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We report on an analysis of the high-energy muon component in near-vertical extensive air showers
detected by the surface array IceTop in coincidence with the in-ice array of the IceCube Neutrino
Observatory. In the coincidence measurement, the predominantly electromagnetic signal mea-
sured by IceTop is used to estimate the cosmic-ray primary energy, and the energy loss of the muon
bundle in the deep in-ice array is used to estimate the number of muons in the shower with energies
above 500 GeV (“TeV muons”). The average multiplicity of these TeV muons is determined for
cosmic-ray energies between 2.5 PeV and 100 PeV assuming three different hadronic interaction
models: Sibyll 2.1, QGSJet-II.04, and EPOS-LHC. For all models considered, the results are
found to be in good agreement with the expectations from simulations. A tension exists, however,
between the high-energy muon multiplicity and other observables; most importantly the density
of GeV muons measured by IceTop using QGSJet-II.04 and EPOS-LHC.
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Multiplicity of TeV muons in air showers with IceTop and IceCube

1. Introduction

Cosmic rays with energies above 100 TeV are studied indirectly through the extensive air
showers (EAS) they initiate in the Earth’s atmosphere. The interpretation of the measurements in
terms of the mass of the primary nucleus relies on detailed simulations of the EAS development.
A discrepancy between the predicted and observed number of muons in EAS has been reported
by several experiments [1], and is generally attributed to an incomplete description of high-energy
hadronic interactions [2]. The uncertainties in the description of EAS development prevent an
accurate determination of the cosmic-ray mass composition, an important part of the puzzle of
understanding the sources of cosmic rays.
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Figure 1: Average multiplicity of muons with an en-
ergy above 500 GeV in near-vertical EAS obtained
from simulations for proton and iron nuclei and dif-
ferent hadronic models.

The IceCube Neutrino Observatory [3]
can perform unique tests of muon produc-
tion in EAS with its combination of a sur-
face air-shower array and a deep in-ice detec-
tor, detecting muons from two different kine-
matic regimes. The surface detector, IceTop,
measures muons with energies mostly around
1 GeV [4]. The in-ice detector, hereafter re-
ferred to as IceCube, can only be reached by
muons with energies above several hundred
GeV. Previous studies have demonstrated in-
consistencies between air-shower observables
in different hadronic interaction models [5, 6].

In this work, a measurement of the high-
energy muon component, referred to as TeV
muons, in near-vertical air showers observed
in coincidence between IceTop and IceCube is
presented. More specifically, we reconstruct the average number of muons, ⟨𝑁𝜇⟩, with an energy
above 500 GeV in EAS as a function of the primary cosmic-ray energy. Predictions obtained from
CORSIKA [7] simulations for ⟨𝑁𝜇⟩ in the considered primary energy range of 2.5 PeV to 100 PeV
are shown in Fig. 1. The analysis is performed using the hadronic interaction models Sibyll 2.1 [8],
QGSJet-II.04 [9], and EPOS-LHC [10].

2. IceTop & IceCube

The IceCube Neutrino Observatory is a multi-purpose detector located at the geographical
South Pole. IceTop is the surface component of the observatory and it is situated at an altitude of
about 2.8 km a.s.l., corresponding to an average atmospheric depth of ∼690 g cm−2 [11]. It consists
of 81 stations, each comprising two ice-Cherenkov tanks, deployed on a triangular grid with a
spacing of about 125 m. Each tank contains two Digital Optical Modules (DOMs) which detect
Cherenkov photons produced by particles traversing the ice inside the tanks. IceCube consists of
about 5000 DOMs inside the Antarctic ice between depths of 1450 m and 2450 m [3]. The DOMs
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are deployed on vertical strings following approximately the same grid as the stations at the surface,
instrumenting a total volume of about one cubic kilometer.

IceTop detects EAS with primary energies typically between 1 PeV and 1 EeV. IceTop detects
EAS with primary energies typically between 1 PeV and 1 EeV. Due to the high altitude of the
array, vertical EAS are detected close to the shower maximum. IceTop signals are dominated by the
electromagnetic shower component, except for several hundred meters away from the shower axis,
where muons are more prominent. Snow accumulation on top of the detectors absorbs a fraction
of the particles and moves the trigger threshold up in energy over time. Muons with an energy
over several hundred GeV can penetrate deeply into the ice and can be observed in coincidence in
IceCube if the shower axis intersects it.

3. Muon multiplicity analysis

3.1 Event selection and reconstruction

A standard air-shower reconstruction is applied to events passing the IceTop trigger, recon-
structing the direction of the shower axis, the shower core position, and the shower size [11] using
only information from IceTop. This is done by fitting the measured signal sizes and times with a
lateral distribution function (LDF) and shower front model respectively. The shower size 𝑆125 is
the signal obtained from the LDF fit at a distance of 125 m from the shower axis. The attenuation
of the expected signal as a result of snow accumulation on the surface is accounted for in the
reconstruction. Events are furthermore required to have an in-ice trigger which coincides with the
expected arrival time of the high-energy muon bundle in the deep detector. The recorded in-ice
signals are used to reconstruct the combined energy loss of the muons in the bundle. The recon-
struction algorithm fits the deposited energy in segments of 20 m along a seed track [12], for which
the reconstructed shower axis from the IceTop reconstruction is used.

Several quality cuts developed for previous analyses are applied (see Ref. [13] for details). The
IceTop selection ensures that the events have a well-reconstructed direction and shower size, with
their core position contained within the boundaries of the IceTop array. The IceCube selection
ensures that a muon bundle signal with a successful energy-loss reconstruction is detected in
IceCube. The analysis is further restricted to near-vertical showers with the reconstructed zenith
angle cos 𝜃 < 0.95 or 𝜃 ≲ 18◦.

This analysis uses data recorded between May 15, 2012 and May 5, 2013. For the snow
coverage of this period, the selection reaches full efficiency for primary cosmic rays with energies
above 2.5 PeV, which is therefore chosen as the low-energy threshold of the analysis. At high
energies, the analysis is limited to 100 PeV. A total of 1216154 events passing the selection criteria
are included in the analysis.

3.2 Neural network

A neural network is used to reconstruct two quantities for every event: the primary cosmic-ray
energy, 𝐸 , and the multiplicity of muons with energy above 500 GeV in the shower, 𝑁𝜇, counted
at the South Pole surface level. The neural network takes inputs from IceTop and IceCube. The
segmented energy-loss reconstruction of the muon bundle is used as an input to a recurrent neural
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Figure 2: Bias and resolution of the neural network trained in this analysis, defined as the the mean and
standard deviation of the difference between the logarithms of the reconstructed and true values. Left:
Primary energy 𝐸 . Right: Muon multiplicity 𝑁𝜇 (for 𝐸𝜇 > 500 GeV).

network layer. The output of this layer is combined with the shower size 𝑆125 and zenith angle 𝜃

from the air-shower reconstruction as an input to a number of dense layers which finally return 𝐸

and 𝑁𝜇. 𝑆125 is known to be a good estimator for 𝐸 , while the energy loss of the bundle is strongly
correlated with the number of high-energy muons in the shower [13].

The neural network was trained on Monte Carlo simulations produced with CORSIKA v7.7300,
using Sibyll 2.1 as the high-energy hadronic model. The atmospheric model describes the average
South Pole atmosphere in April, which is close to the yearly average. The training data includes four
primary nuclei (p, He, O, Fe) and has undergone full detector simulation and processing identical
to the experimental data.

Fig. 2 shows the performance of the neural network reconstructions of 𝐸 and 𝑁𝜇 in terms
of bias and resolution as a function of the true values for the different primary nuclei, defined as
the mean and standard deviation of a Gaussian fit to the difference between the log10 of true and
reconstructed values.

3.3 Mean muon number: MC correction

The average muon multiplicity as function of primary energy is estimated by binning events
in the neural-network reconstructed 𝐸 and calculating the mean reconstructed 𝑁𝜇. The accuracy
of the method can be obtained by performing it on simulation and comparing to the true mean 𝑁𝜇

in bins of true 𝐸 . Such a comparison is shown in Fig. 3 (left). Although there is good agreement
in the general behavior, systematic biases are present. The magnitude of the bias depends on both
energy and mass. The ratio of the true and reconstructed values is fitted with quadratic functions,
as shown in Fig. 3 (right). These fits are used as correction factors which will be applied to the
results obtained from data.

One complication is the mass dependence of the correction factors. To handle this without
having to assume a specific mass composition model, an iterative method is used. It takes advantage
of the approximately linear dependence of the correction factors on ln 𝐴, where 𝐴 is the mass number
of the nucleus, visible as the approximate equidistance of the four fits at each energy in the right
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Figure 3: Left: Comparison of the average reconstructed high-energy muon multiplicity ⟨𝑁𝜇⟩ in bins of
reconstructed cosmic-ray energy 𝐸 and the true values in simulation for four different primary types. Right:
Ratio of the reconstructed and true ⟨𝑁𝜇⟩ from the left panel. Biases of about ±15% depending on the
primary are observed. The ratios are fitted with quadratic functions, which are used further in the analysis as
multiplicative correction factors.

panel of Fig. 3. To accomplish this, the average ⟨𝑁𝜇⟩ obtained in an energy bin is compared to
predictions for proton and iron simulation using

𝑧 =
ln⟨𝑁𝜇⟩ − ln⟨𝑁𝜇⟩p

ln⟨𝑁𝜇⟩Fe − ln⟨𝑁𝜇⟩p
, (1)

also referred to as “𝑧-scale” [1]. The Heitler-Matthews model and the superposition principle predict
that a muon measurement corresponds to an estimate of the mass composition, 𝑧 ≈ ln 𝐴/ln 56 [14].
The fitted correction factors of Fig. 3 for proton and iron, Cp and CFe, are linearly interpolated to
find the correction factor corresponding to the reconstructed 𝑧,

C(ln 𝐴) = Cp +
CFe − Cp

ln 56
ln 𝐴. (2)

The correction factor obtained in this way is then applied to the initial ⟨𝑁𝜇⟩. With the updated
estimate of ⟨𝑁𝜇⟩, a new correction factor can be constructed. This process is repeated until the
values of ⟨𝑁𝜇⟩ converge. An example of this iterative correction procedure applied to simulations
is shown in Fig. 4. It has been tested that this approach successfully obtains ⟨𝑁𝜇⟩ values compatible
with true values, regardless of the underlying mass composition. Note that because of how the
correction factors are derived, they also implicitly correct for biases which result from events
migrating to different energy bins. In addition to the correction factors derived from Sibyll 2.1
simulations, correction factors were also derived by applying the neural network to QGSJet-II.04
and EPOS-LHC simulations. In this way, results can be derived from experimental data under
different model assumptions.

3.4 Systematic uncertainties

The systematic uncertainties in this analysis arise from several sources. The detector uncer-
tainties are those described in Ref. [13], however, with a more conservative value of 10% for the
uncertainty on the DOM efficiency. Other uncertainties relevant for the in-ice detector are related
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to the scattering and absorption of Cherenkov photons in the Antarctic ice. These are the dominant
uncertainties on the final result. For IceTop, the uncertainties are related to the snow accumulation
on the detector and the calibration of the charge unit (vertical equivalent muon or VEM).
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Figure 4: Example of the iterative correction pro-
cedure applied to simulation weighted according to
the H4a composition model. “Step 0” shows ⟨𝑁𝜇⟩
obtained after applying the neural network reconstruc-
tions and obtaining the average value in each bin. Af-
ter several steps of applying the correction, updating
the correction factor in each step as described in Sec-
tion 3.3, ⟨𝑁𝜇⟩ can be seen to converge to values con-
sistent with the true values in the simulation.

The statistical uncertainties derived on the
correction factors (see Fig. 3) are also included
as a systematic uncertainty on the final result.

4. Results

The average multiplicity of muons above
500 GeV, derived from one year of experimen-
tal data under the assumption of the hadronic in-
teraction models Sibyll 2.1, QGSJet-II.04, and
EPOS-LHC, is presented in Fig. 5 (left). The
results for each model are shown together with
predictions from simulations based on the cor-
responding model. In order to visualize the
composition implied by the measurements in
more detail, they are plotted by scaling them
according to the predictions, follwing Eq. (1).
This is shown in Fig. 5 (right), compared to
expectations from the cosmic-ray flux models
GSF [15], GST [16], and H3a [17]. Although
the result obtained using EPOS-LHC indicates
a composition which is consistently heavier than those obtained with Sibyll 2.1 and QGSJet-II.04,
all results are in agreement with expectations from simulations within uncertainties.

It is of interest to compare the high-energy muon result presented here to the GeV muon
density measurement performed with IceTop alone in the same primary energy range, as presented
in Ref. [4]. The composition interpretation of the GeV and TeV muon results should be consistent
if the simulations give an accurate description of EAS. This is the case for the results obtained with
Sibyll 2.1. For the post-LHC models QGSJet-II.04 and EPOS-LHC, however, a tension is observed
as a result of their increased number of GeV muons compared to Sibyll 2.1, indicating a very light
mass composition. In addition, indications of a discrepancy between the muon measurements for
Sibyll 2.1 and a shower observable related to the IceTop LDF have been observed in Ref. [5].

5. Conclusion

We have presented a first measurement of the multiplicity of TeV muons in near-vertical EAS
with energies ranging from 2.5 PeV to 100 PeV with the IceTop and IceCube detectors. The results
agree within uncertainties with predictions from simulations for all hadronic interaction models
considered, i.e. Sibyll 2.1, QGSJet-II.04, and EPOS-LHC. Discrepancies are observed with the
measurement of the GeV muon density with IceTop for QGSJet-II.04 and EPOS-LHC, suggesting
these models do not adequately describe the experimental data in this energy range.
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Figure 5: Average number of muons with energy above 500 GeV as a function of primary energy for near-
vertical EAS, obtained from experimental data using the hadronic interaction models Sibyll 2.1, QGSJet-II.04,
and EPOS-LHC. Plots also show predictions from proton and iron simulations based on the same models.
The figures on the right show the corresponding z-values (Eq. (1)), with expectations from cosmic-ray flux
models for comparison. Bands and brackets indicate the total systematic uncertainty, error bars are plotted
for the statistical uncertainties but are smaller than the marker size.

7



P
o
S
(
I
C
R
C
2
0
2
3
)
2
0
7

Multiplicity of TeV muons in air showers with IceTop and IceCube

Future improvements in this analysis will decrease the systematic uncertainties related to the
ice model [18] and push the analysis to higher primary energies. Together with improvements in
low-energy muon measurements, such as the event-by-event approach explored in Ref. [19], the
spectral information obtained from combined muon measurements with IceTop and IceCube will
be able to provide even more stringent constraints on muon production in EAS [20]. An improved
description of high-energy hadronic interactions is not only crucial for the interpretation of cosmic-
ray measurements, but also benefits other domains of particle astrophysics, such as measurements
of astrophysical neutrinos and gamma rays [21].
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