear reduction in false positives, 
minimizing glue machine downtimes and further enhancing the OEE 
of the entire glue-line system.
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Despite these contributions, the study has certain limitations. For 
instance, the dataset used is single-channel, potentially limiting the 
approach’s applicability to other industrial datasets, where models may 
behave differently with three-channel images. Future research could 
explore the integration of thermal imaging to introduce an additional 
channel, further optimizing model performance.

Moreover, uncertainties introduced by our data synthesis methods 
may limit generalizability, and not all types of unsupervised deep learn-
ing models were evaluated. Future studies could investigate diffusion 
models and transformer-based architectures. Comparing supervised, 
semi-supervised, and weakly supervised models on the glue-line dataset 
could also provide deeper insights and potentially enhance performance 
further.
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Fig. D.18. Optimal segmentation result for part4, from the top to bottom: Fastflow, CFlow, stfpm, UFlow, Reverse_Distill, PaDiM, Patchcore, Efficient_AD.
6. Conclusions

In this study, we conducted a comprehensive comparison of various 
unsupervised deep learning models for anomaly detection in industrial 
glue lines. We assessed the models’ accuracy, segmentation precision, 
and robustness to identify the most stable and effective model for our 
specific industrial environment. The models successfully detected and 
localized defects in glue lines, significantly reducing the high false-
positive rate. Additionally, through the application of data sythesis 
techniques, we addressed the challenge of limited datasets, enhancing 
the models’ performance and reliability. These findings demonstrate 
the potential for real-world application in industrial image anomaly 
detection, improving both the accuracy of defect detection and the 
overall efficiency of the glue line system.
18 
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Table A.7
Prediction performance metric on MVTec AD for selected DL models and corresponding 
backbones.
 Model Backbone Image AUROC 
 CFA ResNet18 0.930  
 WideResNet50 0.956  
 CFlow WideResNet50 0.962  
 CSFlow EfficientNet-B5 0.987  
 DFKDE ResNet18 0.762  
 WideResNet50 0.774  
 DFM ResNet50 0.936  
 DRAEM 0.980  
 DSR 0.982  
 Efficient_AD 0.982  
 FastFlow ResNet18 0.907  
 WideResNet50 0.963  
 CaiT 0.925  
 DeiT 0.944  
 GANomaly 0.421  
 PaDiM ResNet18 0.891  
 WideResNet50 0.950  
 PatchCore WideResNet50 0.980  
 Reverse_Distillation WideResNet50 0.985  
 ResNet18 0.978  
 stfpm ResNet18 0.893  
 WideResNet50 0.876  
 Uflow mcait 0.987  
 ResNet18 0.942  
 WideResNet50 0.968  
 MMR WideResNet50 0.984  
 SimpleNet WideResNet50 0.996  

Table B.8
Hyperparameters used for DL models.
 Model Tuning parameters Implemented values in this 

study
 

 

PaDiM

Backbone ResNet18, WideResNet50_2  
 Layers (layer1 + layer2 + layer3)  
 Image Resolution 256 * 256  
 Train Batch Size 32  
 Eval Batch Size 32  
 Normalization Imagenet  
 Normalization Method min_max  
 Max Epochs 1  
 

CFA

Backbone ResNet18, WideResNet50_2  
 Image Resolution 224 * 224  
 Train Batch Size 4  
 Eval Batch Size 4  
 Inference Batch Size 4  
 Normalization imagenet  
 Normalization Method min_max  
 Max Epochs 30  
 Learning Rate 1.00E−03  
 Weight Decay 5.00E−04  
 gamma_c 1.00E+00  
 gamma_d 1.00E+00  
 num_nearest_neighbors 3.00E+00  
 

Cflow

Backbone WideResNet50_2  
 Layers (layer2 + layer3 + layer4)  
 Decoder freia-cflow  
 Image Resolution 256 * 256  
 condition_vector 128  
 coupling_blocks 8  
 clamp_alpha 1.9  
 fiber_batch_size 64  
 Train Batch Size 16  
 Eval Batch Size 16  
 Inference Batch Size 16  
 Normalization imagenet  
 Normalization Method min_max  
 Max Epochs 50  
 Learning Rate 0.0001  
 (continued on next page)
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Table B.8 (continued).
 Model Tuning parameters Implemented values in this 

study
 

 

Csflow

Backbone EfficientNet-B5  
 Layers 6.8  
 Image Resolution 768 * 768  
 Train Batch Size 16  
 Eval Batch Size 16  
 Normalization imagenet  
 Normalization Method min_max  
 Max Epochs 240  
 Learning Rate 2.00E−04  
 Weight Decay 1.00E−05  
 eps 1.00E−04  
 

dfkde

Backbone ResNet18, WideResNet50_2  
 Layers layer4  
 Image Resolution 256 * 256  
 Train Batch Size 32  
 Eval Batch Size 32  
 n_pca_components 16  
 max_training_points 40 000  
 feature_scaling_method 

(scale, norm)
scale  

 Normalization imagenet  
 Normalization Method min_max  
 Max Epochs 1  
 

dfm

Backbone Resnet18, Resnet50  
 Layers layer3  
 pooling Kernel Size 2  
 PCA Level 0.97  
 Score Type pca feature reconstruction error  
 Image Resolution 256 * 256  
 Train Batch Size 32  
 Eval Batch Size 32  
 Normalization imagenet  
 Normalization Method min_max  
 Max Epochs 1  
 

draem

Image Resolution 256 * 256  
 Train Batch Size 8  
 Eval Batch Size 32  
 Normalization none  
 Normalization Method min_max  
 Max Epochs 700  
 Learning Rate 0.0001  
 beta [0.1, 1.0]  
 sspcab lambda 0.1  
 

dsr

Image Resolution 256 * 256  
 Train Batch Size 8  
 Eval Batch Size 16  
 Normalization none  
 Normalization Method none  
 Max Epochs 700  
 Learning Rate 0.0002  
 latent_anomaly_strength 0.2  
 upsampling_train_ratio 0.7  
 

efficient_ad

Image Resolution 256 * 256  
 Train Batch Size 1  
 Eval Batch Size 16  
 Normalization none  
 teacher_out_channels 384  
 Normalization Method min_max  
 Max Epochs 200  
 Learning Rate 0.0001  
 weight_decay 0.00001  
 (continued on next page)
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Table B.8 (continued).
 Model Tuning parameters Implemented values in this 

study
 

 

GANomaly

Image Resolution 256 * 256  
 Train Batch Size 32  
 Eval Batch Size 32  
 Inference Batch Size 32  
 Normalization imagenet  
 Normalization Method none  
 Max Epochs 100  
 Learning Rate 0.0002  
 beta1 0.5  
 beta2 0.999  
 wadv 1  
 wcon 50  
 wenc 1  
 

patchcore

Backbone wide50_resnet50_2  
 Layers (layer2 + layer3)  
 Image Resolution 256 * 256  
 Train Batch Size 32  
 Eval Batch Size 32  
 Normalization imagenet  
 Normalization Method min_max  
 Max Epochs 1  
 coreset_sampling_ratio 0.1  
 num_neighbors 9  
 

reverse_distill.

Backbone ResNet18, WideResNet50_2  
 Layers (layer1 + layer2 + layer3)  
 Image Resolution 256 * 256  
 Train Batch Size 16  
 Eval Batch Size 32  
 Inference Batch Size 32  
 Normalization imagenet  
 Normalization Method min_max  
 Max Epochs 200  
 Learning Rate 0.005  
 beta1 0.5  
 beta2 0.999  
 

stfpm

Backbone ResNet18, WideResNet50_2  
 Layers (layer1 + layer2 + layer3)  
 Image Resolution 256 * 256  
 Train Batch Size 32  
 Eval Batch Size 32  
 Inference Batch Size 32  
 Normalization imagenet  
 Normalization Method min_max  
 Max Epochs 100  
 Learning Rate 0.4  
 Weight Decay 0.0001  
 momentum 0.9  
 

fastflow

Backbone ResNet181, WideResNet50_22, 
cait_m48_4483, 
deit_base_distilled_patch16_3844

 

 Image Resolution 256 * 2561, 2, 448 * 4483, 384 
* 3844

 

 Train Batch Size 32  
 Eval Batch Size 32  
 Normalization Imagenet  
 Normalization Method min_max  
 max epochs 500  
 Learning rate 0.001  
 weight decay 0.00001  
 flow steps 81, 2, 203, 4  
 hidden ratio 11, 2, 0.163, 4  
 conv3 × 3 only TRUE1, 2, FALSE3, 4  
 (continued on next page)
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Table B.8 (continued).
 Model Tuning parameters Implemented values in this 

study
 

 

Uflow

Backbone mcait1, ResNet182, 
WideResNet50_23

 

 Image Resolution 448 * 4481, 256 * 2562, 3  
 Train Batch Size 14  
 Eval Batch Size 16  
 Inference Batch Size 16  
 Normalization Imagenet  
 Normalization Method min_max  
 max epochs 200  
 Learning Rate 0.001  
 Weight Decay 0.00001  
 Flow Steps 4  
 Affine Clamp 2  
 affine subnet channels 

ratio
1  

 
SimpleNet

Backbone WideResNet50  
 layers layer2 + layer3  
 Batch Size 8  
 Image Resolution 288 * 288  
 

MMR

Backbone WideResNet50  
 layers layer1 + layer2 + layer3  
 Image Resolution 256 * 256  
 epochs 200  
 warmup epochs 50  
 Learning Rate 0.001  
 Weight Decay 0.05  
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Appendix A. Prediction performance metric on MVTec AD for se-
lected deep learning models and corresponding backbones

See Table  A.7.

Appendix B. Hyperparameters used for deep learning models

See Table  B.8.

Appendix C. Experimental results for robustness study
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See Figs.  D.17 and D.18 and Table  D.10.
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Table C.9
Experimental results for robustness study.
 Model Backbone Image AUROC Image F1 Score Pixel AUROC Pixel F1 Score 
 CFA ResNet18 0.599 ± 0.118 0.937 ± 0.011 0.735 ± 0.012 0.034 ± 0.003 
 WideResNet50 0.639 ± 0.137 0.935 ± 0.005 0.758 ± 0.025 0.087 ± 0.026 
 CFlow WideResNet50 0.755 ± 0.146 0.938 ± 0.023 0.689 ± 0.025 0.140 ± 0.048 
 CSFlow EfficientNet-B5 0.584 ± 0.134 0.931 ± 0.017 0.536 ± 0.025 0.014 ± 0.002 
 CutPaste 0.603 ± 0.173 0.931 ± 0.020 0.647 ± 0.026 0.237 ± 0.083 
 DFKDE ResNet18 0.610 ± 0.060 0.919 ± 0.025 – –  
 WideResNet50 0.719 ± 0.078 0.920 ± 0.026 – –  
 DFM ResNet50 0.482 ± 0.016 0.941 ± 0.005 0.739 ± 0.041 0.113 ± 0.008 
 DRAEM 0.448 ± 0.155 0.931 ± 0.017 0.644 ± 0.018 0.025 ± 0.007 
 DSR 0.551 ± 0.111 0.929 ± 0.009 0.494 ± 0.056 0.043 ± 0.020 
 
FastFlow

ResNet18 0.669 ± 0.091 0.943 ± 0.000 0.691 ± 0.047 0.133 ± 0.030 
 WideResNet50 0.735 ± 0.086 0.913 ± 0.039 0.674 ± 0.055 0.203 ± 0.104 
 cait_m48_448 0.627 ± 0.118 0.935 ± 0.005 0.758 ± 0.051 0.236 ± 0.096 
 deit384 0.770 ± 0.063 0.932 ± 0.023 0.695 ± 0.019 0.152 ± 0.078 
 GANomaly 0.567 ± 0.080 0.943 ± 0.000 – –  
 MMR WideResNet50 0.824 ± 0.023 0.942 ± 0.005 0.953 ± 0.032 0.207 ± 0.004 
 PaDiM ResNet18 0.634 ± 0.134 0.939 ± 0.009 0.773 ± 0.021 0.218 ± 0.073 
 WideResNet50 0.682 ± 0.122 0.935 ± 0.014 0.806 ± 0.049 0.233 ± 0.075 
 PatchCore WideResNet50 0.717 ± 0.082 0.923 ± 0.020 0.830 ± 0.023 0.279 ± 0.048 
 Reverse_Distill. WideResNet50 0.572 ± 0.062 0.935 ± 0.008 0.766 ± 0.066 0.261 ± 0.101 
 ResNet-18 0.575 ± 0.153 0.937 ± 0.009 0.762 ± 0.068 0.334 ± 0.027 
 stfpm ResNet18 0.573 ± 0.121 0.937 ± 0.009 0.700 ± 0.058 0.197 ± 0.046 
 WideResNet50 0.595 ± 0.141 0.933 ± 0.013 0.649 ± 0.028 0.132 ± 0.048 
 SimpleNet WideResNet50 0.869 ± 0.026 0.943 ± 0.012 0.899 ± 0.014 0.152 ± 0.008 
 
UFlow

mcait 0.753 ± 0.088 0.931 ± 0.021 0.752 ± 0.017 0.292 ± 0.042 
 ResNet18 0.645 ± 0.070 0.939 ± 0.006 0.705 ± 0.030 0.185 ± 0.041 
 WideResNet50 0.585 ± 0.121 0.933 ± 0.010 0.734 ± 0.030 0.237 ± 0.017 
Table D.10
Prediction performance metrics on part6 for various unsupervised DL models and corresponding backbones.
 Model name Backbone Image AUROC Image F1 Score Pixel AUROC Pixel F1 Score 
 CFA ResNet18 0.595 0.667 0.935 0.295  
 WideResNet50 0.648 0.640 0.966 0.358  
 CFlow WideResNet50 0.991 0.968 0.997 0.599  
 CSFlow EfficientNet-B5 0.287 0.542 0.430 0.013  
 DFKDE ResNet18 0.081 0.542 – –  
 WideResNet50 0.107 0.542 – –  
 DFM ResNet50 0.375 0.542 0.992 0.463  
 DRAEM – 0.639 0.629 0.955 0.378  
 DSR – 0.646 0.600 0.933 0.308  
 Efficient_AD – 0.900 0.875 0.957 0.561  
 
FastFlow

ResNet18 0.940 0.968 0.990 0.579  
 WideResNet50 0.998 0.970 0.997 0.679  
 cait 0.940 0.968 0.997 0.654  
 deit 0.940 0.968 0.995 0.700  
 GANomaly – 0.169 0.542 – –  
 MMR WideResNet50 0.958 0.968 0.995 0.681  
 PaDiM ResNet18 0.968 0.938 0.997 0.668  
 WideResNet50 0.970 0.968 0.997 0.622  
 PatchCore WideResNet50 0.951 0.968 0.994 0.603  
 Reverse_Distillation ResNet18 0.900 0.815 0.995 0.616  
 WideResNet50 0.991 0.968 0.997 0.681  
 stfpm ResNet18 0.875 0.897 0.992 0.596  
 WideResNet50 0.938 0.968 0.996 0.693  
 SimpleNet WideResNet50 1.000 0.970 0.996 0.700  
 
UFlow

mcait 0.995 0.968 0.998 0.655  
 ResNet18 0.988 0.933 0.993 0.558  
 WideResNet50 0.979 0.933 0.994 0.554  
21 
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