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IceCube has discovered a flux of astrophysical neutrinos and presented evidence for the first
neutrino sources, a flaring blazar known as TXS 0506+056 and the active galaxy NGC 1068.
However, the sources responsible for the majority of the astrophysical neutrino flux remain elusive.
In addition to hypothetical sources within our Galaxy, high energy neutrinos are produced when
cosmic rays interact at their acceleration sites and during propagation through the interstellar
medium. The Galactic plane has therefore long been hypothesized as a neutrino source. In this
contribution, new results are presented for searches of neutrino sources utilizing a dataset that
builds upon recent advances in deep-learning-based reconstruction methods for neutrino-induced
cascades. This work presents the first observation of high-energy neutrinos from the Milky Way
Galaxy, rejecting the background-only hypothesis at 4.5 𝜎. The neutrino signal is consistent with
diffuse emission from the Galactic plane, potentially in combination with emission by a population
of sources.
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1. Neutrino Production in the Milky Way

The Milky Way Galaxy has been observed over many wavelengths of light, from radio waves
to gamma rays. At energies above 1 GeV, the sky as observed by Fermi-LAT [1] is dominated by
emission from the Galactic plane of the Milky Way. Cosmic rays can interact at their acceleration site
creating high-energy neutrinos and gamma rays, but can also escape the acceleration environment.
The cosmic rays will generally diffuse through the Galaxy, and may interact with the dust and gas of
the plane, producing emission at the site of these interactions. The observed emission reflects the
density and energy of cosmic rays, as well as the column density of matter. This diffuse emission
has been observed in gamma rays [1–3], and the counterpart has been predicted in high-energy
neutrinos [4, 5]. This work presents the first evidence of high-energy neutrinos from the Milky Way
Galaxy [6].

The IceCube Neutrino Observatory, a cubic-kilometer detector located in the geographic South
Pole, is instrumented with 5160 Digital Optical Modules (DOMs), each with a PMT and digitizing
hardware. When a neutrino interacts with the ice, charged secondary particles produce Cherenkov
light in the detector that can be used to reconstruct the direction and energy of the primary
neutrino. These interactions occur in two main topologies. “Track” events are mostly produced
from “charged-current” (CC) 𝜈𝜇 interactions that produce an outgoing muon, which traverses the
detector and deposits light along the particle track, whereas “cascade” events are produced from
“neutral-current” (NC) interactions of all flavors, as well as CC−𝜈𝑒 or CC-𝜈𝜏 interactions. These
produce a shower of particles that appear as a nearly spherically expanding light front. For this
reason, typical cascade events have inferior angular resolution (>10◦ at 10 TeV) when compared
to track events (<1◦). After IceCube discovered a flux of astrophysical neutrinos [7], it used track
events to present evidence for two sources [8, 9]. The sources responsible for the majority of the
astrophysical flux, however, remain unknown. The diffuse flux from the Galactic plane can account
for up to ∼10% of this flux at TeV energies [10].

Previous searches for emission from the Galactic plane did not find any significant emission [10–
13]. The level of Galactic emission is expected to be low when compared to the measured all-sky
astrophysical flux, and due to the direction of the Galactic center, diffuse emission is concentrated in
the southern sky. For IceCube, due to the location of the detector at the South Pole, selections in the
southern celestial sky are composed of events downgoing in the detector. Searches in this region are
particularly difficult due to the large background of atmospheric muons. Through-going track-based
analyses see a reduction of sensitivity due to this irreducible background [14]. This is especially
true for galactic sources, which are assumed to follow a softer spectrum. This work, however,
makes use of cascade events, which have a much reduced background in the southern sky, and lead
to an improvement of sensitivity. Further, machine learning techniques applied to IceCube cascade
events improve the sensitivity by a factor of 3-4 over previous searches [6]. Consequently, this
work improves sensitivity to diffuse Galactic plane emission models, leading to the first evidence
of high-energy neutrino emission from the Milky Way at a significance of 4.5𝜎.
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Figure 1: (A) The all-flavor southern sky effective area (AEff) of the IceCube dataset, averaged over solid
angle in the declination (𝛿) range between −90◦ and −5◦ as a function of E𝜈 , the true neutrino energy.
Results are shown for the deep learning event selection used in this work, (dark blue), a previous cascade
event selection [12] (light blue), and , as an example, a previous though-going track event selection [14]
(grey) applied to the IceCube data. (B) The number of expected signal events (N𝐴𝑠𝑡𝑟𝑜) in the southern sky
per energy bin per year for each event selection, assuming an isotropic astrophysical flux [17]. Calculations
are based on equal contributions of each neutrino flavor at Earth due to neutrino oscillations, (figure from [6])

2. Application of Deep Learning to Cascade Events

In the southern sky, the primary background for IceCube consists of atmospheric muons, which
trigger the detector at a rate a billion times higher than astrophysical neutrinos. This background
appears in the detector as downgoing track events which pass through the detector. These events
cannot be distinguished from neutrino-induced muons entering the detector. Thus, the event
selection in this work is optimized to search for events that start within the detector and have cascade-
like topologies. The selection of cascade events instead of track events reduces the atmospheric
muon background, and also suppresses the atmospheric neutrino background, which primarily
consists of muon flavored neutrinos. Previous cascade searches [12] used an event selection based
on veto layers that improved the effective area over tracks in the 1-100 TeV range [15]. This
work, however, relies heavily on a Deep-Neural-Network (DNN) based selection [16] that improves
the selection efficiency [6] at low energies. Further, this work includes events that are partially
contained within the detector, which improves the efficiency mostly at higher energies. Due to
the reduced backgrounds, the lower energy threshold is pushed lower, from a tens of TeV down
to around 1 TeV. The effective area at 10 TeV is increased by a factor of ∼5 when compared to
previous cascade selections, as shown in Figure 1A. This increase in effective area corresponds to
a an increase of astrophysical events by up to a factor of 20, assuming the measurement in [17], as
shown in Figure 1B. Relative improvements are largest at energies below a few tens of TeV.

The event selection also relies on a novel reconstruction that combines the advantages of DNNs
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with traditional maximum likelihood methods [18]. The new reconstruction technique results in a
similar, sample-averaged angular resolution at high energies as obtained by the previous cascade
sample, despite the inclusion of more challenging events. At low energies, the sample-averaged
resolution is improved by up to a factor of two. These improvements are achieved due to better
exploitation of available information and symmetries in the novel reconstruction method [18].

3. Searches for Galactic neutrino emission

Multiple source hypotheses were tested. The focus of this work is the testing of three models of
diffuse Galactic plane emission. The first model, referred to here as 𝜋0, is based on the extrapolation
from the Fermi-LAT fit to the first 21 months of data [1]. The spatial template from Fermi-LAT
is assumed unchanged at TeV energies, and the energy spectrum is assumed to be an unbroken
power-law with fixed spectral index 𝛾=2.7. The other two models, referred to as KRA𝛾 , model
the Galactic cosmic ray diffusion coefficient as radially dependent [19]. This results in a harder
spectrum towards the galactic center which then results in an enhanced flux after extrapolation to
IceCube’s energies. Here we test the extrapolated flux, but use a global energy dependant spectrum,
averaged over all directions. Two cutoffs are tested. KRA5

𝛾 and KRA50
𝛾 correspond to cutoffs in

Galactic cosmic rays at 5 PeV and 50 PeV respectively. These energies are propagated down to
lower energies in neutrinos. The sky-integrated flux of these models are shown in Figure 2.

For each template, the number of signal events is fitted while the spectrum is held fixed.
A likelihood-ratio test is performed with the log-likelihood ratio as the test statistic (TS) [11].
Background TS distributions are calculated from scrambled data, and the true TS for each template
is compared with this background distribution to calculate the p-value. Due to IceCube’s location
on the Earth, scrambling the Right Ascension (RA) direction produces background-like pseudo-
experiments, but preserves any detector effects. Using this data driven technique to derive p-values,
any unmodeled effect will result in a reduction of sensitivity, but not risk a false signal.

In addition to the diffuse Galactic plane analyses, searches were performed for neutrino emission
from Galactic source classes corresponding to supernova remnants (SNR), pulsar wind nebulae
(PWN) and unidentified TeV gamma-ray sources (UNID). Stacking sources can result in an improved
sensitivity over searching for each source individually. Three classes of 12 potential Galactic sources
are selected based on their TeV gamma-ray flux, and each is source is weighted to equally contribute.
The complete source list is available in Ref. [6].

4. Neutrinos from the Milky Way

The results for the diffuse Galactic plane and source stacking are shown in Table 1 and Table 2
respectively, which was first reported in [6]. Each of the diffuse emission hypotheses is significant
with pre-trial p-values corresponding to 4.71𝜎, 4.37𝜎 and 3.96𝜎, respectively. These fluxes
correspond to best-fitting values of 748, 276, and 211 signal events (𝑛𝑠) in the IceCube dataset for
the 𝜋0, KRA5

𝛾 and KRA50
𝛾 models, respectively. After accounting for the three tested hypotheses,

the resulting post-trials p-value is calculated,and coresponds to a significance of 4.5𝜎.
Also included in Table 1 are best-fit flux normalizations for each template. The 𝜋0 flux is

reported at 100 TeV. Since the KRA𝛾 models do not follow a power-law, the flux is reported as
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Diffuse Galactic
plane analyses

Flux Sensitvity
Φ

Best-fitting
𝑛𝑠

p-value Best-fitting
flux Φ

𝜋0 5.98 748 1.3×10−6 (4.71𝜎) 21.8 +5.3
−4.9

KRA5
𝛾 0.16×MF 276 6.1×10−6 (4.37𝜎) 0.55+0.18

−0.15×MF
KRA50

𝛾 0.11×MF 211 3.7×10−5 (3.96𝜎) 0.37+0.13
−0.11×MF

Table 1: The flux sensitivity and best-fitting flux normalization (Φ) are given in units of model flux (MF)
for KRA𝛾 templates and as E2 𝑑𝑁

𝑑𝐸
at 100 TeV in units of 10−12 TeV cm−2 s−1 for the 𝜋0 analyses ( 𝑑𝑁

𝑑𝐸
is

the differential number of neutrinos per flavor, N, and neutrino energy, E). P-values and significance are
calculated with respect to the background-only hypothesis. Pre-trial p-values for each individual result are
shown for the three diffuse Galactic plane analyses.

Catalog Sensitivity Φ n𝑠 𝛾 p-value Significance (𝜎) Flux Φ UL Φ

SNR 2.24 218.6 2.75 5.9×10−4 3.24 6.22 <9.01
PWN 2.25 279.6 3.00 5.9×10−4 3.24 3.80 <9.50
UNID 1.89 238.4 2.85 3.4×10−4 3.40 5.03 <7.76

Table 2: Pre-trial significance, sensitivity, best-fitting spectrum (𝛾), total number of signal events (n𝑠), flux,
and 90% Upper Limits (UL) for the Galactic stacking catalog analyses. Upper limits are with respect to a
source emitting following an E−2 spectrum. The per-flavor neutrino flux sensitivity, best-fit, and upper limits
are given as E2 𝑑𝑁

𝑑𝐸
at 100 TeV in units of 10−12 TeV cm−2 s−1 for the entire catalog of sources.

multiples of the model prediction. Those normalizations are shown compared to the model for
each template in Figure 2. The KRA𝛾 best-fitting normalization is less than the models, whereas
the 𝜋0 best-fit is larger by a factor of ∼5 than the 𝜋0 model. This could be an indication that the
underlying diffuse emission spectrum is more complex than assumed in any of the tested models,
possibly containing a contribution from unresolved Galactic sources. These results are based on the
all-sky template and model-to-model flux comparisons depend on the considered sky region. When
considering regions of the sky tested by gamma-ray experiments like Tibet-AS𝛾 the best-fit 𝜋0

model fits well with the measured gamma-ray flux. The IceCube result, however, is a measurement
over the entire sky and it does not attempt to mask out any galactic sources, as none have been
identified.

In addition to the Galactic diffuse templates, the three Galactic stacking analyses also resulted
in evidence above 3𝜎 with pre-trial significance of 3.24𝜎, 3.24𝜎, and 3.40𝜎 for the SNR, PWN, and
UNID classes respectively. The full results are shown in Table 2. Due to the large spatial overlap in
source hypotheses, these significances are expected in the scenario of diffuse emission at the best-fit
values reported in Table 1. This analysis cannot distinguish the contribution of individual sources
or classes of sources from diffuse emission.

Finally, an all-sky scan was performed, searching at each location on the sky for an excess
of point-like neutrino emission. The visualization of this all-sky search is shown in equatorial
coordinates in Figure 3. Excesses are visible along the Galactic plane and near well known gamma-
ray emitters, such as the Crab Nebula, 3C 454.3, and the Cygnus X region, however, no single point
is significant once trials are accounted for.
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Figure 2: Energy-scaled, sky-integrated, per-flavor neutrino flux as a function of neutrino energy (E𝜈) for
each of the Galactic plane models. Dotted lines are the predicted values for the 𝜋0 (dark blue), KRA5

𝛾

(orange) and KRA50
𝛾 (light blue) models while solid lines are our best-fitting flux normalizations from the

IceCube data. Shaded regions indicate the 1𝜎 uncertainties, extending over the energy range that contributes
to 90% of the significance. These results are based on the all-sky (4𝜋 sr) template and are presented as an
all-sky flux. For comparison, the grey hatching shows the flux of the IceCube all-sky neutrino flux [17],
scaled to an all-sky flux by multiplying by 4𝜋, with its 1𝜎 uncertainty. Figure from [6]

5. Conclusion

This work presents the first evidence of high-energy neutrino emission from the Milky Way
Galaxy. The result is consistent with a diffuse neutrino emission hypothesis or a collection of
unresolved sources.

Round-trip tests were performed to investigate the correlation between the source stacking
analyses and the diffuse Galactic plane analyses. Injecting the best-fitted flux from the 𝜋0 template
results in a significance for the other templates that is compatible with the observed results. Injecting
any one of the stacking source hypotheses individually, does not recover the best-fitted flux for the
diffuse emission models. Further, it is possible that some of these sources still contribute to the
observed flux.

More information is needed to characterize the Galactic component of the astrophysical neutrino
flux. A larger range of Galactic templates, including more recent models [20], have been tested
with a dataset of northern sky track events in IceCube [21]. A search for the same diffuse templates
was also performed with IceCube starting track events [22, 23]. Both results are compatible with
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Figure 3: The best-fitting pre-trial significance for the all-sky search is shown as a function of direction in
an Aitoff projection of the celestial sphere, in equatorial coordinates (J2000 equinox). The Galactic plane
is indicated by a grey curve, and the Galactic Center as a dot. Although some locations appear to have
significant emission, the trial factor for the number of points searched means these points are all individually
statistically consistent with background fluctuations. The clustering of larger significances along the galactic
plane reflects the significant excess that is observed in the template searches for the Galactic plane. Figure
from [6].

the results presented in this work. Further work will require the identification of sources and their
spectra. This could be done by combining the signal purity of cascade events with the angular
resolution of track events [24].
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